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Abstract A novel adaptive local surface refinement tech-
nique based on Locally Refined Non-Uniform Rational
B-Splines (LRNURBS) is presented. LRNURBS canmodel
complex geometries exactly and are the rational extension
of LR B-splines. The local representation of the parameter
space overcomes the drawback of non-existent local refine-
ment in standard NURBS-based isogeometric analysis. For
a convenient embedding into general finite element codes,
the Bézier extraction operator for LR NURBS is formulated.
An automatic remeshing technique is presented that allows
adaptive local refinement and coarsening of LR NURBS. In
this work, LRNURBS are applied to contact computations of
3D solids and membranes. For solids, LR NURBS-enriched
finite elements are used to discretize the contact surfaces
with LR NURBS finite elements, while the rest of the body
is discretized by linear Lagrange finite elements. For mem-
branes, the entire surface is discretized by LR NURBS.
Various numerical examples are shown, and they demon-
strate the benefit of using LRNURBS: Compared to uniform
refinement, LR NURBS can achieve high accuracy at lower
computational cost.
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1 Introduction

A wide range of engineering applications, especially those
that are governed by local surface effects, necessitate an accu-
rate surface description. An example are contact problems.
Due to their strong nonlinear behavior, those are usually only
solvable by numerical methods. For this, isogeometric finite
element discretizations are advantageous, since they offer
at least C1-continuity across element boundaries. Standard
NURBS based discretizations lack local refinement, but their
ability to discretize complex geometries exactly makes them
powerful.

Isogeometric analysis (IGA) was developed by Hughes
et al. [19] and the work of Cottrell et al. [7] summarizes
the concept of IGA. Borden et al. [3] introduced the Bézier
extraction operator, which allows a suitable embedding of
isogeometric analysis into existing finite element codes. The
work of Scott et al. [36] introduces the extension of the
Bézier extraction operator to T-splines. This offers a local
representation of the Bézier extraction operator. B-splines
and NURBS are the most widespread element types in IGA.
Those element types are only globally refinable. Hierarchical
B-splines were introduced by Forsey and Bartels [17] and
allow local refinement. An analysis-suitable approach that
bases on hierarchical NURBS discretization can be found in,
e.g. Schillinger et al. [34]. The work of Sederberg et al. [37]
introduces T-splines as an approach to discretize surfaces
more efficiently than hierarchical B-splines. Scott et al. [35]
developed a local refinement approach based on analysis-
suitable T-splines.

Locally Refined B-splines (LR B-splines) are developed
as a new approach to allow local refinement in IGA. LR B-
splines were introduced by Dokken et al. [15] and further
advanced by Bressan [4] and Johannessen et al. [21]. Johan-
nessen et al. [22] studied the similarities and differences of
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LRB-spline, classical hierarchical and truncated hierarchical
discretizations. The classical hierarchical approach leads to
a much denser sparsity pattern of matrices than LR B-spline
or truncated hierarchical discretizations. Whether an LR B-
spline or a truncated hierarchical discretization is beneficial
is depending on the ratio of the locally refined domain w.r.t.
the entire mesh. In the IGA community, T-splines are more
widespread than LR splines and commercial software for the
automatic mesh generation is available, e.g. Rhinoceros [27]
with a T-splines plug-in [2]. In contrast to T-splines, the
refinement by LR B-splines is directly performed in the
parameter domain, which reflects the piecewise polynomial
structure. This is more convenient than the multiple vertex
grids of T-splines. With an LR B-spline description new pos-
sibilities are achieved on how the computational mesh can
be generated. This makes them interesting in many fields of
engineering. In the works of Nørtoft and Dokken [29] and
Johannessen et al. [20] the LR B-splines are successfully
applied to the computation of Navier–Stokes flows. To the
best of the authors’ knowledge rational basis functions in the
context of LR splines have not been used so far. In this work,
LR B-splines are extended to LR NURBS to combine the
advantages of local refinement and the ability of modeling
complex geometries exactly.

The numerical examples presented here consider 3D
solids and membranes using a classical finite element for-
mulation for solids [42] and the membrane finite element
formulation of Sauer et al. [33]. This work is based on
computational contactmechanics [24,41] using isogeometric
finite elements [10,11,26,39] and an unbiased contact algo-
rithm [31,32]. In the literature several approaches can be
found that account for local refinement and adaptive mesh-
ing. Lee and Oden [25] present an adaptive method for h-p
refined meshes in the context of frictional contact and non-
isogeometric finite elements. The work of Hager et al. [18]
presents a non-conforming domain decomposition method.
The domain decomposition consists of a global coarse mesh
and an overlapping fine mesh for the contact computation.
In the context of IGA and frictionless contact a recent work
based on analysis-suitable T-splines is presented in Dimitri
et al. [13]. The work by Dimitri and Zavarise [14] is based on
analysis-suitable T-splines and investigates frictional contact
and mixed mode debonding problems. In the work of Tem-
izer and Hesch [38] hierarchical NURBS are used to allow
local refinement. In this work, LR NURBS are applied to
frictionless and frictional sliding contact.

LR B-splines have been successfully used in 2D, since
they are linearly independent in 2D. In 3D, the linear inde-
pendence for arbitrary, locally refined meshes has not been
proven yet and requires further study. To overcome this issue,
this work uses 2D LR NURBS and combines them with an
enrichment technique [5,6] along the third direction. This
combines the high accuracy, which is achieved by isogeo-

metric analysis and the efficiency of standard finite elements.
This formulation is adapted for LR NURBS-enrichment to
gain the possibility of local refinement. In this work we
present a novel technique for adaptive local surface refine-
ment and coarsening that

• considers the extension of LR B-spline finite elements to
LR NURBS finite elements

• uses a local formulation of the Bézier extraction operator
• is automatically controlled by a proposed refinement cri-
terion

• is extended to LR NURBS-enriched finite elements for
3D solids

• is applied to frictionless and frictional sliding contact.

In Sect. 2.1 a brief summary of the nonlinear finite element
formulation for membranes and 3D solids is given. A short
introduction to computational contact mechanics follows in
Sect. 2.2. The fundamentals of LR B-splines are presented
in Sect. 2.3. The geometric modeling using LR NURBS and
the formulation of the Bézier extraction operator is presented
in Sect. 3. The technique of adaptive local refinement and
coarsening using LR NURBS discretizations is presented in
Sect. 4. Numerical results are shown in Sect. 5. The perfor-
mance of LR NURBS within the proposed local refinement
technique is compared with uniform meshes using NURBS
discretizations. A conclusion is given in Sect. 6.

2 Preliminaries

This section presents an overview of the fundamental mathe-
matical formulations that are usedwithin thiswork.Ageneral
finite element formulation for membranes and 3D solids in
the context of contact computations is discussed in Sects. 2.1
and 2.2. The fundamentals of LR B-splines are given in
Sect. 2.3.

2.1 Finite element formulation

The finite element formulation for nonlinear membranes and
3D solids is similar. Their governing equations (e.g. equilib-
rium) are different but obtaining their discretized weak form
follows the same approach. The quasi-static weak form of a
system of two deformable bodies in contact is described by

II∑

k=I

[
δ�k

int − δ�k
c − δ�k

ext

]
= 0, (2.1)

considering two objects (k = I, II).1 This describes the
equilibrium between the internal virtual work δ�k

int, the vir-

1 The index k is used as super- and sub-script but the position has no
special meaning.
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tual contact work δ�k
c and the external virtual work. In our

examples δ�k
ext = 0 is considered. The computational for-

mulation for nonlinear membranes in R
3 in the framework

of curvilinear coordinates is taken from Sauer et al. [33]. A
general constitutive setting and finite element formulation
for solids in R

3 can be found in Wriggers [42]. The internal
virtual work for membranes Sk in R3 and solids Bk in R3 is

δ�k
int =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫

Sk

δϕk
,α · σ

αβ
k akβ dak , ∀ δϕk ∈ Vk , for Sk ,

∫

Bk

grad(δϕk): σ k dvk , ∀ δϕk ∈ Vk , for Bk .

