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Abstract This work deals with novel triangular and tetrahe-
dral elements for nonlinear elasticity. While it is well-known
that linear and quadratic elements perform, respectively,
poorly and accurately in this context, their cost is very dif-
ferent. We construct an approximation that falls in-between
these two cases, which we refer to as quasi-quadratic. We
seek to satisfy the following: (1) absence of locking and
pressure oscillations in the incompressible limit, (2) an exact
equivalence to quadratic elements on linear problems, and
(3) a computational cost comparable to linear elements on
nonlinear problems. Our construction is formally based on
the Hellinger-Reissner principle, where strains and displace-
ment are interpolated linearly on nested meshes, but it can be
recast in a pure displacement form via static condensation.
We show that (1) and (2) are fulfilled via numerical studies
on a series of benchmarks and analyze the cost of quadrature
in order to show (3).

Keywords Finite elements · Large deformation · Nonlinear
elasticity

1 Introduction

Elasticity problems involving incompressible or nonlinear
materials are both notoriously difficult, for which several
specialized techniques have been developed [33]. For the for-
mer, the displacement-pressure (u, p) formulation is studied
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in the incompressible limit, as the Poisson ratio ν → 1/2.
The main challenge is to provide an approximation that
does not exhibit locking, i.e. which converges uniformly
with respect to ν. For the latter, the difficulty is to ensure a
good approximation already on coarse meshes, which often
yield an overly stiff solution. This is particularly undesir-
able in engineering, unless expensive higher-order triangular
or tetrahedral elements are employed. Another option is to
use stabilized quadrilateral or hexahedral linear elements
[5,6,14,19,24,26,28,29], which provide a good accuracy,
but entail the burden of a cumbersome mesh generation
for complicated geometries. Therefore, we here restrict our-
selves to triangular and tetrahedral elements.

In this context, there is a large amount of research. In
particular, linear incompressible problems have long been a
subject of study. In this context, Taylor-Hood elements Pk–
P

k−1 with k > 0 for the pair (u, p) have been known for a
very long time to be stable in the incompressible limit [3,8]
and also offer a good accuracy in the context of nonlinear
elasticity [20]. However, there are few reasons why using
such a higher-order element is not completely satisfactory,
such as the expensive numerical integration.Moreover, while
these elements neither lock nor induce pressure instabilities,
they do not precisely enforce incompressibility even in a
weak sense [3,23]. Furthermore,when abandoning low-order
elements, it becomes difficult to interpret the discretization
as a local conservation law, as can be done with finite vol-
ume and piecewise-linear elements, which makes it difficult
to understand how to improve their drawbacks.

The above limitations have led to an increasing interest
in low-order elements for incompressible problems [1,12],
which rely on stabilizations to avoid locking and pressure
instability [9,18,22]. While stabilizing allows for construct-
ing low-order elements for incompressible elasticity, it does
not improve the accuracy of triangular or tetrahedral linear
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elements in the case of large deformations. Interestingly, a
simple element offering a good accuracy on coarse meshes
at a low cost is still missing. In the engineering practice,
this forces to rely on relatively expensive quadratic ele-
ments (Taylor-Hood with k = 2), particularly in the field of
simulating biological tissues [20]. Here, we address the fol-
lowing question: can we design an approximation that falls
in betweenP1 andP2 elements, such that the following desir-
able properties are satisfied:

(i) No locking nor pressure oscillations in the incompress-
ible limit.

(ii) The accuracy must match exactly that of quadratic ele-
ments on linear problems.

(iii) The cost of assembling must be similar to that of linear
elements for nonlinear problems.

In the context of linear problems in 2D, a similar question
was addressed in [13], where the optimal triangle for a given
set DOFs was investigated. The idea behind our approach is
connected to gradient recovery methods [32], but rather than
postprocessing the solution, we embed a similar technique
directly into the construction of our elements and extend
these ideas to nonlinear problems. Motivated by an analogy
to quasi-Newtonmethods, which fall in between the first- and
second-order gradient and Newton methods, we will refer to
the sought class of elements as quasi-quadratic and denote
them with the symbol P3/2.

Elements that satisfy (i) and (iii) are well-known [1,3,8]
and are based on approximating the displacement u with
P
1 basis functions. However, it is also well-known that lin-

ear elements provide a very poor approximation of stresses
in elasticity, resulting in an overly stiff solution on coarse
meshes. We argue that the reason for this behavior is that
the resulting strain approximation is piecewise constant P0,
causing high stress discontinuities. Instead, we are looking
for achieving a piecewise linear discontinuous P

1dc strain
approximation, which is the strain space arising automati-
cally from the choice of P2 elements for the displacement u
in linear elasticity.

Requirement (iii) in the case of nonlinear elasticity imme-
diately implies that higher-order approximations are not
possible. For presenting our construction, we focus on the
Saint Venant-Kirchhoff model, whose energy is quadratic.
However, in Sect. 6 we discuss how this can be easily gener-
alized to nonlinear constitutive laws. Our construction starts
from the observing the quadratic energy case W = ‖E‖2G ,
where E is the nonlinear strain tensor and G denotes the met-
ric of the inner product. As we will discuss in Sect. 5, this
implies that the choice of P2 elements would produce a dis-
cretized energy Wh of degree four, i.e. Wh |u∈P2 ∈ P

4 which
is expensive to be integrated. This is particularly evident
when compared to the piecewise constant energy of linear

elements, yielding W |u∈P1 ∈ P
0. In order to improve this,

without paying the price in terms of an expensive quadrature,
we construct our P3/2 elements such that W |u∈P3/2 ∈ P

2.
In Sect. 5, we discuss that that integrating W |u∈Vh ∈ P

2

has a cost comparable to integrating W |u∈P1 ∈ P
0 on the

refined mesh, making our element more competitive than h-
adaptivity. It also follows that we are seeking a space P

3/2

for which u ∈ P
3/2 implies that E ∈ P

1dc. This will be the
object of study of Sects. 2 and 3.

