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Abstract Computational models based on the phase-field
method have become an essential tool in material science
and physics in order to investigate materials with com-
plex microstructures. The models typically operate on a
mesoscopic length scale resolving structural changes of the
material and provide valuable information about the evolu-
tion of microstructures and mechanical property relations.
For many interesting and important phenomena, such as
martensitic phase transformation, mechanical driving forces
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play an important role in the evolution of microstructures. In
order to investigate such physical processes, an accurate cal-
culation of the stresses and the strain energy in the transition
region is indispensable. We recall a multiphase-field elastic-
ity model based on the force balance and the Hadamard jump
condition at the interface. We show the quantitative char-
acteristics of the model by comparing the stresses, strains
and configurational forces with theoretical predictions in
two-phase cases and with results from sharp interface cal-
culations in a multiphase case. As an application, we choose
the martensitic phase transformation process in multigrain
systems and demonstrate the influence of the local homoge-
nization schemewithin the transition regions on the resulting
microstructures.

Keywords Phase-field · Multiphase-field · Polycrystalline
material · Microstructure evolution · Mechanical jump
conditions · Configurational forces · Interfacial excess
energy

1 Introduction

The microstructure of most materials consists of grains or
domains which differ in structure, orientation or chemical
composition. Both the evolution of these grains or domains
and the resulting heterogeneous microstructure have a deci-
sive influence on the physical and mechanical properties
of materials [1,2]. This is why the understanding of the
mechanisms, which are responsible for the evolution of the
microstructure, is extremely important in materials science.
The movement of interfaces, however, is a complex pro-
cess, which is influenced by different physical forces. The
phase-field method, which has its origin in the fundamen-
tal works of van der Waals [3], Ginzburg and Landau [4],
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Cahn and Hilliard [5] and Halperin et al. [6], offers excel-
lent characteristics, not only for a precise representation of
the interface movement, but also for coupling different driv-
ing forces, which are responsible for the movement. It has
therefore established itself in themodeling ofmicrostructural
evolution processes, such as solidification, solid-solid phase
transition, growth and coarsening of precipitations, grain
growth and martensitic phase transformation [2,7]. In the
phase-fieldmethod,we typicallymap a given sharp interface-
free boundary problem onto a diffuse interface one that is
constructed of smoothly varying phase-field order param-
eters. The different physical fields (concentration, stress,
strain, etc.) vary continuously across the constructed inter-
face, following the variation of the order parameters. Such a
construction is advantageous because it obviates the require-
ment to track the interface between the phase boundaries
during microstructural evolution [1,8], as morphological
evolution is implicitly described through the spatio-temporal
evolution of the different order parameters. Concomitant
with the evolution of the phase fields, the different physical
fields related to the mass, the momentum and the energy are
self-consistently described using appropriate conservation
equations. Although the process is elegant, appropriate care
must be taken in the construction of the evolution equations of
the phase-fields and the conservation equations, which gen-
erally require a homogenization of the variables exhibiting
jumps across the interface in the original sharp interface prob-
lem. In the absence of the correct homogenization scheme,
artificial jumps in the continuous variables can be introduced
into the problem, which then lead to an incorrect mapping of
the actual free boundary problem.

When describing solid state transformation processes or
predicting microstructure andmechanical property relations,
an accurate calculation of the stresses and the mechanical
energy at the transition region is indispensable. This requires
that the effective material parameters are defined in the dif-
fuse interface regions in non-homogeneous materials, which
is usually performed by a local homogenization of the mate-
rial parameters, using smoothly varying functions of the
spatially varying phase-fields. In the phase-field community,
there are several homogenization approaches, see [9] for an
overview. Khachaturyan’s model [10] is widely established
in phase-field applications. In the absence of inelastic strains,
the model of Khachaturyan is equal to the Voigt-Taylor (VT)
homogenization scheme [11] between locally overlapping
phases. The main assumption of the VT approach is that the
strains of overlapping phases are the same. For a systemwith
N phases, with an order parameter φα for the particular phase
α, the stress in the isostrain case reads

σ̄VT(φ) =
N∑

α=1

Cα
[
ε − ε̃α

]
hα(φ). (1)

ε is the linearized strain which, in turn, depends on the gra-
dient of the displacement field (∇u)i j = ∂ui/∂x j by ε =(∇u+∇uT

)
/2, and σi j = (C[ε − ε̃])i j = Ci jkl(εkl − ε̃kl) is

the particular stress component which uses the Einstein sum-
mation convention. ε̃α and Cα represent the local inelastic
strain and the stiffness tensor of phase α. A complete defini-
tion of the interpolation function hα(φ) for phase α and the
N -tuple φ follows in Sect. 2. This approach is employed
in [12–16]. Levitas [17] combines the VT interpolation
scheme with an interfacial stress formulation. Assuming
equal stresses in the transition region results in the Reuss-
Sachs (RS) [18] approximation

σ̄RS(φ) =
[

N∑

α=1

Sαhα(φ)

]−1 [
ε −

N∑

α=1

ε̃αhα(φ)

]
, (2)

where Sα is the compliance tensor of phase α. The local
homogenization scheme is discussed by Steinbach and
Apel [19] and Apel et al. [20]. Ammar et al. [9] propose
a Hashin-Shtrikman homogenization between locally exist-
ing phases and present an accurate comparison between
Khachaturyan’s, the VT, RS and their own approach. Durga
et al. [21] and recent works of Schneider et al. [22,23] inves-
tigate the excesses of the stress, strain and the elastic energy
for both the VT interpolation and the RS interpolation to esti-
mate the material properties at the interface. As a result of
the calculations, it is clear that the RS interpolation delivers
an interface free of excess energy, under conditions of uni-
axial loading in normal direction, while the conditions of a
parallel material circuit with a pure shear loading require a
VT interpolation, such that there is no excess contribution
from the bulk energy density to the surface energy. With this
motivation, Durga et al. [21] propose a model by combining
the VT and RS interpolation schemes, wherein a VT inter-
polation is imposed in order to derive the tangential stress
component, and the RS scheme is utilized to determine the
normal stress components with respect to the interface. In
a recent publication, Mosler et al. [24] present a variational
approach for the calculation of stresses and, correspondingly,
for the driving force of the phase evolution in the transition
region. Themodel is already formulated for applicationswith
finite deformations and allows the use of arbitrary hyperelas-
tic constitutive equations. A generalization of the model for
the usage in polycrystalline systems is discussed by Schnei-
der et al. [25].

In our recent works [22,23], we investigate the reasons for
the additional interfacial excess energy contributions caused
by the underlying homogenization assumption and propose
a homogenization scheme reflecting the mechanical jump
conditions. The resulting stresses are validated by theoreti-
cal sharp interface predictions and demonstrate the absence
of additional excess energy. One of the main results of our
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investigations is a potential which contains only continuous
variables to calculate the stresses and driving forces. This
explicit formulation for the computation of stresses, in com-
binationwith themultiphase-fieldmodel ofNestler et al. [26],
allows the derivation of amodelwhich fulfills themechanical
jump conditions and yields the configurational forces during
solid state phase transformations inmultiphase systems. This
is the topic of the current work, which was comprehensively
discussed in the thesis of Schneider [23]. In contrast to the
approaches of Mosler et al. [24] and Schneider et al. [25],
the presented model provides an explicit formulation of the
locally homogenized stresses and the driving forces, which
improve the computational efficiency. After the definition
of the multiphase-field model used here, we investigate the
consequences of the interpolation schemes and demonstrate
the reasons for the additional excess energy. Then, we derive
the configurational force balance in the phase-field context
and demonstrate that the model we derived in our previ-
ous work [22] already fulfills this balance. We extend this
model for applications to multiphase systems and demon-
strate the applicability of the proposed model on martensitic
phase transformations in multigrain systems.

