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Abstract An isogeometric analysis (IGA) framework is
presented to construct and solve dispersion relations for
generating the band structure of periodic materials with
complicated geometries representing phononic crystals and
elastic metamaterials. As the dispersive properties depend
on the microstructural geometry, an accurate representa-
tion of microstructural geometrical features is paramount.
To this end, the ability of isogeometric analysis to exactly
model complex curved geometries is exploited, and wave
propagation in infinitely periodic solids is combined with
isogeometric analysis. The benefits of IGA are demonstrated
by comparing the results to those obtained using standard
finite element analysis (FEA). It is shown that the IGA solu-
tions can reach the same level of accuracy as FEA while
using significantly fewer degrees of freedom. IGA is applied
to phononic crystals and elastic metamaterials and the band
structure for a variety of unit cells with complex microstruc-
tural geometries is investigated to illustrate the desirable
dispersive effects in these metamaterials.

Keywords Isogeometric analysis · Bloch waves · Phononic
crystals · Elastic metamaterials · Bandgaps and local
resonance

1 Introduction

The design of materials engineered to exhibit exotic mechan-
ical behaviors not found in nature has receivedmuch attention
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in the materials science, physics and engineering communi-
ties of late. These meta materials are made up of multiple
material phases arranged in topologically complex patterns,
resulting in properties that are superior to those of the con-
stituent material phases [1]. Mechanical metamaterials that
are designed for enhanced dynamic properties are known
as phononic crystals or acoustic/elastic metamaterials and
focus on the spectral and spatial manipulation of mechanical
waves [2,3]. These materials are made up of a periodic tes-
sellation of some characteristic unit cell and this periodicity
allows their dynamic properties to be contained in a com-
pact band diagram much like the electronic band diagram
of atomic crystals. The band structure reveals the effects
of dispersion, wherein waves with different frequencies or
wavelengths propagate at different speeds. In solids, wave
dispersion occurs as a result of the interaction between prop-
agating waves and the material microstructure. While the
phenomenonofwave dispersion in solids has been the subject
of study for some time [4], the idea of exploiting it by design-
ing materials with tailored band structures is relatively new.
Early studies considering the band structure of mechanical
waves in solids are those by Sigalas and Economou [5] and
Kushwaha et al. [6], the latter of which followed ideas used
in the study of photonic band structure. This study revealed
that the band structure of a periodic distribution of stiff rods
embedded in a soft elastic background medium contained
bandgaps, i.e. frequency ranges wherein wave propagation is
inhibited. These early studies established the idea that mate-
rials could be designed to manipulate mechanical waves, in
much the same way as materials are designed to manipulate
electromagnetic waves.

The classification as a phononic crystal or acoustic/elastic
metamaterial comes down to which dispersive phenomena
are exploited for the spectral manipulation of mechani-
cal waves [3]. Phononic crystals rely on the phenomenon
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of Bragg scattering, which occurs due to a mechanical
impedance mismatch between two different constituent
materials causing scattering interference [7]. This inter-
ference becomes systematic due to the periodic nature of
phononic crystals, resulting in strongwave attenuationwithin
certain frequency ranges. Scattering interference is only
significant if the wavelength of excitation is of the same
order as the scale of the microstructural features, which
allows for Bragg scattering effects to be tailored through
manipulation of microstructural geometry but restricts the
phenomenon to relatively high frequencies. For a Bragg
bandgap to occur at a low frequency such as 1 kHz, the
wavelength must be of the order of meters, and thus the
necessary size of the microstructural features renders the
design of phononic crystals with bandgaps at this frequency
infeasible. Acoustic/elastic metamaterials exploit the reso-
nant vibration of microstructural features which can result in
unusual dynamic behavior such as negative effective prop-
erties and the generation of subwavelength bandgaps. This
latter phenomenon makes acoustic metamaterials attractive
for low frequency wave manipulation, allowing microstruc-
tural features to be much smaller than the wavelength of
excitation, as has been demonstrated in a number of stud-
ies [8–12]. In addition to spectral manipulation, spatial wave
manipulation can also be enabled through the exploitation of
dispersive effects which cause waves to show different pref-
erential directions of propagation at different frequencies.
This frequency dependent directionality is inherent in both
phononic crystals and acoustic metamaterials because of the
microstructure behaving as a different effective anisotropic
medium at different frequencies [13,14]. Moreover, it has
been shown that the wave directionality can be altered by
tailoring the microstructural features [15], leading to greater
control over spatial wave manipulation. The phenomena of
Bragg scattering, local resonance and frequency dependent
directionality are all inextricably linked to the geometry of
the material microstructure. Therefore, the ability to analyze
and design metamaterials with intricate geometrical features
is of paramount importance.

Band structure calculations for periodic materials require
the construction and solution of dispersion relations which
give the nonlinear dependence between frequency and
wavenumber. Due to the difficulty of constructing dispersion
relations for any domain with reasonable geometrical com-
plexity, analyticalmethods are scarce and numericalmethods
such as the plane wave expansion method [16], the finite dif-
ference time domain method [17], the method of multiple
scales [2], the multiple scattering method [18] or the finite
element method [13,14,19,20] are commonly used to obtain
the band structure. Among these, the finite element method
stands out as one of the most popular due to the ubiquity
of finite element solvers and their flexibility in representing
different geometric domains. However, for many domains,

especially those involving curves, the finite element method
relies on geometric approximations, introducing errors in the
model that are exacerbated as the details of geometric fea-
tures become increasingly intricate. Strategies such as mesh
refinement or use of higher order elements can mitigate this
issue, but at the cost of significantly increasing the number of
degrees of freedom needed for an accurate model. Moreover,
the generation of an accurate mesh is a nontrivial exercise in
itself when geometries are complex. A recent study proposed
the use of the extendedfinite elementmethod (XFEM) to gen-
erate the band structure of metamaterials [21]. As XFEM can
implicitly account formaterial interfaces, a uniformmesh can
be employed, with the complex geometries of constituents
considered using level set functions. This allows for flexi-
bility in considering constituent geometries and circumvents
the costly remeshing process, but curved interfaces are still
approximated and a relatively fine mesh is needed to resolve
these features accurately. Thus, accurate methods of model-
ing complex geometries are still needed.

Isogeometric analysis (IGA) was introduced by Hughes
et al. [22] and employs Non-Uniform Rational B-Splines
(NURBS) as the basis for interpolating both geometry and
solution spaces. IGA has several advantages over standard
finite element analysis (FEA), the first being that IGA can
represent the exact geometry of a model derived from com-
puter aided design (CAD) since NURBS are also used to
describe geometry in CAD. Thismeans that complex geome-
tries can be easily represented in IGA without introducing
errors into the model. In addition, the continuity of IGA
bases can be increased efficiently and robustly through k-
refinement without altering the geometry in any way [23].
This proves valuable for interpolation of fields that require
high-order continuity, and leads to results with higher accu-
racy [24]. Moreover, even if a solution space requires only
C0-continuity, higher continuity interpolation may still lead
to more accurate results because the increased smoothness
of solution spaces can result in significantly better numer-
ical approximations [24,25]. IGA has been successfully
used in the analysis of static problems [22,26,27], free and
forced vibration of linear and nonlinear cases [28,29], fluid-
structure interaction problems [30], structural optimization
[31], and more. All these studies have demonstrated that
IGA has superior performance compared to standard FEA.
Particularly, for problems involving structural vibrations and
wave propagation IGA eliminates some of the deficiencies
which are well known in standard FEA, and can obtain sig-
nificantly more accurate eigenfrequencies compared to FEA
with the same number of degrees of freedom [32,33]. Thus,
for band structure calculations IGA offers advantages over
FEA, which go beyond the ability to represent complex
geometries.

