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Abstract In this two-part paper we introduce a new for-
mulation for modeling progressive damage in laminated
composite structures. We adopt a multi-layer modeling
approach, based on isogeometric analysis, where each ply or
lamina is represented by a spline surface, and modeled as a
Kirchhoff–Love thin shell. Continuum damage mechanics is
used tomodel intralaminar damage, and a newzero-thickness
cohesive-interface formulation is introduced tomodel delam-
ination as well as permitting laminate-level transverse shear
compliance. In Part I of this series we focus on the presenta-
tion of the modeling framework, validation of the framework
using standard Mode I and Mode II delamination tests, and
assessment of its suitability for modeling thick laminates.
In Part II of this series we focus on the application of the
proposed framework to modeling and simulation of damage
in composite laminates resulting from impact. The proposed
approach has significant accuracy and efficiency advantages
over existing methods for modeling impact damage. These
stem from the use of IGA-based Kirchhoff–Love shells to
represent the individual plies of the composite laminate,
while the compliant cohesive interfaces enable transverse
shear deformation of the laminate. Kirchhoff–Love shells
give a faithful representation of the ply deformation behav-
ior, and, unlike solids or traditional shear-deformable shells,
do not suffer from transverse-shear locking in the limit of
vanishing thickness. This, in combination with higher-order
accurate and smooth representation of the shell midsurface
displacement field, allows us to adopt relatively coarse in-
plane discretizations without sacrificing solution accuracy.
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Furthermore, the thin-shell formulation employed does not
use rotational degrees of freedom, which gives additional
efficiency benefits relative to more standard shell formula-
tions.
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1 Introduction

Composite materials are increasingly adopted for structural
lightweight applications in the aerospace field due to their
high stiffness and strength properties. Nowadays laminated
composites are used in the manufacturing of primary aircraft
components including, as in the case of a new generation of
long-range jet airliners, wing and fuselage structures. How-
ever, one of themost critical issues in the design of composite
structures is their sensitivity to local damage caused by low
velocity impacts, which may occur, for example, during nor-
mal operations, or even as a result of ground service or
maintenance-related activity.

Because of the inherent heterogeneous nature of fiber-
reinforced polymer composite materials and the complexity
of their failure mechanisms, damage can occur at different
length scales and often involves a simultaneous deterioration
of the matrix material and separation of the layers that con-
stitute the laminate, i.e., delamination. This damage mode,
which often leads to a significant loss of strength of a struc-
tural component, may be difficult, if not impossible, to detect
by visual inspection.

For these reasons, the response of composite laminates
subjected to low velocity impact presents an important
research direction. Experimental studies of Choi et al. [1]
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and a literature review from Richardson and Wisheart [2]
identified delamination as a critical factor, which, owing to
local instabilities of the disconnected lamina, severely affects
post-impact behavior of structures subjected to compres-
sive loads. These authors also stressed the fact that failure
modes in composite laminates are interrelated, and that the
development of comprehensive modeling approaches that
can simultaneously and accurately capture intralaminar fail-
ure and delamination is of primary importance.

Several models have been proposed, starting from the
early 1990’s, to predict damage growth in laminated com-
posites subjected to low-velocity impact. Choi et al. [1,3]
developed finite element procedures to predict the exten-
sion of the delamination front based on the analysis of
stresses in the plies. The references focused their attention
on the interaction between matrix cracking and propaga-
tion of delamination. A prototype of a multi-layer modeling
approach, where the plies are modeled as individual parts
connected through discrete interfaces, was proposed in Allix
et al. [4,5] who developed a cohesive damage model in
order to predict delamination under Mode I, Mode II, and
mixed-mode openings. Several authors investigated the use
of cohesive interfaces [6,7] and cohesive elements [8,9] to
simulate the interaction between discrete plies in laminated
structures, while Turon et al. [10,11] developed a cohesive
damage model in order to accurately predict delamination in
composite laminates under multi-mode loading conditions.
The use of discrete, connected interfaces, implemented either
by means of surfaces or solid elements, allows for the devel-
opment of multi-layer modeling techniques. As a result, a
multi-layer representation combined with intralaminar dam-
age modeling has become increasingly popular in recent
years for progressive damage simulations of laminated com-
posites.

