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Abstract The present study is devoted to the creation of a
process–structure–property database for dual phase titanium
alloys, through a synthetic microstructure generationmethod
and a mesh-free fast Fourier transform based microme-
chanical model that operates on a discretized image of
the microstructure. A sensitivity analysis is performed as a
precursor to determine the statistically representative vol-
ume element size for creating 3D synthetic microstructures
based on additively manufactured Ti–6Al–4V characteris-
tics, which are further modified to expand the database
for features of interest, e.g., lath thickness. Sets of tita-
nium hardening parameters are extracted from literature, and
The relative effect of the chosen microstructural features is
quantified through comparisons of average and local field
distributions.

Keywords FFT based elasto-viscoplastic micromechanical
model · Synthetic microstructure generation · 3D materials
science ·Dual phase titaniumalloys ·Additivemanufacturing

1 Introduction

Powder-bed based additive manufacturing (AM) of metallic
components, in which a 3D shape is written into succes-
sive layers of powder using an electron or laser beam under
computer control, is increasingly being implemented to pro-
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duce structural parts. Having a wide range of application
in the aerospace, automotive and medical industries, AM of
titanium components is now valued because of the near-net
shape and reduced machining cost advantages of the tech-
nique [1]. However, since titanium is an allotropic element
that can exist inmore than one crystallographic form depend-
ing on the chemo-thermo-mechanical process history, the
rapid cooling inherent in the AM technique makes the pre-
diction of the component microstructure and the mechanical
properties challenging. For instance, the room temperature
alpha, or hexagonal close-packed (hcp), phase can co-exist
with the high temperature (above 883 ◦C) beta, or body-
centered cubic (bcc), phase when alloyed with elements such
as aluminum and oxygen that stabilize alpha, or elements
such as vanadium and molybdenum that stabilize beta [2].
Furthermore, the dual-phase alloys exhibit a wide variety
of distinct microstructures such as fully lamellar, duplex, or
fully equiaxed, with varying texture evolution as a function
of the thermomechanical history [3–5], all of which influence
the mechanical properties.

While there are established process–structure–property
relationships for different alpha/beta titanium alloys in litera-
ture [6], the large thermal gradients and cooling rates inherent
in powder-bed metal AMmakes for challenges in the predic-
tion of mechanical properties. The beam scanning though
successive layers means that each location experiences a
series of thermal spikes, whose precise sequence depends on
location in the part. The thermal history also involves slow
changes in temperature mainly as a function of build height,
resulting in anisotropic and heterogeneous microstructures
within each AM component. For instance, it has been shown
that depending on the beam power/velocity parameters, a Ti–
6Al–4V microstructure can change from martensitic or fine
acicular α′ structure at the high cooling rate top of the build
height, into fine α + β lamellae, Widmanstätten, or a mix-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00466-017-1467-3&domain=pdf
http://orcid.org/0000-0001-5040-5821


56 Comput Mech (2018) 61:55–70

ture of colonized lamellar α and coarse acicular α′ phases at
the slower cooling rate, middle of the build height sections
[7–9]. Furthermore, the solidification structure is affected by
the cooling rate and thermal gradient dependent prior β mor-
phology and size, which can be varied substantially through
control of the process conditions [10,11]. As the α lath thick-
ness and prior β grain size increases with decreased cooling
rate, the ultimate tensile strength (UTS) and yield strength
(YS) values are known to decrease [3]. This in turn causes
a mechanical property anisotropy between the exterior AM
regions with finer microstructures, and the coarser interior
regions [12].

Since microstructural features are known to determine
the microscopic and macroscopic mechanical behavior, it is
important to quantify and model the relationships between
the properties and the prior β grain size and morphology,
the thickness and size of individual α laths, and the vol-
ume fraction and orientation distribution of the phases. For
this purpose, in this study we present a new methodology
to generate dual phase titanium microstructures, a statisti-
cally representative volume element (SRVE) simulation size
requirement analysis, a synthetic microstructure database,
and the micromechanical response modeling of the struc-
tures through the full-field fast Fourier transform (FFT) based
elasto-viscoplastic technique as to quantify the relative effect
of individual microstructure descriptors.

2 Dual-phase titanium representative structures
with varying microstructural features

Microstructure based crystal plasticity models are exten-
sively operated to simulate the elasto-viscoplastic behavior
of polycrystalline materials by using the grain maps as
input data. When the interest is in the investigation of
structure–property relationships through large dataset analy-
sis, microstructural characterization such as surfacemapping
via EBSD or 3D mapping via synchrotron based techniques
can be time and budget consuming. One possible solution
to increase the microstructure database is the computational
approach via digital generation of statistically representative
microstructures. Various methods have been developed for
three-dimensional statistical microstructure reconstruction,
such as the 3D Voronoi tessellation, where a volume is filled
with random points and then the point joining line perpen-
dicular bisecting planes are tessellated such that the volume
is divided into Voronoi cells, each of which corresponds to
a unique grain [13]. Other methods involve packing spheres
with a lognormal volume distribution into a domain, and then
using the center of masses as tessellation initiation points
[14], or using ellipsoid distributions to approximate the grain
size and shape distributions that exist in the real microstruc-
tures for determining Voronoi seed points [15–17].