In this study an isogeometric framework for the construc-
tion and solution of dispersion relations which generate the
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band structure of unit cells with complicated geometries is
developed. These unit cells may represent phononic crystals
or elasticmetamaterials as they are governed by the equations
of elastodynamics. To the best of the authors’ knowledge,
the literature contains no prior studies exploring the use of
IGA for band structure calculations and so the implementa-
tion details are thoroughly discussed. Beyond being able to
represent complicated geometries, the isogeometric frame-
work is attractive due to its seamless integration with CAD,
allowing for rapid development of metamaterial designs. It is
shown in this study that substantial improvement over FEA
is to be gained by using IGA, reflecting the trends discussed
in [28,32,33]. The band structure for a variety of microstruc-
tural unit cell geometries is investigated to illustrate the
dispersive effects exploited by phononic crystals and elastic
metamaterials including Bragg scattering, local resonance
and frequency dependent directionality. By improving the
ability to analyze the dispersive properties of solidswith intri-
cate periodic microstructural geometries, the isogeometric
framework allows for more complex microstructural designs
to be considered, furthering the ability to design materi-
als for mechanical wave manipulation. The structure of this
paper is as follows: Sect. 2 details the construction of disper-
sion relations for elastic solids with periodicmicrostructures,
Sect. 3 gives the details of numerical implementation for
FEA, Sect. 4 provides some background on IGA and details
the numerical implementation of dispersion relations, Sect. 5
covers the solution of dispersion relations and construction
of band diagrams, Sect. 6 compares IGA to FEA for a simple
example, Sect. 7 presents illustrative results of complex unit
cell geometries modeled using IGA, and Sect. 8 provides the
important conclusions drawn from this study.

2 Dispersion relations for periodic solids

2.1 Wave propagation in homogeneous elastic solids

Consider a deformable solid body � ⊂ R
3 with material

points x ∈ R
3, material density ρ (x, t), displacement field

u (x, t) and stress field σ (x, t). The governing equations of
linear elastodynamics are

ε = 1
2

(∇u + (∇u)T
) = ∇su

σ = C : ε

∇.σ = ρ ü

⎫
⎬

⎭
in � (1)

where ∇ is the gradient operator and ü is the acceleration
field. The stress σ is related to the symmetric strain tensor,
ε, through the fourth order elasticity tensor C. This ten-
sor possesses the important properties of major symmetry,
i.e. Ci jkl = Ckli j , and positive-definiteness. Combining the
equations of linear elastodynamics gives the displacement
equation of motion

∇.
(
C
e : ∇su

) = ρ ü (2)

In this study, the focus is on the propagation ofwaves through
bulk material rather than the propagation of surface waves.
Thus, the solution u (x, t) of Eq. (2) is sought to be in the
form of traveling plane waves, i.e.

u (x, t) = u0(x)F (n.r − ct) (3)

Equation (4) represents a propagating plane waveform F ,
where the motion of every material particle along the plane
defined by φ(x) = n.r(x) − ct = const. is the same and the
amplitude of the waveform is given by u0 [34]. Here, n is
the normal to the plane, c is the speed of wave propagation
and r = x − O is the position of an arbitrary point on the
plane. In particular, for complex harmonic waveforms F of
constant amplitude the solutions assume the form

u (x, t) = u0(x) exp [ik (n.r − ct)]

= u0(x) exp [i (k.r − ωt)] (4)

whereω = k×c is the radial frequency and k is thewavenum-
ber (inverse of the wavelength), which can be absorbed into
the normal vector to create the wave vector k = kn. Inserting
the waveform of Eq. (4) into Eq. (2) gives the propagation
condition as

Q(n).u0 = ρc2u0
Qik = Ci jkln j nl (5)

where the acoustic tensor Q is introduced. The acoustic ten-
sor Q(n) depends on the propagation direction n and is
symmetric and positive definite granted that C possesses
these properties. The necessary and sufficient condition
under which harmonic waves of the form given in Eq. (4)
can propagate in a body made of elastic material is that ρc2

is an eigenvalue of the acoustic tensor Q corresponding to
the eigenvector u0.

If the material is assumed to be isotropic then Ci jkl =
λδi jδkl + μ

(
δikδ jl + δilδ jk

)
, where λ > 0 and μ > 0 are

the Lame’s constants, and the acoustic tensor has the form

Q(n) = [μI + (λ + μ) (n ⊗ n)]

= [μ (I − n ⊗ n) + (λ + 2μ) (n ⊗ n)] (6)

where I is the second order identity tensor. In this case, Q
has two distinct eigenvalues λ + 2μ > 0 and μ > 0 with the
corresponding characteristic spaces being the line spanned
by n and the plane perpendicular to n, respectively. Thus,
in an isotropic medium two types of harmonic wave modes
are possible. The first corresponds to the eigenvalue ρc2 =
λ + 2μ which has a constant amplitude u0 directed along n,
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Fig. 1 Illustration of solid with periodic microstructure and resulting
unit cell

and represents a longitudinalmode. The second corresponds
to the eigenvalue ρc2 = μwhich has a constant amplitude u0
in the plane perpendicular to n, and represents a transverse
mode. These modes propagate with speed

Longitudinal mode : cl =
√

λ + 2μ

ρ

Transverse mode : ct =
√

μ

ρ
(7)

If the body is homogeneous, solutions toEq. (5) hold through-
out � so that longitudinal and transverse modes are the only
possible wave modes. In this case, frequency and wavenum-
ber for a given mode are linearly related through the constant
speed cl or ct , depending on the mode [34].

2.2 Periodic solids: the Bloch theorem

When considering elastic bodies with periodic microstruc-
tures, it is commonly assumed that the size of the microstruc-
tural unit cell is small enough that the body can be treated as
an infinite periodic array of identical unit cells with the same
microstructural properties (Fig. 1). The Bloch theorem states
that the solutions to linear systemswhich are periodic inmore
than one spatial dimensions are in the form of Bloch waves,
i.e. the product of a plane wave and a function containing
the spatial periodicity [35]. Thus, seeking harmonic plane
wave solutions to Eq. (2) for an infinite, perfectly periodic
domain � is equivalent to seeking periodic harmonic plane
wave solutions to Eq. (2) over one unit cell�uc (Fig. 1). This
leads to Eq. (5) taken over the unit cell domain �uc with u0
of the form

u0(x) = ψ(x) exp [ik.x] (8)

where the function ψ(x) contains the spatial periodicity and
exp [ik.x] describes a plane wave with wave vector k. Since
ψ(x) is spatially periodic, ψ (x + T ) = ψ(x) where T is a
translation vector between a point x of one unit cell and the
same point x′ of another unit cell. Using this condition along
with Eq. (8) gives

u0 (x + T ) = u0(x) exp [ik.T ] (9)

which represents kinematic constraints necessary to ensure
that u0 is periodic. These constraints can be enforced for a
unit cell �uc by constraining the values of u0 on opposite
sides of the unit cell boundary ∂�uc, i.e.

u0
(
x+) = u0

(
x−)

exp [ik.l] (10)

where x+ and x− are points on opposite sides of the unit
cell boundary separated by the distance vector l (Fig. 1).
Considering Eq. (5) over the domain �uc along with the
constraints in Eq. (10) will give the conditions under which
harmonic plane waves can propagate in an infinite periodic
domain �.

