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Abstract The Discrete Element Method (DEM) has been
used for modelling continua, like concrete or rocks. How-
ever, it requires a big calibration effort, even to capture
just the linear elastic behavior of a continuum modelled
via the classical force-displacement relationships at the con-
tact interfaces between particles. In this work we propose
a new way for computing the contact forces between dis-
crete particles. The newly proposed forces take into account
the surroundings of the contact, not just the contact itself.
This brings in the missing terms that provide an accurate
approximation to an elastic continuum, and avoids calibra-
tion of the DEM parameters for the purely linear elastic
range.

Keywords DEM · Continuum · Elasticity · Young’s
modulus · Poisson’s ratio

1 Introduction

The Discrete Element Method (DEM) has proven to be a
very useful tool for the numerical computation of granu-
lar flows [1–3] (the hereafter termed non-cohesive DEM)
with or without coupling with fluids [4,5] or structures [6].
These computations can include cohesive forces between
particles [7] to model moisture, glue or other added fea-
tures to the standard non-cohesive DEM. Other research
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lines have focused on the DEM as a method to compute
the mechanics of strongly cohesive materials, like rocks,
concrete or cement [8–12], and it has been combined with
the Finite Element Method (FEM) in order to save com-
putation time [13]. The approach in these cases is usually
termed under the name of ‘bonded’ or cohesive DEM. Here
the DEM can be understood as a discretization method for
the continuum. The main difference between the standard
DEM and the ‘bonded’ DEM is the tensile strength of the
bonds, which prevents the separation of the particles. Usu-
ally, the standard DEM contact laws are recovered when a
bond is broken due to excessive separation or force between
the particles and then the particles can separate freely or
experiment friction. However, while the bond is intact (not
broken) the contact is purely elastic in both normal and
tangential directions. The developments presented in this
work are bounded to situations where all bonds are intact,
so the interaction between particles is elastic and the parti-
cles can not separate freely or experiment friction with each
other.

The ability of the ‘bonded’ DEM with some breakage
criteria to reproduce multi-cracking phenomena in strongly
cohesive materials is probably one of the main reasons why
the DEM is chosen. However, a moderately deep analysis
of the works published usually reveals a lack of accuracy of
the DEM results in the elastic regime, together with a strong
need for calibrating the DEM parameters. In particular, the
Poisson’s ratio and the shear modulus are seldom validated
and it is commonly accepted [14] that the Poisson’s ratio has
a strong dependency on the packing arrangement and on the
ratio kt/kn [15],where kn and kt are the normal and tangential
spring stiffness, respectively, in the spring dash-pot model
that yields the forces at the contact interface between two
spheres. The difficulty of the ‘bonded’ DEM to get accurate
results when trying to capture simultaneously the Young’s
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Fig. 1 Schematic definition of
local axes at a contact point i
between two spheres. a
Stress-free position. b Deformed
position

modulus (E), the Poisson’s ratio (ν) and the shear modu-
lus (G) derives from the fact that the bonded DEM works
as a system of trusses instead of a massive continuum. Usu-
ally, a good calibration of the micro parameters (kn and kt )
leads to a decent capture of one or two of the elastic macro
parameters (E , G and ν) for a given packing and usually for
a certain, limited, range of values [15]. Due to these limita-
tions, the spring dash-pot model has proven not to be good
enough to capture the elastic behavior of a continuum. In
this work we propose a way to enrich the spring dash-pot
model in such a way that the elastic properties of a contin-
uum can be accurately captured with the DEM. Capturing an
accurate elastic response of the continuum is a pre-requisite
to capturing the formation of cracks. Note that the approach
proposed does not intend to solve granular compacts which
might present inner stick-slip phenomena, but is restricted
to those continua which can be represented by the theory of
linear elasticity.

2 Objectives

The objectives of this work are:

1. Modify the way the forces between pairs of spheres are
computed in the DEM so an elastic continuum can be
modelled accurately.

2. Provide the necessary equations so that the calibration
of the micro parameters for the DEM is not needed for
accurately reproducing the elastic behavior of a contin-
uum.

3. Ensure that the DEM solution is independent from the
size of the spheres, the granulometry of the material,
the coordination number (the average number of particle
neighbours) or the type of particle arrangement (carte-
sian, dense packing, random, etc.).

3 Computation of the elastic forces between
particles

3.1 Normal forces

Since the main goal is to reproduce the elasticity of a contin-
uum, the initial step to deduce the inter-particle forces is to
analyze in detail the strain-stress constitutive equations:

εk = σk

E
− ν

E
(σl + σm) (1)

γkl = τkl

G
(2)

where E,G and ν are the Young’s modulus, the shear mod-
ulus and the Poisson’s ratio, respectively, and k, l,m are the
cyclic permutation of the Cartesian coordinates x , y, z.

Sub-indices k, l,m denote generally the Cartesian axes.
Without lack of generality it can be assumed that Eqs. (1) and
(2) also hold if we choose k = z′, l = x ′ and m = y′, where
the primes denote the local axes at a contact point between
two particles (Fig. 1a). z′ is the direction that joins the centers
of both spheres, defining the direction of the normal contact.
x ′ and y′ are two any directions orthogonal to each other and
to z′, defining a plane that contains the tangent forces. For
simplicitywewill assume in thiswork that theDEMparticles
are spherical. However, the method can be easily generalized
to any particle shape.