A phenomenological Residual Stiffness Approach (RSA)
[12,13] is widely used as an intralaminar damagemodel. The
RSA, which is developed in the framework of the Contin-
uum Damage Mechanics (CDM), is based on a progressive
reduction of the elastic properties of material as a func-
tion of the damage state, which is described in terms of
the so-called damage variables that are evolved according
to specific damage initiation and evolution criteria. Recent
advances in the modeling of intralaminar damage include the
introduction of the material nonlinearities [14] such as fiber
kinking [15,16] and nonlinear shear behavior [17]. Some
authors [18,19] also investigated the use of matrix plasticity
to predict post-impact permanent indentation of the lami-
nates. Several enhancements have been proposed in the past
years for the intralaminar and interlaminar damage models.
Theproposedmodelsmakeuse of 3Dsolid linear [17–20] and
higher-order [21] Finite Elements (FE) for the discretization
of the continuum. Faggiani and Falzon [22] proposed amixed
model where, in order to reduce the problem size, solid ele-

ments were used in the impact region while continuum shell
elements were employed elsewhere. Davila et al. [7] devel-
oped a 2D cohesive interface for the Reissner–Mindlin shell
elements and applied it to simulate delamination in aerospace
structural components under quasi-static loading conditions.

Nevertheless, despite these enhancements, simulation of
impact on laminated composite structures is dominatedby3D
linear hexahedral elements. While the computational costs
can be kept at a manageable level (i.e., O(105) elements)
for coupon-scale simulations, 3D solid element technology
becomes prohibitively expensive for larger-size structural
components. This was one of the motivating factors for
the development of a computational approach based on
Isogeometric Analysis (IGA) [23,24] in the framework of
the multi-layer shell modeling presented in detail in Part
I of this paper. Because the individual plies of a laminate
are sufficiently thin to be reasonably described using the
Kirchhoff–Love shell theory, we took the work of [25,26]
on rotation-free shells, and its extension to CDM in [27], as
the starting point. The individual lamina, modeled as thin
shells and discretized using spline-based IGA with only dis-
placement degrees of freedom,were connectedwith cohesive
interfaces resulting in an accurate and efficient methodology
that is able to simultaneously model intralaminar damage
and delamination. The use of IGA has an added benefit
of a natural connection to Computer-Aided Design (CAD),
allowing the use of CAD or other geometric modeling soft-
ware to model structural components and directly analyze
them using the same geometry representation, without the
need to generate FE meshes [28]. We note that an alterna-
tive approach to delamination modeling using IGA may be
found in the recently proposed continuum or solid-like shell
formulations [29,30].

Part II of this two-part paper focuses on the application
of the multi-layer IGA shell formulation to simulate dam-
age in composite laminates due to low-velocity impact. The
formulation developed in Part I of this article is augmented
with a contact model between the impactor and laminate,
which is presented in Sect. 2. In Sect. 3 the complete discrete
formulation is summarized including intralaminar damage,
delamination, and contact with the impactor. In Sect. 4
numerical simulations of an impact test are carried out with
the IGA-based formulation. In Sect. 5 the numerical results
are comparedwith experimental data and twoFE-basedmod-
els. In Sect. 6 conclusions are drawn and future research
directions are presented.

2 Contact algorithm

The ability of the method to handle contacts between the
impactor and laminate, as well as between the lamina or
sublaminates, is essential for carrying out simulation of
impact on laminated composite structures. In what follows,
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we describe in detail the contact formulation employed in
this work and its algorithmic implementation. The formula-
tion is presented in the context of thin isogeometric shells.
However, many of its constituents are applicable to a wider
class of solid and structural models.

While several numerical techniques have been devel-
oped for contact and impact problems (see, e.g., [31] for a
comprehensive review), the penalty formulation is the most
commonly adopted methodology, especially for large-scale
analyses, because, unlike in the case of Lagrange-multiplier
or mortar-type methods [32], no additional unknowns are
introduced in the formulation.

The penalty method is based on the introduction of a
repulsive traction in order to enforce, albeit approximately,
the non-interpenetration condition between the disconnected
parts. The contact algorithm developed in this paper consists
of two separate steps:

1. Search step, where pairs of candidate contact points are
identified.

2. Penalization step, where a signed distance function is
evaluated in order to verify if the contact criteria are sat-
isfied.

By definition, a pair of candidate contact points are twomate-
rial points belonging to two separate parts, or objects, that
satisfy a user-defined search criterion. The existence of a
pair of candidate contact points is only a necessary condi-
tion to determine whether the separate parts are in contact.
The actual contact occurs only if the distance between the
candidate points is smaller than a specified threshold. If both
the search and penalization steps are successful, meaning
that a pair of candidate contact points exists and the dis-
tance between them is small enough to satisfy the contact
criterion, then contact traction is introduced in themultilayer-
shell variational formulation. In what follows, we outline
our methodology to detect interaction between separate parts
represented by shell surfaces in 3D. We note that this two-
step procedure is efficient because it allows one to perform
the search step, which is computationally demanding, in a
configuration of choice, such as, for example, the reference
configuration at the beginning of the simulation. Conversely,
the penalization step ismuch less expensive as it only requires
evaluation of the distance between all the pairs of candidate
contact points, and thus may be performed at every time-
integration and/or nonlinear-iteration step.