2.3 Discretized equations and dispersion relations

When using numerical schemes such as FEA and IGA, the
spatial discretization of Eq. (2) for a unit cell domain�uc and
insertion of harmonic plane wave solutions (Eq. 4) results in
the following discrete eigenvalue problem which is analo-
gous to Eq. (5)

Ku0 = ω2Mu0 (11)

where K is the stiffness matrix and M is the mass matrix
of the discrete system. Equation (11) together with the con-
straints in Eq. (10) form a constrained eigenvalue problem
which gives the conditions under which harmonic plane
waves can propagate in an infinite periodic domain. This
constrained eigenvalue problem can be transformed into the
equivalent unconstrained problem

(
K̂ (k) − ω2M̂(k)

)
û0 = 0 (12)

where K̂ and M̂ are the transformed stiffness andmassmatri-
ces, respectively. The final form of this transformed system
depends on the spatial discretization, i.e. FEA or IGA, which
affects how the constraints can be used to transform the
unconstrained eigenvalue problem. The dispersion relations,
which represent the relationship between wavenumber k and
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Fig. 2 Discretized unit cell boundary and degrees of freedom

frequency ω, are finally obtained by expressing the eigen-
system defined in Eq. (12) as

D (ω, k) = det
[
K̂ (k) − ω2M̂(k)

]
= 0 (13)

Equation (13) implicitly defines the relationship between the
wave vector k and the corresponding frequency ω. In this
study, computational methods based on FEA and IGA are
presented to solve Eq. (13) under plane strain assumptions
for materials with periodic microstructures.

3 Implementation using standard finite element
analysis (FEA)

When using standard finite element analysis, the domain
of the unit cell is discretized using isoparametric bilinear
four node quadrilateral (Q4) elements. Finite element for-
mulation and implementation details are omitted as they can
be found in many standard references, see for instance Ref
[36], among others. For a two-dimensional unit cell with dis-
cretized boundary nodes as shown in Fig. 2, Eq. (10) results
in linear homogeneous multifreedom constraints which can
be expressed in master-slave form as

u0 = Rk û0

Rk =

⎡

⎢⎢⎢
⎢⎢⎢
⎢⎢⎢⎢
⎢⎢
⎣

I 0 0 0
0 I 0 0
0 I exp (2π ik2l2) 0 0
0 0 I 0
0 0 I exp (2π ik1l1) 0
0 0 0 I
0 0 0 I exp (2π ik1l1)
0 0 0 I exp [2π i (k1l1 + k2l2)]
0 0 0 I exp (2π ik2l2)

⎤

⎥⎥⎥
⎥⎥⎥
⎥⎥⎥⎥
⎥⎥
⎦

(14)

u0 =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

ui
ub
ut
ul
ur

ulb
urb
ur t
ult

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

, û0 =

⎡

⎢⎢
⎣

ui
ub
ul
ulb

⎤

⎥⎥
⎦

where the subscripts i, b, t, l, r, lb, rb, r t , and lt denote
degrees of freedom at the interior nodes, bottom surface
notes, top surface notes, left surface notes, right surface notes,
left-bottom corner node, right-bottom corner node, right-top
corner node and left-top corner node, respectively; I and 0
are the identity and zero matrices of appropriate dimensions;
û0 represents the master degrees of freedom while u0 rep-
resents the slave degrees of freedom. The constraint matrix
Rk contains the homogeneous constraints corresponding to
a wave vector k. Master-slave elimination proceeds by sub-
stituting Eq. (14) into Eq. (11) followed by premultiplication
by R∗

k , the Hermetian of Rk , and yields Eq. (12) with

K̂ (k)

= R∗

kK Rk

M̂(k)

= R∗

kMRk (15)

Thus, in standard FEA, themaster slave elimination approach
results in a condensed eigen-system with only the master
degrees of freedom involved.

4 Isogeometric analysis

4.1 B-splines and NURBS

Isogeometric analysis (IGA) uses non-uniform rational B-
splines (NURBS) to represent both the geometry and solution
spaces in thefinite element discretization.Abrief overviewof
B-splines andNURBS is presented in this subsection, further
details can be found in Refs [22,23]. A B-spline curve in 2-D
is a parametric curve which can be seen as a mapping from
parametric space to physical space as

x(ξ) =
n∑

i=1

Ni,p(ξ)Bi , ξ1 ≤ ξ ≤ ξn+p+1 (16)

where x(ξ) = [x(ξ), y(ξ)] is the position vector which
defines coordinates in physical space of a point on the B-
spline curve, Bi = [Xi ,Yi ] is the coordinate vector of the
i th control point and Ni,p(ξ) is the i th B-spline basis func-
tion of order p. The parametric space is defined by coordinate
ξ and the discrete set ξv = {

ξ1, ξ2, . . . , ξn+p+1
}
is known

as a knot vector. Knots ξi are arranged in non-decreasing
order, i.e.ξi ≤ ξi+1, and the interval P = [

ξ1, ξn+p+1
]
is
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called a patch. The basis functions Ni,p(ξ) can be recursively
obtained as [37,38]

Ni,0(ξ) =
{
1 if ξi ≤ ξ < ξi+1

0 otherwise
, p = 0.

Ni,p (ξ) = ξ − ξi

ξi+p − ξi
Ni,p−1 (ξ)

+ ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1 (ξ) , p ≥ 1 (17)

In two dimensions, a B-spline surface is parameterized by ξ

and η and given as

x (ξ, η) =
n∑

i=1

m∑

j=1

Bi j R
pq
i, j (ξ, η) ,

ξ1 ≤ ξ ≤ ξn+p+1, η1 ≤ η ≤ ηm+q+1 (18)

where x (ξ, η) = [x (ξ, η) , y (ξ, η)] defines the physical
coordinate of a B-spline surface point, and Bi j is the coordi-
nate of the (i, j)th control point. The two dimensional basis
Rpq
i, j (ξ, η) is obtained by the tensor product of two B-spline

basis functions as

Rpq
i, j (ξ, η) = Ni,p(ξ)Mj,q (η) ,

ξ1 ≤ ξ ≤ ξn+p+1,

η1 ≤ η ≤ ηm+q+1 (19)

where Mj,q(η) is the j th B-spline basis of order q built with
knot vector ηv = [

η1, . . . , ηm+q+1
]
using Eq. (17). The

two dimensional parametric region (patch) over which the B-
spline surface is defined isP = [

ξ1, ξn+p+1
]×[

η1, ηm+q+1
]
.

Since B-splines use piecewise polynomials, they cannot rep-
resent conic curves and surfaces such as circles, ellipses
and spheres. However, these conics can be represented using
piecewise rational polynomials,which are defined as the ratio
between two polynomials. To this end, non-uniform rational
B-splines (NURBS) are introduced to describe geometries
which cannot be adequately represented using B-splines. A
1-D NURBS basis can be obtained through B-spline bases
[22,37] as

N̄i,p(ξ) = Ni,p(ξ)wi∑n
r=1 Nr,p(ξ)wr

, ξ1 ≤ ξ ≤ ξn+p+1 (20)

where wr is the weight given to the r th control point. Hence,
NURBS curves can be constructed using Eq. (16) but with
NURBS bases (Eq. 20) substituted for B-spline bases. Sim-
ilarly, two-dimensional NURBS bases are defined as

R̄ pq
i, j (ξ, η) = Ni,p(ξ)Mj,q (η)wi, j∑n

s=1
∑m

t=1 Ns,p(ξ)Mt,q (η)ws,t

ξ1 ≤ ξ ≤ ξn+p+1 and η1 ≤ η ≤ ηm+q+1 (21)

where ws,t is the weight corresponding to control point
Bst . Thus, NURBS shapes in 2-D can be constructed using
Eq. (18) but with NURBS bases (Eq. 21) substituted for B-
spline bases.