(2.2)

Here, σαβ
k are the contra-variant components of the Cauchy

stress tensor σ with α = 1, 2 and β = 1, 2. The parametric
derivative of the virtual displacement field is denoted by δϕk

,α

and akα are the co-variant tangent vectors. The virtual contact
work for the contact surfaces �k

c is expressed as

δ�k
c =

∫

�k
c

δϕk · tkc dak, ∀ δϕk ∈ Vk, (2.3)

where tkc denotes the contact traction on the surface�k
c ⊂ Sk .

The computation of the contact integrals is performed using
the two-half pass algorithm of Sauer and De Lorenzis [31].
This algorithm evaluates Eq. (2.3) on each body equiva-
lently. System (2.1) is solved for the unknown deformation
field ϕk ∈ Vk , with Vk as a suitable space of kinematically
admissible variations. Themembrane and the contact surface
are discretized into a set of membrane elements �k

e and a
set of contact elements �k

c e such that Sk ≈ Sh
k = ⋃

e �k
e

and �k
c ≈ �k h

c = ⋃
e �k

c e, respectively. Here, the ele-
ment domains �k

e and �k
c e are considered equal and have

the same finite element discretization. Similarly, the solids
are discretized into a set of volume elements �k

e and a set of
surface contact elements �k

c e such that Bk ≈ Bh
k = ⋃

e �k
e

and �k
c ≈ �k h

c = ⋃
e �k

c e, respectively. The superscript h
denotes the approximated discrete setting. With a set of ne
basis functions N = [

N1 I, . . . , Nne I
]
with identity matrix

I in R3 and discrete points xe, a point x ∈ Bk is interpolated
within each element as

x ≈ xh = Nxe. (2.4)

The same holds for the reference configuration X ≈ Xh ,
the displacement field u ≈ uh and the virtual displacement
field δϕ ≈ vh . In here we drop the index k for convenience.
In standard finite elements the discrete points x are known
as nodes, while in IGA they are called control points. For
standardfinite element basis functionsLagrangepolynomials
are used, while for IGA the basis functions will be discussed

in Sect. 2.3. As a consequence of the above definitions, the
discretized weak form can be written as

vT [fint − fc] = 0, ∀ v ∈ Vh, (2.5)

with the internal forces

fint =

⎧
⎪⎪⎨

⎪⎪⎩

∫

Sk

NT
,α σαβ N,β dak, for Sk,

∫

Bk

N,x σ dvk, for Bk,
(2.6)

and the contact forces

fc =
∫

�k
c

NT tc dak . (2.7)

A brief overview of computational contact mechanics is
given in the next section.

2.2 Computational contact formulation

This section gives a brief summary of computational contact
mechanics. For more detailed information, the monograph
byWriggers [41] is recommended. Here, the penalty method
is used in order to enforce contact. The gap vector g between
two points xI and xII on the surfaces SI and SII is given by

g = xI − xII. (2.8)

The closest projection point xp of xI is obtained by orthogo-
nal projection of xI ontoSII. The contact traction is expressed
as tc = tn + t t , i.e. it is decomposed into its normal and tan-
gential components. According to the penalty formulation,
the normal traction

tn(xk) =
{

−εn gn np, gn < 0,

0, gn ≥ 0,
(2.9)

is applied at each contact point. The traction is proportional
to the normal gap gn = (xI − xp) · np, the surface outward
normal np at xp and the constant penalty parameter εn. k
is the index for the body under consideration. The tangen-
tial contact traction t t during frictional sliding is given by
Coulomb’s law

t t = −μ p
ġt

|| ġt||
. (2.10)

Here, we find the friction coefficient μ, the contact pressure
p = ||tn|| and the relative tangential sliding velocity ġt . The
tangential contact slip

gt = 
ge + gs, (2.11)
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consists of the reversible 
ge and irreversible gs part. The
slip criterion

fs = ||t t|| − μ p, (2.12)

is used to distinguish between sticking and slipping. Sliding
occurs for fs = 0 and sticking for fs < 0. The examples
presented below deal with frictionless and frictional contact.
For frictionless contact, the tangential traction t t vanishes and
the contact traction is given by tc = tn. The implementation
and formulation of frictional contact is taken from Sauer and
De Lorenzis [32].

2.3 LR B-spline fundamentals

The core idea ofLRB-splines is to disband the tensor-product
mesh structure of classical B-splines in order to obtain a
local representation of the parameter domain. As introduced
in the B-spline theory, a knot vector � of size n + p + 1
generates n linearly independent basis functions of order2

p. The local representation of the parameter space and the
geometric discretization are obtained by splitting the global
knot vector � = [ξ1, . . . , ξn+p+1] into local knot vectors
�i = [ξi , . . . , ξi+p+1] each constructing a single basis func-
tion. With the local knot vector representation, the domain
of the basis function is minimal, i.e. the basis has minimal
support. The basis functions are defined by the Cox–de Boor
recursion formula, which depends on the entries of the local
knot vector �i and desired polynomial order p, see Cox [8]
and De Boor [9]. For p = 0

N 0
i (ξ) =

{
1, if ξi ≤ ξ < ξi+1,

0, otherwise,
(2.13)

and for p > 0

N p
i (ξ) = ξ − ξi

ξi+p − ξi
N p−1
i (ξi , . . . , ξp+i )

+ ξi+p+1 − ξ

ξi+p+1 − ξi+1
N p−1
i+1

(
ξi+1, . . . , ξp+i+1

)
.

(2.14)

The LR B-spline basis B p q
i j (ξ, η) of order p and q in 2D is

defined as a separable function B:R2 → R

B p q
i j (ξ, η) = N p

i (ξ) Mq
j (η). (2.15)

N p
i (ξ) and Mq

j (η) are the shape functions in each para-
metric direction. The properties of LR B-splines follow
directly from standard isogeometric analysis. The basis is

2 Also known as degree.

non-negative and forms a partition of unity, and the resulting
geometry lies within the convex hull of the control points.
The continuity across the element boundaries is C p−mv , i.e.
it is defined by the polynomial order p and the multiplicity
of the knot vector entry mv . The LR B-spline surface is then
constructed by a set of control points xi j and the local basis
functions B p q

i j (ξ, η), as

x(ξ, η) =
n∑

i=1

m∑

j=1

B p q
i j (ξ, η) xi j , (2.16)

with n,m as the number of single basis functions in each
parametric dimension. To ensure that LR B-splines keep the
partition of unity property during local refinement the basis
functions are multiplied by a scaling factor γi j ∈ (0, 1]

x(ξ, η) =
n∑

i=1

m∑

j=1

B p q
i j (ξ, η) xi j γi j . (2.17)

With the above formulation, the global B-spline representa-
tion is split into a local representation consisting of a set of
locally refinable B-splines. In the following we use the ter-
minology LR B-spline for both locally refinable and locally
refined B-splines. It is important to note that the global B-
splines do not exist anymore. Global B-splines do not allow
local refinement. The ability is only given by the LR B-
splines. Locally refined meshes and the local refinement
procedure are discussed in the following sections.