2.1 Search step

A contact interface is defined as the intersection of two dis-
tinct surfaces, namely�1 and�2, which, in the framework of
our modeling approach, correspond to NURBS surfaces rep-

resenting two separate geometric entities. The purpose of the
search step is to identify, for each point x1 ∈ �1, the corre-
sponding candidate contact point x2 ∈ �2 defined according
to a specific proximity criterion. From a theoretical stand-
point, a pair of candidate contact points is defined as a subset
of �1 ∩�2. However, this definition is not appropriate in the
framework of shell representations of 3D continuum. Indeed,
in order to take the shell thickness into account, it is neces-
sary to detect possible contact before the intersection of the
surfaces occurs. We therefore introduce a search procedure
in order to identify all the possible pairs of candidate contact
points on all the surfaces where the contact is activated, while
detection of the actual contact is deferred to the penalization
step.

In ourwork, we developed a search algorithm based on the
technique proposed in [33]. The search problem is formally
defined in terms of finding the points x1

(
ξx1

)
and x2

(
ξx2

)

that satisfy:

{
f1

(
ξx2

) = (
x1 − x2

(
ξx2

)) · x2
(
ξx2

)
,ξ1

= 0,

f2
(
ξx2

) = (
x1 − x2

(
ξx2

)) · x2
(
ξx2

)
,ξ2

= 0.
(1)

The above nonlinear-equation system represents the con-
dition that the distance vector x1 − x2

(
ξx2

)
is orthogonal

to the tangent plane of �2 defined by the tangent vectors
x2

(
ξx2

)
,ξ1

and x2
(
ξx1

)
,ξ2
. Note that x1 is not explicitly writ-

ten as a function of ξx1 because during the search step the
point x1 is assumed fixed and its parametric coordinates con-
stant.

The Newton–Raphson iterative method is used to solve
the nonlinear-equation system for the parametric coordinates
ξx2 , where each iteration takes on the form:

ξ i+1
x2 = ξ ix2 −

[
J

(
ξ ix2

)]−1

⎡

⎣
f1

(
ξ ix2

)

f2
(
ξ ix2

)

⎤

⎦ , (2)

where i is the iteration index. The exact Jacobian matrix J of
the Newton–Raphson iteration is given by

J
(
ξ ix2

)
=

⎡

⎣
J11

(
ξ ix2

)
J12

(
ξ ix2

)

J21
(
ξ ix2

)
J22

(
ξ ix2

)

⎤

⎦ , (3)

where

J11
(
ξ ix2

)
= x1 · x2,ξ1ξ1 − x2,ξ1 · x2,ξ1 − x2 · x2,ξ1ξ1 ,

J12
(
ξ ix2

)
= x1 · x2,ξ1ξ2 − x2,ξ2 · x2,ξ1 − x2 · x2,ξ1ξ2 ,

J21
(
ξ ix2

)
= x1 · x2,ξ2ξ1 − x2,ξ1 · x2,ξ2 − x2 · x2,ξ2ξ1 ,

J22
(
ξ ix2

)
= x1 · x2,ξ2ξ2 − x2,ξ2 · x2,ξ2 − x2 · x2,ξ2ξ2 .

(4)
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Fig. 1 Three stages of the impact. a No contact, where d ≤ −h; b soft contact, where d ∈ (−h, 0); c Hard contact, where d ≥ 0. Solid black lines
represent the shell middle surfaces, while dashed lines represent the actual surface with shell thickness taken into account

As pointed out in [34], the IGA representation of contact-
ing surfaces is beneficial for the search procedure because
the surfaces are naturally parameterized (in our case, using
NURBS functions), and the parameterization is smooth
almost everywhere allowing for direct evaluation of the
position-vector second derivatives. However, in general, the
uniqueness of the nonlinear-system solution is not guar-
anteed, and it is often necessary to introduce additional
constraints on the domain of the unknown solution vector
ξx2 . In practice, these constraints are enforced by reducing
the search domain from the whole surface �2 to a smaller
sub-domain located in the proximity of the point x1. Imple-
mentation details of the search step are discussed in Sect. 2.4.