Thanks to ongoing developments in packing algorithms
and general computational capability, digital representation
of grain-scale microstructures has extended tomore complex
materials. For dual-phase titanium, examples include: beta
processed titanium where the lamellar structure is homog-
enized for simulation efficiency [18]; a case in which the
alpha/beta structure is assumed to be a colony grain structure
with random orientation assignment [19]; a microstructure
in which grains are assumed to be cubes, and the lamellar
duplex structure is homogenized for meshing efficiency [20];
and, a case in which the bimodal primary alpha+lamellar
colony characteristics are represented through size distri-
butions [21]. Although these structures are shown to be
statistically representative in various ways, the computa-
tional expense limited what could be accomplished with
finite element based micromechanical modeling that explic-
itly describe the lamellar morphology, individual α laths,
or Widmanstätten characteristics, because the two-phase
lamellar structures require a large element count and corre-
spondingly large number of degrees of freedom. The present
paper sidesteps this issue by using ameshless, FFT-based full
field micromechanical model formulated on a regular grid,
which can compute full field solutions directly on image of
microstructures with >100 prior β grains and >50,000 α

laths.
For the purpose of generating statistically representative

multi phase digital microstructures to specifically address
AMtitanium, a set of statistics is extracted from the additively
manufactured Ti–6Al–4V literature. This suggests using an
average columnar or equiaxed prior β width of 50–200µm
[22,23], an average α lath size of 0.5–2µm [24,25], and
a preferred prior β texture of (001) with a Burgers orien-
tation relationship (BOR) between the phases [22,26,27].
The strong texture arises from the near-universal observation
of columnar solidification in this alloy, which is unsurpris-
ing in view of the unusually small freezing range in this
alloy [28]. Since the objective is forming a microstructure-
mechanical response database, initial beta microstructures,
Fig. 1, are created via DREAM.3D [29] based on the par-
ent grain size statistics, which are then modified to include
the features of interest, i.e., the lamellae, by using a trans-
formation phase insertion algorithm. The algorithm consists
of operating on each of the parent phase voxel structures to
insert additional grains that represent the second (hexago-
nal) phase by calculating the center of mass and spherical
equivalent radius of each parent grain for controlling the lath
width and length, until a given number of daughter grains
are successfully generated. The daughter grain orientation
is defined by rotation from the parent grain in accordance
with the applicable orientation relationship. For titanium, the
BOR, where the close-packed {011} plane of the bcc lattice
is parallel to the close-packed (0001) plane of the hcp lat-
tice, and the 〈111〉 direction in the bcc lattice is parallel to
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Fig. 1 Examples of digital microstructures. a A preferred (001) axis
columnar prior β structure. b An equiaxed prior β structure. c A dual-
phase β matrix–α lath structure

the 〈112̄0〉 direction in the hcp lattice, results in 12 possible
variants and each habit plane/direction produces a distinct
orientation. The set of axis-angle pair misorientations from
parent bcc to daughter hcp grains is given in Table 1. In
order to illustrate how the parent/daughter orientation rela-
tionship is maintained in the algorithm, columnar retained
beta, inserted alpha laths, and BOR between the marked beta
grain and alpha lath for a 256 × 256 × 256 voxel digital
microstructure is shown in Fig. 2. To create the dual phase
titaniummicrostructure/mechanical response database, mul-
tiple structures with varying features are generated via the
insertion method explained above. In Fig. 3, statistically rep-
resentative microstructure generation steps and a subset of
the synthetic structures are illustrated.

3 FFT-based spectral micromechanical modeling

Startingwith theworks of Sachs andTaylor [30,31],mechan-
ical behavior models evolved over time. The Sachs model
(or the lower-bound model) assumes a homogeneous stress
field in which all grains experience same stress tensor, and
compatibility is violated at grain boundaries, whereas Tay-
lor (or the upper-bound model) assumes uniform strain in
the microstructure in which all grains undergo same strain
tensor, and stress equilibrium fails at grain boundaries. Nei-
ther of these methods takes account of the interactions
inside the microstructure, so a more accurate method called
self-consistent (SC) modeling was developed. Based on
the analysis of Eshelby [32], the SC approach treats each
ellipsoidal shaped grain as an inclusion that is embedded

