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Abstract We develop a multiscale and multiphysics com-
putational method to investigate the transport of magnetic
particles as drug carriers in blood flow under influence of
hydrodynamic interaction and external magnetic field. A
hybrid coupling method is proposed to handle red blood
cell (RBC)-fluid interface (CFI) and magnetic particle-fluid
interface (PFI), respectively. Immersed boundary method
(IBM)-based velocity coupling is used to account for CFI,
which is validated by tank-treading and tumbling behaviors
of a single RBC in simple shear flow. While PFI is cap-
tured by IBM-based force coupling,which is verified through
movement of a single magnetic particle under non-uniform
external magnetic field and breakup of a magnetic chain in
rotating magnetic field. These two components are seam-
lessly integrated within the LAMMPS framework, which is
a highly parallelized molecular dynamics solver. In addition,
we also implement a parallelized lattice Boltzmann simu-
lator within LAMMPS to handle the fluid flow simulation.
Based on the proposed method, we explore the margina-
tion behaviors of magnetic particles and magnetic chains
within blood flow. We find that the external magnetic field
can be used to guide the motion of these magnetic materials
and promote their margination to the vascular wall region.
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Moreover, the scaling performance and speedup test further
confirm the high efficiency and robustness of proposed com-
putational method. Therefore, it provides an efficient way
to simulate the transport of nanoparticle-based drug carri-
ers within blood flow in a large scale. The simulation results
can be applied in the design of efficient drug delivery vehi-
cles that optimally accumulate within diseased tissue, thus
providing better imaging sensitivity, therapeutic efficacy and
lower toxicity.
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1 Introduction

Several classes of nanoparticles (NPs) have been developed
for diverse biomedical applications and some have shown
potential in the treatment and imaging of diseases [1–4]. The
encapsulation of drugmolecules and contrast agents intoNPs
can provide significant improvements in pharmacokinetics,
toxicity and biodistribution compared to freely administered
drug molecules [3,5,6], which generally exhibit accumula-
tion in tumors at levels≤ 0.1% injected dose per gram tissue
(%ID/g). For instance, the peak drug accumulation in tumors
is increased by one to two orders of magnitude by liposomal
encapsulation of chemotherapeutic agents [7]. Nevertheless,
the level of NP stable deposition is still undesirably low and
prone to improvement. Vascular targeting has been proposed
as a general strategy to enhance accumulation within the dis-
eased tissue. In this case, systemically injectedNPs decorated
with ligand molecules would recognize and firmly adhere to
over-expressing specific receptor molecules on the abnormal
vessels walls [8–11].
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For intravenously administered NPs, their journey to
tumor sites follows four key steps [12,13]: (1) transport and
circulation in complex vascular network with red blood cells
(RBCs), white blood cells (WBCs) and many others; (2)
margination from center stream of blood flow to vessel wall
region and firm adhesion to the endothelium near the tumor
site; (3) diffusion into tumor tissues through the leaky vas-
culatures; (4) recognition and internalization by tumor cells.
During this journey, the encapsulated drug molecules can be
more efficiently delivered to the diseased tissue through the
margination behaviors of NPs (moving from central blood-
stream to vesselwall region),which increaseNP’s interaction
with the vascular wall. This allows the NPs to better ‘sense’
the biophysical and biological abnormalities, such as the
presence of fenestrations or the expression of specific recep-
tors, on the surface of endothelial cells. Afterwards, the NP
can firmly adhere to the vessel wall under flow, if the hydro-
dynamic forces are balanced out by the interfacial adhesive
interactions between the NP and vessel wall. Margination
and the subsequent adhesion of NPs to the endothelium
allow the NPs to transmigrate across the endothelial wall
and enter a diseased area of tissue, eventually delivering the
drug molecules.

The margination propensity of NPs depends on their size,
shape, surface property and stiffness (‘4S’ parameters) [13–
17]. Recent research efforts confirm that the size of NP
plays an important role in designing NP-based delivery plat-
forms [18–21]. Charoenphol et al. [20] performed a series
of studies on size effect using spheres with diameter ranging
from 0.5 to 10μm in blood flow. The margination proba-
bility is observed to increase with the diameter increasing.
More importantly, Lee et al. [22] find that spherical NPs with
diameter smaller than 200 nm can be easily trapped between
RBCs; while lager NPs with diameter ≥ 500 nm demon-
strate pronounced margination. Shape of NPs has also been
identified as the key parameter like size in blood circulation
and adhesion [23–25]. Nonspherical NPs demonstrate more
efficient resistance to macrophage sequestration in blood
circulation [17,26,27]. In addition, nonspherical NPs with
higher aspect ratio canmarginate more readily than spherical
NPs [25,28–30]. Beyond size and shape, surface property of
NPs can be turned to affect the adhesion of NPs to vessel wall
[31–35]. Multivalent binding between the NP and substrate
(endothelium) is identified to play the key role for adhesion to
vessel wall [34,35]. Therefore, the surface properties, such as
tether length, density and ligand–receptor binding strength,
can be turned for the selective adhesion of NPs to inflamed
endothelium [36–38]. Comparing to size, shape and surface
property, the stiffness of NPs receives relative less attention.
Recent studies reveal that the stiffness of NP also plays a sig-
nificant role [39–46]. Anselmo et al. [46] demonstrate that
softer NPs (10 kPa) outperformed harder NPs (3000 kPa)
in blood circulation time and targeting specific sites both

in vivo and in vitro, which confirm that tuning NP stiffness
can extend circulation time, reduce macrophage uptake and
improve targeting [43].

The drug delivery system mentioned above relies on the
intrinsic physical properties of NPs and the biological envi-
ronment of tumor site to control and release drug molecules.
Such a passive targeting strategy owns certain limitations.
The local physiological conditions of diseased sites might be
different from patient to patient. Therefore, the efficacy of
drug delivery vehicles is difficult to predict a priori. Besides,
after intravenous injection, the transport of NP-based drug
carriers within vascular network cannot be easily controlled.
Therefore, actively triggered systems play important roles
in enhancing the therapeutic efficacy of the drug deliv-
ery system. Among many active targeting systems, such as
light-[47], ultrasound-[48], electrically-[49] and chemically-
triggered [50] systems, magnetic NPs have demonstrated
great potential, due to the enhanced deposition at a specific
anatomic site guided by external magnetic fields [51–53].
In particular, because of the excellent tissue penetration,
magnetic fields have already been used in the whole-body
magnetic resonance imaging (MRI).

Recently, extensive works have been performed to explore
the performance of magnetic particles within flow under the
influence of external magnetic field, including theoretical
[54–56], experimental [57–61] and computational [62–66]
studies. For instance, Furlani andNg [55] proposed an analyt-
ical model to predict the transport and capture of therapeutic
magnetic NPs in the human microvasculature. A scaling law
has been developed to predict the minimum radius required
for particle capture. Song et al. experimentally explored
the cellular uptake of curcumins with and without loading
magnetic silk fibroin core–shell NPs in the human breast ade-
nocarcinoma cell line. Results confirm that loading magnetic
NPs can significantly enhance the cellular uptake. To under-
stand the influence of magnetic field, numerical studies have
been performed.Gontijo andCunha [62] simulated themove-
ment of spherical magnetic particles settling in a quiescent
viscous fluid. The long-range hydrodynamic and magnetic
interactions are taken into account by creating imaginary
lattice-cells and a sophisticated technique of lattice sums,
respectively. Although the numerical method is accurate, it
is difficult to be applied to study large system due to the com-
plexity. Finite element method (FEM), which is well-know
for accuracy and efficiency for solid and fluid dynamics, is
also adopted to investigate the targeting of magnetic NPs to
stent surface under high gradient magnetic field [63]. The
magnetic particle was treated as a single point but with finite
size, which means that they only considered the transla-
tional motion and the rotational motion was ignored. Gao
et al. [64] proposed a numerical scheme which considers
the magnetic dipole moments and adopts the extend forms
of the Oseen–Burgers tensor to account for both the mag-
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netic and hydrodynamic interactions between the particles.
The boundary element method (BEM) was applied to study
the motion of magnetic particles in fluid flow under external
nonuniform magnetic field [65]. The Lagrange-based parti-
cle tracking method was adopted, but only one-way coupling
with fluid flow was considered.