2 Multiphase-field model

On the mesoscopic scale, which is situated between the
atomistic and the macroscopic length scale, most mate-
rials are heterogeneous. The multiphase-field model [26]
describes the evolution of the microstructure in multiphase
andmulticomponent systems on themesoscopic length scale.
Therefore, the parametrization of the simulation region is
realized by order parameters, φα(x, t), α = 1, . . . , N , with
N as the number of order parameters. In most materials,
the heterogeneity of the material parameters is limited to
jumps at the interface between grains or domains. Within
the physically separated regions, which are referred to as
phases [27], the material parameters are homogeneous. For
this reason, each phase can be represented by an order param-
eter. Each order parameter is part of the N -tuple φ(x, t)
and represents the respective volume fraction of the individ-
ual phases. Within its assigned region, the order parameter
becomes φα(x, t) = 1 and outside it assumes the value
φα(x, t) = 0. In contrast to models with sharp interfaces,
the transition between the phases is diffuse. This means that
a volumetric transition region exists, where at least two order
parameters coexist. In this diffuse interface region, the value
of the order parameters changes continuously in the range of
0 < φα(x, t) < 1, so the phases become continuous fields.

The local condition
∑

α φα(x, t) = 1 must always be
satisfied, as the order parameters represent the respective
volume fraction of the individual phases. As the interface
between the order parameters, and therefore between the

phases, stretches over a volumetric region, the grain boundary
energy can be reproduced by a volume integral by skillfully
choosing the integrand. This leads to a Ginzburg-Landau-
type [4] functional. Among others, Nestler et al. [26] have
successfully managed to equip the phase-field model with
sufficient degrees of freedom, in order to treat the physics
at each occurring interface of a system of N phases and the
interaction of two adjacent phases individually [28]. This
allows the formulation of a Ginzburg-Landau-type integral
for multiphase systems and the free energy of the system
becomes

F =
∫

V
εa(φ,∇φ) + 1

ε
ω(φ) + f̄bulk(φ, . . .)

︸ ︷︷ ︸
f (φ,∇φ,...)

dV, (3)

with ε as a parameter for the interface width l. With γαβ as
the surface energy at an α–β interface, the contribution of
the interfacial energy is represented by the interaction of a
gradient energy density, e.g. of the form

a(φ,∇φ) =
∑

α,β>α

γαβ |qαβ |2 (4)

and of the potential energy densityω(φ) of obstacle- or well-
type

ωob(φ) = 16

π2

∑

α,β>α

γαβφαφβ +
∑

α,β>α,δ>β

γαβδφαφβφδ,

(5)

ωwe(φ) = 9
∑

α,β>α

γαβφ2
αφ2

β +
∑

α,β>α,δ>β

γαβδφ
2
αφ2

βφ2
δ , (6)

as presented in Nestler et al. [26]. The separation of the indi-
vidual dual contributions of the interfacial energy is made
possible by the generalized α–β gradient qαβ = φα∇φβ −
φβ∇φα (|qαβ | is the vector norm of qαβ ). According to
the application, one can choose between the multi-obstacle
potential ωob(φ) and the multi-well potential ωwe(φ). In the
case of the multi-obstacle potential, we set ωob(φ) = ∞ if
the N -tuple of the order parameters φ = φ1, . . . , φN is not
in the Gibbs simplex

G =
{

φ ∈ R
N :
∑

α

φα = 1, φα ≥ 0

}
. (7)

The additional higher-order contribution ∝ φαφβφδ in the
potential (5) or ∝ φ2

αφ2
βφ2

δ in the potential (6) respectively
prevents the non-physical formation of the so-called third
phases [26] in the two-phase region. A comprehensive dis-
cussion of this term can be found in Hötzer et al. [29]. In the
current work, the multi-obstacle potential ωob(φ) is used as
the energetic potential.
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With the interpolation functions hα(φ) of the individual
phases, the bulk energy density

f̄bulk(φ, . . .) =
∑

α

f α
bulk(. . .)h

α(φ), (8)

is assigned to each point in the system. Depending on the
application, either the respective order parameter φα or a
variant with a sharper transition can be used for the interpo-
lation function hα(φ) [26].However, it should be ensured that
the condition

∑
α h

α(φ) = 1 is always fulfilled [30]. Based
on interpolation functions for two-phase systems, which are
exemplified as follows

h̃α(φα) =
⎧
⎨

⎩

h̃α
1 = φα

h̃α
2 = φ2

α(3 − 2φα)

h̃α
3 = φ3

α(6φ2
α − 15φα + 10)

, (9)

a normalized interpolation function in polycrystalline sys-
tems can be defined as

hα
i (φ) = h̃α

i (φα)
∑

β h̃β
i (φβ)

. (10)

Such an interpolation function is already used by Schneider
et al. [16] for themodelingof crackpropagation inmultiphase
systems.

The variational approach in the presence of the additional
constraint

∑
α φα = 1 leads to the following conditions for

the equilibrium of the order parameters

0 = δF
δφα

− 1

N

∑

β

δF
δφβ

, α = 1, . . . , N , (11)

as described in [26]. An equilibrium of the total system
implies additional balance equations if other field variables,
denoted by (. . .) in Eqs. (3) and (8), are considered. Since
the mobilities of the interfaces in this combined system vary
considerably, condition (11) is split into dual contributions
and an individual mobility Mαβ is subsequently introduced
for each α–β interface. This leads to Allen-Cahn equations
for each single phase in themultiphase system, with different
mobilities of the interfaces

φ̇α = − 1

N

∑

β �=α

Mαβ

(
δF
δφα

− δF
δφβ

)
. (12)

Thereby, φ̇α = ∂φα/∂t is the time derivative of φα and
δF/δφα is the variational derivative of the total energy, with
respect to φα

δF
δφα

= ∂ f (φ,∇φ)

∂φα

− ∇ · ∂ f (φ,∇φ)

∂∇φα

, (13)

where (∇·) is the divergence operator. Such an approach was
originally proposed by Steinbach and Pezzolla in [31] and
was successfully applied by Schneider et al. [16] to describe
crack propagation in multiphase systems, with wide-ranging
mobilities between solid phases and the crack phase.

3 Consequences of the homogenization methods on
the evolution of the order parameters

In our preliminary work [22], we showed that the local
homogenization schemes for the calculation of the stresses
only yield satisfying results in special one-dimensional cases.
The VT approximation provides exact results for the paral-
lel material chain and the RS approximation produces exact
results for the serial material chain. General conditions lead
to deviations of both schemes, which depend on differences
of the respective material parameters Cα and the inelastic
strains ε̃α . The consequences of the deviations for the evo-
lution equation of the order parameters (12) are discussed in
the following.

For the case of infinitesimal deformations, volumetric
averaging

σ̄ (φ) =
∑

α

σαhα(φ), ε̄(φ) =
∑

α

εαhα(φ) (14)

of phase-inherent stressesσ α and strainsεα can be performed
with the interpolation function (10), without loss of gener-
ality. However, these phase-inherent fields are generally not
known and vary depending on the homogenization assump-
tion. With Wα(εα) as the strain energy density of phase α,
the locally averaged Helmholtz strain energy density results
in

W̄ (φ, ε̄) =
∑

α

Wα(εα)hα(φ). (15)

By considering this total strain energy density and by apply-
ing the obstacle potential, the free energy of the system is
given by

F(φ,∇φ, ε̄) =
∫

V
εa(φ,∇φ) + 1

ε
ωob(φ) + W̄ (φ, ε̄)dV .