To address the requirement (i), the incompressible limit
must be studied. As discussed above, choosing Taylor-Hood
elements would immediately violate (ii). In a similar way,
choosing linear elements for the displacement, with a stabi-
lization for the pressure field, would satisfy (i) and (iii) but
violate (ii), unless some further modification is introduced.
Since the ellipticity of the smoothproblem is a desirable prop-
erty to rely on when constructing modifications of standard
elements, we focus on conforming approximations. In this
class, the P1isoP2–P1 pair, which is stable for incompress-
ible problems [3,16], is particularly attractive since it satisfies
(i) and (iii), while offering more degrees-of-freedom (DOFs)
than standard linear elements. In fact, it offers the sameDOFs
as quadratic ones, a fact that we will exploit in order to
reconstruct E ∈ P

1dc on the coarse mesh from a linear dis-
placement on the finer one. In the context of two-dimensional
problems, a similar element that satisfies (iii) and a weaker
condition (ii) was proposed in [27]. This work extends it
to three-dimensional problems and improves its choice of
approximation such that our condition (ii) is fulfilled.

The paper is organized as follows:

– In Sect. 2, we present our gradient reconstruction tech-
nique for recovering linear and nonlinear 2D and 3D
strains.

– In Sect. 3, we apply our quasi-quadratic elements to
the mixed Hellinger-Reissner principle of Saint Venant-
Kirchhoff elasticity.

– In Sect. 4, the incompressible formulation is presented.
– In Sect. 5, we study the computational cost of quadrature

for the proposed element, showing that requirement (iii)
is fulfilled.

– In Sect. 6, we discuss two possibilities for generalizing
our construction to nonlinear constitutive laws.

– In Sect. 7, we present numerical benchmarks that assess
the performance of P

3/2 elements against linear and
quadratic ones, therefore proving experimentally that
points (i) and (ii) are satisfied.

2 Quasi-quadratic elements

The central idea of this work is the local reconstruction on
each elementT of the gradient of aP2 function usingP1 basis
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functions on a refined mesh. We will interpret such a recon-
struction as a hierarchical strain averaging, where piecewise
constant strains on a coarse and a fine mesh are combined in
order to reproduce the strain of quadratic elements exactly on
linear problems. In the nonlinear case, we will perform the
same hierarchical averaging of strains, with the difference
that the strain of P2 elements will not be recovered exactly,
but only approximately.

We recall that, given a d-dimensional displacement vector
u : Ω ⊂ R

d → R
d , the linear strain is defined as

ε(u) := ∇u + ∇uT

2
. (1)

Therefore, for the remainder of this section, we will focus on
reconstructing the gradient ∇u rather than ε(u), in order to
simplify the notation. We denote Vh as

Vh := {v ∈ [C0(Ω)]d : v|T ∈ Λ(T )},

where the Finite Element (FE) space

Λ ∈ {P1,P2,P1isoP2},

and d = 2, 3 is the spatial dimension. For uh ∈ Vh , in order
to make the choice of the space explicit in a compact form,
we will write

f (uh)|Λ = f (uh), (2)

where f can be any function.

2.1 Linear 2-dimensional strain

We start with the 2-dimensional case, considering a triangle
with displacements denoted with vi ∈ R

2, i = 1, 2, 3, at the
vertices, and with ei ∈ R

2, i = 1, 2, 3, at the edgemidpoints,
where ei is opposite to the vertex vi , and barycentric coordi-
nates λi (x), i = 1, 2, 3. Then, P1 and P

2 FE functions can
be, respectively, written as

uh |P1 =
3∑

i=1

viλi , (3)

uh |P2 =
3∑

i=1

(
viλi (2λi − 1) + 4eiλ jλk

)
, (4)

where (i, j, k) is a circular permutation of (1, 2, 3). It follows
that

∇uh |P1 =
3∑

i=1

vi∇λi , (5)

∇uh |P2 =
3∑

i=1

(
vi (4λi − 1) + 4e jλk + 4ekλ j

)∇λi , (6)

where again (i, j, k) is again a circular permutation of
(1, 2, 3) and ∇λi is a row vector. In particular, we note that

∇uh |P2 = −∇u|P1 + 4
3∑

i=1

(
viλi + e jλk + ekλ j

) ∇λi . (7)

At this point,∇uh can be used directly to compute the elastic
energy. However, since the gradient of quadratic elements is
linear, we assume within each triangle an independent linear
approximation of the gradient, denoted with F(x)

F |Λ = f0 +
3∑

i=1

fiλi , (8)

where fi ∈ R
2×2. In order to find the coefficients of F , we

look for the best linear approximation of ∇uh . This can be
performed in the L2 sense via the projection

∫

T
F λi dω =

∫

T
∇uh λi dω, i = 1 . . . 3. (9)

The most trivial example is uh ∈ P
1: in this case, the gradi-

ent is piecewise constant, so the projection is exact and one
solution can be obtained by setting all linear terms to zero as

F |P1 = ∇uh |P1,
f0|P1 = ∇uh |P1,
fi |P1 = 0.

Since the gradient of P2 elements is P1dc, the projection is
again exact and one solution is

F |P2 = ∇uh |P2 ,
f0|P2 = −∇uh |P1 ,
fi |P2 = 4

(
vi∇λi + e j∇λk + ek∇λ j

)
,

where (i, j, k) is a circular permutation of (1, 2, 3). We
now consider P1isoP2 elements, which are a well-known
macroelement that combines linear elements on a uniformly
refined triangle (in 2D) with the DOFs of P2 elements [3,16].
We will refer to {v1, v2, v3} as the coarse triangle and to its
4 sub-triangles as the fine triangles. In this case, the gradient
of uh ∈ P

1isoP2 is piecewise constant, i.e. it is given by four
coefficients (∇uh |P1isoP2)i=1..4, where (∇uh |P1isoP2)4 refers
to the triangle {e1, e2, e3}

(∇uh |P1isoP2)i = 2
(
vi∇λi + e j∇λk + ek∇λ j

)
,
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(∇uh |P1isoP2)4 = 2
3∑

i=1

ei∇λi .

Here, we have used that the gradients of barycentric coordi-
nates within each fine triangle are scaled versions of those on
the coarse one. The coefficients of F can be found by solving
(9), yielding

F =
4∑

j=1

wi j (∇uh |P1isoP2) j . (10)

The weights wi j can be obtained by computing the integrals
on the right-hand-side of (9)

f0|P1isoP2 = 0, (11)

fi |P1isoP2 =
(
5(∇uh)i − (∇uh) j − (∇uh)k + (∇uh)4

)

4
.