For all above studies, the fluid is considered as Newtonian
fluid. In fact, the local fluid environment of the magnetic
particles as drug carriers is blood flow, which is usually
non-Newtonian [67,68]. The hematocrit in normal human
vessels can reach 45%, which means that the vessel is mainly
occupied by the red blood cells (RBCs). Thus, the effect
of large numbers of RBCs should be considered in study-
ing the transport of magnetic particles in blood flow, due to
the frequent collision between RBCs and magnetic particles
[41,42]. A large number of previous works explore the RBC
effect in modeling transport of drug carriers within blood
flow [18,28,69–74]. Müller et al. [18] employed the dissipa-
tive particle dynamics (DPD) and smoothed DPD methods
for 2D and 3D simulations on margination behaviors of
micro- and nano-particles in blood flow for drug delivery,
respectively. While this method can capture the viscosity
and thermal fluctuations of membrane in mesoscopic, the
coupling between fluid flow and RBCs/drug carriers is very
complex, which requires additional attention to accurately
impose the non-slip boundary [75,76]. Besides, the flow is
modeled by using DPDmethod, which needs a large number
of fluid particles during the simulation. Thus, it limits the
computational scale of the whole system (usually the length
scale of vessel is less than 50 μm). On the continuum level,
finite element method is used to model RBCs [28,69–72].
Macmeccan et al. [72] coupled lattice Boltzmann method
(LBM) for fluid phase with a linear finite element analy-
sis (FEA) for capturing particle deformation. Although this
method can handle a large number of three dimensional and
deformable particles at high volume fraction, the limitation is
the increased computational time when considering the non-
linear property of RBC, owing to the small LBM time step.
Then Vahidkhah et al. [73,74] used nonlinear FEA coupled
with front tracking/immersedboundarymethod to investigate
the dynamics of microparticles, like platelet and ellipsoidal
particles, in RBC suspension. They treated microparticles
as nearly-rigid particles, which requires a larger number of
discretized vertexes to resolve them. This also enlarges the
computational cost because they should simultaneously cap-
ture dynamics of RBCs, which are about ten times larger
than microparticles. To numerically model transport of mag-
netic drug carriers in blood vasculature, one of the challenges
is simultaneously tackling dynamics of RBCs and magnetic
particles. This might be one of the reasons why some of pre-
vious works just ignored the existence of RBCs in the blood
flow simulation. In addition, the size of magnetic particles
typically are below micrometer (about few nanometers to

hundreds of nanometers), while the diameter of RBC is about
8μm. If the uniform meshing technique is adopted, the res-
olution required to capture the motion of magnetic particles
will make the mesh discretization of RBCs and fluid domain
in the blood vessel extremely large.

In present work, we explicitly consider the effect of RBCs
on the transport of magnetic particles in blood flow. The
magnetic particles are treated as point dipoles under external
magnetic field. Note that we only consider the translational
motion of magnetic particles because the rotational motion
can be negligible, due to the extremely small size ofmagnetic
particles. All the simulation is performed within the frame-
work of Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS), which is a highly parallelized solver
for molecular dynamics simulations [77] (see Fig. 1). The
lattice Boltzmannmethod (LBM) is used to solve theNavier–
Stokes equations [78], which has been extensively adopted
to deal with the fluid dynamics of blood flow [70,72,79–82].
The LBM solver is directly embedded into LAMMPS as a
fix_lb_fluid [83] (cf. Fig. 2),wherefix is a kindof class offered
by LAMMPS to apply external control on the simulation sys-
tem. We use coarse-grained models to represent the highly
deformable RBCs. The membrane of RBC is discretized into
2-D triangular meshes, and the physical properties, such as
stretching, bending, total area and volume conversations are
ensured by adding corresponding potential functions into
LAMMPS [84]. The movement of magnetic particles is cap-
tured by solving theNewton’s second law equation, under the
influence of both magnetic force and hydrodynamic force.
Such a method is implemented by modifying the existing
integrator fix_update_sphere, which is used to update the
position and velocity of finite size spherical particles embed-
ded in LAMMPS [85]. There are two types of interface
in present numeric scheme: interface between deformable
RBCs and fluid flow and interface between moving magnetic
particles and fluid flow. Here we use immersed boundary
method (IBM) [86] to enable the two-way coupling at the
fluid–structure interface. IBM can enable us to simulate the
fluid flows involving arbitrarily complex boundaries with-
out regenerating computational mesh over simulation time
[79,80,87,88]. Such an advantage has also been inherited
by other immersed techniques, such as immersed finite ele-
ment method [89–91]. Specifically, at the interface between
RBCs and fluid flow, velocity coupling is applied (fix_lb_pc
in LAMMPS), while at the interface between magnetic par-
ticles and fluid flow, we adopt the dissipative force coupling
[92]. These modeling components are seamlessly integrated
in LAMMPS frameworkwith high fidelity (cf. Fig. 2). There-
fore, the proposed method can be used to perform large scale
simulations on transport of magnetic particles in blood flow.

This work aims to develop a robust and versatile com-
putational methodology to investigate vascular dynamics of
magnetic particles as drug carriers. All the mathematical
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Fig. 1 Computational framework for modeling magnetic particles in blood flow with red blood cells

details and computational models are given in Sect. 2. In
Sect. 3, a series of benchmark tests have been performed
to validate the proposed computational model, including (1)
stretching of a single RBC; (2) tank-treading and tumbling
behaviors of a single RBCs within shear flow; (3) movement
of a single magnetic particle under non-uniform magnetic
field; (4) breakup of a magnetic chain in rotating magnetic
field. The first two examples are used to validate the cou-
pling between RBCs and fluid flow; while the last two tests
are selected to verify the coupling of magnetic particles with
flow field. In the end, the margination behaviors of magnetic
particles and nanoworms are investigated by the proposed
method, as shown in Sect. 4. The scaling performance and
speed up test of present method are also presented. Conclud-
ing remarks are given in Sect. 5.

2 Computational model and methodology

To capture the motion of magnetic particles moving with
RBCs in the blood flow, the interactions between RBCs and
fluid flow, as well as magnetic particles and fluid flow, are
explicitly considered. Figure 1 describes the computational
framework for modeling RBCs and magnetic particles, and
their interactions with fluid flow. The corresponding scheme
of computational algorithm implemented in LAMMPS is
given in Fig. 2. Here we refer Lagrangian membrane to the
RBC, andLagrangianparticle tomagnetic particle, since both

of them are modeled by Lagrangian solids. In the follow-
ing part, we will introduce individual computational models
for RBCs, magnetic particles and their interactions with sur-
rounding fluid flow.

