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Abstract This paper discusses the finite element model-
ing of cracking in quasi-brittle materials. The problem is
addressed via a mixed strain/displacement finite element
formulation and an isotropic damage constitutive model.
The proposed mixed formulation is fully general and is
applied in 2D and 3D. Also, it is independent of the specific
finite element discretization considered; it can be equally
used with triangles/tetrahedra, quadrilaterals/hexahedra and
prisms. The feasibility and accuracy of themethod is assessed
through extensive comparison with experimental evidence.
The correlation with the experimental tests shows the capac-
ity of the mixed formulation to reproduce the experimental
crack path and the force–displacement curves with remark-
able accuracy. Both 2D and 3D examples produce results
consistent with the documented data. Aspects related to the
discrete solution, such as convergence regarding mesh reso-
lution and mesh bias, as well as other related to the physical
model, like structural size effect and the influence of Pois-
son’s ratio, are also investigated. The enhanced accuracy of
the computed strain field leads to accurate results in terms
of crack paths, failure mechanisms and force displacement
curves. Spurious mesh dependency suffered by both contin-
uous and discontinuous irreducible formulations is avoided
by the mixed FE, without the need of auxiliary tracking
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techniques or other computational schemes that alter the con-
tinuum mechanical problem.

Keywords Damage · Cracking · Mixed finite elements ·
Strain localization · Structural failure

1 Introduction

Modeling of cracking in quasi-brittle materials has been the
object of intensive study in computational solid mechanics
over the last five decades. In most of the studies carried out
with standard irreducible elements, the attempts to predict
the crack path fail because the obtained solution suffers from
spurious bias mesh dependency. Several strategies have been
developed for dealing with this obstacle.

Cracking problems have traditionally been tackled in two
ways: through continuous and discontinuous approaches.
In the continuous one, the failure process is modelled by
the degradation of the material, at constitutive level. For
this so-called smeared crack approach, classical methods
were developed by [1–5]. More recently, nonlocal consti-
tutive models [6], gradient enhanced [7,8] and phase field
techniques [8–12] have also been considered within the con-
tinuous approach.

In the discontinuous approach, an explicit crack represen-
tation is accounted for in the computed geometry and handled
as a geometrical discontinuity [13,14]. The kinematics of
the finite element is enriched to capture the behavior near
the propagating crack. Models developed with this approach
include, but are not limited to, cohesive interface elements
with or without remeshing [15–22], elements with embed-
ded strong discontinuities [23–28], extended finite elements
methods [29–34], and meshless and particle methods [35–
39].
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Fig. 1 Geometry of the L-shaped panel (m) and vertical axis consid-
ered for line graphs

Table 1 Material parameters of the L-shaped panel

Young’s modulus 25.85 × 109 Pa

Poisson’s ratio 0.18

Tensile strength 2.7 × 106 Pa

Fracture energy 160 J/m2

All these formulations have been proposedwith the objec-
tive of solving the problems concerning lack of convergence
when the mesh is refined and spurious mesh-dependency of
the computed solution with standard irreducible elements.
Despite all the proposed formulations, and their diverse level
of success, these aspects still remained an issue.

The traditional smeared crack/deformation concept has
the advantage of simplicity and is best suited for large-scale
analyses. Most efficient from the computational point of
view, it is the one favored by commercial FE codes and prac-
titioners. Mesh-size dependency can be solved introducing
the fracture energy concept and regularizing with respect the
resolution of the FE mesh as proposed by [2].

The continuous approaches that use nonlocal, gradient
enhanced or phase field schemes, alter the strong form of
the governing equations embedding a length scale related to
thewidth of the localization zone.A clear physical interpreta-
tion and direct link between the length parameter in themodel
and the characteristic length of the material is arguable [40].
An alternative geometrical interpretation has been proposed
by [12].