(12)

The resulting discretization was proposed in [27]. We will
denote this elementwithP3/2−L2

. However,while this choice
offers a significant benefit over linear elements, as shown in
Sect. 7, it performs poorly in the 3-dimensional case and it
is clearly unable to reproduce the gradient of quadratic ele-
ments exactly. In order to construct a non-quadratic element,
which is able to reproduce the gradient of quadratic elements
exactly, we bypass projection (9) and instead note that

fi |P2 = 2(∇uh |P1isoP2)i .

Therefore, our element is simply characterized by

f0|P3/2 = −∇uh |P1 , (13)

fi |P3/2 = 2(∇uh |P1isoP2)i=1···3. (14)

It is easy to verify that

F(x)|P3/2 = F(x)|P2 ,

which is the sought property (ii).Wewill refer to this element
as P3/2.

2.2 Linear 3-dimensional strain

The same reasoning can be used in the 3-dimensional setting.
In this case, the degrees of freedom are

{vi }i=1···4 and {ei }i=1···6,

leading to the linear and quadratic interpolations, respec-
tively,

uh |P1 =
4∑

i=1

viλi , (15)

uh |P2 =
4∑

i=1

viλi (2λi − 1) + 4
6∑

i=1

eiλ jλk . (16)

Here, (vk, v j ) is the edge containing the midpoint ei . We
obtain the gradients

∇uh |P1(x) =
4∑

i=1

vi∇λi , (17)

∇uh |P2(x) =
4∑

i=1

vi (4λi − 1)∇λi 4
6∑

i=1

ei
(
λ j∇λk + λk∇λ j

)
.

(18)

As in 2D, we are looking for an interpolation

F |Λ = f0 +
4∑

i=1

fiλi , (19)

which again can be found by solving the L2 projection prob-
lem

∫

T
F λi dω =

∫

T
∇uh λi dω, i = 1 . . . 4.

Once again, the solution is trivial if we use linear or quadratic
elements for the displacement u. If P1isoP2 elements are
used, then again each element needs to subdivided by a step
of h-refinement. In 3D, this implies that each tetrahedron is
refined in 8 sub-tetrahedra, giving the algebraic system

Fi =
8∑

j=1

wi j (∇uh) j . (20)

Aswewill see in the numerical experiments, this choice in 3D
does not deliver a behavior that is as good as in 2D.Therefore,
in this setting, it is even more important to reconstruct the
gradient of quadratic polynomials exactly. To achieve this,
we re-write the second term in (18) as a sum over vertices
rather than edges

4
6∑

i=1

ei
(
λ j∇λk + λk∇λ j

)

= 4
4∑

i=1

λi
(
em∇λk + en∇λ j + ep∇λl

)
,
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where (k, j, l) are the indices of the other three basis func-
tions and (m, n, p) are those of the three midpoints adjacent
to the vertex vi . Similarly to the 2-dimensional case, the right-
hand-side is therefore a linear combination of the piecewise
constant gradients computed usingP1isoP2 elements. There-
fore, we set

f0|P3/2 = −∇uh |P1(x), (21)

fi |P3/2 = 2(∇uh |P1isoP2)i=1···4. (22)

It is easy to verify that with the above choice, it holds

F(x)|P3/2 = F(x)|P2 .

2.3 Nonlinear strain

In the case of nonlinear elasticity, the same construction can
be repeated on any nonlinear quantity. However, in this case
the reconstruction will not be exact in general. To illustrate
it, we consider the nonlinear Green-Lagrange strain E

E(u) := (∇u)T ∇u + ∇u + ∇uT

2
.

Here, we do not approximate the gradients, but rather we are
looking for a piecewise linear approximation

F |Λ = f0 +
d+1∑

i=1

fiλi , (23)

such that

∫

T
F λi dω =

∫

T
E(uh)|Λ λi , i = 1 . . . d + 1.

The integrals on the right-hand-side can be computed once a
displacement space is chosen. If P1isoP2 elements are used,
we will refer to this choice as P3/2−L2

. However, one can be
agnostic with respect to this choice and simply evaluate the
nonlinear quantity in exactly the same way as for the linear
case. This yields

f0|P3/2 = −E(uh)|P1, (24)

fi |P3/2 = 2(E(uh)|P1isoP2)i=1···d+1. (25)

We will refer to the resulting element as P3/2. Therefore, in
the nonlinear case, the same construction of the linear case
is followed: f0 is computed using the coarse triangle and
the fi ’s are computed by evaluating the piecewise-constant
E(uh) on the corner element i (triangle or tetrahedron) cor-
responding to the vertex vi , where uh is assumed to be linear.

3 Compressible elasticity

We consider elasticity problems defined on a reference con-
figurationΩ ⊂ R

d , proper open subset of the d-dimensional
Euclidean space. Its boundary ∂Ω is separated into two dis-
joint subsets ΓD and ΓN , on which we impose Dirichlet
and traction boundary conditions respectively. We moreover
assume that ∂Ω = Γ D ∪ Γ N and the measure |ΓD| is stri-
clty positive. Assuming conservative loading, the elasticity
problem reads

inf
u∈V

1

2

∫

Ω

‖E(u)‖2G dω −
∫

Ω

f · u dω −
∫

ΓN

g · u dγ,

(26)

where u is the displacement vector, f is the volumetric load,
g is the surface traction applied on the Neumann boundary
ΓN , and V denotes the set of admissible displacements. The
Saint Venant-Kirchhoff strain-energy density function ‖E‖2G
is the induced norm from the following tensor product (·, ·)G

defined as

(A, B)G := 2μ A : B + λ tr(A) tr(B),

where μ and λ are two parameters, which in elasticity are
the shear modulus and the first Lamé parameter. The second
Piola-Kirchhoff stress tensor is given as

S := 2μE + λ tr(E)Id.

Since the constitutive law is invertible for λ < ∞, it holds
that

‖S‖2G−1 = S : E = ‖E‖2G ,

where ‖ · ‖2
G−1 encodes the inverse stress–strain relationship,

induced by the scalar product

(A, B)G−1 = 1

2μ
A : B − λ

2μ(dλ + 2μ)
tr(A) tr(B).