2.1 Lattice Boltzmann method for fluid flow

The blood flow is considered as RBCs immersed within a
blood plasma (Newtonian fluid). The dynamics of the fluid
flow is governed by the Navier–Stokes equation and the con-
tinuity equation in an Eulerian coordinate system, such as:

∂u
∂t

+ u · ∇u = − 1

ρ
∇ p + μ

ρ
∇2u + F, (1)

∇ · u = 0, (2)

where ρ, u, p are the fluid density, velocity, and pressure,
respectively. μ is the dynamic viscosity of the fluid (water),
and F is the body force. Lattice Boltzmann (LB) method,
which is an efficient and accuratemethod for Newtonian flow
[78], is adopted to deal with Navier–Stokes equations. The
fluid solver used here is the modified version of fix_lb_fluid
originally implemented in LAMMPS [77,83]. The linearized
Boltzmann equation has the form of:

(∂t + eiα∂α) fi = −1

τ
( fi − f eqi ) + Fi , (3)
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Fig. 2 Scheme of
computational algorithm
implemented in LAMMPS
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where fi (x, t) is the distribution function for fluid particles
with velocity ei at position x and time t , f eqi (x, t) is the equi-
librium distribution function and τ is the non-dimensional
relaxation time, Fi is an external forcing term. In this sim-
ulation scheme, D3Q19 model is used [83], and the fluid
particles have possible discrete velocities stated as follows:

[e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14, e15, e16, e17, e18] =⎡
⎣
0 1 − 1 0 0 0 0 1 1 − 1 − 1 1 − 1 1 − 1 0 0 0 0
0 0 0 1 − 1 0 0 1 − 1 1 − 1 0 0 0 0 1 1 − 1 − 1
0 0 0 0 0 1 − 1 0 0 0 0 1 1 − 1 − 1 1 − 1 1 − 1

⎤
⎦ .

(4)

The equilibrium distribution function f eqi (x, t) can be cal-
culated as:

f eqi (x, t) = ωiρ

[
1 + ei · u

c2s
+ (ei · u)2

2c4s
− (u)2

2c2s

]
, (5)

where the weighting coefficients ωi = 1/3 (i = 0), ωi =
1/18 (i = 1 − 6), ωi = 1/36 (i = 7 − 18). The term
cs represents the sound speed which equals �x/(

√
3�t).

The relaxation time is related to the kinematic viscosity in
Navier–Stokes equation in the form of

ν =
(

τ − 1

2

)
c2s�t. (6)

The external forcing term can be discretized by using this
form [93]:

Fi =
(
1 − 1

2τ

)
ωi

[
ei − u
c2s

+ (ei · u)

c4s
ei

]
· F. (7)

Equation (3) is solved by the algorithm proposed by Ollila et
al. [94]. Integrating Eq. (3), we can have

fi (x + ei�t, t + �t) = e−�t/τ ( fi (x, t)

+
∫ t+�t

t

1

τ
e(s−t)/τ geqi (x + ei s, t + s)ds

)
. (8)

Here, geqi = f eqi + τ Fi . It is discretized by the following
numerical scheme,

fi (x + ei�t, t + �t)

= e−�t/τ fi (x, t) + (1 − e−�t/τ geqi (x, t)

+ (�t − τ(1 − e−�t/τ ))Dig
eq
i (x, t)

+ (τ 2(1 − e−�t/τ ) − �tτ + �t2/2)D2
i g

eq
i (x, t)

+ O(�t4), (9)

with

Dig
eq
i = geqi (x, t) − geqi (x − ei�t, t − �t)

�t
(10)

and

D2
i g

eq
i = geqi (x+ei�t, t) − geqi (x, t − �t) − geqi (x, t)+geqi (x+ei�t, t−�t)

�t2
.

(11)

This scheme has been proved to be more stable than the stan-
dardLBalgorithm [95].Once the particle density distribution
is known, the fluid density and momentum are calculated as

ρ =
∑
i

fi , ρu =
∑
i

fiei + 1

2
F�t. (12)
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2.2 Lagrangian membrane model for RBC

The resting shape of a RBC is measured as biconcave in
experiment [96], which can be expressed as:

z = ± D0

√
1 − 4(x2 + y2)

D2
0

×
[
a0 + a1

x2 + y2

d20
+ a2

(x2 + y2)2

d40

]
, (13)

where D0 = 7.82 μm is the average diameter, and coef-
ficients a0 = 0.0518, a1 = 2.0026 and a2 = − 4.491
[68,84,97]. Based on present parameters and the experimen-
tal results, the total surface and volume of a single RBC are
135μm2 and 94 μm3, respectively. The RBC membrane
is discretized into Nv = 3286 points represented by {xi },
which locate on the surface describedbyEq. (13). The coarse-
grained potential function used to describe the RBC is given
as:

U({xi}) = Ustretching + Ubending + Uarea + Uvolume, (14)

where Ustretching represents the in-plane shear resistance of
membrane to deformation. Ubending denotes the out-of-plane
bending resistance of the lipid bilayer. Uarea and Uvolume

ensure the total area and volume conservation, which cor-
respond to the area incompressibility of the lipid bilayer and
incompressibility of the inner cytosol, respectively [84,97].
The stretching potential Ustretching is consisted by two parts:
attractive nonlinear spring potential worm-like chain model
(WLC) and repulsive power potential power function (POW).
They are expressed by:

UWLC = kBTlm
4p

3x2 − 2x3

1 − x
, UPOW = kp

l
, (15)

where kB is the Boltzmann constant. x = l/ lm ∈ (0, 1), l
is the length of the spring and lm is the maximum spring
extension. p is the persistent length, and kp is the POW
force coefficient. Note that not all the parameters are inde-
pendent, kp can be calculated by equating the forces derived
by WLC and POW potentials in order to define the initial
spring length as equilibrium state. The nodal force exerted
on the membrane is obtained as derivation of the potential
from the following forms

fi = −∂U({xi})
∂xi

. (16)

Then the stretching force can be expressed as combination
of derivations of WLC and POW

fstretching=
{
−kBT

p

(
1

4(1 − x)2
− 1

4
+x

)
+ kp

l

}
l̂ij. (17)

To ensure the conservation of total area of the RBC, local
and global area constraints are applied. They are expressed
as:

Uarea =
∑

k=1...Nt

kd(Ak − Ak0)
2

2Ak0
+ ka(At − At0)

2

2At
, (18)

where the first term represents the local area constraint, and
Nt is the total number of triangular elements. Ak and Ak0

denote the k-th element area and its initial area, respectively.
kd is the corresponding spring constant. The second term is
the global area constraint. At and At0 are the total area and
its initial value, respectively. ka is the spring constant. The
expression of the force due to area constraints is derived in
the “Appendix”, which also contains detailed mathematical
derivations of volume constraint force and bending force.

The total volume constraint is also imposed by a harmonic
potential

Uvolume = kv(V − V0)

2V0
, (19)

where kv is the spring constant. V andV0 are the total volume
and its initial value, respectively.

The bending potential has the form

Ubending =
∑

k∈1...Ns

kb[1 − cos(θk − θ0)], (20)

where kb is the bending stiffness. θk and θ0 are the dihedral
angle between two adjacent triangular element (see Fig. 13b
in “Appendix”) and its initial value, respectively. Ns denotes
the total number of two adjacent triangular elements structure
as shown in Fig. 13b.