2.2 Penalization step

The successful search step finds pairs of points x1 and x2 that
satisfy the condition given by Eq. (1). However, these points
are not necessarily in contact as they may be too far apart.
Contact is thus introduced through a penalization step, where
we first introduce the signed distance d

(
ξx1 , ξx2

)
defined as:

d = [
x2

(
ξx2

) − x1
(
ξx1

)] · n2
(
x2

(
ξx2

))
. (5)

Since the distance vector (x2 − x1) is, by definition, parallel
to n2, the value of the distance function is null when the
spatial locations x1 and x2 coincide in space and the surfaces
are in contact at that location. We then define the contact
pressure Pk to be a non-linear function of d as:

Pk =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if d ≤ −h,
k

2h
(d + h)2 if d ∈ (−h, 0) ,

kh

2
+ kd if d ≥ 0,

(6)

where k is the contact stiffness, while the absolute value of
the parameter h determines the distance at which the candi-
date points are set to be in contact. In our implementation,

the parameter h is chosen equal to the sum of the local half-
thicknesses of the surfaces �1 and �2 at points x1

(
ξx1

)

and x2
(
ξx2

)
. Note that the contact pressure Pk in Eq. (6)

is designed to be a smooth function of d in order to improve
nonlinear convergence.

Using the contact pressure Pk as above, we define the
contact traction by multiplying Pk with the normal vector n2

as:

tcon = Pk (n2) n2, (7)

and adding the following terms to the variational formulation
of the multi-layer shell:

+
∫

�con
t

(w2 − w1) · Pk (n2) n2 d�. (8)

Equation (8) presents the nonlinear penalty-contact formula-
tion, which weakly enforces the surface non-interpenetration
condition. Given the definition of the contact pressure in
Eq. (6), one can identify three stages of impact, namely,
no-contact, soft contact, and hard contact. See Fig. 1 for an
illustration and further description.

2.3 Symmetrization of the contact formulation

The contact formulation presented in the previous section
introduces a dependence of the contact pressure, and, as a
result, of the contact traction, on which surface, �1 or �2,
is designated as the contact surface. The difference in the
contact traction arises from the difference in the orientation
of the normal vector on the two contacting surfaces.Consider,
for example, the case of a curved andflat surface in contact, as
shown in Fig. 2a, b. The signed distance function computed
with the curved surface designated as �2 is clearly different
from that computed by designating the flat surface as �2.

To minimize this dependence, we “symmetrize” the con-
tact formulation by introducing a two-step search procedure
illustrated in Fig. 2c and summarized in what follows.
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Fig. 2 Evaluation of the distance for the penalization step. a, b Asymmetric definition of the distance vector; c Symmetrization procedure

1. Consider point x1 on �1:

(a) Do a search step, keeping x1 fixed, to find x2 on �2;
(b) Compute the contact pressure Pk(n2 (x2)) based on

the distance function d = (x2 − x1) · n2 (x2).

2. Consider point x2 on �2 found in Step 1 above.

(a) Do a search step, keeping x2 fixed, to find x̄1 on �1;
(b) Compute the contact pressure P̄k(n1 (x̄1)) based on

the distance d̄ = (x̄1 − x2) · n1 (x̄1).

3. Compute the final contact pressure by averaging Pk and
P̄k .

This symmetrization procedure provides significant advan-
tages over the unsymmetrized case if the difference in the
orientation of the normal vectors on the contacting surfaces
is large.

Remark In the last step of the symmetrization procedure it is
also possible to average the contract traction vector directly.
However, this option was not pursued in this work.

2.4 Increasing the efficiency of the search step

In order to increase the efficiency of the search step, we
devised a two-level reduction of the search domain for a
given pair of contact surfaces. The first step involves defining
a search box: all the elements that are not included in a user-
defined box region in 3D space are automatically excluded
from the search domain. The second step involves defining a
search list: for each element included in the search box, we
create a list that includes only the elements that are closer to
it than a specified threshold. The actual search step, which
involves solution of the nonlinear system given by Eq. (1),
is therefore performed only for the elements included in the
search list.

A rigorous application of the contact algorithm requires
one to perform a full search and penalization at each time
step and at every iteration of the nonlinear solver in order to
accurately account for the interaction between the contacting
surfaces. However, in some situations, this requirement may

be relaxed. For example, if the parts in contact are not sub-
jected to large relative displacements during the deformation,
search for the candidate contact points can be performed only
once in the structure reference configuration. However, even
if the search step is performed only once in the reference
configuration, the penalization step must be performed con-
tinuously during the analysis to allow the surfaces to come
in and out of contact as dictated by the governing equations.

3 Discrete formulation

As in Part I of this paper, we consider a laminated com-
posite structure comprised of Np plies or sublaminates and
Nc cohesive interfaces. In addition, we assume the struc-
ture also contains Ncon contact interfaces. For this case, the
semi-discrete variational formulation may be stated as fol-
lows: Find the configuration xh ∈ Shx , such that, ∀wh ∈ Shw,

Np∑

i p=1

{ ∫

(
�S
0

)
i p

wh · ρ0i p hthip

(
d2xh

dt2
− fh

)
d�

+
∫

(
�S
0

)
i p

δεh ·
(

Kexte
i p εh + Kcoup

i p κh
)
d�

+
∫

(
�S
0

)
i p

δκh ·
(

Kcoup
i p εh + Kbend

i p κh
)
d�

−
∫

(
�S
t
)
h

wh · hh d�

}

+
Nc∑

ic=1

{ ∫

(
�coh
t

)
ic

[(
wh
1ic + h�1ic

2
δnh

1ic

)

−
(

wh
2ic + h�2ic

2
δnh

2ic

)]
· tcoh d�

}

+
Ncon∑

ic=1

{∫

(�cont
t )ic

(
wh
2ic − wh

1ic

)
· tcon d�

}

−
∫

(
�S
0

)
es

wh · Kes
(

xh − Xh
)
d� = 0.