It is then possible to write the compressible Hellinger-
Reissner principle [30] as

inf
S∈Σ

sup
u∈V

∫

Ω

[
1

2
‖S‖2G−1 − E(u) : S + f · u

]
dω

+
∫

ΓN

g · u dγ. (27)

The two spacesV andΣ are twoSobolev spaces that are regu-
lar enough in order tomake the integrals in (27) well-defined.
A detailed discussion of regularity in non-linear elasticity is
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reported in [4,21]. In a variational framework, the associ-
ated balance equations are found imposing the variation of
the Lagrangian with respect to a virtual displacement v and
a virtual stress τ . Explicitly, the associated Euler–Lagrange
problem reads:

Find u ∈ V and S ∈ Σ , such that

R1(τ ; S, u) = 0 ∀τ ∈ Σ, (28a)

R2(v; S, u) = 0 ∀v ∈ V, (28b)

where

R1(τ ; S, u) :=
∫

Ω

(S, τ )G−1 −
∫

Ω

E(u) : τ, (29a)

R2(v; S, u) :=
∫

Ω

S : d E(u, v) −
∫

Ω

f · v −
∫

ΓN

g · v,

(29b)

and d E(u, v) denotes the differential of E(u) in direction v

d E(u, v) := (∇u)T ∇v + (∇v)T ∇u + ∇v + ∇vT

2
.

Equation (28a) imposes a relation between the displacement
and the stress, employing the inverse relation between stress
and strain. Equation (28b) is the balance law of momentum.
In the numerical implementation of a solution strategy for
the non-linear problem (28), a crucial role is played by the
Fréchet derivative of (28). The associated tangent problem is
to find the the stress and displacement increments by δS and
δu such that:

δR1(δu, δS, τ ; S, u) = −R1(τ ; S, u) ∀τ ∈ Σ, (30a)

δR2(δu, δS, v; S, u) = −R2(v; S, u) ∀v ∈ V (30b)

where

δR1 :=
∫

Ω

(δS, τ )G−1 −
∫

Ω

d E(u, δu) : τ,

δR2 :=
∫

Ω

δS : d E(u, v) + S : d E(δu, v).

In case of small displacements, E(u) and S can be replaced
with ε and the corresponding Cauchy stress δSh . This yields
the linear elasticity equations and it is equivalent to solving
(30) for δu and δS with u = 0 and S = 0. We will assume
this in the remainder of this section to ease the notation.
In this case, the natural spaces are V = H1

ΓD
(Ω,Rd) and

Σ = L2(Ω,Rd×d) [30], where

H1
ΓD

(Ω,Rd) = {v ∈ H1(Ω,Rd) such that v|ΓD = 0}.

These two spaces are inf-sup stable according to the stan-
dard theory of saddle-point problems [7,10]. Finite element

approximations of (30) can be obtained introducing twofinite
dimensional subspaces Vh ⊂ V and Σh ⊂ Σ , where h
denotes a discretization parameter, in this case themesh-size.
For the two spaces, the following property should hold

(Σh, Vh) −−−→
h→0

(Σ, V ),

The corresponding finite element problem reads: Find
(δuh, δSh) ∈ Vh × Σh such that (30) holds ∀(vh, τh) ∈
Vh × Σh .

We aim to find appropriate spaces (Σh, Vh) such that the
properties (i)–(iii) introduced in the introduction are satisfied.
Denoting by ψi and φi the elements of the bases of Vh and
Σh , respectively, the FE problem can be recast in an algebraic
form

(
G−1 BT

B 0

)(
δSh

δuh

)
=

(
0
g

)
, (31)

where

(
G−1

)

i j
=

∫

Ω

(
φi , φ j

)
G−1 dω,

(B)ik =
∫

Ω

∇ψi + ∇ψT
i

2
: φk dω,

(g)i =
∫

Ω

f · ψi +
∫

ΓN

g · ψi ,

where i, j = 1 . . . dim(Σh) and k = 1 . . . dim(Vh). The
matrix G−1 is non-singular if the material is compressible,
i.e. κ < ∞. Spaces Vh and Σh have to respect the LBB
(inf-sup) condition in order to avoid spurious modes in the
displacements [10]. Moreover, to avoid locking, the space
Σh has to be rich enough w.r.t. the space of displacements.
Since Σ = L2(Ω,Rd×d), discontinuous elements for the
stress are a natural choice.

If the material is not isochoric, the matrix G−1 is non-
singular and the problem (31) can be recast in terms of pure
displacements as

(
BG BT

)
δuh = −g, (32)

where computing G entails inverting a matrix that is spec-
trally equivalent to a mass matrix. This formulation can be
obtained via the displacement space defined implicitly by
the pair (Σh, Vh). In particular, in order to apply the quasi-
quadratic elements introduced in the previous section, we
choose spaces such that

(δSh, δuh) ∈ (Σh, Vh) ⇐⇒ δuh |P3/2 . (33)
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However, the discretization of the Hellinger-Reissner prin-
ciple lends itself to a larger family of FE, defined by the
following choices:

– The space Vh . Our choice is the space of piecewise lin-
ear elements on the refined mesh. These are known as the
P
1isoP2 elements, which are appropriate for incompress-

ible materials [8]. However, more exotic choices can be
made, e.g. elements that do not satisfy the partition-of-
unity criterion, as proposed in [27].

– The space Σh . A natural choice to satisfy requirement
(ii) is the space of piecewise discontinuous linear ele-
ments. This space automatically arises with the choice
of quadratic elements for Vh and it is the reason for the
naming of quasi-quadratic elements.Discontinuous finite
elements have the further advantage of allowing for an
easy inversion of G−1 since only local element matri-
ces have to be inverted. While we focus on elements that
share the same DOF as quadratic ones and therefore P1dc

elements, we do not exclude that using other DGmethods
for Σh could provide additional benefits.

– The projection operator Π : ∇Vh → Σh , implicitly
defined in B. This is arguably the main contribution of
this work.While a standard choice is to use L2 projection
as in the definition of B, several other options are pos-
sible. For example, using the approach of enforcing the
coupling only at selected “tying” points [11]. We argue
that a good choice is such that

‖E(uexact)‖2G ≤ ‖Π E(uh |Λ)‖2G  ‖E(uh |P1)‖2G . (34)

As discussed in the previous section and shown in the
numerical results, the L2 projection is not an optimal
choice. Our approach is instead based on constructing a
projection such that the linear strain computed with P

2

elements is recovered exactly.