(16)

In order to calculate the interfacial energy, an integral over
the gradient energy density εa(φ,∇φ) and the free energy
potential ωob(φ)/ε of the functional (16) can be evaluated
in the direction of the interface normal. Independently of the
choice of the interface width parameter ε, both potentials are
constructed in such a way that this integral exactly equals
γαβ in the absence of additional driving forces.
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For the calculation of the equilibrium profile under the
influence of the total strain energy W̄ (φ, ε̄), a two-phase
material chain with a phase transition in the center of the
domain is considered. There, the evolution Eq. (12) of the
respective order parameters in the two phase region assumes
the following form

1

Mαβ

φ̇α = εγαβ

∂2φα

∂x2
− γαβ

2ε

16

π2 (1 − 2φα)

− 1

2

∂W̄ (φ, ε̄)

∂φα

, (17)

where x is the spatial coordinate of the material chain. In
equilibrium, the local rate of change of the order parameters
φ̇α disappears. This yields the following equation for the
equilibrium profile

∂2φα

∂x2
= 16

ε2π2

(1 − 2φα)

2
+ 1

2γαβε

∂W̄ (φ, ε̄)

∂φα

. (18)

In order to maintain a distortion-free profile of the order
parameters, the derivative of the strain energy density, with
respect to the order parameters, must vanish in equilibrium.
If this is not the case, the profile of the order parameters is
distorted by the additional contribution. Since an undistorted
profile is required for the calculation of the exact interfacial
energy γαβ , a distortion of the profile causes a deviation from
the expected value.

Since the formulation of the total energy by Eq. (16), with
a diffuse transition region is supposed to approximate the
total energy of the system with sharp interfaces, the excess
energy is the difference of the energy within the phases of
a system with sharp interfaces and the formulation with a
diffuse transition region (16) [5]. Thus, for a one-dimensional
system with one transition region, this leads to the following
excess energy

Eexc =
∫ ∞

−∞
W̄ (φ, ε̄) − WSI(ε)dx, (19)

where WSI is the strain energy density in a sharp interface
system [5,21]. Consequently, any deviation in strain energy,
obtained by the diffuse interface approach and the sharp inter-
face method, produces an excess energy within the interface.

The VT approximation relies on the fundamental assump-
tion that the total strains ε in the transition region are equal.
For the calculation of the Cauchy stress σ̄VT(φ) in the transi-
tion region, this assumption results in Eq. (1). Since the total
strain ε under the VT assumption is phase-independent, it
can be used to formulate the strain energy density. Accord-
ing to the model formulations in [12–15], this leads to the
formulation of the strain energy density

W̄VT(φ, ε) =
∑

α

Wα(ε)hα(φ)

=
∑

α

1

2

(
ε − ε̃α

) · Cα
[
ε − ε̃α

]
hα(φ). (20)

On the other hand, the RS approximation assumes that the
total stresses σ in the transition region are equal. As the
stresses in the transition region are homogeneous, they can
be used to formulate the complementary strain energy den-
sity G(σ ). Based on the formulation of the strain energy
density with the VT approximation (20), the following rela-
tion results for the complementary strain energy density
ḠRS(φ, σ ) by means of a Legendre transformation. With
∂Wα/∂ε = σ = Cα(ε − ε̃α) ⇒ ε = Sα[σ ] + ε̃α , the
complementary strain energy density of phase α is given by

Gα(σ ) = ∂Wα

∂ε
· ε − Wα

= σ · ε − 1

2

(
ε − ε̃α

) · Cα
[
ε − ε̃α

]

= σ · (Sα [σ ] + ε̃α
)− 1

2
σ · Sα [σ ]

= 1

2
σ · Sα [σ ] + σ · ε̃α. (21)

Here, σ represents the Cauchy stress, which is given by
Eq. (2). This results in the complementary strain energy
density in a multiphase system, according to the RS approx-
imation

ḠRS
(
φ, σ̄RS

)
=
∑

α

Gα
(
σ̄RS

)
hα(φ)

=
∑

α

σ̄RS ·
(
1

2
Sα
[
σ̄RS

]
+ ε̃α

)
hα(φ).

(22)

In order to obtain a distortion-free profile of the order
parameters, it is necessary that the derivative ∂W̄ (φ, ε̄)/∂φα

vanishes in the configurational equilibrium condition (18) for
a material chain, while holding the locally averaged strain ε̄

constant. The following refers to a serialmaterial chain setup,
as depicted in Fig. 1. Assuming locally averaged strains [see
Eq. (14)] one obtains

∂ ε̄

∂φα

=
(

∂εα

∂φα

hα + ∂εβ

∂φα

hβ

)
+ (εα − εβ

) ∂hα

∂φα

= 0, (23)

where the condition ∂hα/∂φα = −∂hβ/∂φα is used. The
requirement for a distortion-free profile results in

∂W̄

∂φα

= (Wα − Wβ
) ∂hα

∂φα

+ ∂Wα

∂φα

hα + ∂Wβ

∂φα

hβ

= (Wα − Wβ
) ∂hα

∂φα
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0 ε̃α
xx εα

xx εβ
xx

0

εxx

W
W β Wα

W̄VT WSI

0 σ0

0

GSI

σxx

G

Gβ Gα

σ0 σ0φα φβ

Fig. 1 Comparison of the strain energy (left) and the complementary
strain energy density (right) for the example of a serial material chain.
The simulation setup, using Cβ = 0.2Cα , hα = φα and ε = 5Δx , is
shown in the inset of the right figure. The configurational equilibrium

conditions Gα = Gβ = GSI and σα
xx = σ

β
xx = σ0 are highlighted with

dotted lines. The resulting excess energy of the VT approximation Eexc
is marked in gray

+ ∂Wα

∂εα
xx

∂εα
xx

∂φα

hα + ∂Wβ

∂ε
β
xx

∂ε
β
xx

∂φα

hβ

= (Wα − Wβ
) ∂hα

∂φα

+ σ0

(
∂εα

xx

∂φα

hα + ∂ε
β
xx

∂φα

hβ

)

= (Wα − σ0ε
α
xx − (Wβ − σ0ε

α
xx )
) ∂hα

∂φα

= (Gα − Gβ
) ∂hα

∂φα

= ∂ḠRS

∂φα

= 0 (24)

for the serial material chain. Imposing ε̃β = 0 results in the
following relation for the configurational equilibrium of a
serial material chain

Gα = Gβ

σ 2
0

2

1

λα + 2μα
+ σ0ε̃

α
xx = σ 2

0

2

1

λβ + 2μβ

�⇒ ε̃α
xx = σ0

2

(
1

λβ + 2μβ
− 1

λα + 2μα

)
. (25)

Therein, λα, λβ and μα,μβ are the respective Lamé con-
stants. In Fig. 1, the strain energy densities of both approx-
imations are shown for the example of the serial material
chain and the equilibrium state Gα = Gβ = GSI, where GSI

represents the sharp interface complementary strain energy
density. Since the potentials Gα(σxx ) and Gβ(σxx ) depend
only on the stress σxx , and since σα

xx = σ
β
xx = σ0 applies

in the serial material chain, the equilibrium state for the RS
approximation is exactly determined, as can be seen on the
right side of Fig. 1. It is also clear that the complementary
excess energy contribution

E∗
exc =

∫ ∞

−∞
Ḡ(φ, σ̄ ) − GSI(σ )dx, (26)

vanishes for the case of the RS approximation. Using strain
energies, this equilibrium corresponds to an equilibrium line
WSI = (∂GSI/∂σ) σ0−GSI = εxxσ0−GSI between the bulk
energies, defined through the reverse Legendre transforma-
tion of GSI. The difference between the equilibrium lineWSI

and W̄VT leads to excess energy, according to Eq. (19), and
is highlighted in gray in Fig. 1.