2.3.1 Locally refined meshes

The local representation of the parametric domain leads to
new possibilities on how the finite element mesh can be
constructed. The ability of local refinement is the major
advantage in comparison to classical tensor meshes. The LR
mesh is the result of a series of meshline insertions into an
initial tensor mesh. Figure 1a shows an example of an LR
mesh. The meshlines never stop in the center of an element
(knot span). As a knot vector of an LR B-spline basis func-
tion has size of p+2 knot vector entries, the meshlines cross
at least p+2 knots. A meshline insertion can be either a new
meshline, an elongation of an existing one, a joining of two
meshlines or the increase of the multiplicity of a meshline.
Increasing the multiplicity decreases the continuity of the
LR B-spline. In the bi-variate case, horizontal and vertical
meshlines can be inserted. Any type of meshline insertion
implies that an LR B-spline loses the property of minimal
support. An LR B-spline has minimal support if the sup-
port domain of the basis functions is not fully crossed by
any other meshline. The basis function domain of the LR
B-spline in Fig. 1b, marked in gray, has minimal support
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0 0.2 0.4 0.6 0.8 1

(a) LR mesh

0 0.2 0.4 0.6 0.8 1

(b) Minimal support

0 0.2 0.4 0.6 0.8 1

(c) No minimal support

Fig. 1 LR meshes constructed by meshline insertion (marked by thick
lines) into a tensor mesh of a bivariate parameter domain. a Example
of an LR mesh, b support domain of the LR B-spline basis, marked in
gray, which has minimal support, c support domain of the LR B-spline

basis, marked in gray, that does not have minimal support. The mesh-
line extension, which is spanned by η = [0.2, 0.8] at ξ = 0.5 fully
crosses the support domain

because its support domain is not fully crossed by any mesh-
line insertion completely. The LR B-spline basis marked in
the Fig. 1c does not have minimal support. Its basis function
domain is crossed by the vertical meshline, which is spanned
by η = [0.2, 0.8] at ξ = 0.5. If an LR B-spline loses the
property of minimal support refinement is performed as dis-
cussed in the next section.

2.3.2 Procedure of local refinement

Local refinement is performed if an LR B-spline loses the
property of minimal support due to meshline extensions. In
general, the procedure of local refinement is realized by sin-
gle knot insertion. From the classical theory it is known
that this enriches the basis while the geometry remains
unchanged. The insertion of a single knot ξ̂ into the knot span
ξ i = [ξi−1, ξi ] of a local knot vector � of size p+ 2 leads to
a knot vector of size p+3. Consequently, two locally refined
B-splines are generated by splitting the enlarged knot vec-
tor � = [ξ1, . . . , ξi−1, ξ̂ , ξi , . . . , ξp+2] into the local knot
vectors of size p + 2

�1 =
[
ξ1, . . . , ξi−1, ξ̂ , ξi , . . . , ξp+1

]
,

�2 =
[
ξ2, . . . , ξi−1, ξ̂ , ξi , . . . , ξp+2

]
. (2.18)

The relation for an LRB-spline basis in one parametric direc-
tion on the LR mesh is then given by

γ N p
�(ξ) = γ1 N

p
�1

(ξ) + γ2 N
p
�2

(ξ). (2.19)

with

γ1 = α1 γ,

γ2 = α2 γ. (2.20)

0 0.25 0.375 0.5 0.75 1
0

0.2

0.4

0.6

0.8

1

Fig. 2 The original basis function of the knot vector � is split by knot
insertion at ξ = 0.375 into two local basis functions characterized by
the knot vectors �1 and �2

The associated α1 and α2 are determined by

α1 =

⎧
⎪⎨

⎪⎩

1, ξp+1 ≤ ξ̂ < ξp+2,

ξ̂ − ξ1

ξp+1 − ξ1
, ξ1 < ξ̂ < ξp+1,

α2 =

⎧
⎪⎨

⎪⎩

ξp+2 − ξ̂

ξp+2 − ξ2
, ξ2 < ξ̂ < ξp+2,

1, ξ1 < ξ̂ ≤ ξ2.

(2.21)

Consider the knot ξ̂ = 0.375 is inserted into the knot vector
� = [0, 0.25, 0.5, 0.75]. The knot vector entries construct
the quadratic basis function N 2

�. As illustrated in Fig. 2,
the original basis function is split into two new functions
each describing the LR B-spline basis functions γ α1 N 2

�1

and γ α2 N 2
�2
. The refinement process for bivariate functions

is performed in one parametric direction at a time, i.e. first
all horizontal meshlines and then all vertical meshlines are
inserted (or vice versa). Consider two local knot vectors �

and H, one in each parametric direction. For a weighted,
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bivariate LR B-spline basis γ B p q
� (ξ, η) with � = [�,H]

the following relation is given

γ B p q
� (ξ, η) = γ N p

�(ξ) Mq
H(η),

= γ
(
α1 N

p
�1

(ξ) + α2 N
p
�2

(ξ)
)
Mq

H(η),

= γ1 B
p q
�1

(ξ, η) + γ2 B
p q
�2

(ξ, η), (2.22)

for the case that � is split into �1 and �2. The refine-
ment process is given by two steps. At first all LR B-spline
basis functions whose support domain is crossed by mesh-
line extensionswill be split. The second step is to check every
newly created basis function if it has minimal support. In the
case that a newly created LR B-spline does not have mini-
mal support an additional splitting is performed. By splitting
γ B p q

� (ξ, η) into γ j B
p q
� j

(ξ, η), with j = 1, 2, the following
cases can occur:

1. The LR B-spline does not exist and a new LR B-spline
is created. In this case the new control point x j is a copy
of the control point x of the parent LR B-spline x j = x.
The weight γ j is set by Eq. (2.20).

2. If B p q
� j

(ξ, η) already exists, the control point and the
weight are set to

x j = x j γ j + x γ α j

γ j + α j γ
, (2.23)

and

γ j = γ j + γα j . (2.24)

After splitting the formerLRB-spline,γ B p q
� (ξ, η) is deleted

in both cases. The algorithm proceeds with the second step
and checks if the support domain of the new local basis func-
tions is fully crossed by any existing meshline. If one does
not have minimal support the first step is performed again.
Note that at every step of the refinement process the parti-
tion of unity is maintained and the geometric mapping is left
unchanged. For the use of LR B-splines in IGA it is required
to ensure that the resulting spline space is linearly indepen-
dent. In the bivariate case this can be guaranteed by only
using primitive meshline extensions,3 see Mourrain [28] and
Johannessen et al. [21]. In this work, all meshline extensions
are formulated as primitives.

3 A primitive meshline extension is (a) a meshline spanning p + 1
elements, (b) elongating a meshline by one element or (c) raising the
multiplicity of a meshline (length of p + 1 elements).

3 Geometric modeling using LR NURBS

So far, non-rational LR B-splines have been discussed. In
this section, their extension to Locally Refined Non-Uniform
Rational B-Splines (LR NURBS) is introduced. With a
NURBS representation of objects one gains the ability to
describe many geometries, which cannot be represented by
polynomials, exactly. Especially conic sections, ellipsoids,
spheres, cylinders, etc. can be constructed by a projective
transformation of piecewise quadratic curves exactly, see
Farin [16]. This is one of the defining features of NURBS.