4 Incompressible elasticity

As discussed in the introduction, we would like to show that
quasi-quadratic elements yield a stable discretization in the
incompressible limit. Therefore, we modify the problem of
(26) by introducing the pressure

p = κ tr(E(u)),

where κ =
(
2μ
d + λ

)
is the bulk modulus. In this case, the

associated Lagrangian reads (see [10]):

inf
u∈V

sup
p∈Q

∫

Ω

[W (u, p) − u · g] dω −
∫

ΓN

f · u dγ, (35)

where Q = L2(Ω,R) and

W (u, p) := 1

2

(
‖Eμ(u)‖2G + ‖p‖22

κ

)
+ p tr(E(u)),

where Eμ denotes the deviatoric stress as

Eμ :=
(

E − tr(E)

d
Id

)
, d = 2, 3.

By defining the second Piola-Kirchhoff stress S(u, p) :=
2μ E(u) + p Id, the associated Euler–Lagrange problem
reads:

Find u ∈ V and p ∈ Q, such that

R1(v; p, u) = 0 ∀v ∈ V,

R2(q; p, u) = 0 ∀q ∈ Q,

where

R1(v; p, u) :=
∫

Ω

S(u, p) : d E(u, v) − g · v −
∫

ΓN

f · v,

R2(q; p, u) :=
∫

Ω

q tr(E(u)) + 1
κ

∫

Ω

p q.

At a given point (u, p), the corresponding tangent problem
for the increment (δu, δp) is defined as (see [3]):

Find δu ∈ V and δp ∈ Q, such that

δR1(δu, δp, v; p, u) = −R1(v; p, u) ∀v ∈ V, (36a)

δR2(δu, δp, q; p, u) = −R2(q; p, u) ∀q ∈ Q, (36b)

where

δR1 = a(δu, v; u, p) +
∫

Ω

δp tr(d E(u, v)),

δR2 =
∫

Ω

tr(d E(u, δu)) q − 1
κ

∫

Ω

δp q,

and the bilinear form a is the linearization of the stress tensor
and is defined as

a(δu, v; u, p)

=
∫

Ω

(2μ d E(δu, u) : d E(u, v) + S(u, p) : d E(δu, v)) dω.

Problem (36) is well-defined for incompressible material,
i.e. κ → ∞. The Galerkin formulation of (36) can be
obtained defining the problem in two finite-dimensional sub-
space Vh ⊂ V and Qh ⊂ Q. By considering u = 0 and
p = 0 and introducing two bases {ψi } and {φi } for, respec-
tively, Vh and Qh , system (36) reduces to linear elasticity:

(
K BT

B −Mp

) (
δuh

δph

)
=

(
g
0

)
, (37)
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where

(K )i j =
∫

Ω

2μ d E(0, ψ j ) : d E(0, ψi ),

(B)k j =
∫

Ω

∇ · ψk φi dω,

(
Mp

)
kl = 1

κ

∫

Ω

φk φl dω.

where i, j = 1 . . . dim(Vh) and k, l = 1 . . . dim(Qh).
A detailed computation of the entries of the non-linear

tangent problem is reported in [15]. Fortunately, the the-
ory for this case is already well-understood since it is the
same as for the Stokes problem, incompressible elasticity,
and their stabilized versions for λ < ∞. For example, the
choice P1isoP2–P1 and P2–P1 couples yield a stable formu-
lation [8]. This can be extended to quasi-quadratic elements
with the couple of FE spaces P3/2–P1. Since the number of
degrees of freedom for the displacement is the same as for the
canonical pairs discussed before, we argue that this choice
retains all of their nice properties, such as the satisfaction of
the LBB condition, while providing all of the added benefits
of the P3/2 element for the displacement. This will be shown
numerically in the remainder of this paper.

5 Computational cost

We here discuss the complexity of standard FE and compare
it with that of our element. In particular, we show how the
stiffness matrix of quasi-quadratic elements can be assem-
bled with a complexity similar to linear elements, reducing
the assembling cost by a factor of approximately 3.4 and 7.6
over quadratic elements in, respectively, 2 and 3 dimensions.
Our analysis is based on the quadrature of the term

∫

Ω

d E(uh, ψ j ) : d E(uh, ψi )

+ Eh :
(

∇ψi + ∇(ψ j )
T

2

)
dω.

(38)

This is an entry of the Hessian matrix of the Saint Venant-
Krichhoff energy (26) where, without affecting the cost
analysis, the Lamé parameters have been set to μ = 1 and
λ = 0.

5.1 2-Dimensional case

Let us first consider the cost of numerical quadrature of (38)
with the choice Vh = P

1 under mesh refinement. The cost of
computing the element stiffness matrix on the coarse mesh is
given by the number of basis functions per element (3) times

the dimension (2), all tested against each other (6 · 6), times
a single quadrature point, yielding

C2D
2h (P1) = 6 · 6.

Under mesh refinement, by splitting each triangle into four,
we obtain

C2D
h (P1) = 6 · 6 · 4.

Therefore, the complexity ratio of assembling on a refined
mesh

C2D
h (P1)

C2D
2h (P1)

= 4.

In order to compute exactly integrals with Vh = P
2, we

have to integrate polynomials of order 4. In 2D, quadrature
rules for polynomials of order 4 require the evaluation of
integrals in 6 quadrature points. Hence, we need 6 · 2 basis
functions times 6 ·2 basis functions times 6 quadrature points
per element in order to compute the local stiffness matrix, to
obtain

C2D
2h (P2) = 12 · 12 · 6 = 864.

Therefore, the ratios of increasing the element order are

C2D
2h (P2)

C2D
2h (P1)

= 24,
C2D
2h (P2)

C2D
h (P1)

= 6.

With our element, the cost is the combination of computing
four constant strains per element, which form the coefficients
of the piecewise linear strain, and integrating the resulting
quadratic polynomial (38) using 3 quadrature points. We
obtain

C2D
2h (P3/2) = 4 C2D

2h (P1) + 6 · 6 · 3.

Therefore, we get that the ratios for our element are

C2D
2h (P3/2)

C2D
2h (P1)

= 7,
C2D
2h (P3/2)

C2D
h (P1)

= 1.75.