For the case of the parallel material chain, which is shown
in the inset of Fig. 2, the applied boundary condition and the
configurational equilibrium condition (18) directly imply

Wα = Wβ

(
ε0 − ε̃α

yy

)2
(λα + 2μα)

2
= ε20

2

(
λβ + 2μβ

)

�⇒ ε̃α
yy = ε0

⎛

⎝1 −
√

λβ + 2μβ

λα + 2μα

⎞

⎠ , (27)

where ε̃
β
yy = 0 was chosen. The profiles of the strain energy

densities for this case are shown inFig. 2. In this case, the con-
figurational equilibrium condition Wα = Wβ = WSI holds
at one point, which is shown on the left side of Fig. 2. For the
complementary strain energy, this equilibrium state leads to
the equilibrium lineGSI = ∂WSI/∂εyy−WSI = σyyε0−WSI.
The deviation of ḠRS(σ̄yy(φ)) from the equilibrium line GSI

within the interface region results in an additional com-
plementary excess energy E∗

exc [see Eq. (26)], which is
highlighted in gray in Fig. 2.
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0 ε̃α
yy

ε0

0

WSI

εyy

W

W β Wα

ε0

ε0

φα φβ

0 σβ
yy

σα
yy

0

σyy

G

Gβ Gα

ḠRS GSI

Fig. 2 Comparison of the strain energy (left) and the complementary
strain energy density (right) for the example of a parallel material chain.
The simulation setup, using Cβ = 0.2Cα , hα = φα and ε = 5Δx , is
shown in the inset of the left figure. The configurational equilibrium

conditions Wα = Wβ = WSI and εα
yy = ε

β
yy = ε0 are highlighted with

dotted lines. The resulting excess energy of the RS approximation E∗
exc

is marked in gray

In case of the serial material chain, the excess energy of
the VT approximation leads to a narrowing transition region,
and in case of the parallel material chain, the complementary
excess energy of theRS approximation causes the interface to
widen. This, in turn, modifies the effective interfacial energy,
as discussed in Durga et al. [21] and Schneider et al. [22].

4 Configurational force balance for infinitesimal
deformations

The investigation of the driving force on inhomogeneities in
continuum mechanics goes back to Eshelby [32,33]. Dis-
placements, vacancies, voids, cracks, but also inclusions
in a medium are examples of such inhomogeneities. In
1975, Eshelby calculated the configurational forces on inho-
mogeneities [33]. Based on a variational approach, Gurtin
derived the balance equations on the singular plane in a two-
phase region [34,35]. This results in the balance of linear
momentum on a singular surface

�S�ns = 0, (28)

and in an additional energetic condition

�W � = �Sns · Fns�. (29)

S is the first Piola–Kirchoff stress tensor and ns is the nor-
mal vector of a singular plane, �.� denotes the jump of a value
through the interface, W is the strain energy density, F rep-
resents the deformation gradient and (·) denotes the inner
product of vectors or tensors (a · b = aibi , A · B = Ai j Bi j ).

This additional condition is known as the Maxwell rela-
tion [34,35] and was introduced by James [36] in 1981.
According to Gurtin [35], a consideration of the contribu-
tions of the interfacial energy results in the energetic jump
condition on singular planes

�W � − �Sns · Fns� = −γαβκ, (30)

where κ represents the double mean curvature of the singu-
lar plane and γαβ represents the interfacial energy between
the neighboring phases α and β. Equation (30) is referred to
by Gurtin [35] as configurational force balance. Considering
chemical configurational forces, Eq. (30) is equivalent to the
generalized Gibbs–Thomson equation, which was derived
by Johnson [37] in 1986. The Gibbs–Thomson equation bal-
ances all acting configurational forces on inhomogeneities in
a body. Thus, �W �−�Snsr ·Fnsr � is the elastic configurational
force on inhomogeneities.

The Hadamard condition on a singular surface is given by

�F� = �∇u� = a ⊗ ns, (31)

with (⊗) as the outer product of two vectors and a = �Fns�
as the jump of F in normal direction (see e.g. [38]). Hence,
for the jump of the infinitesimal strain, this leads to

�ε� = 1

2

(
a ⊗ ns + ns ⊗ a

)
. (32)

With the balance of linear momentum on a singular surface

�σ �ns = 0, (33)

the balance of configurational forces (30) results in
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�W � − �∇u�ns · σns = −γαβκ. (34)

By using the assumption �∇u�ns · σns ≈ �ε�ns · σns for a
geometrically linear case, according to Voorhees and John-
son [39], the configurational force balance (30) can bewritten
as

�W � − �ε�ns · σns = −γαβκ. (35)

Thus, Eq. (35) is the balance of the mechanical and surface
configurational forces for infinitesimal deformations.

5 Multiphase elasticity model

In our preliminary work [22], a phase-field model for two
phases was introduced and validated. Both the Hadamard
condition (31) and the balance of linear momentum on a
singular surface (33) are fulfilled during the phase transi-
tion. In this section, we demonstrate that this model already
reflects exactly the balance of the configurational forces (35).
This lays the foundation to investigate the influence of the
mechanical configurational forces on phase transition and
grain growth processes, using the introduced model. The
necessary extension of the model to applications in poly-
crystalline systems is described in the following.

The knowledge of the normal vector in the transition
region is important for the application of the jump condi-
tions (33) and (31), as well as for the calculation of the
configurational forces (35). Apart from singularities, such as
e.g. quadruple points or triple lines, respectively triple points
in two dimensions, the normal vector is uniquely determined
in the parametrization of a region with sharp interfaces. If
the transition region is diffuse, a volumetric region exists,
where several phases can coexist. Despite this coexistence, a
normal vector nα = ∇φα/|∇φα| for each phase φα(x, t)
and point in the region can be assigned with the help of
the existing order parameters. If only two phases coexist
in a point, the normal vector is uniquely determinable, as
nα = −nβ = ∇φβ/|∇φβ | ∧= ns , and represents the normal
vector on a singular surface ns . If more than two phases coex-
ist, the normal vector can no longer be determined uniquely,
as can be seen on the left side of Fig. 3. The three phases
coexist in the highlighted area. For this reason, there are three
different normals nα, nβ and nδ in each point of the area.

In the case of sharp interfaces, the singular plane is charac-
terized by the jump of the material parameters �C�, for both
jump conditions (31) and (33) and theMaxwell relation (29).
For isotropic materials, the jump of the Lamé constants �λ�,
�μ� or the jump of the Young’s modulus �E� and the Pois-
son’s ratio �ν� are sufficient for the explicit definition of
the singular plane. Each of these material parameters can be
employed for the calculation of a scalar fieldM(φ) to calcu-

late a unique normal. Expressed by the interpolated Young’s
modulus, this yields

ME (φ) =
∑

α

Eαφα. (36)

With this scalar field, a normal vector can be calculated as

n(M(φ)) = ∇M(φ)

|∇M(φ)| (37)

for each point within the transition region, especially in
regions with many overlapping phases. In accordance with
the specification when only two phases coexist in a region,
n(ME (φ)) reduces to the formulation of a two-phase model

n(ME (φ)) = ∇(Eαφα + Eβφβ)

|∇(Eαφα + Eβφβ)| (38)

= �E�∇φα

|�E�∇φα| = ∇φα

|∇φα| .