Table 1 Burgers orientation relationship and axis/angle pair for β− >

α transformation

Axis Angle

(1 1 0)β //(0 0 0 1)α (−0.067, −0.791, −0.607) 125.77

[1̄ 1 1̄]β //[1 1 2̄ 0]α
(1 1 0)β //(0 0 0 1)α (0.762, −0.642, 0.085) 90.41

[1 1̄ 1̄]β //[1 1 2̄ 0]α

(1̄ 0 1)β //(0 0 0 1)α (−0.244, 0.769, 0.590) 56.6

[1 1̄ 1]β //[1 1 2̄ 0]α

(1̄ 0 1)β //(0 0 0 1)α (0.244, 0.769, −0.590) 56.6

[1 1 1]β //[1 1 2̄ 0]α
(0 1 1)β //(0 0 0 1)α (0.594 −0.307 −0.742) 69.73

[1 1 1̄]β //[1 1 2̄ 0]α
(0 1 1)β //(0 0 0 1)α (0.194, −0.375, −0.906) 129.73

[1̄ 1 1̄]β //[1 1 2̄ 0]α

(0 1 1̄)β //(0 0 0 1)α (0.431, 0.833, 0.345) 159.73

[1̄ 1 1]β //[1 1 2̄ 0]α

(0 1 1̄)β //(0 0 0 1)α (0.872, 0.451, 0.187) 140.26

[1 1 1]β //[1 1 2̄ 0]α
(1 0 1)β //(0 0 0 1)α (−0.379, −0.120, −0.917) 147.49

[1̄ 1 1]β //[1 1 2̄ 0]α
(1 0 1)β //(0 0 0 1)α (−0.244, −0.769, −0.590) 56.6

[1 1 1̄]β //[1 1 2̄ 0]α

(1 1̄ 0)β //(0 0 0 1)α (−0.762, −0.642, −0.085) 90.41

[1 1 1̄]β //[1 1 2̄ 0]α

(1 1̄ 0)β //(0 0 0 1)α (−0.837, −0.071, −0.542) 114.54

[1 1 1]β //[1 1 2̄ 0]α

inside a homogeneous reference medium (the microstruc-
ture domain), and then strain is calculated as an average field
within eachgrain [33,34].Molinari showed that the deformed
texture prediction is in good agreement with known exper-
imental results [33]. Since self-consistent formulation is a
mean field method, conventionally, small-scale finite ele-
ment techniques are used to simulate the local mechanical
response of complex microstructures. Clearly, the finite ele-
ment method requires meshing, which results in a system
with a large number of degrees of freedom. One alterna-
tive to the finite element method (FEM) is the Fast Fourier
Transform (FFT) based formulation, introduced byMoulinec
and Suquet as a tool for full-field simulation of mechanical
response of polycrystalline materials. In general, the FFT
algorithm computes the stress and strain fields at each point
on a regular, discretized grid based on the crystallographic
orientation (and associated anisotropy) of the point when the
microstructure is subjected to macroscopic loading [35]. It
uses a microstructural image with orientation information as
direct input, and requires periodic unit cells and boundary
conditions. Since the method does not require meshing, the
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Fig. 2 Columnar retained beta
grains, inserted alpha laths and
the Burgers OR (BOR) between
the marked beta grain and alpha
lath for a 256 × 256 × 256
digital microstructure. The
grains are colored by Euler
angles on an arbitrary scale

calculation is computationally efficient and is able tomanage
a large number of degrees of freedom typically involved in the
description of complex microstructures [35,36]. Prakash and
Lebensohn compared FFT with FEM and demonstrated that
the FFT computations scale as NlogN (for N is the number
of grid points), whereas FEM typically scales as N2, which
means it is computationally more expensive for large prob-
lems [36]. Lebensohn showed that for linear systems, FFT
results provide similar accuracy as the SC approximation,
with the additional advantage of giving local field values [37]
i.e., it can resolve intragranular gradients. While the utiliza-
tion of a regular grid prevails computational advantages, the
existence of inherent Fourier method numerical instabilities,
such as the observed Gibbs phenomenon at discontinuities,
can cause undesired stress oscillations. This phenomenon
can be reduced by avoiding single voxels, and by spread-
ing the discontinuity features throughout the domain. In the
FFT based algorithm, the multi-phase behavior is captured
through defining themodel properties for each phase individ-
ually, and calculating the n-site grain interactions bothwithin
one phase and between all phases. Elastic, viscoplastic and

elasto-viscoplastic deformation regimes are all formulated
in the algorithm [38,39]. For these regimes, the problem is
solved iteratively using an initial guess for the local strain
field values, and then adopting a convergence criterion that
relates to the fulfillment of the equilibrium condition. The
convergence criterion depends on the spatial resolution and
the complexity of the microstructure, and the linearity of the
model. For instance, for the elastic regime the convergence
criterion of 10−4 is found to be appropriate, however for the
non-linear, viscoplastic regime, a smaller convergence crite-
rion of 10−5–10−6 is suggested [38]. The elastic, viscoplastic
and elasto-viscoplastic deformation regimes are detailed in
the following sections.

3.1 Elastic formulation

Assumingperiodic boundary conditions across the elastically
heterogeneous representative volume element (RVE), which
is subjected to an average strainE, a referencemedium is pre-
pared by defining an initial homogeneous reference stiffness
tensor on a regular grid ofN points byC0

i jkl = 1
N

∑
Ci jkl(x).
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Fig. 3 Illustration of the synthetic microstructure generation for two
different parent prior β grain size distributions, average 50 µm on the
left two and average 145µm on the right two: a randomly orientated
columnar and equiaxed β parent grains; b two phase structure after 50%

α insertion following the BOR; c (001) textured columnar and equiaxed
β parent grains; d two phase structure after 50% α insertion following
the BOR
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Taking ε(x) as the local strain, σ (x) as the local stress and
C(x) as the local stiffness tensor, the local problem can be
written in terms of the constitutive equation (Hooke’s law)
and the equilibrium condition across the boundary of two
adjacent grains.

σi j (x) = Ci jkl(x)εkl(x) in RVE

σi j, j (x) = 0 in RVE
(1)

For small strain compatibility condition εkl(x) =
(uk,l (x)+ul,k (x))

2 , where u is the displacement gradient, and
the local fluctuations in stress τi j = (Ci jkl − C0

i jkl) : ε(x),
the problem becomes

σi j (x) = C0
i jkl uk,l(x) + τi j (x) (2)

where τi j is the local deviation from the average stress field
that can be calculated iteratively using the fluctuation in stiff-
ness and local strain. Combining Eq. (2), and the equilibrium
condition σi j, j = 0 gives

τi j, j (x) + C0
i jkl uk,l j (x) = 0. (3)

In real space, τi j, j (x) can be thought as a fictitious body
force. In order to solve Eq. (3) by Green’s method, G is
defined as

Ĝik = [C0
i jkl ωl ω j ]−1 = Â−1

ik (4)

whereω is frequency in Fourier space and Â−1 Â = I . Taking
the Fourier transform of equation (3) results in

F

⎡

⎣
∑

l j

C0
i jkl

∂uk
∂xl ∂x j

⎤

⎦ = −F(τi j, j (x)). (5)

In Fourier space, the fictitious body force field τi j, j and
the strain field εi j (x) [40] can be written as

F(τi j, j (x)) =
∑

j

i ω j τ̂i j = i
∑

j

τ̂i j (ω) ω j

F(εi j (x)) = i ûi (ω) ω j .