3.1 LR NURBS

The fundamentals of standard NURBS in isogeometric anal-
ysis can be found in, e.g. Hughes et al. [19]. Combining
NURBS with the LR B-spline theory from Sect. 2.3, the
extension of LR B-splines to LR NURBS follows. An LR
NURBS object in R

d is constructed by the projective trans-
formation of anLRB-spline entity inRd+1. Thefirst d entries
of a projective control point xwi represent the spatial coordi-
nates and the d+1 entry the weight, e.g. xwi = [xi , yi , zi ,wi ]
for d = 3. The control points of the LRNURBS object result
from the projective transformation

(xi )k =
(
xwi

)
k

wi
, k = 1, . . . , d, where

wi = (
xwi

)
d+1 , (3.1)

with (xi )k as the kth component of the vector xi and wi as the
i th weight. To generalize this relation the weighting function
for the bivariate case is introduced by

W (ξ, η) =
n∑

i=0

m∑

j=0

B p q
i j (ξ, η)wi j . (3.2)

B p q
i j (ξ, η) are the standard LR B-spline basis functions and

the transformation is applied by dividing every point of the
curve byW (ξ, η). Each element of surfaceS is a polynomial,
which is divided by another polynomial of the same order.
The resulting LR NURBS basis is then defined as

Rp q
i j (ξ, η) = B p q

i j (ξ, η)wi j

W (ξ, η)

= B p q
i j (ξ, η)wi j

∑n
î=0

∑m
ĵ=0

B p q

î ĵ
(ξ, η)wî ĵ

. (3.3)

With a set of control points xi j and the scaling factors γi j
the LR NURBS surface is then defined as

x(ξ, η) =
n∑

i=0

m∑

j=0

Rp q
i j (ξ, η) xi j γi j . (3.4)
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Fig. 3 Bivariate LR mesh (left)
and the local basis function of a
quadratic LR NURBS in one
parametric direction (right). The
support width of Ne

a (ξ) is
represented by cea B(ξ) in the
knot span ξ = [0, 0.2]
exceeding the actual domain of
�e

�

0 0.2 0.4 0.6 0.8 1

The properties of the LRNURBS basis, such as its continuity
and support, follow directly from the knot vectors as before.
The basis is still non-negative and it still forms a partition
of unity. This leads to the strong convex hull property of
the LR NURBS. Note that the weights are separated from
any explicit geometric representation. The weights are each
associated with a specific control point and amanipulation of
them leads to a change of the resulting geometry. In the case
that all weights are equal, the surface is again a polynomial
and consequently Rp q

i j (ξ, η) = B p q
i j (ξ, η). Therefore, LRB-

splines are a special case of LR NURBS. In order to locally
refine anLRNURBSobject it is necessary to take special care
of the weights. Before the refinement procedure starts, the
projective control points xwi j of the LRNURBS are computed
by Eq. (3.1). The weights wi j are included in vector xwi j and
treated as the fourth part of the control points. This results in

xwi j = [
xi j wi j , yi j wi j , zi j wi j , wi j

]
. (3.5)

After the refinement process, the control points are trans-
formed back by dividing the spatial coordinates by their
associated weight. Note that while the refinement is per-
formed, wi j is treated in the same way as the control
points. The linear independence of LRNURBS spaces follow
directly from the LR B-splines.

3.2 Bézier extraction operator for LR NURBS

This section discusses the Bézier extraction of LR NURBS.
The Bézier extraction is an advantageous technique for the
decomposition of splines into their Bézier elements. It allows
for the embedding of isogeometric analysis into a standard
finite element framework. The Bézier extraction of NURBS
is introduced by Borden et al. [3] and advanced to T-splines
by Scott et al. [36]. The Bézier extraction of LR NURBS
shares similarities with the formulation of the Bézier extrac-
tion of T-splines. Both element types have a local parametric
representation. The Bézier decomposition of each local basis
function, that is nonzero within an element, is performed
separately. The basis function in one parametric direction of
an LR NURBS element �e

� within the knot span ξ can be

expressed in terms of a set of Bernstein polynomials B(ξ)

and a linear operator cea . Each local basis function Ne
a (ξ) of

an element �e
� can then be expressed by

Ne
a (ξ) = cea B(ξ). (3.6)

Here, a = 1, 2, . . . , ne where ne is the number of nonzero
basis functions of �e

�. In matrix-vector form this becomes

Ne(ξ) = Ce B(ξ). (3.7)

Ce is the element-wise Bézier extraction operator. The linear
operator cea is of dimension [1 × (p + 1)] and represents a
single row of Ce. The coefficients of cea are calculated by an
algorithm presented in Scott et al. [36]. The algorithm inserts
knots into the knot vector until all entries have multiplicity
p. The knot insertion performs the spline decomposition into
its Bézier elements. With cea and the Bernstein polynomials
the relation in Eq. (3.6) is obtained. Due to the unstructured
LR meshes it is required to account for two aspects:

1. To determine cea it is required that the knot vectors are
open, i.e. the first and last knot vector entry have mul-
tiplicity of p + 1. The knot vectors of LR NURBS are
in general not open. For this, the local knot vectors are
extended, which is simply done by adding knot vector
entries. The extension of the knot vectors does not affect
the basis of LR NURBS itself because it is only used for
the Bézier decomposition.

2. The unstructured meshes of LR NURBS or T-splines
necessitate a special consideration. An example is shown
in Fig. 3. Consider the element �e

� with ξ̃ = [0, 0.1]
marked in yellow in Fig. 3 on the left. The support domain
of one bivariate local basis function is marked in gray. In
ξ -direction, the basis function Na(ξ) is spanned by the
local knot vector� = [0, 0.2, 0.4, 0.6] as shown in Fig. 3
on the right. The basis function is non-zero within the
domain of �e

�. From � follows that cea is defined within

the knot span ξ = [0, 0.2] and exceeds ξ̃ = [0, 0.1] (the
domain of �e

�). Those non-matching domains must be
considered and treated. For T-splines an additional knot
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is inserted into the knot vector so that cea can be deter-
mined for the correct parametric domain ξ̃ = [0, 0.1].
In contrast to T-splines, no additional knot insertion is
required for the formulation for LR NURBS.

For LR NURBS the linear operator cea is mapped by using
an additional linear operator Te

a to obtain a new c̃ea such that

Ne
a (ξ̃) = c̃ea B(ξ). (3.8)

With c̃ea = cea T
e
a

Ne
a (ξ̃) = cea T

e
a B(ξ), (3.9)

follows. The matrix Te
a follows from the relation

c̃ea B(ξ̃) = cea B(ξ). (3.10)

After somealgebraicmanipulations this equation is expressed
as

c̃ea = cea

((
B(ξ̃)

)−1
B(ξ)

)T

, (3.11)

such that

Te
a :=

((
B(ξ̃)

)−1
B(ξ)

)T

. (3.12)

If the knot spans coincide, i.e. ξ̃ = ξ , then

B(ξ̃) = B(ξ), (3.13)

Te
a = I, (3.14)

and c̃ea = cea follows. With this formulation, the basis func-
tions having support in each element �e

� are expressed by
the Bernstein polynomials B(ξ) and the linear operators c̃ea .

4 Adaptive local refinement and coarsening

This section presents a technique for adaptive local refine-
ment and coarsening for LR NURBS discretizations. The
technique is formulated in the context of frictional contact.
This requires themapping of contact variables fromonemesh
to another.

4.1 Adaptive local refinement

An adaptive local refinement technique necessitates an indi-
cator for refinement. Commonly used indicators use a
posteriori error estimation that provide a reliable error dis-
tribution, see e.g. Ainsworth and Oden [1], Johannessen

et al. [21] and Kumar et al. [23]. In this work, a refinement
indicator based on the contact state is used. If new contact
is detected in an element, refinement is considered. If con-
tact is lost in an element, coarsening is considered. After the
contact domain is determined, the local refinement is per-
formed bymeshline extensions in the parameter domain. The
refinement is performed until a prescribed refinement depth
or smallest element size, is obtained. For sliding contact it is
desirable to automatically control the technique of adaptive
local refinement and coarsening. A changing contact domain
can lead to a high number of newly detected contacts and
lost contacts. To reduce the number of refinement and coars-
ening events, three parameters are used. In Fig. 4 four cases
are sketched to illustrate the automatic control by using the
parameters ddref , d

d
safe and d

d
crs. The superscript d denotes the

current refinement depth that is performed.

• The parameter ddref ≥ 0 enlarges the refinement domain
by a number of unrefined elements (see Fig. 4a). In this
example, ddref = 3 d1−d

e in both directions. Here,

d1−d
e = d0e

21−d
, (4.1)

is the minimum element length of the previous refine-
ment depth and d0e is the original element length. The
elements within the enlarged contact domain are flagged
for refinement. The LR mesh is the result of splitting all
flagged elements equally.