4.2 Example: 2-D NURBS object

To illustrate the construction of NURBS geometries, a 2-D
square domain with an elliptic void is used as an example
(Fig. 3a). The domain is discretized into four patches as
shown in Fig. 3b, and because of symmetry, only patch 1
is considered. To model the elliptical boundary, a second
or higher order basis is needed. Hence, using Eq. (17) a
second order basis Ni,2(ξ) is defined along the ξ -direction
with knot vector ξv = {0, 0, 0, 1, 1, 1}, while a first order
basis Mj,1 (η) is defined along the η-direction with knot vec-
tor ηv = {0, 0, 1, 1} (Fig. 3c). The control point polygon,
i.e. polygon created by considering all control points Bi j is
shown in Fig. 3d, with solid lines representing the ξ -direction
and dashed lines representing the η-direction. Note that the
meaning of solid lines and dashed lines will remain the same
throughout the manuscript. The control points and weights
are given in Table 1. Patch 1 is defined by the parametric
region [0, 1]× [0, 1], as shown in Fig. 3e. The NURBS basis
R̄ pq
i, j (ξ, η) is computed using Ni,p and Mj,q in Eq. (21) and

maps the parametric domain to the physical domain through
Eq. (18). The corresponding physical domain of patch 1 is
shown in Fig. 3f. Further details about modeling various
geometries with NURBS can be found in Ref [23].

4.3 Isogeometric analysis

In isogeometric analysis both the geometry and unknown
fields of interest are interpolated using NURBS. Thus, the
essential difference between IGA and FEA is the adoption of
different shape functions to span the geometry and solution
spaces. In IGA, the derivation of weak forms and the finite
element discretization remain the same as in FEA. However,
in IGA, an “element” is defined as a non-zero knot span
for numerical integration purposes [22,23]. For example, the
quarter part shown in Fig. 3f consists of only one element.
Furthermore, in IGA the geometry and solution spaces can
be enriched by using p-refinement to elevate the order of the
basis [37], h-refinement to insert knots [37], or k-refinement
to do both [22]. For example, Fig. 4 shows the result of apply-
ing k-refinement to the quarter domain of the ellipse in Fig. 3.
In Fig. 4a, k-refinement is used to first raise the order of basis
along the η direction to 2 and then insert new knots in both
the ξ and η directions (compare to Fig. 3c). This results in
a mesh of 6 elements within the 2-D patch. In Fig. 4b, the
order of basis along both the ξ and η directions is raised to
3 and knots are inserted in both directions, resulting in 12
elements. The advantage of performing k-refinement is that
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Patch 1

Patch 2

Patch 3

Patch 4
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Fig. 3 Geometry construction by NURBS basis. In c the knot vectors
along two directions are ξv = {0, 0, 0, 1, 1, 1} and ηv = {0, 0, 1, 1}.
In d, solid lines represent ξ -direction and dashed lines represent η-

direction. a Geometry, b Discretization with 4 patches, c 1-D B-spline
basis, dControl point polygon, e Parametric domain, f Physical domain

it results in elevation of the basis order of continuity instead
of just the basis polynomial order.

Once the NURBS model is generated in geometry space,
the isoparametric concept is invoked so that the solution
space is spanned by the same NURBS bases, i.e.

x =
ncp∑

a=1

Naxa

u =
ncp∑

a=1

Naua (22)

123



292 Comput Mech (2018) 62:285–307

Table 1 Control points and weights for quarter part of the elliptical
void domain

i j Bi, j (x, y) wi, j

1 1 (−7.0711, −7.0711) 1

2 1 (−10.6066, −3.5355) 0.7071

3 1 (−3.5355, 3.5355) 1

1 2 (−10, −10) 1

2 2 (−10, 0) 1

3 2 (−10, 10) 1

where ncp is the number of control points in themodel, xa are
the control point position vectors, ua are the unknown dis-
placement control variable vectors and Na are the NURBS
basis functions defined using Eq. (21). Within each IGA ele-
ment e, the unknown variables are arranged in vector form as

ue =
[
ue1 ve1 . . . ue(p+1)(q+1) ve(p+1)(q+1)

]T
(23)

and the NURBS basis functions are assembled into the
shape functionmatrix Ne, with corresponding shape function
derivative matrix Be
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Fig. 4 B-spline bases and control points after k-refinement. a ξv = {
0, 0, 0, 1

3 , 2
3 , 1, 1, 1

}
, ηv = {

0, 0, 0, 1
2 , 1, 1, 1

}
, p = q = 2, n = 5,m = 4,

b ξv = {
0, 0, 0, 0, 1

4 , 2
4 , 3

4 , 1, 1, 1, 1
}
, ηv = {

0, 0, 0, 0, 1
3 , 2

3 , 1, 1, 1, 1
}
, p = q = 3, n = 7,m = 6

123



Comput Mech (2018) 62:285–307 293

Ne =
[
Ne
1 0 · · · Ne

(p+1)(q+1) 0
0 Ne

1 · · · 0 Ne
(p+1)(q+1)

]

Be =
⎡

⎢
⎣

Ne
1,x 0 · · · Ne

(p+1)(q+1),x 0
0 Ne

1,y · · · 0 Ne
(p+1)(q+1),y

Ne
1,y Ne

1,x · · · Ne
(p+1)(q+1),y Ne

(p+1)(q+1),x

⎤

⎥
⎦ (24)

where the comma denotes differentiation. The size of ue is
due to the local support property of NURBS bases, which
states that within a given non-zero knot span (IGA element)
only p + 1 basis functions are nonzero, where p is the basis
order. Thus, for 2-D elements with bases of order p and q the
number of nonzero basis functions is (p + 1)(q + 1). This
can be observed in Fig. 3c where there are 3×2 = 6 nonzero
shape functions. The Galerkin method is invoked so that the
weighting function space is spanned by the same NURBS
bases. Thus, the stiffness and mass matrices for Eq. (11) are
defined using IGA as

M = neleA
e=1

Me, K = neleA
e=1

K e

Me =
∫

�e
ρhNeT Ned A, K e =

∫

�e
hBeTCBed A

C =
⎡

⎣
λ + 2μ λ 0

λ λ + 2μ 0
0 0 μ

⎤

⎦ (25)

whereρ is themass density and h is the plane strain thickness.
Here, the global displacement vector in Eq. (11) is arranged

as u0 = [
u1 v1 · · · uncp vncp

]T
, recalling that ncp is the

number of control points in the entire model.

4.4 Boundary conditions and constraints in IGA

In IGA, the implementation of boundary conditions and con-
straints is not straightforward due to a number of reasons that
warrant further explanation. To illustrate these difficulties,
an example consisting of a square unit cell with irregular
shaped void shown in Fig. 5 is considered. Four NURBS
patches are used to discretize the domain and control points
are indicated by black solid squares and labeled as B(k)

i j
where the superscript (k) denotes the patch number. Due to
symmetry, NURBS information is only provided for patch 1
and patch 3.

The first issue is the continuity of field variables across
patch boundaries. In this study, the continuity is ensured,
as the control points along the boundary of two adjacent
patches are shared leading to C0-continuity of the variables.
For instance, the points B(1)

11 and B(1)
12 (Fig. 5a) are shared

between Patch 1 and Patch 4 giving C0-continuity along
the patch boundary. It should be mentioned that other tech-
niques for coupling patches exist, for example the use of
Nitsche’s method [39]. The second issue is due to the non-

interpolatory nature of the NURBS functions. For instance,
in a given direction, say ξ or η, only the two end points are
interpolated provided that an open knot vector is used and no
interior knot has a multiplicity of p, where p is the degree
along this direction [23]. Only at these end points is the data
interpolated since only one basis function has value 1 while
the other basis functions take the value 0, see Fig. 5b and c.
Here, the bases along the ξ -direction are such that there is
no ξ ∈ (0, 1) at which one basis function reaches 1 while
the others vanish. Thus, the NURBS basis functions defined
by Eq. (21) are not interpolatory in the interval ξ ∈ (0, 1).
The result is that both patch 1 and patch 3 have four con-
trol points that are interpolated (B11, B12, B41 and B42) and
four that are not (B21, B22, B31 and B32). Due to this non-
interpolatory nature, boundary conditions and constraints
cannot be straightforwardly enforced as these conditions are
to be prescribed on the physical boundary and not on the
control points.