(6)

For Γ̂ 0
i jkl = −Ĝik ωl ω j (symmetrization), Eqs. (4), (5)

and (6) give

ˆ̃εi j (ω) = Γ̂ 0
i jkl τ̂i j (ω). (7)

Inverse Fourier transformation converts the perturbation
field τi j into real space, which is replaced in Eq. (2) to cal-
culate the stress field.

Algorithm for elastic FFT

The algorithm is initialized with ˆ̃ε(x) = 0 and σ 0(x) = C0 :
E, and then the local stress–strain fluctuations are calculated
iteratively [38].

a. Macroscopic average strain, determined from the bound-
ary conditions is initialized as the elastic strain at each
grid point.

b. Local stress at each grid point is calculated from the strain
using Hooke’s law.

c. Polarization field is calculated through Green’s method
and Fourier transform.

d. Stress equilibrium and convergence is tested.
e. New stress–strain fields are updated.
f. Steps b–e are repeated until convergence.

3.2 Viscoplastic formulation

FollowingMolinari [33], the stress tensor is decomposed into
deviatoric stress and hydrostatic pressure components as

σi j = σ ′
i j − pδi j (8)

where σ ′ is the deviatoric and p is the hydrostatic pressure
components. Thus, equilibrium and incompressibility condi-
tions become

σi j, j = σ̃i j, j = σ
′
i j, j + p,i = 0

νk,k = 0
(9)

where ν is velocity.
In the plastic regime, either the secant or tangent approach

can be used to calculate the stiffness. In this formulation,
tangent approach is chosen where Etan = dσ

dε
.

The local constitutive equation then becomes

σ ′(x) = Mtg−1
(x) : d(x) + So(x) (10)

where Mtg(x) is the local tangent compliance (thus Mtg−1
is

tangent stiffness, and will be denoted as Ltg), d(x) is local
strain rate, and So is the back-extrapolated stress termcoming
from Taylor expansion at a fixed point.

Since the relationship between stress and strain is not lin-
ear in plastic region, stiffness cannot be simply averaged as
in the elastic solution to find the reference medium value.
The homogenous reference medium is described in terms of
a tangent behavior as

Σ ′ = Ltg
o : D + Soo (11)

where Ltg
o and Soo are respectively the stiffness and back-

extrapolated stress of the medium.
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In this viscoplastic FFT algorithm, the initial values of the
strain-rate field are assigned using a Taylor guess of ˙̃εi j (x) =
0, hence ε̇i j (x) = Ė as the convergence is tested at each grid
point. For n is the slip plane normal, b is the slip direction,

R =
⎛

⎝
b1 n1 x1
b2 n2 x2
b3 n3 x3

⎞

⎠ is the transformation matrix from slip

system axes to crystal axes, mi j = 1
2 (bi n j + b j ni ) is the

Schmid tensor, and ε
sli p
i j =

⎛

⎝
0 γ

2 0
γ
2 0 0
0 0 0

⎞

⎠ is the strain tensor

in slip level, transformation of a shear γ from slip system to
crystal axes can be written as

ε
crystal
i j = R1i R2 j ε

sli p
12 + R2i R1 j ε

sli p
21

ε
crystal
i j = 1

2
(bi n j + b j ni )γ = mi j γ

(12)

and the resolved shear stress on slip plane and slip direction
is given by

τ = σ
sli p
12 = R1i R2 j σ

crystal
i j

τ = bi n j σ
crystal
i j = mi j σ

crystal
i j .

(13)

Because slip plane normal and slip direction are perpen-
dicular to each other, n⊥b, the trace of the Schmid tensor is
zero, tr(m) = bk nk = 0. Thus, trace of crystal system strain
tensor is also zero as tr(ε)= tr(m)= 0, i.e. the crystal system
strain tensor should be traceless as a result of incompress-
ibility. Superimposition of shear over the slip systems gives
total strain rate of the grid point as

ε̇i j =
N∑

s

ms
i j γ̇

s . (14)

Both Lebensohn [38] and Tomé [41] describe the local
incompressible viscoplastic constitutive behavior by means
of the rate-sensitive approach,

γ̇ s = γ̇o

(
τ s

τ so

)n

= γ̇o

(
ms

kl σkl

τ so

)n

. (15)

Substituting γ̇ s into Eq. (15) gives the non-linear consti-
tutive equation as

˙εi j = γ̇o
∑

s

ms
i j

(
ms

kl σkl

τ so

)n

. (16)

Note that the tangent stiffness is the derivative of stress
with respect to strain. Thus, the local compliance Mtg(x)
denoted in the constitutive Eq. (10), summed over all poten-
tially active slip systems becomes

Mtg(x) = nγ̇0
∑

s

ms(x)
⊗

ms(x)

τ s0 (x)

(
ms(x) : σ ′(x)

τ s0 (x)

)(n−1)

(17)

where τ s0 (x) is the critical resolved shear stress, γ̇0 is the
normalization factor and n is the reciprocal of the rate
sensitivity. τ s0 (x) and ms(x) are related to the crystal defor-
mation by slip. For the local non-linear constitutive equation
σ ′(x) = Mtg−1

(x) : d(x) + So(x), the stress equation,
including both the deviatoric and the hydrostatic pressure
parts becomes