On the right side of Fig. 3, ME (φ) and the normal vectors
for the considered three-phase region are presented. When
comparing both methods, it can be seen that the directions
of the normals in the two-phase regions do not differ, as
was shown by Eq. (38). If three phases coexist in a region,
advantages of the normal calculation through Eq. (37) can
be recognized. Since the normal vector is a locally homoge-
nized quantity, the normal ∇φα of the phase with the largest
Young’s modulus Eα is preferred. If the jump of the material
parameters disappears between two phases, the gradient of
M(φ) vanishes as well and the spatial point can be treated as
a bulkmaterial for anyof the occurringphases. This is another
advantage of this method, which can be used to reduce the
complex calculation of stresses in transition regions to the
calculation rule within a phase.

In general, the singular plane is characterized by the jump
of the total stiffness tensor �C� and the jumps of the nonelastic
strains �ε̃�. For this reason, the following general form is
suggested for the calculation of the scalar field M(φ)

M��(φ) =
∑

α<β

⎛

⎝
∑

i, j,k,l

∣∣∣Cα
i jkl − Cβ

i jkl

∣∣∣
∑

α<β

∑
i, j,k,l

∣∣∣Cα
i jkl − Cβ

i jkl

∣∣∣

+
∑

k,l

∣∣∣ε̃α
kl − ε̃

β
k,l

∣∣∣
∑

α<β

∑
k,l

∣∣∣ε̃α
kl − ε̃

β
kl

∣∣∣

⎞

⎠φαφβ. (39)

Only if the jumps of all components of the stiffness tensor
�Ci jkl� and the jumps of all components of the nonelastic
strains �ε̃kl� disappear, the singular plane disappears as well.

A formulation for the scalar fieldM(φ), independent from
material parameters, is related to the free energy potential (5).
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Fig. 3 In a region with three phases φα , φβ and φδ , the normals of
the respective phases are shown on the left. The three phases coexist in
the highlighted region. This is why no unique normal can be defined.

On the right, ME (φ) (36) and the normals n (37) are presented. Since
Eβ = 0.5Eα and Eδ = 0.25Eα are chosen, a lopsided normal profile
is evident

Depending on the chosen potential type, choices can bemade
for the scalar fieldM(φ), considering only the local config-
uration

Mob(φ) =
∑

α,β>α

φαφβ, Mwe(φ) =
∑

α,β>α

φ2
αφ2

β. (40)

5.1 Driving force potential for multiphase systems

Equivalent to the procedure in the previously published two-
phase model [22], we first define the continuous variables
for the formulation of the strain energy density as a function
of these variables. The jump conditions (31) and (33) are
the basis for the definition of these variables. By incorporat-
ing the definition of the normal n in Eq. (37), the stresses
and strains are first transformed into a orthonormal basis
B = {n, t, s}. If these transformed stresses and strains for
phase α are represented in the Voigt notation and the order
is interchanged, as described in our preliminary work [22],
this results in

σ α
B(n) :=

(
σnn, σnt , σns, σ

α
t t , σ

α
ss, σ

α
ts

)T = (σ n, σ
α
t

)T

εα
B(n) :=

(
εα
nn, 2ε

α
nt , 2ε

α
ns, εt t , εss, 2εts

)T = (εα
n , εt

)T
.

(41)

The continuous contributions of the stresses and strains
are summarized in σ n := (σnn, σnt , σns) and εt :=
(εt t , εss, 2εts), since the jump of these variables vanishes
on a singular plane, according to the jump conditions (31)
and (33). The variables σα

t := (σα
t t , σ

α
ss, σ

α
ts) and εα

n :=
(εα

nn, 2ε
α
nt , 2ε

α
ns) correspondingly summarize the discontinu-

ous contributions of the stresses and strains. The superscriptα
implies that the variable is discontinuous and therefore phase-
dependent. Furthermore, the stiffness tensor, formulated in
the basis B, is divided into blocks for further calculations

CB =

⎛

⎜⎜⎜⎜⎜⎜⎝

Cnnnn Cnnnt Cnnns Cnntt Cnnss Cnnts
Cntnn Cntnt Cntns Cnttt Cntss Cntts
Cnsnn Cnsnt Cnsns Cnstt Cnsss Cnsts
Ct tnn Ct tnt Ct tns Ct t t t Ct tss Ct t ts
Cssnn Cssnt Cssns Csstt Cssss Cssts
Ctsnn Ctsnt Ctsns Ctst t Ctsss Ctsts

⎞

⎟⎟⎟⎟⎟⎟⎠
(42)

=:
(
Cnn Cnt

Ctn Ct t

)
,

withCnn andCt t as symmetrical matrices of dimension 3×3.
Cnt and Ctn are 3×3 matrices for which the condition Ctn =
CTnt is fulfilled.With these notations, the strain energy density
of phase α can be formulated as follows

Wα(εα
B) = 1

2

((
εα
n − ε̃α

n

) · Cα
nn

(
εα
n − ε̃α

n

)
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+ (εα
n − ε̃α

n

) · Cα
nt

(
εt − ε̃α

t

)

+ (εt − ε̃α
t

) · Cα
tn

(
εα
n − ε̃α

n

)

+ (εt − ε̃α
t

) · Cα
t t

(
εt − ε̃α

t

))
. (43)

According to Eq. (8), the strain energy density in a mul-
tiphase system is the linear interpolation of the respective
contributions with the interpolation function (10)

W̄ (φ, εB) =
∑

α

Wα(εα
B)hα(φ). (44)

Following [22], the variational derivative of the strain energy
E = ∫V W̄dV in a two-phase system results in

δE

δφα

= ∂W̄ (φ, εB)

∂φα

= ∂P(φ, σ n, εt )

∂φα

(45)

= (pα(σ n, εt ) − pβ(σ n, εt )
) ∂hα(φ)

∂φα

.

Here, pα(σ n, εt ) represents the Legendre transform of
Wα(εα

B) with respect to εα
n

pα(σ n, εt ) = Wα
(
εα
n (σ n, εt ), εt

)

− ∂Wα(εα
n (σ n, εt ), εt )

∂εα
n

· εα
n (σ n, εt )

= 1

2

((
σ n

εt

)
·
(
T α

nn T α
nt

T α
tn T α

t t

)(
σ n

εt

))

−
((

σ n

εt

)
·
(
I T α

nt
O T α

t t

)(
ε̃α
n

ε̃α
t

))

+ 1

2

(
ε̃α
t · T α

t t ε̃
α
t

)
, (46)

with T α , as implicitly defined in (48) - (50). P(φ, σ n, εt ) =
pα(σ n, εt )hα(φ) + pβ(σ n, εt )hβ(φ) is the locally homog-
enized mixture of the strain energy and the complementary
strain energy density, containing only continuous variables
σ n and εt . P(φ, σ n, εt ) can easily be extended tomultiphase
systems and becomes

P(φ, σ n, εt ) =
∑

α

pα(σ n, εt )h
α(φ)

= 1

2

((
σ n

εt

)
· T̄
(

σ n

εt

))

−
∑

α

((
σ n

εt

)
·
(
I T α

nt
O T α

t t

)(
ε̃α
n

ε̃α
t

)

+1

2
(ε̃α

t · T α
t t ε̃

α
t )

)
hα(φ). (47)

The locally averaged contributions of the proportionality
matrix T̄ are split in the same way as CB in eq. (42) and
are defined as follows

T̄ nn :=
∑

α

T α
nnh

α(φ) := −
∑

α

Sα
nnh

α(φ) (48)

T̄ nt :=
∑

α

T α
nt h

α(φ) :=
∑

α

Sα
nnCα

nt h
α(φ) (49)

T̄ t t :=
∑

α

T α
t t h

α(φ) :=
∑

α

(
Cα
t t

− Cα
tnSα

nnCα
nt

)
hα(φ). (50)

The evolution of the order parameters is described by
Eq. (12). The local change ∂φα/∂t = 0 disappears when
the system is in equilibrium. The variational derivative of
the strain energy density is given by Eq. (45) and can be
described directly by means of the potential P(φ, σ n, εt ).
For a two-phase system in equilibrium, this leads to

∂P

∂φα

= −2γαβ

(
εΔφα − 16

επ2

(1 − 2φα)

2

)
, (51)

when considering the strain energy and using the obstacle
potential ωob(φ) (5). In the sharp interface context, the right-
hand side of Eq. (51) corresponds to −γαβκ [41]. The left-
hand side of the equation corresponds to the difference of
the potentials pα(σ n, εt ) and pβ(σ n, εt ), so that we rewrite
Eq. (51) to

�p(σ n, εt )� = �W � − σ n · �εn� (52)

= �W � − σn · �ε� n = −γαβκ.