• The parameter ddsafe ≥ 0 sets a safety domain at the
boundary between coarse and refined elements. If con-
tact is detected within this domain, local refinement is
performed. An example with ddsafe = d1−d

e in both direc-
tions is shown in Fig. 4b. This parameter ensures that
at every time-step the contact domain is surrounded by
refined elements.ddsafe detects a refinement event anddoes
not specify a domain for refinement.

• The parameter ddcrs ≥ 0 controls the coarsening. An
examplewith ddcrs = 5 d1−d

e in both directions is shown in
Fig. 4c. Coarsening is performed if refined elements are
detected beyond this distance from the contact domain.
ddcrs detects a coarsening event and does not specify a
domain for coarsening.

Figure 4d shows the three parameters combined. The param-
eters ensure that the contact domain and the neighboring
elements are at every time-step represented in the desired
discretization. The parameters ddref , d

d
safe and ddcrs can be set

arbitrarily and a good choice is depending on the specific
problem setup. A good compromise of the size of the locally
refined domain and the number of refinement/coarsening
events is desirable. The coarsening is discussed in the next
section.
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Fig. 4 Automatic control of the refinement and coarsening procedure
based on the parameters ddref , d

d
safe and d

d
crs. aMesh refinement: during

a refinement step, mesh refinement is considered within the enlarged
contact domain, b refinement detection: the need for mesh refinement is
detected once the contact domain overlapswith the safety domain.Mesh

refinement is then applied by redetermining the domain as shown in (a),
c coarsening detection: the need for mesh coarsening is detected when
refined elements are detected beyond the distance ddcrs from the contact
domain. Mesh coarsening is then applied as described in Sect. 4.2, d
combined setup of the parameters ddref , d

d
safe and ddcrs

4.2 Adaptive coarsening

Coarsening LR meshes in the context of contact compu-
tations is challenging. The reasons are the unstructured
parametric representation of LR NURBS and that frictional
contact is history dependent. The contact variables need to be
preserved during the process of coarsening and refinement. A
technique for NURBS and T-spline coarsening is presented
in Thomas et al. [40]. This technique has not been advanced
to LR NURBS yet. To overcome this here, the coarsening is
combined with local refinement. Therefore, an intermediate
step is introduced, in which the entire mesh is coarsened.
Based on the coarse mesh, the local refinement is then per-
formed to obtain the desired LR mesh. The coarsening and
refinement process requires that the contact domain has the
same discretization and identical contact variables before and
after the process. Due to the intermediate step, the contact
domain is temporary coarsened. To preserve the contact vari-
ables a mapping is required. The contact variables are stored
before the mesh is coarsened, and then mapped to the new
mesh after the refinement step. The technique consists of

six main steps to perform a consistent adaptive coarsening
within the context of contact computations. The technique is
sketched in Fig. 5 and the steps are:

1. Coarsening is detectedwhen refined elements are detected
beyond the distance ddcrs (Fig. 5a). Store the current con-
figuration and the contact variables for each element in
contact.

2. Recover the undeformed, reference mesh (Fig. 5b).
3. Interpolate the control points of the mesh in Fig. 5a to

obtain the deformed, coarse mesh (Fig. 5c). The interpo-
lation leads to a geometric approximation error, which is
addressed in step 6.

4. Perform local refinement within the enlarged contact
domain ddref (Fig. 5d) to obtain the desired LR mesh
(Fig. 5e).

5. Preserve the contact variables by mapping them to the
current configuration.

6. Reduce the geometric approximation error by recover-
ing control points from the configuration in Fig. 5a: by
comparing the meshes in Fig. 5a, e it turns out that their

123



1020 Comput Mech (2017) 60:1011–1031

Fig. 5 Sketch of the proposed coarsening and refinement procedure.
a LR mesh where coarsening is detected (shown are the deformed
configuration and the corresponding parametric representation), b
undeformed, reference mesh in its coarse representation, c deformed

configuration in its coarse representation, d local refinement detected,
e deformed, locally refined mesh and parametric representation of the
mesh

discretization only differ slightly. The control points of
the domains, that remain unchanged in their discretiza-
tion, are recovered.

As Fig. 5 shows, the discretization of the contact domain,
at a given time-step, is unaffected by the coarsening and
refinement procedure. With the adaptive local refinement
and coarsening technique, a refinement/coarsening event
is not detected at every computational step. A refine-
ment/coarsening event is performed only when it is detected
according to the criteria of Fig. 4. The results of this tech-
nique can be seen in the following examples, e.g. Fig. 13.

5 Numerical examples

The performance of the adaptive local refinement and coars-
ening technique using LR NURBS elements is illustrated in
this section by several numerical examples. The first exam-
ple is used for validation. In the remaining examples, the
performance of LR NURBS for frictionless and frictional

contact is investigated. In the last example, LR NURBS-
enriched contact elements are considered for 3D friction
of two deformable solids. To investigate the benefit of LR
NURBS discretization, comparisons to reference models
with uniform NURBS discretization are made.

5.1 Inflation of a hemisphere

The first example considers the inflation of a spherical mem-
brane balloon. The inflation can be described by an analytical
formula, which is used for validation. The system is modeled
as a hemisphere and the boundary conditions are chosen such
that the symmetry of the model is maintained during infla-
tion, see the left side of Fig. 6. The discretized geometry
consists of five patches and the NURBS weights differ for
each. This chosen geometry is not perfectly spherical but still
an approximation. The material is described by the incom-
pressible Neo-Hookean membrane material model [33]

σαβ = μ

J

(
Aαβ − aαβ

J 2

)
. (5.1)
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Fig. 6 Inflation of a
hemispherical membrane:
model setup in the initial
configuration (left). Blue lines
denote the allowed direction of
deformation. Black supports
denote the fixed directions.
Current configuration at
V = 50 V0, two times locally
refined (right). (Color figure
online)

Here, μ is the shear modulus, J is the surface area change
and Aαβ and aαβ are the contra-variant components of the
metric tensor in the reference and current configuration. The
problemsetup is similar to the oneof Sauer et al. [33] inwhich
the balloon is modeled as 1/8th of a sphere with NURBS and
Lagrangediscretizations. Initially, the balloonhas the volume
V0 = 4πR3/3 with the radius R. The volume is increased
step-wise until it reachesV = 50 V0. The analytical pressure-
volume relation is given by

pintR

μ
= 2

((
V0
V

) 1
3 −

(
V0
V

) 7
3
)

, (5.2)

with the internal pressure pint. We now investigate the
behavior of the proposed local refinement procedure using
quadratic LR NURBS elements. Five different uniform
mesheswith quadraticNURBSdiscretizations are taken each
as the starting point. The number of Gaussian quadrature
points is nqp = 3 × 3 for all elements. As an homogeneous
hemisphere has no domain ofmajor interest, the center is cho-
sen to apply local refinement of depth 2, see the right side
of Fig. 6. The performance of the five meshes is compared
to quadratic NURBS and quadratic Lagrange discretizations
examining the pressure error, see Fig. 7. The isogeometric
elements behave as observed inSauer et al. [33] and showbet-
ter convergence behavior than standard Lagrange elements.
The LR NURBS meshes behave equal well than the uniform
NURBS meshes. Better behavior can not be expected in this
example, since the hemisphere has a homogeneous behavior
and local refinement does not improve the numerical results
significantly. But with this first examplewe can conclude that
the applied local refinement procedure works successful and
the computations with LR NURBS are valid. In the follow-
ing examples, the performance of adaptive local refinement
with respect to the accuracy and the computational cost is
investigated.