σi j = Ltg
i jkl : dkl + Sokl − p δi j (18)

where Ltg = Mtg−1
and δi j is Kronecker delta. For L̃ tg =

Ltg − Ltg
o and S̃o = So − Soo, taking the derivative of the

stress constitutive equation and equating to zero to satisfy the
equilibrium condition results in

σi j, j = 0 = Sooi j, j − p,i +
(
L̃ tg
i jkl dkl + S̃oi j

)

j
+ Ltg

oi jkl dkl, j

(19)

where Ltg
oi jkl dkl, j = 1

2 (L
tg
oi jkl νk,l j + Ltg

oi jkl νl,k j ) because of
the strain rate part of compatibility condition. Here, it is
assumed that Ltg

oi jkl has minor symmetry. Thus, Ltg
oi jkl =

Ltg
oi jlk , and Ltg

oi jkl dkl, j = 1
2 (L

tg
oi jkl νk,l j + Ltg

oi jlk νl,k j ) As
repeated indices are dummy indices, for l = k and k = l,
compatibility condition is

Ltg
oi jkl dkl, j = 1

2

(
Ltg
oi jkl νk,l j + Ltg

oi jkl νk,l j

)
= Ltg

oi jkl νk,l j .

(20)

Calling (L̃ tg
i jkl dkl + S̃oi j ) = τi j , the final system of differ-

ential equations to be solved becomes

Ltg
oi jkl νk,l j (x) + τi j, j (x) − p,i (x) = 0 in RVE

νk,k(x) = 0 in RVE

Periodic BCs across RVE.

(21)

Similar to the elastic case that is explained in Sect. 3.1,
the polarization field is calculated using the Green’s method
and FFT formalism.

Algorithm for viscoplastic FFT

The algorithm is initialized with strain rate ˙̃εi j (x) = 0, and
then the local stress–strain fluctuations are calculated itera-
tively [38].
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a. Reference medium stiffness L0 is initialized in terms of
an average tangent behavior.

b. Local stress at each grid point is calculated by solving the
constitutive relation numerically via Newton–Raphson
method.

c. Deviatoric stress, perturbation field and pressure field is
calculated in Fourier space.

d. Stress and strain-rate fields are calculated from the con-
stitutive equation.

e. Polarization field is calculated through Green’s method
and Fourier transform.

d. Stress equilibrium and convergence is tested.
e. New stress–strain fields are updated.
f. Steps b–e are repeated until convergence.
k. If the convergence is satisfied, the orientation and hard-

ening parameters for each slip system are updated.

3.3 Elasto-viscoplastic formulation

An infinitesimal strain version of the FFT formulation in
the elasto-viscoplastic regime was presented recently [39].
The solution in the elasto-viscoplastic regime involves the
combined Hooke’s law for the elastic part and Euler implicit
time discretization for the plastic part. Briefly, the constitu-
tive equation of giving the strain field is defined as

εtotal(x) = εe(x) + ε p(x). (22)

Equation 22 can also be written as

εtotal(x) = C−1(x) : σ(x) + ε p,t (x) + ε̇ p(x, σ )Δt (23)

where

ε̇ p(x) = γ̇o
∑

s

ms
i j

(
ms

kl σkl

τ so

)n

. (24)

Similar to the elastic and viscoplastic cases, the field fluc-
tuations are defined, and then the the polarization field, which
is the divergence of the perturbation field, is calculated iter-
atively using the Green’s method and FFT formalism as
explained in Sect. 3.1.

Algorithm for elasto-viscoplastic FFT

The algorithm is initialized with the total strain εtotal(x) =
εe(x) as the total plastic strain is zero, and then the local
stress–strain fluctuations are calculated iteratively [39].

a. Local fluctuation is established via τi j (x) = σi j (x) −
C0
i jkl uk,l(x), and combined with equilibrium condition.

b. Local stress at each grid point is calculated by solving
the constitutive equations.

c. Polarization field is calculated through Green’s method
and Fourier transform.

d. Stress equilibrium and convergence is tested iteratively.
e. New stress–strain fields are updated.
f. If the convergence is satisfied and if ε p,t (x) �= 0, the

orientation andhardeningparameters for each slip system
are updated.

3.4 Orientation and hardening updates

Once the convergence criterion is satisfied and the equilib-
rium condition is is fulfilled, the microstructure needs to be
updated for the deformation induced changes in viscoplastic
and elasto-viscoplastic regimes. The first update is for the
local orientation, which is simply the difference between the
local rigid body rotation rate and the local plastic rotation
rate. Mathematically, local reorientation rate is defined as

wi j (x) =
[
ẇi j (x) − ẇ

p
i j (x)

]
(25)

for local rigid body rotation rate ẇi j = 1
2 (vi, j (x) − v j,i (x))

and plastic rotation rate ẇ
p
i j (x) = ∑Ns

s=1 αs(x)γ̇ s(x) with
γ s(x) local shear rate and αs(x) local skewsymmetric
Schmid tensor [38].

The second update is for work and latent hardening, which
denotes the rate of change in critical resolved shear stress
(CRSS) of a primary slip system for the former or the change
in CRSS of a secondary slip system for the latter. The CRSS
update should be performed according to a hardening law.
For this work, a modified version of the Voce [42] hardening
model is used with the assumption of only self-hardening (no
latent hardening). Modified Voce hardening is characterized
by an evolutionof the threshold stresswith accumulated shear
strain in the form of

τ̂ S = τ S
0 +

(
τ S
1 + θ S

1 Γ
)

(

1 − exp

(

−Γ

∣
∣
∣
∣
∣

θ S
0

τ S
1

∣
∣
∣
∣
∣

))

(26)

giving four parameters for each slip system in each individual
phase, where τ S

0 is the initial critical resolved shear stress
(CRSS), τ S

1 is the initial hardening rate, θ S
0 is the asymptotic

hardening rate and θ S
1 is the back-extrapolated CRSS. Voce

hardening is an empirical model, and since it does not have
any temperature or strain rate sensitive terms it is intended
to extract parameters from a single stress–strain dataset.