Before we choose the parameters for the coarse-grained
model of RBC, we should know the corresponding macro-
scopic properties of RBCs through experiments as a prior.
Then we can connect the coarse-grained model parameters
with these macroscopic properties. By extending linear anal-
ysis of a two-dimensional sheet of a spring network built
with equilateral triangles, the macroscopic properties can
be expressed by the coarse-grained parameters as follows
[84,98,99]
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Table 1 Coarse-grained
potential parameters for red
blood cells and nanoworms and
their corresponding physical
values

Parameters Simulation Physical

RBC diameter (D0) 32 7.82 × 10−6 m

Shear modulus (μ0) 0.01 6.3 × 10−6 N/m

Energy scale (kBT ) 1.1 × 10−4 4.14 × 10−21 N · m
Viscosity (μ) 0.167 0.0012 Pa · s
Area constant (ka) 0.0075 4.72 × 10−6 N/m

Local area constant (kd) 0.367 2.31 × 10−4 N/m

Volume constant (kv) 0.096 249N/m2

RBC bending constant (kb) 0.013 5 × 10−19 N · m
Nanoworm stretching constant (kps ) 1.0 6.3 × 10−4 N/m

Nanoworm bending constant (κ) 1.1 × 10−3 4.14 × 10−20 N · m

μ0 =
√
3kBT

4plmx0

(
x0

2(1 − x0)3
− 1

4(1 − x0)2
+ 1

4

)
+ 3

√
3kp

4l30
,

K = 2μ0 + ka + kd ,

Y = 4Kμ0

K + μ0
, (21)

where μ0 is the shear modulus. K represents the area com-
pression modulus and Y denotes the Young’s modulus. Then
the choice of potential parameters are based on the physical
quantities of the RBC, and they are listed in Table 1.

2.3 Lagrangian particle model for magnetic particle

To calculate the magnetic force applied on magnetic spher-
ical particles, a linear magnetization model is adopted. We
assume that the particles are superparamagnetic, magnetic
dipole moments m are induced in the presence of external
magnetic field B. If the field B is relatively small, it is in the
linear regime, then the alignment of the induced magnetic
moment m with the external magnetic field B is instanta-
neous, which can be expressed as:

m = Vcχ

μ∗ B, (22)

whereVc = 4πa3 f
3 is the volumeof themagnetic particlewith

radius a, and f being the fraction of the particle’s volume that
is paramagnetic. χ is the magnetic susceptibility difference
between the particle and the surrounding fluid, and μ∗ is the
vacuum magnetic permittivity. In the following, f and χ are
fixed as 0.6 and 0.4, respectively.

For a single magnetic particle under influence of an exter-
nal magnetic field, the magnetic force is calculated as:

FB = (m · �)B. (23)

This force is relevant with the nonuniformity of the external
magnetic field in space.When there are two ormoremagnetic

particles that are very close to each other, another type of
force FB is induced due to the dipole–dipole interaction:

FB
i j = 3μ∗

4πr4
((mi · ei j )m j + (m j · ei j )mi

− (5(mi · ei j )(m j · ei j ) − (mi · m j ))ei j ), (24)

where i and j denote the index of magnetic particles, r is
the distance between particles i and j , ei j = ri j/r is the
unit vector pointing from i to j . If the external magnetic
field is uniform and the particles are identical, then we have
mi = m j = m, the above equation can be simplified as:

FB
i j = 3μ∗

4πr4

(
2(m · ei j )m − (5(m · ei j )2 − m2)ei j

)
. (25)

To reflect the finite size effect of magnetic particles,
excluded volume interactions between two magnetic parti-
cles are also considered. The force is approximated by the
modified Lennard–Jones potential [100] which has corre-
sponding force given by

FLJ(r) = ε

r − 2a

[(
σ

r − 2a

)12

−
(

σ

r − 2a

)6
]

, (26)

where the strength of the force ε is 0.1 kBT , σ = 0.1a and r
is the distance between the centers of twomagnetic particles.

For the nanoworm model, adjacent two magnetic parti-
cles is connected by a linear spring with constant kps , and a
harmonic angle potential is applied between two consecutive
linear springs, which is used to ensure the bending stiffness
of nanoworms. Here the angle spring constant is denoted as
κ. The stretching and bending potentials can be expressed as

Up
stretching = kps (l − l0)

2, Up
bending = κ(θ − θ0)

2. (27)

In our simulations, kps is set to be a large value, which
ensures the non-extensible property of the nanoworm. And κ
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X

Fig. 3 Numerical scheme of the immersed boundary method (IBM).
Solid squares represent the Eulerian fluid points (x), and solid circles
denote the vertices of Lagrangian membrane or magnetic particle (X)

is chosen by the corresponding persistent length l p. All these
parameters are listed in Table 1.

2.4 Fluid–structure interactions

To account for the existence of suspended structures
(i.e. RBCs or magnetic particles) in the fluid flow, the
mechanical information should be transferred between fluid
and structures across their boundaries. Here, immersed
boundary method (IBM) is used to couple the fluid and struc-
ture solvers. The fluid domain is represented by Eulerian
coordinates x, while the boundary of the RBC or magnetic
particle is represented by Lagrangian coordinates s. Any
position on the RBC membrane or magnetic particle can
be written as X(s, t). F(s, t) represents the membrane force
density induced by RBC deformation or dissipation force
caused by interaction between magnetic particle and fluid,
and f(x, t) denotes the fluid body force density. Figure 3
shows the schematic of interpolation from the immersed
boundary method.

2.4.1 Membrane–fluid coupling

To satisfy the no-slip boundary condition between RBC and
fluid flow, the flexible membrane vertices (denoted as red
solid circle) should move at the same velocity as the fluid
around it (green solid squares). That is

∂X(s, t)
∂t

= u(X(s, t)). (28)

This condition will cause the membrane to deform. The
membrane force density F(s, t) is obtained by the potential

functions discussed in above section, and is distributed to the
surrounding fluid mesh points by

fFSI,s(x, t) =
∫

Ωs
FFSI,s(Xs, t)δ(x − xs(Xs, t))dΩ (29)

where δ is a smoothed approximationof theDirac-Delta func-
tion. We should emphasize that FFSI,s is areal force density,
while fFSI,s is volumetric force density. Figure 3 shows a sim-
ple interpolation template. For simplicity, we use two-points
template to illustrate the interpolation process. However, in
the present 3D study, four-points interpolation template is
adopted, and it is chosen to be:

δ(x − xs(Xs, t)) = δ(x − x(Xs, t))

δ(y − y(Xs, t))δ(z − z(Xs, t)), (30)

where

δ(r) =
{

1
4

(
1 + cos

(
π |r |
2

))
, r ≤ 2

0, r > 2
(31)

Then the interpolated fluid–structure interaction force is
added back to the LB solver as a body force and discretized
using the formEq. (7). The accuracyof this numerical scheme
depends on the construction of delta function. Here, Eq. (31)
is only first order when sharp interfaces are simulated. The
same approximation function is used to obtain the velocities
of the Lagrangian nodes (RBCs) on the moving boundary.
The mathematical form can be written as follows:

us(Xs, t) =
∫

Ω

u(x, t)δ(x − xs(Xs, t))dΩ. (32)

2.4.2 Particle–fluid coupling

As the magnetic particles will experience magnetic force in
the fluid flow due to the external magnetic field or dipole–
dipole interaction, the movement of these particles are driven
by the force, not the velocity of the fluid flow. Dünweg and
Ladd [101] proposed a dissipatively coupling scheme for
particles dynamics within fluid flow. The particles will expe-
rience a drag force which is proportional to the difference of
velocity between these particles and surrounding fluid. Such
a dragging force is given as:

FFSI,b = Γ (ub − ub, f ), (33)

where ub is the velocity of the magnetic particle, ub, f is
the fluid velocity at the same place of the magnetic particle,
which can be interpolated by the velocities of surrounding
fluid nodes:

ub, f (Xb, t) =
∫

Ω

u(x, t)δ(x − xb(Xb, t))dΩ. (34)
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Γ is the drag coefficient which is an empirical parameter
without any physical significance [101]. Here, we use the
Stokes’ approximation for a spherical particle in laminar flow
[63], Γ = 6πμa, where a is the radius of the magnetic parti-
cle. Then the governing equation for the motion of magnetic
particle under influence of external magnetic field and fluid
field can be expressed by:

ρb
(

∂2ub

∂t2

)
= FFSI,b + FB, (35)

where ρb is the density of the magnetic particle, FB is
the combination of magnetic force due to nonuniformity of
external magnetic field and dipole–dipole interaction. And
Eq. (35) is solved by the second order Verlet algorithm [77].