(9)
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As in Part I of this article, the trial and test function sets are
comprised ofNURBSbasis functions that are defined on each
ply, and are discontinuous from ply to ply. In the cohesive-
interface terms of the above formulation the subscripts 1ic
and 2ic are consistent with the notation introduced in Part I
of this paper, while the subscripts 1ic and 2ic in the contact
terms are consistent with the notation in Sect. 2. Intralaminar
damage is implicitly embedded in the definition of the exten-
sional, coupling, and bending stiffness matrices of each ply,
and automatically accounts for their current damage state.
Both the implicit and explicit versions of the Generalized-
α method [35] are employed to integrate the semi-discrete
Eq. (9) in time.

Remark In the above formulation, the last term on the left
hand side represents the elastic-support boundary conditions.
The boundary conditions are defined on a subregion

(
�S
0

)
es

in the reference configuration. The matrix Kes is diagonal
and may be expressed as:

Kes =
⎡

⎣
Kes
x 0 0

0 Kes
y 0

0 0 Kes
z

⎤

⎦ (10)

where Kes
x , K

es
y and Kes

z are the directional stiffness coeffi-
cients expressed in the global coordinate system. Although
the elastic-support boundary conditions are not employed in
the computations presented in the next section, they may be
quite useful for representing the effect of frame-like supports
employed in many impact tests.

4 Impact simulations

We simulate a composite-laminate impact test in order to
validate our modeling procedures through comparison with
experimental data and simulations of this test reported in the
literature. C1-continuous quadratic NURBS are employed
for all the IGA-based simulations presented in this section.
All the IGA-based computations are carried out using an
in-house research software that implements all the meth-
ods presented in this two-part paper. In-house FE-based
Abaqus/Explicit [36] simulations using 3D linear solid ele-
ments are also carried out for comparison.

4.1 Experimental setup

Experimental setup of the impact test is shown in Fig. 3.
The coupon measures 150 mm × 100 mm and is supported
by a rigid frame with a rectangular open window at its cen-
ter. The size of the unsupported test region is 125 mm ×
75 mm. The plate is 4.16 mm thick and is composed of 16
unidirectional carbon/epoxy plies stacked using a symmet-

Fig. 3 Experimental setup for the impact test

ric lamination sequence [02, 452, 902,−452]s. The impactor
head is stiff and spherical, with a diameter of 16 mm and
total mass of 2 kg.

Two cases with different impact-energy levels are consid-
ered, 6.5 and 25 J, with experimental investigations reported
in [37] and [38], respectively. The experimental results in
these references are commonly used for the purposes of
model validation (see, e.g., [19]). For the lower energy
case, the composite plate is made of T700/M21 material,
while for the higher energy case the material employed is
T700GC/M21.

4.2 Computational setup for IGA-based simulations

An illustration of the IGA-based multi-layer shell approach
for the laminated-plate impact test is shown in Fig. 4. The
lamina material properties employed in the simulations are
reported in Table 1. The impactor is modeled as a hemi-
spherical shellmade from isotropic, stiffmaterial tominimize
compliance, with uniform thickness of 1.5 mm and density
chosen to match the total mass of the experimental impactor.
Zero normal displacement and tangential traction boundary
conditions are employed on the plate subdomain supported
by the rigid frame.

As proposed in [39], and discussed in Part I of this paper,
a characteristic length Lc is introduced in the intralaminar
damage model in order to ensure that the strain energy dis-
sipated during the damage process is independent of the
discretization adopted for analysis. As before, we define
Lc = √

Aele, where Aele is the surface area the shell ele-
ment. The baseline mesh size employed for the IGA-based
simulations is 1 mm near the impact location, and gradually
increases to 1.5 mm outside the impact zone. The baseline
IGA model is shown in Fig. 5a. A coarser discretization is
also employed for the IGA-based 6.5 J impact-energy simu-
lation in order to investigate the effect of the mesh size. The
mesh size of the coarser isogeometric discretization is 1 mm
near the impact location and gradually increases to 2.8 mm
outside the area where damage is expected to occur. The dis-
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Fig. 4 Schematic representation of the multi-layer shell model for the
impact test. Each ply is represented by a flat surface discretized with
C1-continuous quadratic NURBS. The extensional, coupling and bend-

ing stiffnesses depend on the current damage state, and are computed
according to the procedures introduced in Part I of this paper. Only half
of the laminate is shown for clarity