In order to get the normal force between two spheres con-
tacting at a point i , we can isolate σz′ from Eq. (1) to get:

σz′i = Eεz′i + ν(σx ′i + σy′i ) (3)

where subindex i refers to the i th contact point.
The next step is to substitute σz′i and εz′i in Eq. (3) in

terms of the interface forces and elongations. Namely,

Fz′i
Ai

= E
δz′i
L0i

+ ν(σx ′i + σy′i ) (4)
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where Fz′i is the force between the two particles in the nor-
mal direction z′ (defined by the vector that joins the particle
centers), Ai is the contact area at the i th contact interface
between the two particles (see Sect. 3.3 for details on the
value of Ai , which is not based in the Hertzian Contact The-
ory), L0i is the distance between the centers of the particles
at the stress-free position and δz′i is the overlap between the
particles, which can be computed as (Eq. 5):

δz′i = R1 + R2 − Li (5)

where R1 and R2 are the radii of both particles and Li is
the distance between their centers (Fig. 1b). The overlap in
Eq. (4) can also be referred to a stress-free relative position
with an initial overlap between spheres, or with an initial gap
(negative overlap), but this is a subject out of the scope of
the present paper. A brief description of these initial overlaps
between particles can be found in Sect. 3.3.

From Eq. (4) we can deduce

Fz′i = Ai E
δz′i
L0i

+ Aiν(σx ′i + σy′i ) (6)

Equation (6) yields a new expression for the normal con-
tact force which includes an extra second term that brings
in the usually missing, but necessary, effect of the particle
confinement. Eq. (6) can be rewritten as

Fz′i = kniδz′i + Aiν(σx ′i + σy′i ) (7)

where kni is a normal stiffness parameter associated to each
pair of particles given by

kni = Ai E

L0i
(8)

In Eq. (6) σx ′i and σy′i are the axial stresses at the contact
point in the twoorthogonal directions to the normal one. They
can be obtained by projecting the stress tensor into those two
directions with the associated unit vectors êx ′ and êy′ as

σx ′i = (
σ i êx ′i

)T êx ′i (9)

σy′i = (
σ i êy′i

)T êy′i (10)

where σ i is the stress tensor at the i th contact point. This
tensor can be obtained as the average of the stress tensors
for the two interacting particles at the i th contact point: σ i =
σsphere,0 + σsphere,i

2 , where σsphere,0 is the stress tensor computed
in the center of the central sphere andσsphere,i is the stress ten-
sor computed in the center of the i th neighbour sphere. This
tensor is typically computed for post-processing the DEM
results [16,17] as

σsphere,0 = 1

V

nc∑

i=1

li ⊗ Fi (11)

written for the central particle, but easily extendable to the
neighbour spheres. In Eq. 11, nc is the number of contacts of
the central particle, l i is the vector connecting the center of
the particle to the i th contact point, Fi is the force vector at
the i th contact point (including normal and tangential com-
ponents) and V is the volume used to average the stresses.
One option is to take V = Vsphere, where Vsphere is the vol-
ume of the sphere. A better estimation can be obtained using
all the contact areas of the particle with the neighbours as

V =
nc∑

i=1

1

3
Ai‖li‖ (12)

where A1, A2, . . . , An are the areas of the contact interfaces.
The stress tensor σ can be used in an explicit dynamic

solution scheme for the DEM by recovering its expression
computed at previous time step. For implicit DEM schemes
σ has to be computed iteratively within the current time step
to get an updated value.

The computation of the contact interface areas Ai is
described in Sect. 3.3.

Remark Equation (7) is similar to the typical equation for the
normal spring force, adding a new term (Aiν(σx ′i + σy′i ))
that accounts for the contribution of the Poisson’s effect.

3.2 Tangential forces

From Eq. (2) we can isolate the tangential stresses τkl as

τkl = Gγkl (13)

or

τkl = G

(
∂uk
∂xl

+ ∂ul
∂xk

)
(14)

where uk is the displacement along the kth direction.
Again we can assume that directions k and l are not neces-

sarily oriented with the Cartesian axes. Using the local axes
at the contact point (Fig. 1a) we obtain:

τz′x ′ = G

(
∂ux ′

∂xz’
+ ∂uz′

∂xx ′

)

τz′y′ = G

(
∂uy′

∂xz’
+ ∂uz′

∂xy′

) (15)

In Eq. (15) the terms ∂ux ′
∂xz’

and
∂uy′
∂xz’

can be approximated

by δx ′i
Li

and
δy′i
Li

, respectively, where δx ′i and δy′i are the accu-
mulated relative displacements of the contact point between
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two particles in the x ′ and y′ directions, respectively, and Li

is the distance between the centers of the spheres (different
from L0i , see Fig. 1b).Note that δx ′i and δy′i are the lengths of
the curves described by the relative tangential displacements
over time (see Fig. 1b). Usually, these relative displacements
are calculated by a cumulative sum over the time steps, con-
sidering at each time step the relative displacements of the
centers of the contacting spheres plus the relative displace-
ment at the contact point due to the rotation of the spheres
(Eqs. 16 and 17):