3.5 Model parameters

In order to extract the hardening parameters by matching
the simulated viscoplastic self-consistent response with the
experimental measurements, the multi-parameter optimiza-
tion algorithm of Gockel [43] and Mandal [44] is utilized
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Fig. 4 Electron beam melted, as built Ti–6Al–4V stress–strain [46] fit
for extracting modified Voce hardening parameters

for this study. The optimization is based on a non-linear
least-squares formulation, to iteratively fit the experimen-
tal data by minimizing the summed square of the difference
between the measured value and the fitted value for each
strain increment. The degree of the fit is quantified by a
mean error percentage and mean root mean square error
(RMSE). Since titanium is a dual phase material, parame-
ter optimization is performed on both phases simultaneously
by simulating the response for assigned phase fractions and
initial parameter guesses. In this study, the slip induced plas-
tic deformation of the alpha and beta phases is modeled
by individual slip systems and their relative CRSS ratios
of 1:0.7:3 [45] for the basal:prism:pyramidal 〈c + a〉 sys-
tems of the hcp phase, and CRSS ratios of 0.3:0.3:0.3 for the
{110}〈111〉:{112}〈111〉:{123}〈111〉 systems of the bcc phase.
A set of modified Voce hardening parameters are extracted
from a reported set of AM Ti–6Al–4V tensile data [46] by
fitting the stress–strain curve for bcc and hcp phases simul-
taneously via this technique, Fig. 4, by identifying the onset
of plastic deformation using a 0.2% offset line. For the elas-
tic regime, the stiffness values reported by Stapleton et al.
[47] are used. Both the elastic and plastic model parameters

are listed in Table 2. It is important to note that the mate-
rial parameters are chosen as the basis for all the structures,
and it is possible to implement different hardening mod-
els and parameters without changing the elasto-viscoplastic
algorithm.

4 Domain size sensitivity analysis results

In the elasto-viscoplastic regime, the deformation is described
by a combination of linear (Hooke’s law) and non-linear
(rate-sensitive approach) relationships. In the elastic regime,
the mechanical response is found to be nearly insensitive
to the domain size when a few shells of the nearest neigh-
bor grains are included in the simulation [48]. However,
it is expected that the non-linear relationship in the plas-
tic regime might cause higher contrast between different cell
size domains as a result of n-site non-linear grain interactions.
Since large simulations are computationally expensive, it is
important to define the smallest statistically representative
volume element (SRVE) size without sacrificing the conver-
gence of effective and/or local properties. For instance, the
grain size influence on surface roughening has been investi-
gated, revealing an inverse relationship between convergence
speed and grain size [49]. It has also been shown that the
deviation from the applied strain is more sensitive to grain
interactions and less so on grain self-orientation, causing
local distribution to be more sensitive to domain size than
macroscopic behavior [50]. Since the FFT algorithm calcu-
lates homogenized properties from the full-field values, it
allows for a thorough domain size sensitivity study.

In choosing a set of microstructures for the domain size
analysis, the size of the parent β grains, the lath thick-
ness and fraction of α laths, the orientation distribution and
Fourier grid point resolution are all taken into account; so
that numerous dual-phase simulation structures are categor-
ically generated, Fig. 5. Although the modeled field values
converge to almost the same values when the grid resolu-
tion is changed from 1 to 8 µm/voxel for randomly oriented
equiaxed grains, Fig. 6, as the lath thickness feature is cho-

Table 2 Bcc and hcp elastic
constants and hardening
parameters that are used in the
micromechanical model

Elastic constants (GPa) C11 C12 C13 C33 C44

bcc 130 90 90 130 65

hcp 143 110 90 177 40

Modified Voce hardening parameters (MPa) τ 0 τ 1 θ0 θ1

bcc (for all slip modes) 41.09 99.62 971.27 1.6

hcp (basal) 184.95 56.75 1160 −18.9

hcp (pryramidal) 264.21 56.75 1160 −18.9

hcp (prismatic 〈a + c〉) 792.63 56.75 1160 −18.9
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Fig. 5 Phase maps for generated synthetic 80% α dual-phase
microstructures of 2563, 2163, 1963, 1283 and 643 domain sizes

Fig. 6 Stress–strain curves for similarly deforming randomly oriented
equiaxed structures with Fourier point resolution of (a) 8µm/voxel, 643

domain; (b) 4µm/voxel, 1283 domain; (c) 2µm/voxel, 2563 domain;
(d) 1µm/voxel, 5123 domain

sen as 1–2µm in this study, the Fourier grid point resolution
is taken as 1µm/voxel in all directions. In order to obtain
the highest level of microstructural heterogeneity, the par-
ent grain size is chosen as the largest, 145 µm average with
columnar morphology, lath thickness is chosen as the thick-
est, 2 µm average, the daughter fraction is chosen as the
highest, 80%, and the orientation distribution is chosen as
random with the expectation that these extreme attributes
would result in higher domain size sensitivity.

Using the model parameters listed in Table 2, structures
were deformed to 5% strain with combined strain/stress
boundary conditions. Note that since the strong phase α

fraction is 14% less than the experimental Ti–6Al–4V data

that was used for hardening parameter extraction, the macro-
scopic field values do not match with Fig. 4. Both the local
and homogenized values converged at 2163 simulation size,
Fig. 7. Hence, 2163 is chosen to be the SRVE, and all of the
microstructures reported in Sect. 5 are generated accordingly.