Table 1 Lamina material properties used in the simulations for the
T700/M21 material [37] and for the T700GC/M21 material [38]

Value Material
T700/M21 T700GC/M21

ρ (kg/m3) 1600

E1 (GPa) 130

E2 = E3 (GPa) 7.7

G12 = G13 (GPa) 4.8

G23 (GPa) 3.8

ν12 = ν13 0.3 0.33

ν23 0.35

XT (MPa) 2080

XC (MPa) 1250

YT (MPa) 60

YC (MPa) 290

ZL (MPa) 110

GXT (N/mm) 133

GXC (N/mm) 10 40

GYT (N/mm) 0.5 0.6

GYC (N/mm) 1.6 2.1

tribution of Lc in the problem domain is consistent with that
of the mesh size.

The cohesive-interface properties employed in the sim-
ulations are taken from [19] and reported in Table 2. A
detailed discussion about the selection of the cohesive-
interface stiffness may be found in [40]. As shown in Part
I, a more compliant interface gives rise to more pronounced
transverse-shear-induced localized deformations, which are
inherently neglected in the pureKirchhoff–Love shell theory.
For IGA-based simulations we selected a cohesive-interface
stiffness of Kcoh = 104 N/mm3.

Cohesive-interface formulations, as a rule, require finer
mesh resolution inorder to correctly describe thedelamination-
front propagation. According to [40], three-to-ten elements
are needed in the cohesive process zone, which is defined as
the region between the crack tip and the point where cohesive
traction reaches its maximum value. Several models [9,40–
44] were proposed for the estimation of the process-zone
length lcoh. Here we make use of the following expressions
for the normal and in-plane opening modes:

lcohn = ME ′
n
GCn
(
t0n

)2 ,

lcohτ = ME ′
τ

GCτ
(
t0τ

)2 , (11)

where E ′ is the equivalent elastic modulus andM is a param-
eter that depends on the model adopted for the cohesive
interface. Following [41], we chose M = 9π/32 in the sim-
ulations.

The equivalent elastic modulus for an orthotropic mate-
rial E ′ can conservatively be set equal to the elastic modulus
in the transverse direction E3, as suggested in [40]. Other
authors [9,43] proposed a definition of the the equivalent
elastic modulus for an orthotropic material to be a func-
tion of the fiber-direction elastic modulus E1, the transverse
modulus E3, the shear modulusG31, and loading conditions.
The equivalent elastic modulus is computed [42] under the
hypothesis of the plane-stress state in an unboundedmedium.
For Mode I opening E ′

n is computed as

1

E ′
n

=
√

1

2E1E2

√√
√√

√
E1

E3
+ E1

2

(
−2ν31

E3
+ 1

G13

)
, (12)
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Fig. 5 Representation of the a IGA and of the b in-house FE model created for the impact simulations

Table 2 Cohesive-interface properties used in the simulations for the (a) T700/M21 material [37] and for the (b) T700GC/M21 material [38]

Kcoh (N/mm3) t0n (N/mm2) t0τ (N/mm2) GCn (N/mm) GCτ (N/mm) η

1 × 104 a,b 20.0a,b 36.0a,b 0.5a, 0.6b 1.6a, 2.1b 1.45a,b

Fig. 6 Impact force time
history obtained for the a 6.5 J
and b 25 J impact energy cases.
Experimental data labeled (1)
and (3) are reported,
respectively, in [37] and [38].
Reference numerical results
labeled (2) and (4) are reported
in [19]
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while for Mode II opening E ′
τ is computed as

1

E ′
τ

=
√

1

2E1

√√√√
√

1

E1E3
+

(
−ν31

E3
+ 1

2G13

)
. (13)

We note that for isotropic materials the equivalent elastic
modulus E ′ obtained from either expression reduces to the
classical elastic modulus E .

Substituting the values of E ′ given by Eqs. (12) and (13)
computed for both T700/M21 and T700GC/M21 materials
into Eq. (11), gives lcohn = 11.86 mm, whereas a more con-
servative definition from [40] gives lcoh = 8.4 mm. As a
result, NURBS meshes created for the impact simulations
allow at least five (quadratic!) elements to resolve the cohe-
sive process zone.