In particular, we the ratio versus quadratic elements is

C2D
2h (P2)

C2D
2h (P3/2)

≈ 3.43.
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5.2 3-Dimensional case

Let us consider again the cost of integrating (38) with the
choice Vh = P

1 under mesh refinement. The cost of comput-
ing this integral on the coarse mesh is

C3D
2h (P1) = 12 · 12.

Under mesh refinement, we obtain

C3D
h (P1) = 12 · 12 · 8.

Therefore, the complexity of refining the mesh is

C3D
h (P1)

C3D
2h (P1)

= 8.

In order to exactly compute integrals with Vh = P
2, we

have to integrate polynomials of order 4. In 3D, quadrature
rules for polynomials of order 4 require the evaluation of
integrals in 11 quadrature points. Hence, we need 30 basis
functions times 30 basis functions times 11 quadrature points
per element in order to compute the local stiffness matrix, to
obtain

C3D
2h (P2) = 30 · 30 · 11.

Therefore, the ratios of increasing the element order are

C3D
2h (P2)

C3D
2h (P1)

= 68.75,
C3D
2h (P2)

C3D
h (P1)

≈ 8.6.

With our element, the cost is the combination of computing
four constant strains per element, which form the coefficients
of the piecewise linear strain, and integrating the resulting
quadratic polynomial (38) using 4 quadrature points. We
obtain

C3D
2h (P3/2) = 5 C3D

2h (P1) + 12 · 12 · 4.

Therefore, we get that the ratios for our element are

C3D
2h (P3/2)

C3D
2h (P1)

= 9,
C3D
2h (P3/2)

C3D
h (P1)

= 1.125.

In particular, we the ratio versus quadratic elements is

C3D
2h (P2)

C3D
2h (P3/2)

≈ 7.64.

6 Nonlinear constitutive laws

While our construction is motivated by using the Saint
Venant-Kirchhoff model, we here present two approaches
to generalize it to general constitutive laws. We will refer to
them as the strain- or stress-averaged elements, according
to whether the averaging from Sect. 2 is applied, respec-
tively, before or after the computation of the stresses from
the strains.

6.1 Strain-averaged quasi-quadratic elements

We abandon the assumption that the elastic energy W (u) is
the squared norm of the strain and consider the more general
expression

W (u) = w(E(u)),

where w(·) is a given smooth nonlinear function. By follow-
ing the same steps as in the previous sections, we obtain the
nonlinear problem

∫

Ω

∂w

∂ E
(E(u)) : d E(u, v) =

∫

Ω

f · v, ∀v ∈ V .

The discretization of this problem is simply obtained by
inserting the formula (23) for the quasi-quadratic strain

E |P3/2(uh) = −E(uh)|P1 + 2
d+1∑

i=1

(E(uh)|P1isoP2)iλi ,

from which follows that we only need to evaluate both E(u)

and d E(u, v) on each sub-element using linear elements for
u, as in the Saint Venant-Kirchhoff case. It follows that ∂w

∂ E (·)
and d E(u, v) are piecewise linear and discontinuous. There-
fore, the quadrature becomes more difficult when ∂w

∂ E (·) is
strongly nonlinear. This situation is similar to standard FE,
where the order of quadrature does not depend only on the
approximation order, but also on the complexity of the con-
stitutive law.

6.2 Stress-averaged quasi-quadratic elements

In this case, we do not reconstruct the strain at the energy
level. Instead, we define the second Piola-Kirchhoff stress
from the constitutive law

S := ∂w

∂ E
(E(u)).
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We assume S to be piecewise constant on each sub-element
and apply our averaging (23)

S|P3/2 = −S|P1 + 2
d+1∑

i=1

(S|P1isoP2)iλi ,

where

S|P1 = ∂w

∂ E
(E(u)|P1),

(S|P1isoP2)i = ∂w

∂ E
(E(u)|P1isoP2).

If follows that the integrand of

∫

Ω

S|P3/2 (E(u)) : d E(u, v)

is quadratic for any nonlinear law ∂w
∂ E (·). Therefore, the

quadrature can always be performed at the same cost as that
of the Saint Venant-Kirchhoff case analyzed in the previous
sections. In this case, the nonlinearity of ∂w

∂ E (·) will affect
the accuracy of the quasi-quadratic projection step, rather
than the quadrature. In the next section, we will test both
approaches using aNeo-Hookean lawusing a 3-point quadra-
ture over triangles.

7 Numerical experiments

We have used FreeFem++ [17] to implement the proposed
element with UMFPACK as a solver. For each experiment,
we tested the following formulations:

– P
1 elements, or (P1isoP2,P1) in the case of incompress-

ible materials.
– P

2 elements, or (P2,P1) in the case of incompressible
materials.

– P
3/2 elements, obtained with the L2-projection, as in Eq.

(12) (P3/2−L2
).

– P
3/2 elements, combined with P

1isoP2 elements for the
load computation (P3/2−P1

).
– P

3/2 elements, combined with P
2 elements for the load

computation.

Our benchmarks are based on varying boundary conditions,
material parameters, and loading, with the following geome-
tries:

– 2D/3D thick beam, shown in Fig. 9.
– 2D/3D slender beam, shown in Fig. 11.
– Cook’s membrane.

In Sect. 5, we proved that P3/2 elements fulfill the require-
ment (iii) outlined in the introduction. Here, we provide
numerical evidence that requirements (i) and (ii) are also
satisfied. In particular, we analyze the following properties:

– Equivalencewith quadratic elements, as requested by (ii).
– Accuracy in the nonlinear regime.
– Stability of the incompressible formulation, as requested
by (i).

– Robustness of the method with respect to irregular
meshes, boundary conditions, discontinuities in themate-
rial coefficients, and nonlinear constitutive laws.

7.1 Equivalence with quadratic elements

Wehere consider a sequence of linear problemswith increas-
ing complexity and decreasing regularity. We will show that
if the load is computed using quadratic elements, then P

3/2

and P
2 elements are exactly equivalent. Moreover, we will

see that the difference between using quadratic and linear
elements for the load becomes less and less important as the
solution regularity decreases, up to the point where this does
have any effect. However, in the energy norm, it becomes
clear that it is necessary to use quadratic elements for the
load. We remark that this choice has a negligible compu-
tational cost compared to the computation of the stiffness
matrix, leaving requirement (iii) unaffected.