According to theNewton’s third law, the surrounding fluid
also experiences the same drag force with opposite direction,
and it can be obtained by the distribution of the drag force
FFSI,b:

fFSI,b(x, t) =
∫

Ωb
FFSI,b(Xb, t)δ(x − xb(Xb, t))dΩ.

(36)

Then the governing equation of the fluid flow should be writ-
ten as:

∂u
∂t

+u · ∇u = − 1

ρ f
∇ p+ μ

ρ f
∇2u+fFSI,s+fFSI,b, (37)

∇ · u = 0. (38)

Here, ρ f denotes the density of the fluid.

2.5 Overview of the computational algorithm

After the simulation is initialized, the motions of membrane
and magnetic particle are updated, and then using the IBM
and LB solver, the new state of the fluid can be obtained. The
following steps are implemented in LAMMPS for modeling
magnetic particles in blood flow:

1. At the time step t , the Lagrangian node position Xs(t)
(membrane) andXb(t) (magnetic particle),magnetic par-
ticle velocity ub(Xb, t), fluid node position x(t), fluid
velocity u(x, t) and density ρ f (x, t) are given or known.

2. The membrane force FFSI,s(t) can be calculated by the
coarse-grained potentials for RBC. At the same time, the
drag force FFSI,b(t) is obtained by the dissipative form,
cf. Eq. (33). And the magnetic force FB is calculated
under the given external magnetic field. Then the new
position Xb(t + 	t) and velocity ub(Xb, t + 	t) of the
magnetic particle are updated by Eq. (35).

3. The membrane force FFSI,s(t) and drag force FFSI,b(t)
are spread to the surrounding fluid nodes via IBM, then
the new position x(t +	t) and new velocity u(x, t +	t)
of the fluid flow at time step t +	t are found by Eq. (38)
through LB solver.

4. Velocity of membrane us(Xs, t + 	t), and velocity of
fluid node in the place of magnetic particle ub, f (Xb, t)
at time step t + 	t are computed by IBM, cf. Eqs. (32)
and (34).

5. Go to step 1 for the next time step.

The above computational model has been implemented
into the open source software LAMMPS [77], which is a
highly parallelized tool forMDsimulations. There are several
reasons for us to choose LAMMPS for above simulations.
First, the framework of LAMMPS is robust and efficient
which has been already validated by numerous benchmarks
and publications. Second, LAMMPS enables various inter-
faces for users to implement different functions, such as fluid
flow simulation based on LB method and coupling between
the suspended structures and surround fluid. The elastic-
spring network model for RBCs and coarse-grained models
for NPs, as well as their molecular interactions can be eas-
ily implemented based on existing features, such as potential
functions and integrator. More importantly, the high paral-
lelized LAMMPS dramatically reduces the computational
cost for modeling NP transport within blood flow, which will
enable us to explore more complex behaviors at the micro
fluid device scale. The implemented computational models
will be validated through following benchmark tests.

3 Model validation and benchmark test

3.1 Validation of RBC model

3.1.1 Stretching of a single RBC

The stretching simulation of a single RBC is performed and
the results are compared with the experimental data from
RBC deformation by optical tweezers [102]. The stretching
force is applied along one direction, where is x-direction.
First, we choose the same number and enough vertices
symmetrically distributed in the largest x-coordinates and
smallest x-coordinates of the RBC membrane. The total
stretching force is obtained by summing the identical forces
exerted on each vertices at one side. Figure 4a shows the typi-
cal configurations of the stretched RBCwith stretching force
0, 68 and 100 pN. Our simulation results show qualitative
consistence with experimental results [102]. We also calcu-
late the deformed shape of RBC, such as DA and DT , which
are the largest distances along the stretching and transverse
directions, respectively. In Fig. 4b, the simulation results of
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Fig. 4 Stretching test of a
single RBC. a Configuration of
stretched RBC with different
applied forces. b Diameters of
RBC along stretching direction
and transverse direction,
denoted by DA and DT,
respectively. The experimental
results are reproduced with
permission from Ref. [102]
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DA and DT as functions of stretching force from 0 to 200 pN
are plotted. These simulation results are compared with the
experimental data [102] and previous numerical results [84].
We find excellent agreement between our simulation results
with previous experimental and numerical results. It further
confirms that our numerical model and method can accu-
rately reproduce the mechanical behavior of a single RBC.
We should emphasize that the simulation results depend on
the choices of ratio x = l/ lm , number of vertices subjected
to stretching force and number of the total discretized trian-
gles for the RBC membrane. These issues are discussed in
detail by Fedosov et al. [84], while we only choose one set
of parameters in present study. All the model parameters are
listed in Table 1.

3.1.2 Tank-treading and tumbling a single RBC in simple
shear flow

There exists a transition from tumbling to tank-treading
of a RBC in simple shear flow according to experiments
[103,104] and simulations [84]. This transition is attributed
to the minimum energy state of the RBC membrane shown
in Fischer’s work [103]. Therefore, by increasing the shear
rate, the transition can be observed in experiments. When the
shear flow rate is increasing, the force applied on RBC by
local fluid flow can overcome the energy barrier of the RBC
membrane. Then the RBC can move with the surrounding
fluid flow, otherwise it could only tumble like a solid body
which only needs a small shear force. Some theoretical anal-
ysis has also been performed by simplifying the RBC as an
ellipsoidal particle [105]. The dynamics of RBC in shear flow
depends on shear rate, membrane viscosity, shear modulus
of RBC membrane and viscosity contrast between inner and
outer membrane fluid. Here, the membrane viscosity is not
considered and the viscosity contrast is unity which reflects
that the fluids inside and outside themembrane own the same
properties. The shear modulus is fixed and the value is listed
in Table 1. The tumbling and tank-treading frequency is mea-
sured as a function of shear rate.

Figure 5a shows a schematic of the RBC in shear flow
driven by moving of the upper and bottom plates with same

velocity but opposite directions. Figure 5b plots the simula-
tion results of frequency for tumbling and tank-treading as
a function of shear rate, in comparison with experimental
data [103,104] and previous numerical results [84]. We find
that the frequency increases with the increment of shear rate
in both tumbling and tank-treading regimes. In addition, an
intermittent regime exists, which is highlighted by the coex-
ist of tumbling and tank-treading motions. In this regime,
the RBC initially tumbles like a solid body, and as simu-
lation time progresses, its motion transits into tank-treading
mode.We observe that this intermittent motion occurs within
interval of shear rates denoted as shadow region in Fig. 5b.
The frequency in the tumbling regime is consistent with the
experimental and numerical results. However, it should be
emphasized that there is an obvious discrepancy between
present results and the experimental data.We believe that this
difference is induced by the unity viscosity contrast. Specif-
ically, we compare present results with the numerical results
by Fedosov et al. [84] under the same situation. We find that
they are in good agreement. Therefore, for simplicity, the
viscosity contrast is set to be unity and it is confirmed to be
accurate enough to capture the dynamics of RBCs in shear
flow.