The configurational equilibrium condition (51) gives rise
to the balance of the configurational forces in a geometri-
cally linear case. Thus, the balance of the configurational
forces (35) is exactly reproduced in the phase-field context
by using the potential P(φ, σ n, εt ).

5.2 Calculation of stresses

Equivalent to the calculations in [22], the calculation of the
stresses can be derived from the potential P . In a multiphase
system, the stress results in

σ̄ B =
(

−T̄ −1
nn −T̄ −1

nn T̄ nt

−T̄ tnT̄
−1
nn T̄ t t − T̄ tnT̄

−1
nn T̄ nt

)

︸ ︷︷ ︸
KB (φ)

(
εn
εt

)

+
(

T̄ −1
nn O

T̄ tnT̄
−1
nn −I

)(
χ̃n
χ̃ t

)

︸ ︷︷ ︸
σ̃ B

, (53)

with χ̃n and χ̃ t as normal and tangential parts of the inelastic
strains, which are defined as

χ̃n =
∑

α

(
ε̃α
n + T α

nt ε̃
α
t

)
hα(φ) (54)
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χ̃ t =
∑

α

T α
t t ε̃

α
t h

α(φ). (55)

With the transformations K(φ) = MT
εKB(φ)Mε and

σ̃ v(φ) = MT
σ σ̃ B(φ), where the corresponding transfor-

mation matrices are defined in Schneider et al. [22], the
following result is derived for the stresses in the Voigt repre-
sentation and in a Cartesian coordinate system

σ̄ v = K(φ)εv + σ̃ v(φ). (56)

6 Validation of the model

A detailed validation of the stresses and the driving forces
for two-phase systems and a comparison with VT and
RS homogenization schemes can be found in Schneider
et al. [22]. In this section, we therefore only focus on the
validation of the stresses in multiphase regions. We choose
a two-dimensional domain with a quadruple point, as shown
in Fig. 4, and use n = n(ME (φ)) [see Eqs. (36) and (37)]
for the calculation of the normal vector.

For a parametrization of a region with sharp transitions
between the order parameters, no homogenization of the
material parameters is necessary and the calculation rule for
the stresses reduces to Hooke’s law σ̄ = C[ε]. In addition, a
cubically symmetric division of the region is chosen to enable
an exact parametrization on the used equidistant orthogonal
grid. This sharp interface solution is employed for the val-
idation and is referred to as SI solution in the following.
Additionally, we compare the results of the proposed model
with the solutions of the finite deformation model of Schnei-
der et al. [25], denoted as FD solutions. In order to ensure
the comparability, we guaranty that the resulting local strains
are below 2%. A macroscopic stress boundary condition is
applied on all sides of the two-dimensional region, which
guarantees amean stress of σ̂ = (∫ σ̄ (x)dV

)
/V . The result-

ing von Mises stress σmises of the sharp and diffuse interface
solution can be seen in the lower part of Fig. 4. The com-
parison of both solutions shows a good agreement of the von
Mises stress σmises.

For a detailed validation of the stresses at the quadruple
point, the profiles of the von Mises stress along the diago-
nals of the domain, which are characterized by the normals
n1 = (1, 1, 0)T/

√
2 and n2 = (1,−1, 0)T/

√
2, are shown in

the top-right in Fig. 4. Compared to the SI solution, the stress
peaks at the quadruple point are neither reproduced by the
FD nor by the presented model. However, the interpolation
of the material parameters guarantees that the stresses out-
side the transition region are in excellent agreement. Thus, it
can be assumed that the proposed model and the FD model
correctly approximate the SI solution, even in the presence
of the multiphase region.

The jump of the configurational forces is described by
Eq. (35), and according to Eq. (51), the jump of the
potential P(φ, σ n, εt ) reproduces the mechanical configu-
rational forces. For this reason, we investigate the potential
P(φ, σ n, εt ) along the diagonals n1 and n2 for the validation
of our model. For P(φ, σ n, εt ) along the direction of n1, this
leads to

Pn1 = W̄ − εn1 · σ̄n1 (57)

= −1

2
(σ̄11ε12 + σ̄12ε11 + σ̄12ε22 + σ̄22ε12) ,

and for the potential P(φ, σ n, εt ) along the domain diagonal
n2, this results in

Pn2 = W̄ − εn2 · σ̄n2 (58)

= 1

2
(σ̄11ε12 + σ̄12ε11 + σ̄12ε22 + σ̄22ε12) .

Pn1 and Pn2 are equivalent to the potential P(φ, σ n, εt )of the
presented model along the corresponding domain diagonal
and result in themechanical configurational force. Therefore,
the profiles of the potentials Pn1 = n1 · Pn1 and Pn2 =
n2 · Pn2 along the corresponding diagonals are presented
in Fig. 4, for the validation of the driving forces below the
stress profiles. Compared to the SI solution, the profiles of
the presented model outside the transition region match very
closely.

In Fig. 5, a more realistic validation case of the quadruple
point is illustrated. Since all material parameters of the cor-
responding phases are chosen differently, a jump does exist
for both the resulting von Mises stress σ̄mises and the poten-
tials Pn1 and Pn2 along the diagonal at the quadruple point.
Compared to the SI solutions, a very good agreement of the
corresponding profiles of σ̄mises outside the transition region
can be recognized for the proposed as well as for the FD
model, regardless of these jumps. For the profiles of Pn1 and
Pn2 , the SI, the FD and the diffuse solutions are very close
until just before the quadruple point.

This shows that the mechanical configurational forces of
a sharp interface description can be very well reproduced
with the presented diffuse interface model, even in a multi-
phase region. Thus, the model can be used to investigate the
influence of the mechanical configurational forces on phase
transitions andgrain growthprocesses inmultiphase systems.