5 Microstructure sensitivity analysis results

In order to investigate the effect ofmicrostructure onmechan-
ical properties, the microscopic and macroscopic fields are
simulated for a total of 56 conditions, Fig. 8. 36 distinct
microstructures with varying prior β grain sizes and mor-
phologies, individual α lath thicknesses and sizes, phase
volume fractions, and orientation distributions were gener-
ated. Furthermore, the effect of uniaxial loading direction is
examined by modeling the response of 20 different Wid-
manstätten structures for tensile deformation parallel and
perpendicular to the long grain axis (axis ODF) direction.
Using combined stress/strain boundary conditions, elasto-
viscoplastic deformation of the generated microstructure
database, Fig. 8, was modeled with deformation step incre-
ments of 0.0001, up to total 4%macroscopic tensional strain.
The convergence criterion to satisfy the equilibrium con-
dition with <10−6 error is achieved in between iteration
20–30 for all cases. This dataset will be publicly avail-
able in the future; until then the readers are encouraged
to contact the authors if they wish to access the data, e.g.
for testing reduced dimensionality representations of the
microstructures via spatial correlation statistics, for extract-
ing properties using principal component analysis (PCA),
and eventually for building data-driven models using linear
regression, polynomial regression and/or machine learning
based techniques that can accurately predict the mechanical
response based on a given microstructure.

The macroscopic stress–strain response is summarized in
Fig. 9, where the effect of α fraction for for 50 µm randomly
oriented columnar prior β parent structures is shown in Fig.
9a, the effect of lath thickness for 150µm randomly oriented
and textured columnar prior β parent structures is shown in
Fig. 9b, and the effect of prior β grain size, grain morphol-
ogy and orientation distribution for 53% α is shown in Fig.
9c. The response is found to be the most sensitive to α phase
fraction and the prior β orientation distribution, such that
the increase in α phase enhances the tensile strength, and
the increased magnitude of prior β (001) texture decreases
the tensile strength. This can be explained by α being the
harder phase, and the prior β (001) texture being the soft
direction for bcc, with restricted transformed α orientation
space as a result of BOR. The phase fraction variability is fur-
ther investigated by comparing the contribution of each phase
against the behavior of dual-phase composite structure, Fig.
10, in order to check if the observed alpha fraction effect is
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Fig. 7 Domain size sensitivity analysis using 643, 1283, 1963, 2163 and 2563 microstructures: a full-field stress (component along the loading
direction) violin plots and stress distributions at 4% strain for each domain; b macroscopic stress–strain curve for each domain

Fig. 8 Simulated 56 conditions for 36 distinct microstructures with varying prior β grain sizes and morphologies, individual α lath thicknesses
and sizes, phase volume fractions, and orientation distributions

simply caused by a larger number of harder phase grains.
Phase fraction normalized stress–strain distributions showed
the lack of a master curve for aggregate behavior. Compar-
ing the stress contributions of different phases for 53, 78 and
90% alpha fraction microstructures, Fig. 10ii, showed that
the bcc phase is harder in existence of higher alpha fractions,
and it carries the strain while the hcp phase carries the stress.
This is in agreement with Dawson et al., who demonstrated
that the beta phase is the shear strain carrier, which further
increases in magnitude with increased alpha volume fraction
[51]. Phase separation analysis also showed the near linear

individual contributionof the bcc andhcpphases,whichdevi-
ates from the linear rule of mixtures for two-phase aggregate
response, Fig. 10i. For lower fractions of the harder phase,
the aggregate response is controlled by both phases, how-
ever as the harder phase fraction increases it dominates the
behavior and the importance of the softer phase diminishes.
In summary, as the fraction of the harder phase is found
to affect the behavior of the entire aggregate non-linearly
through neighbor interactions, phase fraction is considered a
microstructure descriptor for this study. Consistent with the
literature, [48], the results in the linear elastic regime indi-
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Fig. 9 Microstructure sensitivity analysis. a Effect of α fraction; com-
parison shown for 50µm randomly oriented columnar prior β parent
structures; b effect of lath thickness; comparison shown for 150 µm

randomly oriented and textured columnar prior β parent structures; c
effect of prior β grain size, grain morphology and orientation distribu-
tion; comparison shown for 53% α Widmanstätten structures

cate an insensitive response to microstructure. However, in
the viscoplastic regime, the mechanical behavior is found to
be sensitive under all investigated conditions, Figs. 9 and 11.

Figure 11 shows the comparison of the local behavior
through violin plots of stress components along the load-
ing direction at 4% strain, for each generated microstructure.
The effect of α fraction is depicted in Fig. 11a; for on the x
axis 1 denotes loading direction parallel to long grain axis,
and 2 denotes loading direction perpendicular to long grain
axis. The effect of prior β grain size, grain morphology and
orientation distribution is depicted in Fig. 11b; for on the x

axis 1 denotes 53% α fraction and loading direction paral-
lel to long grain axis, 2 denotes 53% α fraction and loading
direction perpendicular to long grain axis, 3 denotes 90% α

fraction and loading direction parallel to long grain axis, and
4 denotes 90% α fraction and loading direction perpendicu-
lar to long grain axis. The effect of lath thickness is depicted
in Fig. 11c; for on the x axis 1 denotes α lath thickness of 1
µm, and 2 denotes α lath thickness of 2 µm.