3.1.3 Calibration of Morse potential and generation of high
hematocrit

In the blood flow, cell–cell interaction dominates a large
number of physiological phenomena, such as aggregation
of RBCs into rouleaux [106]. Morse potential is extensively
used to approximate this kind of interaction [68,69,97]. The
function of Morse potential is expressed as

Umorse = D0

[
e−2β(r−r0) − 2e−β(r−r0)

]
, r < rc, (39)

where D0 represents the energy well depth and β denotes
the width of energy well. r is the distance between two sur-
face vertices and r0 is the equilibrium distance. rc is the
cutoff distance, beyond which the interaction is ignored.
In present simulations, the parameters are chosen as β =
3.84 μm−1, r0 = 0.5 μm, and rc = 1.5 μm. When r > r0,
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Fig. 5 Tank-treading and
tumbling of a single RBC in
shear flow. a Schematic of a
single RBC in shear flow driven
by moving of upper and bottom
plates with the same velocity but
opposite direction. b
Tank-treading and tumbling
frequency of RBC under
different shear rates. c Snapshots
of tumbling and tank-treading
behaviors of RBC. In b, μi and
μm represent the inner flow
viscosity and membrane
viscosity, respectively 0 50 100 150 200
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Fig. 6 a Calibration of Morse potential between RBCs. b Compression method for high hematocrit generation

it exerts attractive force between two RBCs. When r < r0,
repulsive force exists between them. However, it should be
noted that this kind of repulsive force is not strong enough
to prevent overlapping between two RBCs. Here, in order to
guarantee no overlapping between RBCs, a very short-range
Lennard–Jones (LJ) potential is employed. Also, this poten-
tial is applied for interaction between RBC and particles,
which can prevent the penetration of particles into RBC. The
potential has the form

ULJ(r) = 4ε

[(σ

r

)12 −
(σ

r

)6]
, r < rLJ, (40)

where ε is the depth of potential well, σ is the finite dis-
tance at which the LJ potential is zero. rLJ is the cut-off
distance. Here rLJ = 21/6σ for a short range pure repulsion,
which will not influence the attraction between RBCs from
Morse potential. Then we set the parameters for LJ poten-
tial as ε = 1 kBT, σ = 0.5 μm and rLJ = 0.56 μm. The
value of well depth D0 in Morse potential is measured by the
separation test. There are two RBCs with initial separation
distance r0 (see Fig. 6a), 7 pN force is uniformly applied on
200 vertices in the upper RBC, and the bottom RBC is fixed
on the substrate. We find that when D0 = 0.03 kBT , they can
separate from each other. While D0 increases to 0.04 kBT ,
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the RBCs are still adhering together and cannot be separated.
Thus, in the following simulations, the energy well depth D0

is chosen as 0.04 kBT .
In blood flow simulations, initial configurations with a

large number of RBCs is not easy to generate. The regu-
lar arrangement of RBCs in the computational domain only
results in low hematocrit, which is limited to 20%. To model
the blood flow with high hematocrit, special method should
be employed to handle a large number of RBCs randomly
distributed in the fluid domain. Kruger et al. [70] demon-
strated that the high hematocrit can be implemented by a
growth method. In this case, the small size RBCs are gen-
erated and distributed in the computational domain. Then,
the area and volume increase over the simulation time, with
fixed area to volume ratio. Such a growth method can ensure
the nature of biconcave resting shape of RBC. In our case,
we use another method to generate the computational model
with high hematocrit. TheRBCs are generatedwith their real-
istic size, but distributed loosely in the space, which is about
two times larger than the computational domain, as shown
in Fig. 6b. Then, we apply two rigid plates to confine these
RBCs. These two plates are moved in the opposite directions
to reduce the space occupied by these RBCs, until reach-
ing desired dimension. During this process, the other two
direction are applied with periodical boundary conditions.
The interaction between plates and RBCs is governed by LJ
potential. Figure 6b shows the initial and final configurations
of the compression process.When the space is compressed to
the same size as computational (fluid) domain, the compres-
sion is stopped and RBCs are allowed to further relax, which
ensures that initial states of RBCs are in their equilibrium
configurations.

3.2 Validation of magnetic particle model

3.2.1 Moving of a single magnetic particle under
non-uniform external magnetic field

When a magnetic particle is placed in the fluid flow, and
a non-uniform external magnetic field B = B0(x, 0, 0) is
applied, the particle would experience the magnetic force
FB , which can be expanded to calculate the component of
force along x , y and z directions:

FB
i = mx

∂Bi
∂x

+ my
∂Bi
∂y

+ mz
∂Bi
∂z

, (41)

where i denotes x , y or z direction, and mx , my and mz are
the components of magnetic moment in x , y or z direction.
According to theStokes’ law, the velocity component ofmag-
netic particle in fluid along i direction induced by magnetic
force can be expressed as:
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Fig. 7 Comparison of velocity of a moving magnetic particle between
present simulations and analytical results

Vi = FB
i

6πμa
. (42)

The radius of particle is chosen as 10, 20, 40, 60 and
80 nm.Themaximumstrength ofmagnetic field is set to 0.1T
which is within the Food and Drug Administration (FDA)
suggested range [107]. We define the analytical velocity cal-
culated by Eq. (42) of particle with radius 80 nm as V0, and
the other velocities are normalized by V0. The comparison
of velocity between analytical expression using Eq. (42) and
present simulation results are given in Fig. 7. We find that,
when the radius is small, our simulation result is in good
agreement with analytical result. When the radius is larger
(≥ 40 nm), there is a small difference comparing with the
analytical result. However, this difference is within 5% of
the analytical result and can be ignored.

3.2.2 Breakup of magnetic chain in rotating magnetic field

A magnetic chain is considered under the influence of
a spatially homogeneous rotating magnetic field B =
B0(cos(ωt), 0, sin(ωt)). The magnetic chain consists of N
magnetic particles without covalent bond. According to
Sect. 2.3, dipoles are induced in thesemagnetic particles, and
they will experience the magnetic force FB due to dipole–
dipole interaction rather than magnetic force induced by
non-uniform magnetic field. We can simplify Eq. (25) as:

FB
i j = F0

r4i j

(
2(m · ei j )m − (5(m · ei j )2 − 1)ei j

)
, (43)

where m = m/m0 and m0 = Vcχ
μ∗ B0, r i j = ri j/a and the

characteristic force F0 = 3μ∗m2
0

4πa4
. Equation 43 can be split

into two parts:
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Fig. 8 a Critical frequency to
break up magnetic chain in
rotating magnetic field with
different number of particles.
b Three typical shapes of the
magnetic chain with 11 particles
and corresponding velocity field
of fluid flow (red is faster and
blue is slower)
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FB
i j = F0

r4i j

[
2(m · ei j )m · (I − ei jei j )+(1−3(m · ei j )2)ei j

]
,

(44)

where I is the identity tensor. In the bracket, the first term
denotes the force normal to ei j and the second term is parallel
to it. If we define ϕ as the instantaneous angle between m
and ei j , then the force along ei j can be expressed as:

FB
i j |ei j = F0

r4i j

[
1 − 3(m · ei j )2

]
ei j

= F0
r4i j

[1 − 3 cos2(ϕ)]ei j . (45)

This force can be attractive as well as repulsive which is
determined by the value of ϕ. In the rotating magnetic field,
the chain would rotate around its center under the magnetic
torque, therefore it should experience the viscous torque
exerted by the surrounding fluid. When the strength of mag-
netic torque is able to compensate the viscous torque, the
magnetic chain will keep intact. Otherwise, a big phase lag
between magnetic chain and magnetic field can lead to a
repulsive magnetic force, and then it will break the chain. It
should be noted that, when the phase lag is close to the crit-
ical value which leads to repulsive force, the chain deforms
to a S-shape in the center.