δx ′i = δt−	t
x ′i + δ	t

x ′i (16)

δy′i = δt−	t
y′i + δ	t

y′i (17)

where the superindex t − 	t denotes values at the previous
time step and the superindex	t denotes the increment in the
value during the last time step. δ	t

x ′i and δ	t
y′i can be computed

by projecting the total relative displacement at the contact
point (δ	t

i ) projected over the axes x ′ and y′, represented by
the unit vectors ex ′i and ey′i :

δ	t
x ′i = δ	t

i · ex ′i (18)

δ	t
y′i = δ	t

i · ey′i (19)

δ	t
i is computed as follows:

δ	t
i = δ	t − δ	t

i,center + �	t × Ri
0 − �	t

i × R0
i (20)

where δ	t is the displacement of the center of the reference
sphere during the last time step, δ	t

i,center is the displacement
of the center of the i th neighbour sphere during the last time
step, Ri

0 is the vector going from the center of the reference
sphere to the i th contact point, R0

i is the vector going from the
center of the i th neighbour sphere to the same contact point,
�	t is the vector defining the angle rotated by the reference
sphere during the last time step and �	t

i is the angle rotated
by the i th neighbour.

The tangential forces at the contact point i , Fx ′
i
and Fy′

i
,

can be expressed as:

Fx ′
i
= AiG

(
δx ′i
Li

+ ∂uz′

∂xx ′

)
= ktiδx ′i + AiG

∂uz′

∂xx ′

Fy′
i
= AiG

(
δy′i
Li

+ ∂uz′

∂xy′

)
= ktiδy′i + AiG

∂uz′

∂xy′

(21)

with kti being a tangential stiffness parameter associated to
the i th contact point between each pair of spherical particles,
whose value is

kti = AiG

Li
(22)

The terms
∂uz′
∂xx ′

and
∂uz′
∂xy′

inEq. (15) cannot be obtainedwith

the information provided by the pair of particles in contact.
They can be deduced, however, from the information con-
tained in the stress tensor, which is fed by information from
all the surrounding particles. Using Eq. (14), and choosing
the local axes at the contact point, we can write:

(
∂uz′

∂xx ′

)

i,step
=

(
τz′x ′,i
G

− δx ′i
Li

)

step(
∂uz′

∂xy′

)

i,step

=
(

τz′y′,i
G

− δy′i
Li

)

step

(23)

Sub-index step in Eq. (23) denotes the time step at which
the different terms are approximated. For explicit dynamic
solution schemes, step refers to the previous step. For implicit
schemes, step refers to the current time step and the term is
updated iteratively. Note that both τz′x ′,i and τz′y′,i depend on
both Fx ′

i
and Fy′

i
through Eq. 11, so their value has to be used

either from the previous time step or the previous iteration,
otherwise, the forces would never be updated according to
the relative displacements.

The tangential forces can be finally written as

Fx ′
i
= ktiδx ′i + AiG

(
τz′x ′,i
G

− δx ′i
Li

)

step

Fy′
i
= ktiδy′i + AiG

(
τz′y′,i
G

− δy′i
Li

)

step

(24)

where τz′x ′,i and τz′y′,i are the tangential components of the
stress tensor in local coordinates, σ ′

i . Note that the sub-index

step here avoids the substitution of AiG
(

δx ′i
Li

)

step
by ktiδx ′i ,

which would cancel terms and make the expression indepen-
dent from the relative displacements between the particles.

The tensor σ ′
i is computed by rotating the averaged stress

tensor at the i th contact point, σ i (in global coordinates), as:

⎡

⎣
σx ′x ′,i τx ′y′,i τx ′z′,i
τy′x ′,i σy′y′,i τy′z′,i
τz′x ′,i τz′y′,i σz′z′,i

⎤

⎦ = RT
i

⎡

⎣
σxx,i τxy,i τxz,i
τyx,i σyy,i τyz,i
τzx,i τzy,i σzz,i

⎤

⎦ Ri (25)

which can be also written as:

σ ′
i = RT

i σ i Ri (26)

where Ri is the rotation matrix between the Cartesian and
the local axes of contact i .

Remark Note that Eq. (26) is an extension of the usual
expression for the tangential forces in the DEM by adding an
extra term that accounts for the surroundings of the bond.
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Fig. 2 Scheme of overlapping
contact areas (left) and gaps
between contact areas (right)

3.3 The contact area between two spheres

In Sects. 3.1 and 3.2, the contact interface area Ai is an
important value that affects the contact force and, hence, the
global response of themodelledmaterial in terms of apparent
(macro) Young’s modulus and Poisson’s ratio values. Some
authors [8,15] haveprovided estimations of Ai for linear elas-
tic contact laws taking into account the radii of the contacting
spheres. Some typical options are:

• A is taken as the area associated to the minimum radius
between two particles: 2Rmin in 2D or πR2

min in 3D.• A is taken as the area associated to an average radius
between two particles: 2Rav in 2D or πR2

av in 3D (with
Rav = R1+R2

R1R2
, for example).