Ply grouping is adopted for the simulations in order to
reduce the computational effort. This simplification is based
on the assumption that delamination is triggered mainly due
to transverse shear at the interface between the plies with
different fiber orientations. We note that while delamination
and compliance between the sub-plies of a single ply group

is neglected, the intralaminar damage variables are still eval-
uated at the level of each ply in the group. This different
treatment of interlaminar and intralaminar damage allows us
to improve the simulation efficiency without degrading the
solution accuracy.

An implicit version of the Generalized-α algorithm is
employed with a time step of 2.5 and 10 µs for the 25 and
6.5 J impact cases, respectively, to integrate the governing
equations in time. Viscous regularization discussed in Part I
of this paper is employed for both intralaminar and interlam-
inar damage variables. Viscous regularization parameters are
set to 10−7 and 3 ×10−7 s for the 25 and 6.5 J impact cases,
respectively, for both intralaminar and interlaminar damage
variables.

5 Results and discussion

The IGA-based model is validated through the correlation
of the impact-force time history with the experimental data
available in the literature [19,37,38]. In addition, we com-

Fig. 7 IGA-based simulation results. Intralaminar matrix damage for plies 1 (bottom) to 7 (impact side) for the a 6.5 J and b 25 J impact energy
cases. Contour plots of the matrix damage variable d2
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pare the IGA predictions with the results obtained using an
in-house FE model as well as an FE model developed by
researchers in [19]. We refer to the latter as the reference FE
model.

The in-house FE model, shown in Fig. 5b, is an Abaqus/
Explicit model comprised of linear brick elements (C3D8R).
The in-plane mesh has elements of size 0.5 mm near the
impact location, and the element size is gradually increased
to 1.5 mm away from the impact zone. Ply grouping is
employedwith one layer of elements per group. The impactor
is modeled as a hemisphere of solid elements with steel elas-
tic properties and mass scaled to 2 kg. Impactor-to-laminate
contact is modeled as hard contact with the impactor surface
as the master. The NASA CompDam subroutine [45,46] is
employed to model intralaminar damage. Delamination is
modeled using the Abaqus built-in surface-based cohesive-
interface formulation that implements amixed-mode bilinear
softening law. After delamination, ply-to-ply interactions are
modeled via contact with friction.

The reference FE model is similar to its in-house coun-
terpart, however, in contrast to the IGA-based and in-house
FE models, it also employs a non-symmetric tension-
compressionmaterial constitutive law and amodel formatrix
plasticity (see [19] for details).

The baseline discretization for the IGA-based simulations
has 128,244 DOFs. This number is reduced to 62,766 DOFs
for the coarser IGA-based simulation of the 6.5 J impact
case. In contrast, the in-house FE discretization has 772,176
DOFs.

The impact force time histories for the 6.5 and 25 J impact
energy cases are reported in Fig. 6a, b, respectively. The
results obtained for the 6.5 J impact exhibit a good correla-
tionwith the experimental data [37] in terms of themaximum
impact force. The IGA and in-house FE models overpredict
the peak value by 6 and 9.7%, respectively. In addition, all
numerical simulations show an excellent agreement with the
experimental data for impact duration. No significant differ-
ences are found between the IGA simulation results for two

Fig. 8 IGA-based simulation results. Interlaminar damage for cohesive interfaces 1 (bottom) to 6 (impact side) for the a 6.5 J and b 25 J impact
energy cases. Contour plots of the cohesive damage variable dcoh
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different mesh discretizations (see Fig. 6a), suggesting the
baseline IGA mesh is sufficiently fine for the prediction of
the impact force.

The numerical results obtained for the 25 J impact case
show a little more discrepancy compared to the experimen-
tal data [38] and to the reference FE model. The maximum
impact force predicted by the IGA-based simulation is 4%
larger compared to the in-house FE model, while no signif-
icant differences are found in terms of the impact duration.
The IGA model overpredicts the peak force by 11.5% rela-
tive to the reference FE model and by 20.1% compared to
the experimental data. The predicted duration of the impact
event is 0.5 ms shorter compared to the experimental value.
However, in the reference FE model, the authors adopted a
non-symmetric constitutive law for the unidirectional com-

posite,where the compressive elasticmodulus is 23%smaller
than the corresponding tensile value of 130 GPa. This can
explain a somewhat softer response predicted by the refer-
ence FE model.

Remark We note that the multilayer Kirchhoff–Love shells
discretized with quadratic NURBS are able to produce
impact-force time histories that are very similar to those
for the solid linear-element FE models, while using a much
smaller number of DOFs. For implicit computations this
directly translates to significant cost savings in the direct
solution of linear-equation systems, which typically domi-
nates the overall analysis time. For explicit computations,
provided assembly time per DOF is comparable for the
IGA shells and linear solid elements, the costs savings will
come from the overall lower DOF numbers and the higher

Fig. 9 Matrix failure for the a 6.5 J and b 25 J impact impact energy cases. Top: IGA-based results. Bottom: in-house FEM-based results. View
from the impacted side
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stable time-step size associated with smooth higher-order
discretizations (see [47,48]). The higher per-DOF accuracy
for IGA shells, and the direct link with CAD, make the
present technology attractive to larger-scale simulations of
impact damage, which we plan to pursue in the future work.