2D thick cantilever beam with Timoshenko boundary condi-
tions

The cantilever beam is a standard benchmark for 2D elastic-
ity. There are several ways to enforce the clamped condition
at the fixed boundary,which are not equivalent since they pro-
duce solution with different regularities [2]. In order to test
the performance of the different elements with the highest
possible regularity of the solution, we here take the bound-
ary load g to be parabolic on the right edge and the essential
boundary conditions along the clamped edge are applied
according to the analytical solution given by Timoshenko
and Goodier [31]:

ux = Py

6Ē I

(
(6L − 3x)x + 2(2 + ν̄)y2 − 3D2

2
(1 + ν̄)

)
,

uy = P

6Ē I

(
3ν̄y2(L − x) + (3L − x)x2

)
,

where Ē = E/(1− ν2), ν̄ = ν/(1− ν), and I is the second-
area moment of the beam section. The values used for the
parameters are E = 210,000 MPa, L = 200 mm, D =
100 mm, and P = −5000 N. As can be seen in Fig. 1,
our element confirms its equivalence to P

2, if the load is
computed using quadratic basis functions (P3/2). If linear
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Fig. 1 Linear 2D cantilever
with Timoshenko BC: log plot
of the L2 displacement error
versus mesh size
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Fig. 2 Linear 2D cantilever
with Timoshenko BC: log plot
of the energy norm versus mesh
size
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elements are used, the L2 is still showing a good behavior,
but the energy norm in Fig. 2 clearly shows that the behavior
is poor. Therefore, we will only use quadratic elements for
the load in the remainder of this section.

2D thick cantilever beam with clamped BC

We now enforce the displacements to be exactly zero at the
clamped boundary and compute the reference solution on a
higher-resolution mesh. In this case, a stress singularity near
the fixed boundary develops for ν > 0. This gets progres-
sively worse as ν increases. As can be seen in Fig. 3, such

a loss of regularity causes a loss of convergence and even
the L2 projection P

3/2−L2
elements become as good as the

fully-quadratic ones. This occurs already at ν = 0.25.

3D thick cantilever beam with clamped BC

With the same setup as per the previous test, we now con-
sider the 3D case with a square cross section of thickness
D = 100 mm. In this case, as can be seen in Fig. 4, there is a
significant benefit in using the exact gradient-reconstruction
weighting P

3/2 elements over the standard L2-projection
P
3/2−L2

. As for the previous tests, P3/2 are exactly equiva-
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Fig. 3 Linear 2D cantilever
with clamped BC: log plot of the
L2 displacement error versus
mesh size
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Fig. 4 Linear 3D cantilever:
log plot of the L2 displacement
error versus mesh size
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lent to P2 while P3/2−P1
are equivalent in the low-regularity

scenario ν > 0.

Cook’s membrane

This test is another standard benchmark for 2D elasticity.
We use the same geometry and setup proposed in [25]. In
particular, we clamp the left boundary, apply a distributed
shear load of P = 6.25 N/mm to the right edge, and set
E = 240565 MPa. The reference solution is computed on a
mesh with 132098 nodes and P2 elements. As shown in Fig.

5, due to the low regularity of the solution, all P3/2 elements
provide the same benefits as the fully-quadratic ones.

7.2 Accuracy in the nonlinear regime

Here,we focus on large displacements.Weuse the same setup
as in the linear case, except that the thickness of the beam is
decreased to D = 20 mm. This causes a large deformation
involving large rotations, as shown in Fig. 9, and therefore
requires a nonlinear strain. This implies that P3/2 and P

2

elements are no longer equivalent. Wewill show that, despite
this, the good accuracy behavior is retained in the nonlinear
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Fig. 5 Linear Cook’s plate: log
plot of the L2 displacement
error versus mesh size
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Fig. 6 Nonlinear 2D cantilever
with clamped BC: log plot of the
L2 displacement error versus
mesh size
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world. In particular, P3/2 and P
2 elements exhibit exactly

the same convergence if ν > 0. Moreover, the L2-projection
approach severe undermines the accuracy in the 3D setting.
We argue that the disappointing result of the L2-projection
weights can be due to the non-symmetric nature of tetrahedra
refinement, which is significantly more complicated than in
2D.

2D slender cantilever

As shown in Fig. 6, the convergence behavior of quasi-
quadratic elements is comparable to the linear benchmarks

from the previous section. In particular, we see that quasi-
and fully-quadratic elements are virtually identical if ν > 0.
For the case ν = 0, fully-quadratic elements have a better
performance, as shown in Fig. 7.

3D slender cantilever

As for the linear case, we set the additional dimension of the
beam to equal to the known thickness D = 20 mm, so that
its cross section becomes a square. The plots in Fig. 4 show
that, similarly to the two-dimensional case, not all quasi-
quadratic elements are created equal. In particular, the L2-
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Fig. 7 Nonlinear 3D cantilever:
log plot of the L2 displacement
error versus mesh size
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Fig. 8 Incompressible slender
cantilever: log plot of the L2

displacement error versus mesh
size
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projection approach exhibits a very poor behavior, while the
optimal P3/2 elements behave similarly to the 2D setting. In
the remainder of this section, we will therefore only consider
the latter for our bechmarks.

7.3 Stability of the incompressible formulation

Here,we consider the nearly- and fully-incompressible limits
of the model and their consequences on the discretization.
In particular, we will verify the absence of locking for the
displacement field and of spurious modes for the pressure, in
the case that the saddle-point (u, p) formulation is employed.

We will test both formulations: for the primal formulation,
ν = 0.499 and ν = 0.49999 will be considered, while for the
saddle-point case we will consider the truly incompressible
limit ν = 0.5. Moreover, we will test both a large shear-
dominated deformation (Fig. 9) and a volumetric-dominated
compression generating a complex pressure field (Fig. 11).

2D nonlinear slender cantilever

Weuse the same geometry, boundary conditions, and loading
as for the slender cantilever, but consider both the (u) and
(u, p) formulations. We use ν = 0.499 and ν = 0.49999 for
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Fig. 9 Incompressible slender cantilever: pressure field for the case ν = 0.5

Fig. 10 Incompressible thick
compressed beam: log plot of
the L2 displacement error versus
mesh size
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the former and ν = 0.5 for the latter. As shown in Fig. 8, the
results show that quasi-quadratic elements are, if anything,
outperforming fully-quadratic ones. The pressure field com-
puted with P3/2 elements in the case ν = 0.5 is shown in Fig.
9 and provides evidence that no spurious modes are present,
as shown in Fig. 10.