For this work, this last estimation is used (Eq. 27), i.e.

Ai = π

(
R0 + Ri

R0Ri

)2

(27)

Most of these estimations, including the one in Eq. 27, do
not take into account that too big values of Ai introduce
an overlap between contacts, or that too small values of A
represent gaps between contacts. Figure 2 shows a scheme
of both cases. The presence of overlaps or gaps, for a certain
estimation of Ai , strongly depends on the type of packing
and the particle size distribution.

In this work we propose a way to calculate the contact
areas Ai which is based on the concept of Weighted Voronoi
Diagram (WVD) (Power Diagram type [18]). A Voronoi
Diagram defines the polyhedra around each particle which
contains all the points in the space that are closer to that
particle center than to another’s. The WVD gives more vol-
ume to those particles with bigger radii and less volume to
the smaller ones. In a WVD the faces of each polyhedron
coincide with our concept of ‘contact areas’. These faces
are polygons that have no overlaps, do not present gaps and
can be used for the DEM in order to simulate a continuum.
However, building the WVD is computationally expensive,
and this goes against the necessary need of performance for

Table 1 Value of α = Apolyhedron
Asphere

for regular polyhedra tangent to
a sphere for different numbers
of faces

Number of faces α

4 3.30797

6 1.90986

8 1.65399

12 1.32503

20 1.20657

the DEM. In this Section we give a useful alternative for the
approximate computation of the contact area.

Given a set of areas A1, A2, . . . , An for the n contact-
ing neighbours of a particle, and assuming that these areas
take into account the different element sizes, the sum of∑n

i=1 Ai = Atotal,sum should be equal to the sum of the faces
areas of the polyhedron given by theWVD (Atotal,exact). This
polyhedron is unknown (unless theWVD is generated) but an
approximation to its total surface can be roughly estimated by
assuming that it is a polyhedron circumscribed to the sphere.
So, Atotal,estimation must be bigger than the sphere’s surface,
i.e.

Atotal,estimation ≥ 4πR2 = Asphere (28)

Using the critical case Atotal,estimation = 4πR2 the contact
interface areas can be corrected as:

A∗
i = Ai

Atotal,estimation

Atotal,sum
= Ai

4πR2

Atotal,sum
(29)

These corrected areas are typically too small and the
response of the material is usually softer than desired. A
better estimation for the surface of the polyhedron can be
obtained as:

Apolyhedron = αAsphere (30)

where α depends on the number of faces of the polyhedron
(number of neighbours of the sphere) and the dispersion in
areas of those faces. For regular polyhedra, α is known and
the values can be seen in Table 1.
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Fig. 3 2D scheme of
overlapping (left) and separated
(right) particles

If the number of faces does not allow the formation of a
regular polyhedron, α is interpolated from Table 1.

Finally,

A∗
i = α4πR2 Ai

Atotal,sum
(31)

The new contact area A∗
i replaces Ai in the corresponding

equations of Sects. 3.1 and 3.2.
In Eq. (31) it is assumed that all the faces of the polyhedron

have the same area. The possible dispersion of sizes in the
faces of the polyhedron, due to the presence of neighbour
particles of different sizes, is not taken into account, not even
in the cases with 4,6,8,12 or 20 faces. Extra adjustments can
be introduced by using more correction coefficients.

3.3.1 Further corrections for the contact areas

In the practical use of the DEM for modelling continua, it is
very common to find packings of spheres where two particles
present an initial overlap. In order to start the computation
with null forces, the overlap between those two particles is
neglected and remembered thoughout the whole computa-
tion. The same operation can be done between two particles
which are close to contact, by means of a negative overlap.
In the last case, if the particles approach each other, a repul-
sion force appears, even before reaching the tangency. Both
for positive and negative overlapping, Eq. (5) for δz′i can be
extended as follows (Eq. 32):

δz′i = R1 + R2 − Li − δz′i,0 (32)

where δz′i,0 is the overlap with the i th neighbour at the begin-
ning of the computation. This value must be remembered by
the particle during the whole calculation, for all its neigh-
bours.

The utility of considering as neighbours some non-
overlapping spheres is the increase of the number of neigh-
bours in all directions, bringing a denser network of bonds,
a more homogeneous distribution of forces and absence of

voids (side without any bond). Equation (31) yields accurate
results as long as the spheres are tangent. However, in the
cases where the spheres are not perfectly tangent and they
present gaps or overlaps further corrections of the contact
areas must be made (Fig. 3).

In these cases the virtual polyhedron would not be tangent
to the sphere, and the radius used for calculating Asphere

should no longer be the actual radius of the sphere, R. Instead,
it can be replaced by

R∗ =
∑nc

i=1

(
R − δz′i

2

)

nc
(33)

with δz′i being the overlap of the sphere with the i th neigh-
bour (a negative value means a gap between spheres). The
value of R∗ replaces R in Eq. (31).

Remark All the corrections proposed in this Section would
not be necessary if theWVD is used to determine the contact
areas. The decision of not using the WVD is purely related
to the time consumption when building it.