4.5 Enforcement of periodicity constraints

The constraints in Eq. (10) are enforced on a number of pairs
of degrees of freedom which are located at the same posi-
tion on opposite boundaries. The non-interpolatory nature of
NURBSbasis functionsmeans that control points onopposite
boundaries are not necessarily located at the same position
(see, for example, B(1)

32 and B(3)
32 or B(1)

22 and B(3)
22 in Fig. 5a).

Moreover, the number of control points on opposite bound-
aries may not be the same, although this can be rectified by
performing h-refinement on the different patches. To enforce
the constraints in Eq. (10), the following strategy is utilized:
(a) constraints at the corners are directly enforced as the cor-
ner control points are all interpolated and located at the same
positions on opposing boundaries (Fig. 5). (b) Constraints
for the rest of the boundary are implemented by first iden-
tifying the number of control points on opposing sides, e.g.
N = 2 for the top and bottom boundaries corresponding to
B(3)
32 and B(3)

22 on the bottom and B(1)
32 and B(1)

22 on the top in
Fig. 5. Next, N equally spaced locations along each opposing
boundary are identified in physical coordinates and the corre-
sponding parametric coordinates are obtained by solving the
inverse of Eq. (18) using the Newton-Raphson method with
Rpq
i, j replaced by R̄ pq

i, j . The N equally spaced locations are
referred to as interpolatory nodes and are shown in Fig. 6 as
red circles. Displacement values at the interpolatory nodes
can be obtained using Eq. (22) in terms of the parametric
coordinates corresponding to the position of an interpolatory
node. These values along with the values at the corner con-
trol points are related through Eq. (10) to define the global
constraint

Cku0 = 0 (26)
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Fig. 5 Geometry of domain with control points and B-spline bases. a NURBS surface with control net, b NURBS surface with control net, c
NURBS surface with control net

Fig. 6 Illustration of interpolated boundary—� denotes control
points; O denotes interpolatory nodes

The matrix Ck contains the shape functions used to find val-
ues at interpolatory nodes as well as the discretized relations
from Eq. (10). This constraint is enforced using Lagrange
multipliers so that the total constrained system involving
Eq. (11) is

Ku0 − ω2Mu0 + CT
k λ = 0

Cku0 = 0 (27)

where λ is the vector of Lagrange multipliers. Finally, Eq.
(12) is recovered by writing Eq. (27) in matrix form with

K̂ (k) =
[
K CT

k
Ck 0

]
; M̂ =

[
M 0
0 0

]
; û0 =

[
u0
λ

]
(28)

For K and M of dimensions n × n and Ck of dimensions
m × n, the unconstrained eigenvalue problem in Eq. (12),
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when using thematrices fromEq. (28), has n−m eigenvalues
which are the same as those of the constrained eigenvalue
problem and 2m eigenvalues which are infinite [40]. Thus,
the lowest n − m eigenvalues correspond to those of the
constrained eigenvalue problem. In this study only square
unit cells are considered, but the above described process
for enforcing boundary conditions can be easily extended to
other unit cell geometries.

5 Computing band structure

In two dimensions, the dispersion relations in Eq. (13) define
an eigen-system with three unknowns: (i) the frequency of
wave propagationω and (ii)–(iii) the components of thewave
vector, k1 and k2. To solve this system, thewave vector is pre-
scribed and the frequency of wave propagation is obtained
as ω = ω (k1, k2), which reveals the band structure. For a
given wave vector, Eq. (13) has n modal solutions ωq , along
with n corresponding mode shapes û0q , where n is the size
of the matrices K̂ and M̂. The lowest two modes are identi-
fied as acoustic modes, and represent longitudinal and shear
waves. Higher modes are referred to as optical modes, and
generally represent some combination of longitudinal and
shear waves [35]. To investigate the band structure for fre-
quencies of practical interest, only the acoustic modes and a
small number of the lowest optical modes are considered. In
general, the components of the wave vector can be complex,
i.e. kα = μα + iγα . However, waves propagating without
attenuation have real wave numbers [36]. In this study, the
aim is to analyze non-attenuating waves, so only the real
part of the wavenumber—the phase constant μα—is con-
sidered. This results in the following form of the dispersion
relations

D (
ωq , μ1, μ2

) = det[K̂ (μ1, μ2)

−ω2
q M̂ (μ1, μ2)] = 0 (29)

To analyze the band structure, Eq. (29) must be solved
for every unique pair of phase constants (μ1, μ2) ∈ R2

representing a non-attenuating wave vector. However, by
considering the real wave vector components in Eq. (10) it
can be observed that

u0
(
x+) = u0

(
x−)

exp

[

i
2∑

α=1

μαlα

]

= u0
(
x−)

exp

[

i
2∑

α=1

(μαlα + 2π)

]

(30)

Thus, due to the periodicity of the exponential term the
unique phase constants only exist in the range 0 ≤ μα ≤

2π/ lα . In solid state physics this range of unique wave num-
bers is known as the first Brillouin zone (FBZ) and defines a
unit cell in the wave number space or the so called recipro-
cal space [7,35]. With the frequency defined as a function
of the phase constants, a surface can be constructed for
each of the n modes q = 1, 2, . . . , n. These surfaces are
referred to as dispersion surfaces because they reveal the
relationship between frequency and wave number, and each
modal dispersion surface represents frequencies at which
waves can propagate without attenuation. Thus, the band
structure can be visualized by plotting the dispersion sur-
faces for a number of modes and bandgaps are identified as
frequency ranges between consecutive modal dispersion sur-
faces, i.e. frequency ranges where there is no non-attenuating
wave propagation. To investigate wave directionality, con-
tour plots of dispersion curves can be constructed at a given
frequency. These contours are known as isofrequency (or
equifrequency) contours and give the direction of the group
velocity—and thus of energy flow—at a given frequency as
the direction normal to the isofrequency contour [41].

For unit cells with geometric symmetries, the range of
unique phase constant pairs can be further reduced to what
is known as the irreducible Brillouin zone (IBZ) and all the
important bandgap information can be investigated by con-
sidering only the phase constants on the boundary of the IBZ
[35]. This allows one to construct curves by plotting each
modal frequency as a function of a scalar arc length parame-
ter describing the position on a curve around the perimeter of
the IBZ. Plotting a number of these dispersion curves gives
the band diagram, and bandgaps are identified as the spaces
between consecutive modal dispersion curves. The construc-
tion of dispersion curves ismuch less computationally expen-
sive than the construction of dispersion surfaces, as it requires
far fewer evaluations of the eigenvalue problem (Eq. 29).

6 Comparison of FEA and IGA

In this section, implementation of the isogeometric disper-
sion analysis is validated on a simple example unit cell by
comparing the results from FEA and IGA. In addition, this
example is used to investigate the effect of k-refinement on
the accuracy of the IGA solutions. The improved perfor-
mance offered by IGA for the calculation of eigenfrequencies
which is detailed in Refs [28,32,33] is explored here in the
context of dispersion relations for periodic solids by perform-
ing a mesh refinement study. The material properties used in
this and subsequent examples are as follows: E = 3 GPa,
ν = 0.3 and ρ = 1000 kg/m3 and represent an epoxy mate-
rial. All the analyses are carried out in aMatlab® based finite
element programCPSSL-FEA developed at the University of
Notre Dame. The calculations are performed on a personal
computer with a Pentium 3.0 GHz microprocessor. In all of
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Fig. 7 Circular void example geometry, IBZ and meshes. a IBZ, b FEA coarse mesh, c IGA coarse mesh

the following results, frequencies are normalized by multi-
plying by the length of the square unit cell l = l1 = l2 and
dividing by the transverse wave speed ct in bulk material
(Eq. 7).