103 104 105 106

10-12

10-9

10-6

10-3

Fig. 7 Inflation of a hemispherical membrane: Pressure error for
meshes discretized by quadratic Lagrange, quadratic NURBS and
quadratic LRNURBSelements in comparison to the analytical solution.
There is no benefit in local refinement for a problemwith a uniform solu-
tion and hence LR NURBS perform equally well than uniform NURBS

5.2 Rigid sphere in contact with a square membrane
sheet

The second example considers a squaremembrane sheet with
dimension 2 L0 × 2 L0 that is initially pre-stretched by λ =
1.1. The pre-stretching is applied to avoid the membrane
instability. A rigid sphere, located at X = [0, 0, L0] with
radius R = L0, is pushed gradually downwards until the
bottom of the sphere reaches z = −L0/2 as shown in Fig. 8.
The initial mesh consists of 4×4 LR NURBS elements with
5×5Gaussian quadrature points each. Thematerial behavior
is the same as in the previous example. The boundaries at
X = 2 L0 and Y = 2 L0 are fixed in all directions. At X = 0
and Y = 0 the deformation is constrained to be zero in x- and
y-direction, respectively. Contact between the rigid sphere
and the membrane is treated by the penalty method with the
penalty parameter
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(a)

(b)

(c)

Fig. 8 Rigid sphere in contact with a squaremembrane sheet: a initialmembrane discretization, boundary conditions and rigid sphere.b, c deformed
membrane surface from two different points of view. The coloring shows the downward displacement of the membrane. (Color figure online)

Fig. 9 Rigid sphere in contact with a square membrane sheet: deformation series with a locally refined contact domain. A refinement depth from
1 to 5 is applied. The coloring shows the displacement of the membrane. (Color figure online)
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Fig. 10 Rigid sphere in contact with a square membrane sheet: relative error of the normal contact force for quadratic discretizations (left) and
cubic discretizations (right). The error is defined w.r.t. a uniformly discretized mesh with cubic NURBS elements that is taken as the reference

εeln = ε0n ·
(
l0x l0y
lelx lely

)p−1

, (5.3)

depending on the individual element size. Here, lelx and
lely denote the current element lengths, and l0x and l0y
the initial element lengths. p is the polynomial order4

and ε0n = 10 E0/L0 is the constant penalty parameter. A
mesh and order depending penalty parameter was studied in
Roohbakhshan and Sauer [30] and Sauer and De Lorenzis
[32] giving a good balance between accuracy and conver-
gence behavior. The contact domain is locally refined by the
procedure described in Sect. 4. A series of resulting meshes
for quadratic LR NURBS elements is illustrated in Fig. 9

4 The order in both parametric directions is set equally, i.e. q = p.

from refinement depth 1–5. A strong local aggregation of
elements is obtained in the contact domain. In this exam-
ple, the parameter ddref is taken as zero. The performance
of LR NURBS meshes and uniform meshes using NURBS
discretizations is investigated by examining the relative error

ereln = | f refn − fn |
| f refn | , (5.4)

of the normal contact force fn w.r.t. a reference solution. For
the reference solution, a uniform mesh with cubic NURBS
discretizations is taken. This mesh has more than 5 × 104

dofs and εeln > 106 E0/L0, which is highly accurate. The
relative contact force error of LR NURBS and homogeneous
meshes is shown in Fig. 10. The proposed local refinement
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Table 1 Rigid sphere in contact with a square membrane sheet: com-
parison of the mesh parameters and the computational error between
the LR mesh and the uniformly refined mesh. Cubic discretization is
considered. Corresponding refinement depths have almost equal error
but hugely different number of dofs

dofs � el. Rel. error

LR mesh

Depth 0 96 16 1.95 × 10−1

Depth 1 280 64 1.72 × 10−2

Depth 2 416 112 1.45 × 10−3

Depth 3 701 211 1.09 × 10−4

Depth 4 1340 430 1.63 × 10−5

Uniform mesh

Depth 0 96 16 1.95 × 10−1

Depth 1 280 64 1.72 × 10−2

Depth 2 936 256 1.45 × 10−3

Depth 3 3400 1024 1.09 × 10−4

Depth 4 12,936 4096 1.62 × 10−5

technique using LR NURBS elements show very good con-
vergence behavior, both for quadratic and cubic elements.
It turns out that for cubic elements the obtained relative
error decreases to ≈1.63×10−5, while for quadratic ele-
ments ≈2.1×10−4 is achieved. Since the penalty parameter
is increased by Eq. (5.3) and since it is depending on the
polynomial order, higher accuracy for cubic elements can be
expected. The dofs are reduced by a factor ofmore than 16 for
LRNURBSmesheswith quadratic elements at the 5th refine-
ment depth. For LR NURBS meshes with cubic elements at
the 4th refinement depth the dofs are reduced by a factor of
more than 37. This is a huge decrease of the computational
cost. In Table 1 the mesh properties and numerical results
for cubic elements are listed. This example shows that with
the local refinement procedure, a high accuracy is achieved
while decreasing the computational cost.

In a second part of this example, the performance of LR
NURBS elements for different sizes of the contact domain
is investigated. Computations for different radii of the rigid
sphere are performed. The initial radius is set to R = 1/10 L0

and is increased step-wise to R = L0. The sphere is posi-
tioned at X = Y = 0 and lowered gradually to z = −R/2.
The performance of LR NURBS meshes using cubic ele-
ments is investigated. Local refinement of depth 5 is applied.
The relative error of the normal contact force is defined
w.r.t. uniformly discretized meshes using cubic NURBS ele-
ments. The smallest element size of each mesh is identical,
leading to the same value for εeln . The percentage of the used
dofs with respect to the radius R is shown in Fig. 11. The
relative contact force error for all radii R is in the range of
5 × 10−8 and 3 × 10−7. The LR NURBS meshes capture
the reference solutions nicely. A high accuracy is achieved

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
1

2
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7

Fig. 11 Rigid sphere in contact with a square membrane sheet: per-
centage of the used dofs with respect to the radius R. The y axis shows
the ratio of the used dofs with respect to the reference model

while only using few dofs. Consequently, for R = 1/10L0

less than 2% of the time is used in comparison to the ref-
erence model. The time for the local refinement procedure
is negligible. This reduction of the computational effort that
still achieves high accuracy demonstrates the benefit of the
local refinement technique using LR NURBS.

5.3 Frictionless sliding contact

In the third example the performance of the adaptive local
refinement and coarsening technique from Sect. 4 is inves-
tigated. For this, frictionless sliding contact is considered.
The problem setup consists of a rectangular membrane sheet
having dimension 8 λ L0 × 2 λ L0 with isotropic pre-stretch
λ = 1.25. The boundaries are clamped. A rigid sphere with
radius L0 is initially located at X0 = λ · [L0, L0, L0] and
first moved downwards to x0 = λ · [L0, L0, L0/2]. This
is followed by horizontal motion until the sphere reaches
x0 = λ · [7 L0, L0, L0/2], see left side of Fig. 12. The
volume enclosed by the membrane is constrained to be con-
stant so that it behaves like a cushion [33]. The material and
the computational parameters are the same as in the previ-
ous example. During frictionless sliding the contact domain
changes, and the adaptive local refinement and coarsening
procedure from Sect. 4 is applied to obtain highly resolved
meshes in the contact domain.