4 Results

4.1 Validation methodology

Several numerical tests were carried out in order to val-
idate this theoretical framework. These simulations were
addressed to find out the ability of the method for capturing
the elastic behavior of a given specimen using the explicit
version of the DEM. The sample studied was a cubic volume
of side 0.5 m. The specimen was tested for a Young’s modu-
lus of E = 1.0e9 Pa and two different Poisson’s ratio values
of ν = 0.2 and ν = 0.35. All computations with the DEM
using ν ≥ 0.5 were unstable and the sample exploded.

The elastic response of the sample was obtained via a uni-
axial compression test by imposing constant and confronting
velocities in the Z axis to the spheres at the top and bottom of
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Fig. 4 Fine cartesian packing of 132,651 spheres

the specimen, while allowing the free movement in the XY
plane. The velocities imposed were of 0.0005 m/s for a total
time of 0.01 s. The time step used for all the computations
was 5e-7 s.

Three packing typologies were tested: cartesian packing,
staggered packing and random packing. The average coordi-
nation number of the cartesian packing was 6, while for the
staggered and the random was 13 and 11 respectively. The
porosity of the cartesian packing was 0.476, for the stag-
gered packing was 0.117 and for the random packing was
0.25. The initial overlapping between spheres explains the
reduced porosity value for the staggered packing (porosity is
measured as the sum of the individual volumes of the spheres
over the volume of the sample). More details on the studied
geometries are given next:

1. Two cartesian packings were prepared with different
particle sizes. The coarse packing had 50,653 spheres
of 1.4cm of diameter. The fine cartesian packing had
13,2651 spheres of 1cmof diameter (Fig. 4). For this con-
figuration, all contacts are either vertical (aligned with Z)
or horizontal (aligned with X or Y ). The average coordi-
nation number for both packings was 6.

2. Two staggered packings were prepared with different
particle sizes. The coarse packing had 17,261 spheres
of 2.5cm of diameter. The fine staggered packing had
33,201 spheres of 2cm of diameter (Fig. 5). This con-
figuration, also called ‘body centered cube’ presents a
bigger density of contacts, and still can be considered
‘structured’, as the same cell is replicated in the X, Y
and Z directions. The average coordination number for
both packings was 13.

3. Two random packings were generated using Gaussian
distributions of the diameters. The first one was gener-
ated with 11,511 spheres of an average diameter of 2 cm
(Fig. 6), the standard deviation was 0.1 and the diame-
ters were trunkated between 2.6 and 1.4cm. The second
packing was generated with 30,213 spheres of an average
diameter of 1.5cm, the standard deviationwas 0.1 and the
diameters were trunkated between 1.0 and 2.0cm. The
neighbour search tolerance in both samples was adjusted
to achieve an average coordination number of 11, with
null initial forces.

4.2 Measurement of the macro values of E and ν for the
samples

The macro Young’s modulus (Emacro) was computed as the
quotient between the stress at the moving boundaries (top
layer and bottom layer) over the total vertical strain of the

Fig. 5 Fine staggered packing
of 33,201 spheres. Global view
(left) and detail (right)
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Fig. 6 Random packing of 30,213 spheres

specimen. The stress at the boundaries was calculated as the
sum of the reaction forces over the spheres of the top layer
divided by the section area of the specimen

Emacro = σcomputed

εz
=

∑ns
j=1 Freact,j

εz Aspecimen
(34)

where ns is the number of spheres of the top layer, Freact,j is
the reaction force on the i th sphere, Aspecimen is the cross sec-
tion of the sample and εz is the vertical strain of the specimen
(enforced in the form of imposed displacements).

Themacro Poisson’s ratio νmacro for the sample was com-
puted as the quotient of the horizontal strain over the vertical
strain. Both strains were measured at the longest diagonal in
the cube, defined by the straight line connecting the centers
of the two most distant spheres in the sample. An alterna-
tive to this measurement is to compute the average value
of ν for all the bonds connecting the centers of every pair
of spheres in contact within the specimen. In both cases,
the expression used to compute the macro Poisson’s ratio
between any two centers of spheres C1 and C2 in the sample
was

νmacro = −εxy

εz
= −

1 − dxy,initial
dxy,final

1 − dz,initial
dz,final

(35)

where εxy is the horizontal strain of the measured line,
dxy is the length of the projection of the line to the XY
plane, dz is the length of the projection of the line to the
Z axis and the subindices ini tial and f inal denote if the
measure is taken before or after the deformation, respec-
tively (Fig. 7). The Young’s modulus and the Poisson’s ratio
were measured at every time step. It was noticed that, being
a dynamic computation, some elastic waves were gener-
ated in the sample until the intentionally added damping
dissipated them and the measurements reached steady val-
ues. Those values are the ones considered as the result
of the computations. The coefficient of restitution (COR)
used for damping the waves was 0.2, with the imple-
mentation for the linear spring published in [19], both in
normal and tangential directions. Figure 8 shows the evo-
lution of the measured Young’s modulus and the Poisson’s
ratio during the computation and how they reach a steady
value.