6.1 Circular void—mesh refinement study

The example problem consists of a square microstructural
unit cell with a circular void. The unit cell is 8 mm by 8 mm
and the void has a radius of 1 mm, so that 5% of the area of
the unit cell is void. The FBZ for the square unit cell is shown
in wave number space, defined by coordinate axes 1/ l1 and
1/ l2, as the shaded area in Fig. 7a. The point symmetry of
the circular void microstructure results in the IBZ enclosed
by the points O, A and B in Fig. 7a. The coordinates of points
O, A and B are defined in terms of the dimensionless phase
constants (μ1l1, μ2l2) as (0, 0), (π, 0) and (π, π), respec-
tively. Figure 7b and c show two meshes created using IGA
and FEA with the coarsest mesh. Table 2 lists the NURBS
information including the control points, weights and knot
vectors of one patch. The whole domain can be seen as an
assembly of four such patches, similar to the example shown
in Fig. 3. It is clear from Fig. 7 that the FEA discretization of
the void does a poor job of representing a circle, while with
IGA the circle is exactly represented. Even as the mesh is
refined, bilinear finite elements can never exactly represent
the circle. While higher order finite elements may be used, a
fine mesh is still needed. The IBZ boundary for this example
is discretized into 30 points for each of the branches O–A,
A–B and B–O, so that 90 eigenvalue analyses are performed
in order to compute the band diagram. To compare the results
of standard finite element analysis and isogeometric analy-
sis, mesh refinement is carried out and the relative error is
calculated for each of the first six dispersion curves using the
L2 relative error norm as

eq =
∥
∥∥∥∥
ωq − ωc

q

ωc
q

∥
∥∥∥∥
2

(31)

Table 2 Control points and weights for left quarter part of the circular
void plate

i j Bi, j (x, y) wi, j

1 1 (−0.7071, −0.7071) 1

2 1 (−1.4142, 0) 0.7071

3 1 (−0.7071, 0.7071) 1

1 2 (−4, −4) 1

2 2 (−4, 0) 1

3 2 (−4, 4) 1

Knot vector: ξv = {0, 0, 0, 1, 1, 1} ; ηv = {0, 0, 1, 1}

where eq is the relative error of mode q and ωq is the vector
of frequencies for mode q, i.e. the qth dispersion curve; ωc

q
is the vector of “converged” frequency values for mode q,
which is found using a FEA mesh with 160000 degrees of
freedom. The relative errors are plotted in Fig. 8 for different
FEAand IGAmeshes and for different order bases in IGA.As
discussed in [32], regarding the model degrees of freedom as
ameasure of comparison between IGA and FEA is somewhat
misleading due to the increased number of quadrature points
which are needed for integration when using higher order
basis functions. Nonetheless, comparing model degrees of
freedom still gives a good idea of the benefits of using IGA
over FEA.

The degrees of freedom reported refer to the size of the
transformed mass (M̂) and stiffness (K̂ ) matrices that are
used in the eigenvalue analysis. Thus, for IGA the degrees
of freedom include those introduced by using the Lagrange
multipliers to enforce the boundary conditions. From this
mesh refinement study it can be observed that IGA results
are substantially more accurate when using a coarse mesh as
compared to FEA. Indeed, an IGA mesh with only around
1000 degrees of freedomhas essentially the same accuracy as
an FEA mesh with 160000 degrees of freedom. This follows
the trends discussed in Refs [28,32,33]. To further illustrate
this performance, the band structure for the first six modes
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Fig. 8 Results of circular void mesh refinement study for the first six modes at IBZ point A. a Mode 1, b Mode 2, c Mode 3, d Mode 4, e Mode
5, f Mode 6

is shown in Fig. 9 using the FEA mesh with 160000 degrees
of freedom and second order IGA mesh with 1000 degrees
of freedom.

The bulk of the computational effort for dispersion anal-
ysis comes from solving the eigenvalue problem in Eq. (29).

Therefore, to better quantify the advantage of using IGA, the
time per eigenvalue analysis and the total time spent solv-
ing eigenvalue problems are recorded for the FEAmesh with
160000 degrees of freedom and IGAmeshwith 1000 degrees
of freedom in Table 3. The Matlab® function eigs is used to
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Fig. 9 Comparison of circular void band structure for the first six
modes using FEA and IGA meshes with different degrees of freedom

Table 3 Time for eigenvalue analyses—circular inclusion meshes

DOF Avg. time (s) Total time (s)

IGA 1000 0.1083 9.30

FEA 160000 22.4342 1906.91

solve the eigenvalue problem for the lowest six eigenval-
ues. This result clearly shows the computational advantage
of IGA, which is due to the significantly fewer degrees of
freedom needed.

6.2 Circular void—k-refinement

As shown in Fig. 8, k-refinement is also carried out on this
example to investigate whether or not the order of conti-
nuity used in IGA affects the solution. As k-refinement is
utilized, the basis order of continuity is increased along with
the polynomial order. While the governing equation (Eq. 2)
is second order, higher order bases may offer an advantage
by increasing the smoothness of solution spaces, leading to
better numerical approximations. From Fig. 8 it can be seen
that 3rd order bases converge more rapidly and so are more
accurate with coarser meshes than 2nd order, but compared
to the relative errors of FEA the difference is negligible. It
can also be seen that around 1000 degrees of freedom, both
IGA solutions have negligible error (around 10−3). Figure 10
shows the band structure calculated using 2nd and 3rd order
meshes with 1000 degrees of freedom. It is clear from this
example that higher continuity offers no further advantage.

7 Numerical examples

In this section, various test cases are presented to demon-
strate the important dispersive effects which can be obtained

Fig. 10 Circular void band structure for different order meshes using
1000 degrees of freedom

with different microstructural unit cell geometries. Each of
these examples highlights a different dispersive phenomenon
utilized by phononic crystals and elastic metamaterials.
All examples use the epoxy material properties given in
Sect. 6 and utilize a square unit cell with FBZ shown in
Fig. 7a. Moreover, in order to highlight the efficacy of
the proposed isogeometric analysis, the presented exam-
ples use unit cells consisting of voids or inclusions with
complicated curved geometries that are difficult to repre-
sent with standard finite elements. As IGA can accurately
represent these microstructural geometries, it is a natu-
ral approach for calculating the band structure of such
complex microstructural unit cells. While two dimensional
examples are considered in the present study, the approach
developed herein is readily extendable to three dimensional
problems. This simply requires enforcing periodicity con-
straints over three periodic dimensions in the exact same
way as they are enforced over two periodic dimensions
herein. Additionally, the correct IBZmust be identified based
on the three dimensional unit cell, see e.g. the appendix
in [21].