The right side of Fig. 12 shows the deformed configura-
tion after the downward displacement of the rigid sphere
has been applied. The parameters for the automatic con-
trol from Sect. 4 are ddref = 3 d1−d

e , ddsafe = 2 d1−d
e and

ddcrs = 4 d0e . In Fig. 13 two meshes resulting from the adap-
tive local refinement and coarsening technique are illustrated.
It can be observed that during sliding only the contact domain
has a high aggregation of LR NURBS elements.
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Fig. 12 Frictionless sliding contact: initial problem setup (left). The
membrane is initially discretized by 4× 16 elements. The LR NURBS
mesh, after the sphere is moved downward, is shown on the right. Local

refinement of depth 4 is applied leading to a highly resolved mesh in
the contact domain

Fig. 13 Frictionless sliding contact: adaptive local refinement and coarsening of the membrane during frictionless sliding in top and side view.
Highly resolved meshes within the local contact domain are obtained while the periphery is still represented with the coarse, initial mesh
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Fig. 14 Frictionless sliding contact: normal (left) and tangential (right) contact forces for LRNURBS, uniformly refined and initial, coarse meshes.
The LR NURBS mesh uses less than 30% of the dofs in comparison with the uniformly refined mesh

In the following, the performance of adaptive local refine-
ment and coarsening is investigated. For this, LR NURBS
meshes are compared to uniformly discretized meshes using
standard NURBS. The normal and tangential contact forces
for the LR NURBS, the uniformly refined and the initial,
coarse mesh are illustrated in Fig. 14. The normal and tan-
gential contact forces for the LR NURBS and the uniformly
refined mesh match each other nicely. The contact forces of
the initial, coarse mesh are oscillating. The oscillations arise
from the coarse discretization. The normal contact force of
the initial, coarse mesh is much smaller than the normal con-
tact forces of the refined meshes. The reason is the mesh
dependent penalty parameter, see Eq. (5.3). The net tangen-
tial contact force ft is small in comparison to the net normal

contact force fn, as the sliding is considered to be frictionless.
In Fig. 15 the relative contact force error of ft and fn is illus-
trated. It can be seen that the error is below 10−4 for quadratic
LR NURBS and below 10−6 for cubic LR NURBS. The LR
NURBS meshes capture the reference solution nicely with
less than 30% dofs in both examples. The high relative error
of quadraticLRNURBSelements in comparison to cubic ele-
ments is caused by the coarse periphery. The evolution of the
relative error in tangential direction shows abrupt changes.
These result from the geometric approximation error of the
coarsening steps. The setting of the parameters for the auto-
matic control leads to an almost constant evolution of the
relative normal contact force error. This example shows that
the adaptive local refinement and coarsening technique using
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Fig. 15 Frictionless sliding contact: relative contact force error of LR
NURBS. Quadratic LR NURBS elements are compared to quadratic,
uniformly refined NURBS elements (left). Cubic LR NURBS elements

are compared to cubic, uniformly refined NURBS elements (right). The
LR NURBS mesh uses less than 30% of the dofs in comparison with
the uniform mesh

Fig. 16 Frictional contact of twodeformablemembranes: initialmodel
setup (left). The blue arrows indicate the pressure associated with the
inflation. The black arrows indicate the sliding direction. Initially, each

membrane surface is discretized by 8×32 elements. LR NURBS mesh
at the time-step of first contact detection (right). Local refinement of
depth 2 is applied. (Color figure online)

LR NURBS elements leads to highly accurate results while
decreasing the computational cost.

5.4 Frictional contact of two deformable membranes

In the next example, the performance of LRNURBS is inves-
tigated for frictional contact considering two deformable
membranes. This example addresses two new aspects. First,
the preservation of sliding variables during coarsening and
refinement. Second, the local refinement and coarsening of
two objects. We consider two deformable rectangular solid
membranes with dimension 2 Lu

0 ×0.5 Lu
0 and 0.5 L

l
0×2 Ll

0.
They are fixed at their boundaries in all parametric directions.
An isotropic pre-stretch of λ = 1.5 in longitudinal direction
is applied to avoid membrane instabilities (like wrinkling)
during frictional sliding. The left side of Fig. 16 shows the
problem setup. Both surfaces are inflated until they almost
touch. This is followed by sliding the upper membrane along
the lower one. During sliding, the inflated volume of each
membrane is constrained to be constant. The adaptive locally
refined surfaces at initial contact detection are illustrated on
the right side of Fig. 16. The friction coefficient is set to
μf = 0.25 and the enclosed volume of both surfaces is con-
strained to be constant after inflation.Thematerial behavior is
the same as in the previous examples. The number of Gaus-

sian quadrature points is 5 × 5 for each element. Contact
is treated by the penalty method. The penalty parameter is
increased by Eq. (5.3) with ε0 = 80 E0/L0 and it is taken
equal in tangential and normal direction. The two-half-pass
algorithm [32] is used to evaluate the contact forces. Due to
frictional sliding the contact domain changes and the pre-
sented adaptive local refinement and coarsening procedure
is applied on both surfaces. In Fig. 17 two meshes resulting
from the adaptive local refinement and coarsening technique
are illustrated.

The performance of quadratic and cubic LR NURBS is
investigated. The LR NURBS meshes are compared to their
uniform counterparts using quadratic and cubic NURBS dis-
cretizations separately. The normal contact force fn and the
tangential contact force ft acting on the lower surface are
shown in Fig. 18. Their behavior is as expected, and both
discretizations match each other nicely.

Next, the relative contact force errors

erelt = | f reft − ft |
| f max

n | , and ereln = | f refn − fn |
| f max

n | , (5.5)

are investigated. They are illustrated in Fig. 19. The evo-
lution of the relative error in normal direction shows a
similar behavior as in the previous example. The cubic LR
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Fig. 17 Frictional contact of two deformable membranes: adaptive
local refinement and coarsening of themembranes during frictional slid-
ing. Additional zoom into the locally refined contact domain. Highly

resolved meshes within the local contact domain are obtained while the
periphery is still represented with the coarse, initial mesh
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Fig. 18 Frictional contact of two deformable membranes: Normal (left) and tangential (right) contact forces for both uniform and LR NURBS
mesh. The LR NURBS mesh uses less than 30% of the dofs in comparison with the uniform mesh
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Fig. 19 Frictional contact of two deformablemembranes: relative con-
tact force error of LR NURBS. Quadratic LR NURBS elements are
compared to quadratic, uniformly refinedNURBSelements (left). Cubic

LRNURBS elements are compared to cubic, uniformly refinedNURBS
elements (right). The LR NURBS mesh uses less than 30% of the dofs
in comparison with the uniform mesh

NURBS elements perform better than quadratic elements
due to the coarse periphery. The evolution of the relative
error in tangential direction is more smooth than in the pre-
vious example, see Sect. 5.3. The reason is that the geometric

approximation error shows no remarkable influence in this
example.

A maximum relative error of ≈3×10−4 for quadratic LR
NURBS discretizations is achieved. The relative error for
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Fig. 20 Frictional ironing: initial problem setup of the hemisphere and the block

cubic LR NURBS elements is much smaller and a maximum
of ≈3×10−6 is achieved. The parameters for the automatic
control from Sect. 4 are ddref = 3 d1−d

e , ddsafe = 2 d1−d
e and

ddcrs = 4 d0e . With this setting less than 30% of the dofs of the
reference meshes are used for both quadratic and cubic LR
meshes. This example shows that the technique of adaptive
local refinement and coarsening can be successfully applied
to frictional contact of membranes. The computational cost
is reduced while still achieving high accuracy. In the next
example the adaptive local refinement and coarsening tech-
nique is applied to LR NURBS-enriched volume elements
considering frictional contact.

5.5 Frictional ironing contact between two deformable
solids

Local refinement for general 3D isogeometrical models is
challenging and the linear independency of LR meshes in
3D has not been developed yet. To overcome this issue, the
NURBS-enrichment technique by Corbett and Sauer [5] is
used to extend LR NURBS surface discretizations to 3D.

5.5.1 LR NURBS-enriched finite elements

The core idea of this technique is to use standard finite
Lagrange elements in the bulk domain and enrich the sur-
face by isogeometric finite elements. The local refinement of
NURBS-enriched elements is performed in two main steps

1. Local refinement of the isogeometric surface mesh using
LR NURBS. The adaptive local refinement technique
from Sect. 4 is applied.