Fig. 7 Scheme of the projections of a line before (left) and after (right) deformation
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Fig. 8 Dynamic measurement of the Young’s modulus (left) and the Poisson’s ratio (right) during the computation

Table 2 Effect of the particle size on the results with the improved DEM

Error in computed values Cartesian packing Staggered packing Random packing

Coarse (%) Fine (%) Coarse (%) Fine (%) Coarse (%) Fine (%)

Input parameters: E = 1.0e9, ν = 0.20

Young’s modulus E −2.8 −0.6 −1.7 +0.7 −1.2 −0.2

Poisson’s ratio ν −4.6 +1.45 +0.5 +0.4 −3.0 −3.0

Input parameters: E = 1.0e9, ν = 0.35

Young’s modulus E −3.6 −0.6 −1.4 +0.7 −1.2 −0.2

Poisson’s ratio ν +0.0 +0.22 −3.4 −2.9 −5.1 −3.5

4.3 Analysis of the results

The results shown in this Section did not require any calibra-
tion effort andwere obtained in a single runwith the specified
input parameters. Table 2 summarizes the results discussed
below.

4.3.1 Cartesian packing

A very good result was obtained for the Young’s modulus
value. It was prescribed to a value of E = 1.0e9 Pa and the
error of the computed value was of−2.8% for a coarse pack-
ing (ν = 0.2) and −0.6% with a fine packing for ν = 0.2.
For ν = 0.35, the errors in the computation of E were of
−3.6 and−0.6% for the coarse and the fine packings respec-
tively. On the other hand, the errors when computing the
macro Poisson’s ratios corresponding to a prescribed value
of ν = 0.2 were −4.6% (coarse packing) and 1.45% (fine
packing), while for ν = 0.35 the errors were 0.0% (coarse
packing) and 0.22% (fine packing). For this particular case,
the procedure of computing the Poisson’s ratio averaged over
all the contactsmakes no sense, as the bonds between spheres
experience no rotation, so nomeasure of the macro Poisson’s
ratio is possible for a single bond. The deformation of the
maximum diagonal in the sample was used to measure the

Fig. 9 Deformed sample for a cartesian packing. Displacement ampli-
fied by a factor of 3.0e4

macro Poisson’s ratio. Figure 9 shows the deformation of the
cartesian packing with a scaling factor of 3.0e4.

4.3.2 Staggered packing

A very good result was obtained for the Young’s modulus
value. It was prescribed to a value of E = 1.0e9 Pa and
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Fig. 10 Deformed sample for a staggered packing. Displacement
amplified by a factor of 3.0e4

the error of the computed value was of −1.7% for a coarse
packing (ν = 0.2) and 0.7% with a fine packing for ν = 0.2.
For ν = 0.35, the errors in the computation of Ewere of−1.4
and 0.7% for the coarse and the fine packings respectively.On
the other hand, the errors in computing the macro Poisson’s
ratios corresponding to a prescribed value of ν = 0.2 were
0.5% (coarse packing) and +0.4% (fine packing), while for
ν = 0.35 the errors were −3.4% for the coarse packing and
−2.9% for the finer.

In this case the Poisson’s ratio was measured as the aver-
aged value over all the bonds. This procedure was chosen to
avoid the effect of the small expansions that can be observed
at the top and bottom of the specimen. These expansions can
be explained as a result of a lower stiffness of the spheres
at the outer layers due to a drastic decrease in the number
of neighbours with respect to the interior of the specimen. In
fact, whenmeasuring the Poisson ratio using the deformation
of the maximum diagonal, the errors corresponding to a pre-
scribed value of ν = 0.2 were 11.4% (coarse packing) and
5.8% (fine packing), while for ν = 0.35 the errorswere 3.8%
for the coarse packing and 3.9% for the finer. Figure 10 shows
the deformed configuration of the sample using a scaling fac-
tor of 3.0e4. Finally, Fig. 11 shows the Poisson’s ratio field. It
can be clearly observed that the field in the interior of the sam-
ple is very uniform with an average value of around ν = 0.2,
this being the exact Poisson’s ratio specified for this case.

4.3.3 Random packing

Again, a very good value of the Young’s modulus was
obtained. It was prescribed to a value of E = 1.0e9 Pa and
the error of the computed Poisson ratio was of −1.2% for a
coarse packing (ν = 0.2) and of −0.2% using a fine packing
for both ν = 0.2 and ν = 0.35. On the other hand, the error
in computing the macro Poisson’s ratios corresponding to a
prescribed value of ν = 0.2 was of−3.0% for both packings,
while for ν = 0.35 the errors were of −5.1 and −3.5% for
coarse and fine packings respectively (Fig. 12). In this case,

Fig. 11 Poisson’s ratio values
for an input value of ν = 0.2
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Fig. 12 Deformed sample for a random packing. No expansions at
the top and bottom layers were observed. Displacement amplified by a
factor of 3.0e4

using the deformation of the maximum diagonal for measur-
ing the Poisson seemed more natural and was used, since no
local expansions at the top and bottom of the specimen were
observed. However, for the sake of completeness, the value
averaged for all the bonds is also given for all cases: the errors
corresponding to a prescribed value of ν = 0.2 were 5.4%
for the coarse packing and 1.9% for the fine packing, while
for ν = 0.35 the errors were 3.6% for the coarse packing and
4.6% for the finer one.