7.1 Bragg scattering

In this example, a phononic crystal with microstructure con-
sisting of a flower shaped inclusion of stiffer material, shown
in Fig. 11a, is considered. This geometry is created by using
two unique IGApatches and the control points for the patches
are given in “Appendix A.1”. The material in the inclusion
has an elastic modulus of 5E and a density of 10ρ, E and
ρ being the epoxy material properties given in Sect. 6. As
this microstructural geometry has point symmetry, its IBZ is
identical to that shown in Fig. 7a, and the IBZ boundary
is discretized in the same way. To construct the isofre-
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Fig. 11 Unit cell geometry, band structure and acoustic mode isofrequency contours for first example problem. a Unit cell geometry, b Band
structure, c Transverse mode isofrequency contours, d Longitudinal mode isofrequency contours

quency contours, the first Brillouin zone covering the range
μαlα ∈ [−π, π ] is discretized into a 50 by 50 point mesh.
The band structure for this case is shown in Fig. 11b for
the two acoustic modes and lowest four optical modes. This
band structure reveals a large bandgap between the first and
second optical modes and another, smaller bandgap between
the third and fourth optical modes. Bandgaps in the higher
frequency optical modes are characteristic of Bragg scat-
tering and are due to the mechanical impedance mismatch
of the microstructural inclusion. Isofrequency contours of
the acoustic modes are given in Fig. 11c and d with the
IBZ overlaid. The first mode represents transverse waves
while the second represents longitudinal waves. At lower
frequencies, the longitudinal mode behaves isotropically and
has no preferred direction of propagation, as evidenced by
the circular shape of the contours (Fig. 11d). As frequency
increases, however, this mode becomes anisotropic, resulting
in preferential directions of propagation identified as perpen-
dicular to the flat parts of the contours. In the same way,
the transverse mode shows anisotropy, but at all frequencies
(Fig. 11c).

7.2 Local resonance

In this example, an elastic metamaterial with unit cell con-
sisting of four curved voids arranged in a windowed frame
pattern and shown in Fig. 12a is considered. By arranging
the voids in this way, beam-like structures are introduced in
the topology of the microstructure that have their own res-
onant frequencies, and can cause the localization of energy.
This geometry is created by using two unique IGA patches
and the control points for the patches are given in Appendix
A.2. Again, the symmetry results in the IBZ shown in
Fig. 7a, and the IBZ boundary is discretized in the same
way. For isofrequency contours, the first Brillouin zone is
discretized by a 50 by 50 point mesh. The band structure for
this example is shown in Fig. 12b. The isofrequency con-
tours for the transverse and longitudinal modes (Fig. 12c,
d, respectively) show anisotropy at all frequencies. It can
be observed from Fig. 12b that around a normalized fre-
quency of 1.3, the dispersion curves flatten out. As the
tangent to a dispersion curve at a particular frequency gives
the group velocity, a zero slope means that waves are not
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Fig. 12 Unit cell geometry, band structure and acoustic mode isofrequency contours for second example problem. a Unit cell geometry, b Band
structure, c Transverse mode isofrequency contours, d Longitudinal mode isofrequency contours

propagating and energy is localized. This flattening of dis-
persion curves is characteristic of local resonance [2] and the
fact that this resonance occurs at a relatively low frequency
(compare to the bandgaps in Fig. 11b) shows how local reso-
nance effects can be harnessed to manipulate low frequency
modes.

In order to demonstrate that energy is localized through
the resonant behavior of the beam-like microstructural fea-
tures, the mode shapes for the longitudinal mode and first
optical mode near point A of the IBZ are shown in Fig. 13.
The mode shape is plotted in grey while the undeformed unit
cell is plotted in black. The mode shape in Fig. 13a reveals
an axial deformation pattern in which the entire unit cell
is deforming, indicating the existence of a propagating lon-
gitudinal wave. For the mode shape in Fig. 13b, only the
beam-like structures are deforming in a rotational pattern
while the rest of the unit cell is undeformed, indicating that
no wave is passing through the unit cell. Thus, resonance
of the beam-like structures has caused the localization of
energy and prevented the propagation of waves at this fre-
quency.

7.3 Wave directionality

In the final example, the effect that altering microstructural
symmetry has on the directionality of wave propagation is
investigated. The unit cell structure is shown in Fig. 14a, and
is characterized by an asymmetric shaped void. The control
points for the geometry are given in “Appendix A.3”. The
change in symmetry alters the IBZ, as the range of unique
wave vectors is increased. This can be seen by looking at
the acoustic mode isofrequency contours shown in Fig. 14c
and d, where the FBZ was again discretized by a 50 by 50
point mesh. From the apparent symmetry of the isofrequency
contours, it is clear that the IBZ for this example requires aug-
menting the IBZ used in previous examples by moving point
A from (π, 0) to (π,−π). For obtaining the band structure,
this new IBZ is discretized into 20 points for branch O–A,
30 points for branch A–B and 20 points for branch B–O. The
band structure in Fig. 14b does not show any noteworthy
behavior as there are no bandgaps or flat regions.

The isofrequency contours reveal anisotropy at all fre-
quencies. However, in both of the previous examples, the
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(a) (b)

Fig. 13 Mode shapes of longitudinal and first optical mode at point A of IBZ for second example problem. a Longitudinal mode near IBZ point
A, b First optical mode near IBZ point A

O

A

B

O

A

B

(b)(a)

(d)(c)

Fig. 14 Unit cell geometry, band structure and acoustic mode isofrequency contours for third example problem. a Unit cell geometry, b Band
structure, c Transverse mode isofrequency contours, d Longitudinal mode isofrequency contours

transverse mode shows preference toward propagating in the
direction alongO–Bwhile the longitudinalmode shows pref-

erence toward the direction along O–A, at least at higher
frequencies. In this example, the preferred direction of prop-
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agation for the transverse mode is still along O–B as seen in
Fig. 14c. The longitudinal mode, however, clearly changes
its preferential direction from along O–A to along O–B, even
at the lowest frequencies as seen in Fig. 14d. This example
shows how tailoring the features and thus symmetry of the
unit cell can allow for greater control over the directions in
which waves and thus energy propagate at different frequen-
cies.

8 Conclusions

The following are important conclusions which can be drawn
from this study:

(a) It is shown that isogeometric analysis can be used to
calculate the dispersive properties of phononic crystals
and elastic metamaterials with complex microstructural
geometries. This provides a novel andmore effective tool
for the analysis and thus the design of these materials
when considering complex unit cell geometries.

(b) As the control points in IGA are non-interpolatory, a
constraint enforcement technique based on the use of
interpolatory nodes and the Lagrange multiplier method
is presented to correctly enforce the periodicity con-
straints in IGA arising from the Bloch theorem.

(c) The superiority of IGA over FEA which was demon-
strated in Refs [28,32,33] for structural vibrations and
wavepropagationproblems is demonstratednumerically
for the construction and solution of dispersion relations
of periodic solids through the use of a mesh refinement
study. The ability to exactly represent complex unit cell
geometries and to easily increase the basis order means
that significantly coarser meshes can be used with IGA
to obtain solutions with accuracy comparable to much
finer FEA meshes. Thus, the construction of band dia-
grams requires significantly fewer degrees of freedom
when isogeometric analysis is used.

(d) The efficacy of the proposed isogeometric framework is
demonstrated by calculating the band structure of unit
cells with intricate curved geometries which result in
desirable dispersive phenomena including Bragg scat-
tering, local resonance and frequency-dependent direc-
tionality.

(e) The ability of isogeometric analysis to capture complex
geometries using few control points can prove advan-

tageous in a variety of ways. One of these is the use
of shape or topology optimization to design unit cells
of phononic crystals and acoustic/elastic metamaterials.
Not only is there a significant reduction in the number
of design variables needed for optimization, but com-
plex geometries can bemodeled exactly, opening up new
areas of design space. The authors are currently investi-
gating this area.
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Appendix A: Control data for NURBS shapes

A.1 Geometry from Sect. 7.1

The domain in this example is divided into 12 patches as
shown in Fig. 15. Only two patches, patch-1 and patch-2, are
unique due to symmetry. The control point polygons for the
two patches are shown in Fig. 16. Control point data and the
corresponding weights for the two patches are provided in
Tables 4 and 5, respectively.