2. Extend the local refinement through all the Lagrange ele-
ments in the thickness direction

This work considers the local refinement of NURBS-
enriched and Lagrange elements in two dimensions only. The
refinement of the thickness direction is not considered here,
but it is possible to use standard refinement procedures. The
local refinement of the Lagrange elements typically involve

the generation of hanging nodes. For the treatment of these
hanging nodes the approach of Demkowicz et al. [12] is used.

5.5.2 Numerical results

The last example considers a deformable hollow hemisphere
in frictional contact with a deformable block. Both solids
have a quadratic LR NURBS-enriched contact surface. The
hemisphere is discretized with three elements in its thickness
direction and 7×7 elements on the contact surface. The block
is discretized with eight elements in its thickness direction
and 4×40 elements on the contact surface. Each contact ele-
ment has 5×5 Gaussian quadrature points. The bulk domain
is discretized by linear Lagrange finite elements. Initially,
the block has dimension L0 × L0 × 10 L0 and the hollow
hemisphere has the inner radius Rin

0 = L0/6 and the outer
radius Rout

0 = L0/2, see Fig. 20. The base of the block is
fixed in all directions. Periodic boundary conditions are used
on the left and right boundary of the block. First, a down-
ward displacement of 2/3Rout

0 is applied to the top of the
hollow hemisphere, which is followed by a displacement of
6 L0 in tangential direction. The downward displacement is
considered to be frictionless while the tangential displace-
ment is considered to be frictional. The solids follow the
isotropic, non-linear Neo-Hookean material model (e.g. see
Zienkiewicz et al. [43])

σ = �

det(F)
ln (det(F)) I + μ

det(F)

(
F FT − I

)
, (5.6)

with the deformation gradient F and the identity tensor I .
The Lamé constants � and μ can be expressed in terms of
the Poisson’s ratio ν and Young’s modulus E by

μ = E

2 (1 + ν)
, and � = 2μν

1 − 2 ν
. (5.7)

Considered here are ν1 = ν2 = 0.3 for both solids and E1 =
E0 for the block and E2 = 10 E0 for the hollow hemisphere.
Contact is computed by the two-half-pass algorithmusing the

123



1028 Comput Mech (2017) 60:1011–1031

Fig. 21 Frictional ironing: deformed, LR NURBS mesh of the block. Refinement of depth 2 is applied. The coloring shows the normalized stress
invariant I1 = tr σ/E0. (Color figure online)

Fig. 22 Frictional ironing: refined model of the hollow hemisphere. Top view (left) and bottom view (right). The coloring shows I1 = tr σ/E0.
(Color figure online)

penaltymethodwith ε0 = 80 E0/L0 and increasing εeln = εelt
by Eq. (5.3). The friction coefficient is set to μf = 0.25.

Next, the performance of adaptive local refinement and
coarsening using quadratic LR NURBS-enriched finite ele-
ments is investigated. For this, LR NURBS meshes are
compared to uniformly discretized meshes using quadratic
NURBS-enriched finite elements. Local refinement of depth
2 is applied. Figure 21 shows the locally refined anddeformed
block after the hollow hemisphere has been moved down-
ward. The coloring shows the normalized stress invariant
I1 = tr σ/E0. It can be observed that the area of major
interest is locally refined while the periphery remains coarse.
As the surface of the hemisphere is almost entirely in con-
tact with the block the local refinement leads to a uniformly
refined hemisphere, see Fig. 22.

The normal and tangential contact forces for LR NURBS
and uniform meshes are shown in Fig. 23. These are eval-
uated at the block’s contact surface. The contact forces for
the two meshes only differ slightly. By first investigating the
normal contact force an oscillatory and periodic behavior
can be observed. The oscillations can be reduced by fur-
ther mesh refinement. The normal contact force of the LR
NURBS mesh shows abrupt increases at several points. This

is caused by an adaptive local refinement step. The same can
be observed for the tangential contact force, see right side
of Fig. 23. The absolute and relative contact force errors in
normal and tangential direction are illustrated in Fig. 24. The
relative contact force errors are approximately in the range of
4×10−4 to 2×10−3. The errors show a continuous increase
followed by an abrupt decrease. The errors reflect the influ-
ence of the refinement and coarsening technique also seen
in Fig. 23. Comparing the relative contact force error to the
results of the previous example, one order of magnitude is
lost (in case of quadratic LR NURBS elements). The third
dimension of the solids affect the numerical results strongly.
For further improvements one could take local error mea-
sures into account. It is expected that by using cubic LR
NURBS-enrichment the error would decrease but this would
not reduce the influence of the solid domain. The parameters
for the automatic control from Sect. 4 are ddref = 5 d1−d

e ,
ddsafe = 4 d1−d

e and ddcrs = 6 d0e . With this setting the LR
NURBS mesh has still ≈40% of the dofs of the reference
mesh. Reducing the size of the locally refined domain would
lead to an increase of the error of the contact forces. Still, the
adaptive local refinement and coarsening of LR NURBS-
enriched elements show the benefits of this procedure.
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Fig. 23 Frictional ironing: normal (left) and tangential (right) contact forces of the LR NURBS and uniform meshes. The LR NURBS mesh uses
≈40% of the dofs in comparison with the uniform mesh
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Fig. 24 Frictional ironing: absolute (left) and relative (right) error of the tangential and normal contact forces of the LR NURBS mesh w.r.t. the
reference solution. The LR NURBS mesh uses ≈40% of the dofs in comparison with the uniform mesh

6 Conclusion

This work presents a novel concept of adaptive local sur-
face refinement usingLRNURBS elements in the framework
of computational contact mechanics. The Bézier extraction
of LR NURBS elements is obtained by an additional map-
ping of the Bézier extraction operator.With this, a convenient
embedding of LR NURBS elements into general finite ele-
ment codes is achieved.

The adaptive local refinement and coarsening technique
is automatically controlled by the presented refinement
indicators. The numerical results show that the geometric
approximation error arising from the coarsening is negligi-
ble. The technique is applied to pure isogeometric surface
elements and to isogeometrically-enriched volume elements.
The numerical examples show the benefit of using LR
NURBS. Due to the local refinement, the computational
cost decreases, while still achieving high accuracy. A good
convergence behavior for LR NURBS elements is also
achieved.

The numerical examples in Sects. 5.1 and 5.5 consider
curved surfaces that truly use NURBS instead of B-splines.
So they show that the extension from LR B-splines to LR

NURBS is implemented successfully. The automatic control
of the adaptive local refinement and coarsening technique
works robustly for frictionless and frictional contact. As seen
in the examples, quadratic LR NURBS achieve less accu-
racy than cubic LR NURBS. The reason for this is that
the latter capture the solution in the coarse (i.e. unrefined)
mesh more accurately. This motivates the incorporation of
local error measures that indicate elements for refinement.
Especially, the computations performed with quadratic LR
NURBS-enriched elements show the demand for such an
error measure. The refinement depth is prescribed in the pre-
sented examples. By using error measures the refinement
depth can be specified automatically to achieve a desired
accuracy. This work considers the local refinement of LR
NURBS-enriched andLagrange elements in two dimensions.
More complex 3D objects call for an enhanced adaptive local
refinement technique, which includes local refinement in the
third dimension.

In this work, only bivariate LR NURBS are considered.
Their extension to trivariate LR NURBS would be interest-
ing, since they allow local refinement of 3D LR NURBS
elements. This is a topic of its own because of the com-
plex structure of trivariate LR NURBS meshes. Ensuring
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that the resulting LR mesh is linearly independent has not
been proven yet and is challenging for arbitrary meshline
extensions.
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