4.4 Comparison of the results obtained with the
non-enriched DEM contact law

Theprevious numerical experimentswere run using the terms
that add the Poisson’s effect (Sect. 3.1) and an extra tangen-
tial force (Sect. 3.2). In this Section we will show that not
adding those contributions leads to poor estimations of the
macro Poisson’s effect and macro Young’s modulus. In this
case, only the fine packings are compared. Tables 3 and 4
summarize the results discussed in the next Subsections.
The term ‘improved DEM’ stands for the formulation pre-
sented in this work for computing the contact forces, while
‘standard DEM’ denotes results without the extra terms for

the force-displacement relationship presented in Sects. 3.1
and 3.2.

4.4.1 Cartesian packing

For the cartesian packing, the Young’s modulus is captured
very well in both cases. The non-enriched bonded DEM
contact law (using as contact areas the ones established in
Sect. 3.3) presents an error of −0.6%, exactly equal to the
DEM with the extra terms provided in this paper. However,
big differences exist when comparing the error of the mea-
sured Poisson’s ratio. An error of−100% is computed for the
non-enriched bonded DEM (for both ν = 0.2 and ν = 0.35)
while for the improved version of the bonded DEM, errors
of +1.45 and +0.22% for ν = 0.2 and ν = 0.35 respectively
are found. This is a logical and expected result taking into
account the non-existence of forces in the XY plane (the only
ones that would cause strains in that direction) in a cartesian
specimen subjected to stresses in the Z axis.

4.4.2 Staggered packing

The measured Young’s modulus for the ‘standard DEM’
presents errors of −20.8 and −23.0% versus the prescribed
value (E = 1.0e9) for ν = 0.2 and ν = 0.35 respectively.
These errors are notably decreased in the ‘improved DEM’,
with values of +0.7% in both cases. The measured Poisson’s
ratio for the ‘standard DEM’ presents errors of −43.0 and
−64.0% for ν = 0.2 and ν = 0.35 respectively. These errors
are again notably decreased in the ‘improved DEM’, with
values of +0.4 and −2.9% in this case. The bigger errors
in the Young’s modulus for the ‘standard DEM’ have their
source in the inclined bonds present in the staggered pack-
ing, where part of the vertical force comes from the tangential
contact forces between particles,which have smaller stiffness
than the normal forces. For the ‘standard DEM’ the inclined
bonds are also a source of horizontal forces that can make
the sample expand from a macro point of view. However, the
source of this expansion is geometrical and strongly depen-
dent on the inclination of the bonds. In the ‘improved DEM’
the added extra terms correct a major part of these errors.

Table 3 Effect of adding the extra terms in the normal and tangential contact forces (fine packings)

Error in computed values Cartesian fine packing Staggered fine packing Random fine packing

Standard
DEM (%)

Improved
DEM (%)

Standard
DEM (%)

Improved
DEM (%)

Standard
DEM (%)

Improved
DEM (%)

Input parameters: E = 1.0e9, ν = 0.2

Young’s modulus E −0.6 −0.6 −20.8 +0.7 −22.0 −0.2

Poisson’s ratio ν −100.0 +1.45 −43.0 +0.4 −29.0 −3.0
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Table 4 Effect of adding the extra terms in the normal and tangential contact forces (fine packings)

Error in computed values Cartesian fine packing Staggered fine packing Random fine packing

Standard
DEM (%)

Improved
DEM (%)

Standard
DEM (%)

Improved
DEM (%)

Standard
DEM (%)

Improved
DEM (%)

Input parameters: E = 1.0e9, ν = 0.35

Young’s modulus E −0.6 −0.6 −23.0 +0.7 −28.0 −0.2

Poisson’s ratio ν −100.0 +0.22 −64.0 −2.9 −62.0 −3.5

4.4.3 Random packing

The computed Young’s modulus for the ‘standard DEM’
presents errors of −22.0 and −28.0% versus the prescribed
value (E = 1.0e9) for ν = 0.2 and ν = 0.35, respectively.
These errors are notably decreased in the ‘improved DEM’,
with values of −0.2% for both values of ν. The computed
Poisson’s ratio for the ‘standard DEM’ presents errors of
−29.0 and −62.0% for ν = 0.2 and ν = 0.35 respectively.
These errors decreased in the ‘improved DEM’, with values
of −3.0 and −3.5%. The random packing presents similar
results to the staggered packing in all aspects. The main dif-
ference is a bigger error in the estimation of the Poisson’s
ratio of the ‘improved DEM’. However, the heterogeneity in
the coordination number and the presence of voids (absence
of neighbours on one side of the particle) can explain this
increase in the error.

5 Conclusions

Amodification of the contact laws between particles has been
proposed in order to improve the elastic behaviour of a pack-
ing of spheres when trying to model a continuum with the
DEM.

The newly added terms in Eqs. (7) and (24) complete the
conventional forces of the cohesive (‘bonded’) DEM tradi-
tionally used to model materials like rocks or cement. These
terms notably improve the elastic response of the material
modelled with the DEM versus the conventional approach
and avoid the need of any calibration process if the con-
tact areas are calculated using the methodology explained in
Sect. 3.3.