The results for both these local, Fig. 11 and the macro-
scopic, Fig. 9 responses can be summarized as:
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Fig. 10 Average von-Mises stresses carried by the aggregate, bcc and
hcp phases as a function of the alpha phase fraction on the left, and
stress–strain curves for the aggregate, bcc and hcp phases with dif-
ferent α fractions on the right. Microstructures a, b von-Mises stress

distributions of the hcp and bcc phases for the 53% α case, c, d von-
Mises stress distributions of the hcp and bcc phases for the 78% α case,
e, f von-Mises stress distributions of the hcp and bcc phases for the 90%
α case

i. Effect of α fraction: being the harder phase of two,
increase in α fraction increases the tensile strength, Fig.
9a.

ii. Effect of prior β size: for randomly orientated prior
β grains, decrease in prior β size increases the tensile
strength very slightly. However, as the epitaxial texture
strength of the priorβ increases, a direct grain size depen-
dence is observedwhere increase in prior β size increases
the tensile strength, both for columnar and equiaxed β

morphologies, Fig. 9c.
iii. Effect of priorβ morphology: columnar priorβ morphol-

ogy results in a higher yield point and tensile strength
as compared to equiaxed grains. The magnitude of dif-
ference is found to increase in existence of texture, i.e.
difference between columnar grains with (001) texture

and equiaxed grains with (001) texture are higher as com-
pared to the difference between their randomly oriented
counterparts, Fig. 9c.

iv. Effect of lath thickness: increase in α lath thickness
decreases the tensile strength Fig. 9b. Existence of (001)
texture intensifies the effect of lath thickness.

v. Effect of loading direction: deformation parallel to long
grain axis (axis ODF), which is also the direction of
texture fiber, gives marginally higher stress values than
texture perpendicular deformation, Fig. 11a. However,
the effect of loading direction has the least influence
on the behavior when compared with the effect of other
descriptors.

vi. Effect of prior β orientation: increase in (001) fiber tex-
ture strength decreases the tensile strength, both for when
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Fig. 11 Violin plots of stress components along the loading direction
at 4% strain, for each generated microstructure. a Effect of α fraction
for 50µm randomly oriented columnar prior β parent structures. On the
x axis, 1 denotes loading direction parallel to long grain axis, 2 denotes
loading direction perpendicular to long grain axis; b effect of prior β

grain size, grain morphology and orientation distribution. On the x axis,

1 denotes 53% α fraction and loading direction parallel to long grain
axis, 2 denotes 53% α fraction and loading direction perpendicular to
long grain axis, 3 denotes 90% α fraction and loading direction parallel
to long grain axis, 4 denotes 90% α fraction and loading direction per-
pendicular to long grain axis; c effect of lath thickness. On the x axis, 1
denotes α lath thickness of 1 µm, 2 denotes α lath thickness of 2 µm

deformation is parallel and perpendicular to the texture
fiber direction, Fig. 9c. Although (001) fiber causes a
weaker mechanical response, it enhances the effect of
other microstructures features for all of the examined
conditions, e.g., difference in stress values of columnar
vs. equiaxed prior β structures that are randomly oriented
or textured, difference in 1 versus 2µm α lath thickness
transformed from randomly oriented or textured prior β

etc.

6 Discussion

The spectral full-field FFT based modeling technique was
used to quantify partitioning of stress and strain between
the harder hcp α phase and softer bcc β phase. Relationships
weredeterminedbetween the alpha fraction/morphology/size,
β morphology/size/orientation, loading direction, and the
resulting mechanical response in the generated two-phase

structures. Some of the results such as the effect of prior
beta texture, the alpha fraction and the lamellar alpha con-
figuration agreed with previous work [2,3,7–9,51]. On the
other hand, the result on the effect of prior β grain size was
not in full agreement with Lutjering’s ductility-prior β grain
size relationship theory; that proposes the length of the β

size as grain boundary α slip length limiting factor, causing
reduced stress concentrations for small β grain sizes, higher
ductility and lower tensile strength [2,3]. With the utilized
rate-sensitive crystal plasticity constitutive equation and the
hardening model, a reversed effect is observed for random
vs. textured β grains; for the random texture case, the ten-
sile strength increased very slightly (almost negligible) with
decreased grain size, whereas for the textured case the tensile
strength decreased with decreased grain size. The disagree-
mentwith the literature for the randomly oriented priorβ case
is attributed to the simplicity of the utilized hardeningmodel,
where the slip system resistance is not explicitly modified to
implement a grain size effect.
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7 Conclusion

The studies carried out have established that a computational
approach of concurrent synthetic microstructure generation
and micromechanical modeling is useful for investigation
of microstructure–deformation relationships in polyphase
polycrystallinematerials. The sensitivity ofmechanical prop-
erties to several types of microstructural feature can be
quantified. Furthermore, the virtual microstructure database
that was generated, combined with the corresponding micro-
mechanical data, can be utilized by others for designing new
process maps and material systems for additive manufac-
turing when a particular set of properties are targeted. The
results of the present paper is summarized as:

1. The response was the most sensitive to the alpha fraction
and prior β texture;

2. Increase in α phase enhanced the tensile strength, as the
low temperature α phase is harder than the high temper-
ature β phase;

3. Increased magnitude of prior β (001) texture decreased
the tensile strength. This can be explained by the prior β

(001) texture being the soft direction for the bcc phase;
4. When α phase was present in lamellar configuration, it

dominated the behavior. This amplified the effect of α

lath thickness as being inversely related to the tensile
strength due to decreased slip length;

5. Columnar prior β grains resulted in higher tensile
strength as compared to equiaxed grains.
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