7 Application: martensitic transformation

Martensite plays a key role in increasing the mechanical
strength of steel. Due to the fast transformation speed, it is
difficult to perform in-situ studies of the displacive formation
of martensite. Numerical methods provide a powerful way
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Fig. 4 Validation of the stress σ̄mises and the potentials Pn1 or Pn2 in
a quadruple point. The domain contains four phases with Cα = Cδ =
2Cβ = 2Cχ and is presented in the top-left image. The macroscopic
stress boundary condition σ̂xx = σ̂yy = σ0 and σ̂zz = σ̂xy = σ̂xz =
σ̂yz = 0 is applied on all sides. The solutions of the presented model
with diffuse interface parametrization, using hα = φα and ε = 5Δx ,
(denoted by “new”) are contrasted with the solutions of a parametriza-
tionwith sharp interfaces (denoted by “SI”) andwith the solutions of the

finite deformation model of Schneider et al. [25] (denoted by “FD”). A
comparison of the vonMises stress σ̄mises of the whole domain is shown
in the lower area of the figure. A detailed comparison of the profiles
of σ̄mises and of the potential Pn1 or Pn2 along the dashed lines, in the
direction of n1, between the points (175, 175, 0) and (225, 225, 0), and
respectively, between the points (175, 225, 0) and (225, 175, 0), in the
direction of n2, is shown in the top-right

to obtain a detailed insight into the transformation behavior
and to gain a better understanding of the underlying mecha-
nisms. The phase-field approach has emerged as a potent tool
to study martensitic transformation [44,45] using standard
interpolation schemes for material parameters. However, as

presented in the last sections, standard interpolation schemes,
such as the VT or RS interpolation, produce undesirable
excess energy, which distorts the mechanical driving force
and thus the resulting microstructure. In the next sections,
we demonstrate the applicability of the proposed model to
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Fig. 5 Validation of the stress σ̄mises and the potentials Pn1 and Pn2
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Cα = 2Cβ = 4Cδ = 4/3Cχ . A detailed comparison of the profiles of
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tion of n1 and n2, is shown on the right. The solutions of the presented
model with diffuse interface parametrization (denoted by “new”) are
contrasted with the solutions of a parametrization with sharp interfaces
(denoted by “SI”) andwith the solutions of the finite deformationmodel
of Schneider et al. [25] (denoted by “FD”)
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Fig. 6 Free energy density of a martensite variant consisting of the
interfacial and chemical part. φv = 0.0 is a metastable point and φv =
1.0 is an absolute minimum. The local maximum describes the energy
barrier which has to be overcome in case of a nucleation event

describe martensitic phase transformation and show devia-
tions in the resulting microstructure caused only by the used
interpolation scheme.

7.1 Model characterization for martensitic phase
transformation

Martensite arises from a complex interaction of three prin-
cipal driving forces [46]. The transformation is caused by a

temperature difference that causes a lower chemical energy
density Wchem of martensite than of austenite. This is coun-
teracted by the strain energy density W , which usually acts
against the chemical driving force. In addition, a new inter-
face betweenmartensite and austenitemust be built up,which
acts against the formation of supercritical martensitic nuclei,
with the strength of γαβκ . Therefore, the total free energy of
the system can be expressed as

F =
∫

V
εa(φ,∇φ) + 1

ε
ωob(φ)

+ W̄ (φ, ε) + W̄chem(φ)dV . (59)

From a crystallographic point of view, austenite can trans-
form into 24 different martensit variants, which differ in the
orientation relationship to their parent phase. For simplicity,
they can be grouped into three different main types known as
Bain variants. It is experimentally observed that the growth
of martensite stops at grain boundaries [47]. This implies
that modeling each austenite grain and its resulting variants
with its own set of order parameters is appropriate in order
to take account of this behavior. For the modeling of marten-
sitic transformation, the N -tuple φ is subdivided into blocks
consisting of one parent phase and its resulting Bain variants,
e.g.
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φ = (φa1, φa1v1 , φa1v2 , φa1v3, φa2, φa2v1, . . .). (60)

Here, φa1 is the order parameter of the first austenitic grain,
and φa1v1 , φa1v2 and φa1v3 are the order parameters of its
martensitic variants. The strain energy density for each phase
is calculated according to Sect. 5. For austenite as well as for
martensitic variants, we use the stiffness of a cubic material,
which reads

Ccubic =

⎛

⎜⎜⎜⎜⎜⎜⎝

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C11 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

⎞

⎟⎟⎟⎟⎟⎟⎠
. (61)

The transformation-induced eigenstrains for each variant are
given by the Bain strains [48]

ε̃1 =
⎛

⎝
ε3 0 0
0 ε1 0
0 0 ε1

⎞

⎠ , ε̃2 =
⎛

⎝
ε1 0 0
0 ε3 0
0 0 ε1

⎞

⎠ , ε̃3 =
⎛

⎝
ε1 0 0
0 ε1 0
0 0 ε3

⎞

⎠ ,

(62)

where ε1 = (a − ac)/ac and ε3 = (c − ac)/ac are depen-
dent on the crystal lattice parameters of martensite (a, c) and
austenite (ac).

It is assumed that the undercooling is constant in terms
of time and space, so that the difference in the chemical
energy densities between austenite and martensite can be
modeled as a phase-dependent constant value. To realize this,
the respective chemical driving force Wα

chem is multiplied
with the interpolation function hα(φ)

W̄chem(φ) =
∑

α

Wα
chemh

α(φ). (63)

The energetical zero level is set to the chemical energy den-
sity of austenite, so that only the difference in the chemical
energy densities between austenite and martensite ΔWa−v

chem
has to be determined, resulting in Wα

chem = 0 if α is an
austenitic phase and inWα

chem = −ΔWa−v
chem if α is one of the

correspondingmartensitic variants. Considering a two-phase
system consisting of a martensite phase φv and an austenite
phase φa = 1−φv , the interfacial and chemical energy den-
sity of the martensite phase is calculated as

ΔW (φv) = 1

ε
ωob(φ) + W̄chem(φ) (64)

= 16

επ2 γavφv(1 − φv) − ΔWa−v
chemh

v
2(φ)

and is shown in Fig. 6. It can be seen that an energetical
barrier for the martensite phase does exist which has to be

overcome in the case of a nucleation event. Depending on the
local stresses, the contributions of the elastic driving forces
shift the potential curve upwards or downwards, which leads
to a respective increase or decrease of the nucleation barrier.
The evolution Eq. (12) is extended by a Langevin noise term
ζ and reads

φ̇α = − 1

N

∑

β �=α

[
Mαβ

(
δF
δφα

− δF
δφβ

)]
+ ζ. (65)

The noise ζ , representing thermal fluctuations, is only active
in the diffuse interface region and leads to the nucleation of
martensite at austenite grain boundaries. This is consistent
with experimental findings that martensite nucleates het-
erogeneously [49]. In addition, autocatalytic nucleation at
martensite-austenite interfaces is enabled. The mobility Mαβ

is only nonzero between a parent phase and its related vari-
ants.

7.2 Simulation parameters

A 2D grain structure, which was obtained as a result of
a grain growth simulation, is utilized as the starting point
for the simulation of martensitic transformation. Periodic
boundary conditions are applied for all presented simulations
and preprocessing steps. In a (500�x)×(500�y) domain,
150 austenitic grains are filled with a Voronoi tessellation,
which is rotated randomly around the z-axis. Using the grid
size of Δx = Δy = 1.3 nm, we resolve a domain of size
0.65 × 0.65µm2. The parameter ε, related to the interface
width, is set to ε = 2.5�x to resolve the interface region
with approximately six cells. Equation (65) is solved numer-
ically using a finite differencemethod,without any additional
driving forces and without the noise term. The simulation is
stopped when 50 grains remain. The grains are numbered in
groups of three, so that the newly appearing martensite vari-
ants are indexed α + 1 and α + 2, where α is the index of the
parent austenitic phase.We use the physical parameters listed
in Table 1 for an Fe-31at.%Ni alloy, according to [50]. The
interfacial energy of γαβ = 0.1 J/m2 is taken to be constant
for all occurring interfaces. The third order parameter in the
potential (5) is set to γαβδ = 15γαβ . A detailed discussion
for the choice of the γαβδ values can be found in [29]. The
driving force due to the relative undercooling is determined
by

ΔWa−v
chem = Q(T0 − T )

T0
, (66)

where Q = 3.5 × 108J/m3 is the latent heat, T0 = 405 K
is the stress-free equilibrium temperature and T denotes the
undercooling temperature. A quenching temperature of T =
254 K leads to a chemical driving force of ΔWa−v

chem = 1.3×
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Table 1 Physical parameters