The modified contact laws here proposed yielded simi-
lar good results for different types of packings (cartesian,
staggered and random packings were tested), different coor-
dination numbers and different combinations of elastic
constants.
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AppendixA. Shortcomings of the classic DEMwhen
trying to reproduce the Young’s modulus

In order to emphasize the importance of the extra terms pro-
posed in the constitutive expressions of Sects. 3.1 and 3.2,
an example is shown to evidence some shortcomings of the
classical DEM for cohesive materials:

Let us enforce a vertical strain of εv = δv

L0v
on two layers of

circles, where δv is the relative vertical displacement between
the layers and L0v is the initial vertical distance between the
layers (distance between centers).

Case 1

In a Cartesian arrangement (Fig. 13), a two-layer sample
formed by circles can be taken as a representative cell
(Fig. 14). Let us impose a descending displacement δv to
the upper layer, while keeping the lower layer fixed. L0v

is then equal to 2R, so the vertical strain has a value of
ε = δv

L0v
= δv

2R .
In the standard DEM, the vertical force between these two

circles is Fv = knδv , where kn is a fixed, calibrated value,
or is obtained by kn = E A

2R = E2R
2R = E . Let us choose the

latter, where the contact area A has been assumed to be 2R
for this case, which is a value that ensures that the sum of

Fig. 13 Two layers of a Cartesian packing of particles
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Fig. 14 Representative cell of
the Cartesian packing for
vertical force analysis

all areas between both layers is equal to the whole section,
without gaps or overlaps.

Case 2

In a structured dense packing of circles (Fig. 15), a sample of
one upper circle and two halves of lower circles can be taken
as a representative cell (Fig. 16). In order to impose the same
vertical strain, let us impose a descending displacement δ∗

v =
δv cos θ and L∗

0v = 2R cos θ , where θ is the angle that the
inclinedbonds formwith thevertical.With this configuration,

the vertical strain is ε∗ = δ∗
v

L∗
0v

= δv cos θ
2R cos θ

= δv

2R = ε.

In the classical DEM, the vertical force acting on the upper
circle is:

F∗
v = 2

(
F∗
n cos θ + F∗

t sin θ
)

(36)

where F∗
n and F∗

t are the normal and tangential forces
between the upper circle and one of the lower ones.

Using the concepts of the classical DEM, these two forces
can be written as a stiffness constant multiplying a relative
displacement, i.e.

F∗
v = 2

(
knδ

∗
v,n cos θ + ktδ

∗
v,t sin θ

)
(37)

Fig. 15 Two layers of a dense, structured packing of particles

Fig. 16 Representative cell of
the dense packing for vertical
force analysis

where δ∗
v,n is the relative normal displacement at the contact

point and δ∗
v,t is its tangential counterpart. In Eq. (37) kn is a

fixed calibrated value, or it is obtained by kn = E A∗
2R . Also in

Eq. (37) kt is usually taken as a fraction of kn , but it can also
be estimated as kt = GA∗

2R . Nomatter which option is chosen,
in general kn �= kt . For further developments we have chosen
the second choice for defining kt . Then, if we substitute δ∗

v,n
and δ∗

v,t by δ∗
v cos θ and δ∗

v sin θ , the expression of the total
vertical force on the upper circle is:

F∗
v = 2

(
E A∗

2R
δ∗
v cos

2 θ + GA∗

2R
δ∗
v sin

2 θ

)
(38)

Taking into account that A∗ = A
2

1
cos θ

= R
cos θ

and δ∗
v =

δv cos θ we finally obtain:

F∗
v = Eδv cos

2 θ + Gδv sin
2 θ (39)

Comparison

In both cases, the total horizontal contact area is 2R (in Case
2, the two contact areas must be projected to the horizontal
direction to recover this value). Having the same vertical
strain in both cases, the vertical stress should be equal as
well, understanding the vertical stress as the vertical force
divided by the total area. Since the area is the same, the
vertical forces must be equal. However, F∗

v �= Fv in general.
They can only be equal if we assume that G = E . In other
words, kt must be equal to kn in order to recover the same
vertical stiffness.

Conclusion

From the above exercise we conclude that the micro param-
eters used in the standard DEM (kn and kt ) yield different
stiffness values for a sample depending on the position of
the particles or the direction of the bonds. This means that a
random packing of spheres modelled with the standard DEM
is extremely heterogeneous in terms of internal stiffness. It
also means that a calibration obtained for one sample is not
necessarily useful for other samples, as most probably the
orientation of the bonds will be different.

AppendixB.Dynamics of theDEMandmass adjust-
ment

When the cohesive DEM is used to model a continuum, any
dynamic response is directly linked to themass of the particle
(a circle in 2D, and a sphere in 3D). However, the voids
between particles are not typically considered. The computed
sample is too porous, less dense than the real one, and the
dynamic waves travel faster than expected.
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In order to get a better approximation to the actual mass
associated to each particle, the volume of the voids should be
distributed among the neighbour particles. Instead of doing
this, the volume of the particle can be computed by the ‘rep-
resentative volume’ expressed in Eq. (12). Multiplying this
volume by the bulk density of the material yields a mass for
the particle which allows a better capture of any dynamic
wave in the modeled continuum.
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