Patch 1

Patch 2

Fig. 15 Patch discretization of the domain shown in Sect. 7.1
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(a) (b)

Fig. 16 Control point polygon of two patches in Fig. 15. a Patch 1, b Patch 2

Table 4 Control points and
weights for Patch 1 in Fig. 16a

i j Bi, j (x, y) wi, j

1 1 (−3, 0) 1

2 1 (−6, 1) 1

3 1 (−8, 2) 1

4 1 (−4, 3) 1

5 1 (−6, 5.6667) 1

6 1 (−5.8333, 5.8333) 1

1 2 (−10, 0) 1

2 2 (−10, 1.1111) 1

3 2 (−10. 3.3333) 1

4 2 (−10. 6.6667) 1

5 2 (−10, 8.8889) 1

6 2 (−10, 10) 1

Knot vector: ξv = {0, 0, 0, 0, 1, 2, 3, 3, 3, 3} ; ηv = {0, 0, 1, 1}

Table 5 Control points and
weights for Patch 2 in Fig. 16(b)

i j Bi, j (x, y) wi, j i j Bi, j (x, y) wi, j

1 1 (−3, 0) 1 1 4 (−1, 0) 1

2 1 (−6, 1) 1 2 4 (−2.0062, 1.0062) 1

3 1 (−8, 2) 1 3 4 (−2.6852, 2.6852) 1

4 1 (−4, 3) 1 4 4 (−1.3704, 5.0370) 1

5 1 (−6, 5.6667) 1 5 4 (−2.0494, 7.2716) 1

6 1 (−5.8333, 5.8333) 1 6 4 (−2, 8) 1

1 2 (−2.6667, 0) 1 1 5 (−0.3333, 0) 1

2 2 (−5.3868, 0.9794) 1 2 5 (−0.7058, 0.7058) 1

3 2 (−7.2716, 2.0494) 1 3 5 (−1.0062, 2.0062) 1

4 2 (−3.8765, 3.2099) 1 4 5 (−0.6790, 3.9012) 1

5 2 (−5.7613, 5.7613) 1 5 5 (−0.9794, 5.3868) 1

6 2 (−5.6667, 6) 1 6 5 (−1, 6) 1

1 3 (−2, 0) 1 1 6 (0, 0) 1

2 3 (−3.9012, 0.6790) 1 2 6 (0, 0.3333) 1

3 3 (−5.0370, 1.3704) 1 3 6 (0, 1) 1

4 3 (−2.0741, 2.0741) 1 4 6 (0, 2) 1

5 3 (−3.2099, 3.8765) 1 5 6 (0, 2.6667) 1

6 3 (−3, 4) 1 6 6 (0, 3) 1

Knot vector: ξv = {0, 0, 0, 0, 1, 2, 3, 3, 3, 3} ; ηv = {0, 0, 0, 0, 1, 2, 3, 3, 3, 3}
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9 A.2 Geometry from Sect. 7.2

The domain in this example is divided into 16 patches as
shown in Fig. 17. Only two patches, Patch 1 and Patch 2, are

Patch 1

Patch 2

Fig. 17 Patch discretization of the domain shown in Sect. 7.2

unique due to symmetry. The control point polygons for the
two patches are shown in Fig. 18. Control point data and the
corresponding weights for the two patches are provided in
Tables 6 and 7, respectively.

Table 7 Control points and weights for Patch 2 in Fig. 18b

i j Bi, j (x, y) wi, j

1 1 (−14, 1) 1

2 1 (−1, 1) 1

1 2 (−20, 0) 1

2 2 (0, 0) 1

Knot vector: ξv = {0, 0, 1, 1} ; ηv = {0, 0, 1, 1}

(a) (b)

Fig. 18 Control point polygon of two patches in Fig. 17. a Patch 1, b Patch 2

Table 6 Control points and
weights for Patch 1 in Fig. 18a

i j Bi, j (x, y) wi, j i j Bi, j (x, y) wi, j

1 1 (−14, 1) 1 1 2 (−20, 0) 1

2 1 (−13.9997, 1.5697) 1 2 2 (−20, 0.9524) 1

3 1 (−13.9597, 2.7108) 1 3 2 (−20, 2.8571) 1

4 1 (−13.7006, 4.4030) 1 4 2 (−20, 5.7143) 1

5 1 (−13.1194, 6.0322) 1 5 2 (−20, 8.5714) 1

6 1 (−11.8270, 7.2762) 1 6 2 (−20, 11.4286) 1

7 1 (−10.0519, 7.4196) 1 7 2 (−20, 14.2857) 1

8 1 (−8.3981, 7.0554) 1 8 2 (−20, 17.1429) 1

9 1 (−7.2978, 6.5856) 1 9 2 (−20, 19.0476) 1

10 1 (−6.75, 6.75) 1 10 2 (−20, 20) 1

Knot vector: ξv = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7, 7}; ηv = {0, 0, 1, 1}
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Patch 1

Patch 2

Fig. 19 Patch discretization of the domain shown in Sect. 7.3

A.3 Geometry from Sect. 7.3

The domain with asymmetric hole in Example 7.3 is divided
into 4 patches as shown in Fig. 19. Only two patches, Patch
1 and Patch 2, are unique due to symmetry. The control point
polygons for the two patches are shown in Fig. 20. Control
point data and the corresponding weights for the two patches
are provided in Tables 8 and 9, respectively.

(a) (b)

Fig. 20 Control point polygon of two patches in Fig. 19.a Patch 1, b Patch 2

Table 8 Control points and
weights for Patch 1 in Fig. 20a

i j Bi, j (x, y) wi, j i j Bi, j (x, y) wi, j

1 1 (27.3516, −27.3516) 1 1 2 (20, −20) 1

2 1 (27.4983, −27.8854) 1 2 2 (20, −20.3066) 1

3 1 (27.7643, −29.0786) 1 3 2 (20, −20.9847) 1

4 1 (25, −30) 1 4 2 (20, −23.0874) 1

5 1 (25, −33) 1 5 2 (20, −25.7061) 1

6 1 (24, −35) 1 6 2 (20, −29.4508) 1

7 1 (22, −36) 1 7 2 (20, −34.0148) 1

8 1 (21, −38) 1 8 2 (20, −37.7561) 1

9 1 (21.5, −38.5) 1 9 2 (20, −40) 1

Knot vector: ξv = {0, 0, 0, 0, 0.0460, 0.1017, 0.3154, 0.4388, 0.6634, 1, 1, 1, 1} ; ηv = {0, 0, 1,}
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Table 9 Control points and
weights for Patch 2 in Fig. 20b

i j Bi, j (x, y) wi, j i j Bi, j (x, y) wi, j

1 1 (27.3516, −27.3516) 1 1 2 (20, −20) 1

2 1 (27.2658, −27.0395) 1 2 2 (20.1701, −20) 1

3 1 (26.3707, −24.1108) 1 3 2 (21.7764, −20) 1

4 1 (29.3471, −25) 1 4 2 (24.1121, −20) 1

5 1 (33, −25) 1 5 2 (28.4431, −20) 1

6 1 (29, −21) 1 6 2 (32.1033, −20) 1

7 1 (35, −23) 1 7 2 (36.4343, −20) 1

8 1 (37.6667, −20.6667) 1 8 2 (38.5998, −20) 1

9 1 (38.5, −21.5) 1 9 2 (40, −20) 1

Knot vector: ξv = {0, 0, 0, 0, 0.0255, 0.2409, 0.3503, 0.6752, 0.7900, 1, 1, 1, 1}; ηv = {0, 0, 1, 1}
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