We examine the shape of the magnetic chain in the fluid
field by increasing the frequency of the external rotating
magnetic field. The chain would show straight, S-shape and
breakup status with the increment of the frequency. The crit-
ical frequency ωc is defined as the value of frequency that

leads to the broken up of magnetic chain. The critical fre-
quency is estimated for chains consisted of different numbers
of magnetic particles. And the simulation results are com-
pared with the previous results [54,64,108,109] which is
shown in Fig. 8a. In Quesada et al. [54] work, a high order
lubrication approach has been proposed, in which the lubri-
cation interactions between adjacent beads are considered.
They adopt the smoothed particle hydrodynamics (SPH)
method to validate their simulation approach, and find a good
agreement. Here, our simulation results are consistent with
these previous works. In particular, they are consistent with
the high order results given in Ref. [54].

We show the snapshots of the magnetic chain consisted
of 11 magnetic particles in flow field in Fig. 8b. When the
frequency of the external field ω is small (≈ 0.2ωc), the
magnetic chain follows the magnetic field in a quasi-straight
shape. When the rotation frequency ω is close to the critical
frequencyωc (≈ 0.98ωc), the particles at the ends of the chain
show significant deflection and magnetic chain demonstrates
a S-shape. For particles inside the chain, there are particles
on each side. Then, the magnetic torque can be balanced
by these side particles. However, for particles at the ends,
only one particle exerts the magnetic torque on it, leading
to a large deflection. We can conclude that the rotation of
magnetic chain is induced by the magnetic torque applied
on the two ends of the chain. Under this circumstance, the
angle ϕ differs along the chain, and it exactly reaches the
maximum value in the middle of the chain. When ω further
increases (≈ 1.7ωc), the chain cannot follow the external
magnetic field, which means the angle ϕ in the middle of
the chain becomes large enough to create a repulsive force
between two magnetic particles. Under this condition, the
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Fig. 9 Margination probability of a magnetic particles, b magnetic nanoworms under external magnetic field within blood flow

chain will breakup in themiddle due to its maximum value of
ϕ. Figure 8b also plots the fluid velocity field for three typical
shapes of the magnetic chain. With the increment of rotation
frequency ω, velocities at the ends of the chain increases.
When the chain breaks up, the velocities at two ends become
much smaller. Usually the magnetic chain will breakup into
two or three parts, which depends on the symmetry of the
fluid domain and perturbation of the flow field. Here, we
show the chain breaks up into three parts which contain 5, 1,
5 magnetic particles respectively. In addition, two parts that
contain 5 and 6 particles respectively should exist.

4 Margination of magnetic particles and magnetic
nanoworms in external magnetic field

4.1 Results and discussion

To simulate blood flowwith non-Newtonian effect, the RBCs
are explicitly considered in our model. The in vitro blood
vessel is represented by a rectangular channel with width
W = 27μm, length L = 36μm and height H = 24μm.
The bottom plate of the channel is fixed and the blood flow
is driven by moving of upper plate with constant velocity.
Simple linear shear flow of u = {0, γ̇ z, 0} is considered and
bounded by the two plates in z-direction. γ̇ is the shear rate
and it keeps constant of 200 s−1 in our simulations. The flow
direction is along y-direction and x- and y-directions are
applied with periodic boundary conditions. The hematocrit
of blood flow is Ht = 30%with 40 RBCs inside the channel.

We investigate the margination of magnetic particles and
magnetic nanoworms under external magnetic field within
blood flow. There are 80 magnetic particles placed in the
channel. They are identical with radius 125 nm. For the other
case, there are 40 nanoworms inside the channel with 8μm in
length. Each nanoworm consists of 32 consecutive magnetic
particles, which are connected by harmonic bonds.

The margination of particles or nanoworms are examined
by calculating their margination probability, which is defined
as:

〈Π〉 = 〈n f (t) − n f (0)〉
N − n f (0)

, (46)

where 〈·〉 denotes the time-averaged value over the time inter-
val, nf(t) represents the number of particles or nanoworms
inside the cell-free layer (CFL) at time t and N is the total
number of particles or nanoworms in the channel. Here, the
thickness of CFL is calculated in absence of other objects,
e.g. , particles or nanoworm chains, which is 2.8 μm for
Ht = 30%. This is in good agreement with previous studies
[18,22].

The external magnetic field B = B0(0, 0, z
H ) is applied

along z direction. Then only the z-directional magnetic force
FB
z is left nonzero due to its gradient in space, FB

z =
mz

∂Bz
∂z = VcχB2

0
μ∗H2 z. We set the channel in the space z ≤ 0,

which makes the magnetic particles experience minus mag-
netic force and marginate to the lower wall of the channel.
The strength of the magnetic field B0 ranges from 0 to 1.5 T,
which ensures that the maximum value of magnetic strength
in the flow field settles in the FDA suggested range [107].

Figure 9 presents the averaged margination probabil-
ity 〈Π〉 of magnetic particles and magnetic nanoworms in
steady-state regime as a function of magnetic field strength.
The total simulation time of all cases is 1.4 s.We find that, for
magnetic particle, when there is no external magnetic field,
the margination is very small and negligible, which is con-
sistent with previous studies [13,18,22]. With the increment
of magnetic field strength, the margination probability dra-
matically increases. When the strength increases to 1.0 T, the
margination probability reaches its maximum value 1. The
same trend has been observed for magnetic nanoworms.

We should emphasize that the value of the averaged
margination probability is relevant to the simulation time.
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Fig. 10 Snapshots for
margination of magnetic
particles in blood flow with
different magnetic field
strengths
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Fig. 11 Snapshots for
margination of magnetic
nanoworms in blood flow with
different magnetic field
strengths

t = 0 s t = 1.4 s

= 0.2

= 1.0

t = 0.7 s

yx

z

= 0

If the simulation time is long enough, 〈Π〉 of all the cases
with nonzero magnetic strength are expected to reach 1. This
result, in turn, can be used to tune the margination rate of the
magnetic particles or nanoworms by varying the strength of
external magnetic field. As shown in Figs. 10 and 11, when
there is nomagnetic field applied, although fewmagnetic par-
ticles or nanoworms can marginate from center of blood flow
stream to vessel wall region, the chance is extremely small
and negligible. When a very weak magnetic field is applied
(B0 = 0.2 T), the initial uniformly distributed magnetic par-

ticles or nanoworms startmarginating to the lower vesselwall
as simulation time progresses, while there are some particles
or nanoworms still left in the core region of the channel at the
end of simulations. With the magnetic field strength further
increases to 1.0 T, the particles and nanoworms can quickly
marginate to the lower vessel wall and only few of them stay
in the center of bloodstream.

All these simulation results confirm that the non-uniform
magnetic field can be used to promote the margination of
magnetic particles in blood flow, increase their interaction
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Fig. 12 Scaling performance of
proposed numerical scheme. N
represents the total number of
CPUs used for the simulation. a
Time denotes the estimation of
computer time to run 2000
steps. b Speedup measures the
computing performance by
increasing the number of CPUs
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with abnormal tumor microvasculature and further enhance
tumor accumulation of encapsulated drug molecules. In par-
ticular, the margination probability and rate can be enhanced
by increasing the magnetic field strength. This charac-
teristic is significant in the controlled drug delivery. It
ensures that the drug molecules can be released in the spe-
cific time interval with specific dosage with reduced side
effects.