Parameter Value

Interfacial energy γ 0.1 J/m2

Latent heat Q 3.5 × 108 J/m3

Shear modulus μ 28 GPa

Poisson’s ratio ν 0.37

Equilibrium temperature T0 405 K

Quenching temperature T 254 K

Eigenstrains |ε1| = |ε3| 0.07

108 J/m3. We use anisotropic elastic constants, which are
calculated according to Schmidt and Gross [51]

C11 = μ

(
2(2 + Az)

1 + Az
− 1 − 4ν

1 − 2ν

)
, (67)

C12 = μ

(
2Az

1 + Az
− 1 − 4ν

1 − 2ν

)
, (68)

C44 = μ
2Az

1 + Az
, (69)

where μ = 28 GPa is the shear modulus and ν = 0.375
is the Poisson ratio. Using an anisotropic case of Az =
2C44/(C11−C12) = 2, the components of the stiffness tensor
are determined to be C11 = 130.7 GPa, C12 = 93.3 GPa and
C44 = 37.3 GPa. Since our model does not include plasticity,
we use reduced eigenstrains of ε1 = 0.07 and ε3 = −0.07
to avoid nonphysically high stresses. Both the eigenstrains
and the stiffnesses are rotated depending on the orientation
of the parent phase. Since the experimental data for the trans-
formation speed is ambiguous, the mobility Mαβ between an
austenitic phase and its variants is chosen in such a way that
the simulation is numerically stable. The noise ζ in Eq. (65)
is applied every hundredth time step, with a uniform distribu-
tion. This leads to a fluctuation of up to 0.2 in the phase-field
values. In the first time step, a 2.5 times higher amplitude is
used to enable first-time nucleation.

The simulations are performed with the Pace3D (Parallel
Algorithms for Crystal Evolution in 3D) software package,
version 2.1.1. For each order parameter, a separate phase-
field evolution Eq. (65) is solved on a finite difference grid
with an explicit forward Euler scheme. For polycrystalline
systems, the approach results in a large number of order
parameters to be stored in each cell. To efficiently solve the
set of phase-field equations, we use a Locally-ReducedOrder
Parameter (LROP) optimization [52], [53]. By means of a
dynamic list, the LROP algorithm fixes a maximum number
of equations solved in each cell of the computational domain.
Therefore, the number of phase-field equations does not
increase with an increasing total number of phases or grains
because only the locally active phase-fields are updated. In
the initially purely austenitic polycrystalline microstructure

depicted in Fig. 7a, only binary interfaces and triple junctions
are present. Thus, we set the LROP algorithm to deal with
a maximum of nine phases, without any loss in accuracy.
The mechanical equilibrium condition ∇ · σ̄ = 0 is solved
in every time step, where M��(φ) [see Eq. (39)] is used for
the calculation of the normal vectors in multiphase regions.
To reduce simulation time, the domain is decomposed in x-
as well as in y-direction utilizing the MPI (Message Parsing
Interface) standard.

7.3 Results and discussion

The temporal evolution of the microstructure is shown in
Fig. 7. At time t = t0, no martensite variants exist (Fig. 7a),
and thus we avoid any a priori assumptions about the marten-
sitic transformation path. By heterogeneous noise at the
austenite grain boundaries, growablemartensitic nuclei occur
both at triple junctions aswell as at grain boundaries (Fig. 7b).
This is only possible when two variants meet and grow as
twins to reduce the strain energy. This behavior is similar to
that reported in [50]. If the nucleation barrier is not overcome,
the variations introduced into the system disappear within
some time steps. By the growth of one martensite variant, the
nucleation barrier for a second variant decreases through the
incorporated eigenstrains. The noise enables autocatalytic
nucleation. For example, in a two-phase interface between an
austenitic phase and a martensitic variant, the second variant
does not exist. Hence, the phase-field equation of the second
variant is not solved in this region and an autocatalytic nucle-
ation is not possible. This makes the simulation numerically
efficient and enables an exact calculation of all interpolated
quantities, but requires the incorporation of a separate noise
term.

Martensite at an austenitic grain boundary leads to a reduc-
tion of the nucleation barrier formartensite in the neighboring
grain and thus favors autocatalytic nucleation [47]. This
mechanism causes the spread over the austenitic grain struc-
ture (Fig. 7c–f). Due to the definition of the eigenstrains,
dilatation effects are not present in 2D and a hundred per-
cent martensitic microstructure is achieved. Thereby, the
martensitic lamellae are arranged depending on the crystal
orientation of its parent phase.

Fig. 8 displays the resulting martensitic microstructure
using different interpolation schemes by keeping all other
settings. In order to increase comparability, both the simu-
lations with the VT interpolation as well as the simulations
with the RS interpolation are started from the microstructure
in Fig. 7b. It is clearly evident that the choice of the inter-
polation scheme relates to different strain energy potentials
[see Eqs. (20), (22) and (47)] and different driving forces,
correspondingly. The resulting microstructures in Fig. 8a–c
clearly show the effect of the interpolation method on the
phase arrangement of the martensitic variants.
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Fig. 7 Initial polycrystalline austenitic microstructure a and growth of
martensitic variants c–f. Different phases are separated by black lines.
The color of a phase correlates with its index position in the N -tuple
φ. Thus, martensitic variants within an austenitic grain have nearly the

same color but correspond to separate phases. It should be mentioned
that the phases are displayed with a sharp interface profile, although the
transition region is diffuse

Fig. 8 Resulting microstructure using different interpolation methods a Proposed model b VT interpolation c RS interpolation
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8 Conclusion

In this work, we present a multiphase-field model to describe
phase transformation processes in multiphase / multigrain
systems. Regardless of the diffuse transition region, the pro-
posed model satisfies the mechanical jump conditions of
the sharp interface and uses configurational forces as driv-
ing forces for phase transitions. It should be noted that the
approach does not give an exact solution in regionswithmore
than two phases due to the homogenization of the interfacial
normal vectors. Nevertheless, the simulation examples show
a convincing approximation, in comparison with the sharp
interface solution. Additionally, we demonstrate the appli-
cability of the model to martensitic phase transformation
processes in multiphase systems. However, the influence of
plastic deformations on the martensitic phase transformation
processes has not been considered yet. In the last numerical
example, we demonstrate the influence of the interpolation
scheme on the resulting microstructures for an identical set
of material parameters and initial conditions.

The model is defined for an obstacle-type as well as
for a well-type potential, but we use only the obstacle-
type potential as the energetic potential for all demonstrated
validations and simulations. The reason is that the obstacle-
type potential has a defined transition region, allowing to
reduce the number of locally existing phases in a multiphase
system [52,53]. The numerical advantage of the obstacle
potential enables large-scale simulations of multigrain sys-
tems, including martensitic phase transformations with the
phase-field method, as shown in [54–59]. A detailed inves-
tigation of martensitic phase formation in 2D and 3D is the
objective of forthcoming research work. Another promising
application is crack propagation in multiphase or multi-grain
systems, as discussed in Schneider et al. [16]. For such
problems, a precise calculation of the stress field is indis-
pensable. Therefore, the usage of a model which satisfies the
mechanical jump conditions in the transition region, such
as the proposed one, is of high importance. By combining
the advantages of the crack propagation model [16] with the
proposed local homogenization approach, simulations cov-
ering phase transformations coupled with crack propagation
processes are possible, as discussed in [60]. As outlined in
Schneider et al. [22], the model offers the possibility to cal-
culate phase-inherent stresses in the transition region. This
property is very useful for the calculation of phase-inherent
plastic strains, which will be discussed in forthcoming work.
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