2D thick beam compression

We use the same geometry as for the thick cantilever, but
consider a compressive surface load. The load is uniformwith

density P = 15,000 between L/4 and 3L/4. The left, right,
and bottom boundaries are fully constrained. This results in
a small displacement (≈ 1.5mm) but generates a complex
pressure field, as shown in Fig. 11. The convergence plots
show that there is no benefit in using fully-quadratic elements
over quasi-quadratic ones. In fact, the regularity is so low that
there there is no apparent benefit from using quasi-quadratic
elements over linear ones (P1isoP2), as shown by the case
ν = 0.5 in Fig. 8. The pressure field computed with P

3/2

elements in the case ν = 0.5 is shown in Fig. 11 and provides
evidence that no spurious modes are present.
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Fig. 11 Incompressible thick compressed beam: pressure field for the case ν = 0.5

Fig. 12 Nonlinear Cook’s
plate: log plot of the L2

displacement error versus mesh
size
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7.4 Robustness of the method

Finally, we test the performance of our method when some
of the conditions of the above benchmarks are perturbed. In
particular, we consider unstructured meshes, discontinuous
material parameters, and twist-inducing boundary conditions
in 3D. We show that the fundamental conclusions of the
previous benchmarks are unscathed. Namely, that there is
a large difference between using linear and quasi-quadratic
elements, while the margin is small between the latter and
fully-quadratic ones, which becomes apparent only in the
case ν = 0, i.e. when the regularity is sufficiently high.

Cook’s membrane with unstructured mesh

We use the same loading and boundary conditions as for the
linear case, butwe now consider the strain to be nonlinear and
we use an unstructured mesh. We place a total of 8 nodes on
the boundary of the coarsest mesh and generate a Delaunay
mesh in the interior. To generate the refined mesh, we double
the number of boundary points and generate a new interior
mesh, which in general is non-nested with respect to all of
the other meshes. The results, shown in Fig. 12, show that the
behavior is similar to the linear case. In fact, there is a slight
advantage over fully-quadratic elements in certain situations.
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Fig. 13 2D cantilever with
jumping coefficients: log plot of
the L2 displacement error versus
mesh size
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Fig. 14 Twisted cantilever: log
plot of the L2 displacement
error versus mesh size
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2D cantilever with jumping coefficients

We use the same geometry as for the slender cantilever, but
consider a Young modulus with a jump at x = L/2 from
Estiff = 2.1e6 MPa to Esoft = 1.1e5 MPa. The results,
shown in Fig. 13, show that the behavior is similar to the other
benchmarks. In particular, the solution exhibits a higher regu-
larity, such aswhen ν = 0, this is exploited by fully-quadratic
elements. In all of the other cases, there is no additional ben-
efit in using fully-quadratic over quasi-quadratic.

3D twisted cantilever

We use the same geometry as for the slender cantilever,
but apply a twist about its longitudinal axis at both ends of
the cantilever of, respectively, − 15 and + 15 degrees. The
results, shown in Fig. 14, show that this benchmark produces
a solution with a low regularity even in the case ν = 0, there-
fore there is no additional benefit in using fully-quadratic
elements.
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Fig. 15 Neo-Hookean
cantilever: log plot of the L2

displacement error versus mesh
size
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Neo-Hookean cantilever

We use the same geometry and parameters as for the slender
cantilever, but consider a Neo-Hookean constitutive law. In
Fig. 15, we compare the strain and stress formulations pre-
sented in Sect. 6, denoted byP3/2−ε andP3/2−σ , respectively.
From the plots, we see that the stress projection exhibits the
same behavior as for the linear case in Fig. 6 for ν = 0
and ν = 0.25, confirming the robustness of the proposed
approach. Interestingly, we see that the strain formulation
shows a slight increase in the error for the case ν = 0, imply-
ing that either the approximation error of the projected strain
is amplified by the nonlinearity of the material law, or that a
3-point quadrature is sub-optimal.

Finally, we report a failure of convergence for both New-
ton’s method (with or without line search) and trust region in
the case of ν = 0.499 for the stress formulation. A possible
explanation could be found in the strong nonlinearity of the
material law. In particular, in the use of linear elements for
computing the stresses from the sub-elements, which gen-
erate very high hydrostatic stresses due to the logarithmic
term in the energy. Therefore, the sensitivity of the stress to
the displacement should in principle be very high. However,
the averaging performed during the projection step reduces
these sensitivities, creating the possibility to obtain similar
projected stresses for different displacements, making the
problem ill-conditioned.

8 Conclusion

We presented a novel element for the solution of the nonlin-
ear elasticity equations. The proposed method possesses the

following properties: (i) it neither locks nor exhibits pres-
sure oscillations in the incompressible limit, (ii) it is exactly
equivalent to quadratic elements on linear problems, and (iii)
it is of a computational cost comparable to linear elements
on nonlinear problems. Therefore, for nonlinear problems,
the proposed element enables to achieve a benefit similar to
performing one iteration of p-adaptivity, at a cost comparable
to that of one step of h-adaptivity.

The idea could be generalized to more than a single step.
However, it is not trivial to express high-order strains using
hierarchical basis functions, even in the linear case. In par-
ticular, this will open the question of whether a hierarchy of
linear basis functions would still be appropriate, or the order
of interpolation for the displacement should be increased
together with that of the strain. Moreover, in general it is
unclear if the regularity is such that p-adaptivity can be truly
exploited.

A further topic of interest is to study the complete
class of Hellinger-Reissner elements. While we focused on
those obtained via P

1isoP2 elements and different projec-
tion weights, both choices can be generalized to incorporate,
e.g., elements for the displacement that do not satisfy the
partition-of-unity condition [27], or interpolation of strains
based on pointwise tying conditions [11].

Finally, there is the need to understand the role of error
contributions in the case of nonlinear constitutive laws. In
particular, while our experiments suggests that the stress pro-
jectionmight be superior to that of the strain, since it requires
a lower order of quadrature, the convergence of Newton’s
method can be severely affected for certain choices of mate-
rial parameters. This might suggest, e.g., that the deviatoric
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and hydrostatic components require a different choice of dis-
crete spaces.
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