4.2 Scaling performance of computational model

In present simulation, the Eulerian fluid grids is 108 ×
144 × 96 = 1492992. Solving the Navier–Stokes equa-
tions takes about 68% of the total computing time. The
parallelization of LB solver is very important to reduce
the computational cost. Here we use the solver fix_lb_fluid,
which is embedded in LAMMPS and proved to be highly
efficient [83]. The time consumption for the coupling of
magnetic particles or nanoworms with fluid flow can be
negligible, comparing to the coupling of RBCs with fluid
flow. We have modified the coupling method in the origi-
nal LAMMPS package (fix_lb_pc) from force coupling to
velocity coupling, which guaranties the non-slip boundary
conditions. The computational efficiency is examined by
estimating the time consumption used to run 2000 steps
within present program, which is given in Fig. 12a. We
find that our program owns high efficiency when the total
number of CPUs is within 512, and the speedup is almost
linearly increasing with the logarithmic value of total num-
ber of CPUs, as shown in Fig. 12b. The high efficiency
of proposed model and computational method will enable
us to further explore the vascular dynamics of magnetic
particles in large scale vascular network and high hemat-
ocrit.

5 Conclusion

Magnetic particles have been recognized as promising car-
goes for actively triggered drug delivery system. To under-

stand the transport and margination of magnetic particles
in blood flow, we develop a novel multiscale and multi-
physics computational model by explicitly considering the
presence of RBCs in blood flow, influence of magnetic field
and hydrodynamics. Such a computational method seam-
lessly integrates different components within LAMMPS
framework, which is robust and highly efficient for large
scale simulations. To account for the suspended structures,
i.e. RBCs andmagnetic particles, in blood flow, two different
types of coupling schemes are adopted. Velocity coupling
is used to deal with the interface between RBCs and fluid
flow; while dissipative force coupling is applied to account
for the interface between magnetic particles and fluid flow.
The velocity coupling scheme is validated by investigation of
stretching of a single RBC, as well as tank-treading and tum-
bling of a single RBC in simple shear flow. Furthermore, the
dissipative force coupling is tested by studying themovement
of a single magnetic particle under non-uniform magnetic
field, and breakup of magnetic chains in rotating magnetic
field. After validation of proposed computational method,
we apply it to explore the margination behaviors of magnetic
particles and magnetic nanoworms in the blood flow. We
find that themargination probabilitymonotonically increases
with the magnetic field strength increasing. Moreover, from
the snapshots of these simulations, we can also conclude that
the strength ofmagnetic field also affect themargination rate,
which is crucial for controlled drug delivery. These simula-
tion results confirm that the non-uniform magnetic field can
be used to promote the margination of magnetic particles in
blood flow, increase their interaction with abnormal tumor
microvasculature and further enhance tumor accumulation
of encapsulated drug molecules. The success in modeling
transport of magnetic particles in blood flow provides a pow-
erful way to investigate and guide design of drug carriers for
treatment of tumor. Besides, additional features can be eas-
ily implemented into current computational model through
LAMMPS to further study other critical aspects in targeted
drug delivery, such as adhesion of drug carriers on vessel wall
near tumor site under ligand–receptor binding, and their dif-
fusion within tumor tissue.
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Appendix: coarse-grained potential for RBC

First, we use the Eq. (16) to derive the nodal force due to area
constraints.

Figure 13 shows the simple triangular element of the
membrane network. Ak represents the area of the triangu-
lar element. ai j = pi − p j and i, j denotes the index from 1
to 3, pi is the vertex points. ξ is the normal vector of the sur-
face where the element locates, and ξ = −→a 21 × −→

a31, where
× is the cross product. Then we have the expression of the
area of triangular element

Ak = |−→ξ |
2

=
√

ξ2x + ξ2y + ξ2z

2
. (47)

Here, we adopt global area constraint as an example to show
how to derive the nodal force. Using Eq. (16), we get

fsi = −∂[ka(At − At0)
2/(2At0)]

∂si
= −ka(At − At0)

At0

∂At

∂si

= βaΣk∈1...Nt

∂Ak

∂si

= βaΣk∈1...Nt

1

4Ak

(
ξ kx

ξ kx

∂si
+ ξ ky

ξ ky

∂si
+ ξ kz

ξ kz

∂si

)
, (48)

where βa = − ka(At − At0/At0), subscript k represents the
k-th triangular element. If we set α = βa/4Ak , then we have
the nodal force expression

( fx1, fy1, fz1) = α(
−→
ξ × −→a 32),

( fx2, fy2, fz2) = α(
−→
ξ × −→a 13),

( fx3, fy3, fz3) = α(
−→
ξ × −→a 21). (49)

Similar to the global nodal force derivation, the local nodal
force can be calculated by simply setting α = − kd(Ak −
Ak0)/(4Ak − Ak0).

The nodal force due to total volume constraint can be
obtained

fsi = −∂[kv(V − V0)2]/2V0
∂si

= −kv(V − V0)

V0

∂V

∂si

= βvΣk∈1...Nt

∂Vk
∂si

, (50)

where Vk =
−→
ξ k ·−→b k

6 , and
−→
b k = (pk1 + pk2 + pk3)/3 is the

center of the mass of k-th triangular element. Then the nodal
force could be written as

( fx1, fy1, fz1) = βv

6
(
−→
ξ /3 + −→

b × −→a 32),

( fx2, fy2, fz2) = βv

6
(
−→
ξ /3 + −→

b × −→a 13),

( fx3, fy3, fz3) = βv

6
(
−→
ξ /3 + −→

b × −→a 21). (51)

In Fig. 13b, the normal vectors of the two triangular ele-
ment are

−→
ξ = −→a 21 × −→a 21 and

−→
ζ = −→a 34 × −→a 24. A1

and A2 are the area of the two triangles, respectively. Then
we can calculate the nodal force contributed by the bending
potential as

fsi =−∂[kb(1 − cos(θ − θ0))]
∂si

=− kb sin(θ − θ0)
∂θ

∂si
.

(52)

Fig. 13 Sketches of a one and
b two adjacent triangular
elements of the membrane
network

(a) (b)
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As θ is the dihedral angle, it can be expressed as cos θ =−→
ξ ·−→ζ

|−→ξ ||−→ζ | . Then the derivation of θ with respect to si is

∂θ

∂si
=

∂

[
arccos

( −→
ξ ·−→ζ

|−→ξ ||−→ζ |

)]

∂si
= − 1√

1 − cos2 θ

−→
ξ ·−→ζ

|−→ξ ||−→ζ |
∂si

.

(53)

According to this analytical expression, we can obtain the
results of nodal force exerted on the four vertex points shown
in Fig. 13b as following

( fx1, fy1, fz1) = k11(
−→
ξ × −→a 32) + k12(

−→
ζ × −→a 32),

( fx2, fy2, fz2) = k11(
−→
ξ × −→a 13)

+ k12(
−→
ξ × −→a 34 + −→

ζ × −→a 13)

+ k22(
−→
ζ × −→a 34),

( fx3, fy3, fz3) = k11(
−→
ξ × −→a 21)

+ k12(
−→
ξ × −→a 42 + −→

ζ × −→a 21)

+ k22(
−→
ζ × −→a 42),

( fx4, fy4, fz4) = k12(
−→
ξ × −→a 23) + k22(

−→
ζ × −→a 23), (54)

where k11 = −βb
cos θ

|−→ξ |2 , k12 = βb
1

|−→ξ ||−→ζ | , k22 = −βb
cos θ

|−→ζ |2 ,

and βb = kb(sin θ cos θ0−cos θ sin θ0)√
1−cos2 θ

. Here, because θ ∈ (0, π ],
the sign of sin θ can be either positive or negative. It is defined
by the sign of S = (

−→
ξ − −→

ζ ) · (−→b 1 − −→
b 2), where

−→
b 1 and−→

b 2 are the vectors of center of mass of triangles 1 and 2,
respectively. If S ≥ 0, sin θ = √

1 − cos2 θ and sin θ =
−√

1 − cos2 θ for S ≤ 0.
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