A ply-by-ply distribution of the intralaminar matrix dam-
age variable is shown in Fig. 7a, b for the 6.5 and 25 J
impact-energy cases, respectively. The results show a sym-
metric damage pattern within each ply. The most severe
damage is predicted to develop on the back side of the lam-
inate. This is because the matrix tensile stress in the lower
lamina causes it to fail earlier compared to the lamina closer
to the impacted side, where compressive stresses are domi-
nant.

A interface-by-interface distribution of the interlaminar
damage variable is shown in Fig. 8a, b for the 6.5 and 25 J
impact-energy cases, respectively. The most severe delami-

nation occurs in the lower half of the laminate, between the
plies oriented at 90◦ and −45◦. We note that localized com-
pressive stress near the impact location prevents the plies
to reach complete delamination. In the case of high-energy
impact, the presence of the support frame causes the initi-
ation of interlaminar damage at the interface closest to the
back of the laminate.

Acomparisonofmatrix damage anddelaminationbetween
the IGA-based and in-house FE simulations is shown in
Figs. 9 and 10, respectively, for both energy levels. The dis-
tribution of matrix and interlaminar damage predicted by the
IGA-based model is also compared with the results of the
reference FE model for the 6.5 J impact case, and the com-
parison is shown in Fig. 11. In addition, the dashed red line
in the bottom-right panel in Fig. 11 defines the contour of
the delaminated area obtained from the experiments reported
in [37]. Themodel predictions and experimental results show

Fig. 10 Delamination for the a 6.5 J and b 25 J impact impact energy cases. Top: IGA-based results. Bottom: in-house FEM-based results. View
from the impacted side
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Fig. 11 Comparison of
intralaminar matrix damage
(top) and cohesive damage
(bottom) for the 6.5 J impact
case. a IGA-based results; b
Reference FE results. Contour
plots for the IGA case
correspond to variables d2 (top)
and dcoh (bottom). The dashed
red line in the bottom-right
panel defines the contour of the
delaminated area obtained from
the experiments reported in [37]

a reasonable agreement in terms of the the size and shape
of the damage and delamination regions. Discrepancies in
the matrix damage are attributable to the difference in the
intralaminar damage models adopted in the simulations, and
to the fact the FE simulations are able to represent a full
3D state of stress at the lamina level. Compared to the IGA
results, the in-house FE model predicts a more severe and
extended delamination on all the ply interfaces, especially
for the higher-energy impact case. This, in turn, explains a
slightly softer response of the in-house FE model for the
prediction of the peak force during impact for this case.

6 Conclusions

In this paper we showed that the proposed IGA-based for-
mulation for progressive damage modeling in laminated

composite structures, which is developed in the framework
of multi-layer modeling using rotation-free Kirchhoff–Love
shells, is an accurate and efficient alternative to the more
traditional low-order solid-element FE approaches. In par-
ticular, the new IGA-based formulation is capable of repro-
ducing impact-damage results using a fraction of the degrees
of freedom required for traditional FE analysis. The reasons
for this increased efficiency, besides the lack of rotational
degrees of freedom in the discrete formulation, are as fol-
lows. Rotation-free Kirchhoff–Love shells, unlike solids or
shear-deformable shells, do not suffer from transverse-shear
locking in the limit of vanishing thickness. This property,
in combination with higher-order accurate and smooth rep-
resentation of the shell midsurface geometry and solution
fields, allows one to adopt relatively coarse in-plane dis-
cretizations while maintaining good solution accuracy.
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Excellent agreement with experimental data was obtained
for the lower-energy impact case. In the case of higher-energy
impact simulations, however, the numerical results obtained
with both the IGA- and in-house FE-based models exhibited
some discrepancies with the experimental data. These are
likely related to the lack of a plasticity model for the matrix
phase and to the use of a symmetric tension-compression
constitutive law.

Finally, although strain localization and the associated
mesh sensitivity was not observed in the examples computed
in this paper, such phenomena may occur even in the context
of smooth IGA discretizations, and would require appropri-
ate modeling and numerical treatment, such as, for example,
using nonlocal gradient-enhanced damage models [49–52].

In the future research efforts we plan to address the local-
ization of deformation issue in the context of IGA shells
(see [53] for preliminary results in this direction). We also
plan to carry out impact and compression-after-impact anal-
yses of larger-scale stiffened panels to assess the ability of the
proposed IGA-based formulation to deliver accurate results
in this setting.
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