Discontinuous approaches are often regarded as an impro-
vement over the continuous ones, as it is considered that
true separation can only be captured with discontinu-
ous techniques. Discontinuous approaches almost invari-
ably require the use of local or global crack tracking
auxiliary techniques [41–44]. Those auxiliary techniques
do not handle successfully cases that involve complex

crack patterns such as multiple branching or intersecting
cracks. Besides, they are usually applied only in one type
of finite element and lack practical generality, as they
require different implementations for each type of finite ele-
ment.

In meshless and particle methods [35–39], these draw-
backs are avoided through the definition of domains of
influence rather than finite elements and the use of appro-
priate test and trial functions. Local and global remeshing
techniques [15–18] also have been used in conjunction with
both the continuous and discontinuous approaches.

A comprehensive coverage of all fracture strategies is far
beyond the scope of this study that focuses on the applica-
tion of a mixed FE formulation to the modeling of cracking
in quasi-brittle materials. For more details, the reviews in
references [45–47] are suggested.

Recently, mixed finite elements have been reexamined
by [48–51] to deal with strain localization problems. Mixed
finite element formulations have proved to be a remedy for
spurious bias mesh dependency, allowing for the computa-
tion of strains and stresses with enhanced accuracy both in
linear and nonlinear scenarios.

When using the standard finite element formulation, local
convergence of the solution in terms of strains cannot be
guaranteed in the quasi-singular stress or strain states that
occur in the vicinity of the tip of propagating cracks. Even
in linear elasticity, local convergence is not guaranteed in
quasi-singular points. This lack of local convergence in the
strain and stress leads to the spurious mesh bias dependence
observed in problems of quasi-brittle crack propagation
solvedwith the standard formulation, yielding incorrect solu-
tions in many cases.

Mixed FE formulations for nonlinear solid mechanics
problems guarantee an improvement over standard finite ele-
ment formulations in terms of stress and strain accuracy.
In mixed formulations, the strain is approximated indepen-
dently from the displacement field, instead of being obtained
from local discrete differentiation at element level. In this
way, more accurate stress and strain fields are computed,
resulting in a more precise computation of the solids nonlin-
ear behavior, particularly for low order FE.

The more accurate stress and strain fields computed
with the mixed formulation results in a significant bet-
terment over the standard formulation, particularly in the
prediction of the crack formation and propagation, where
mesh-dependence issues are averted. This guarantees con-
vergent results when computing crack trajectories, failure
mechanisms and ultimate loads, producing practically mesh-
independent solutions using both plasticity and damage
constitutive laws.

The leverage of the mixed approach derives from the fol-
lowing strong points:
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Fig. 2 2D and 3D meshes used
for the analysis of the L-shaped
panel

Fig. 3 Tensile damage contour
fills for the L-shaped panel, a
2D and b 3D solution

Fig. 4 Crack surface of the L-shaped panel

– It is fully variationally consistent [49,50]
– It can be formulated for small or finite displacements
or/and kinematics [52,53]

– It applies equally to 2D and 3D problems [51]

– It is not restricted to a particular FE interpolation, it can be
used with triangles/tetrahedra, quadrilaterals/hexahedra
or prisms of any order [49–51]

– It is not dependent on the choice of the constitutive equa-
tion, it can be applied both for plasticity and/or damage
models of any kind [51,54]

– It can consider isotropic or directional inelastic behavior
[55]

– It can address quasi-incompressible situations, including
the incompressible limit [51,56]

– It can accommodate rate-dependent viscid effects, linear
or non-linear

– It can be extended to include inertial forces in dynamics,
or multi-physics phenomena in coupled problems [53]

Also, and regarding cracking problems:

– It follows the classical local constitutive mechanics
framework [50]

– It can model Mode I (extension), Mode II (shear) and
Mode III (tearing) and mixed-mode fracture [51,55]

– It can model structural size effect in quasi-brittle fail-
ure [54]
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Fig. 5 Crack path in the L-shaped panel compared to the experimental range reported in [68]

Fig. 6 Force–displacement results for 2D and 3D analyses of the L-shaped panel

– It can accommodate orthotropic damagemodelswith uni-
lateral, crack-closing effects

– It does not require auxiliary crack tracking techniques
[49–51]

With reference to the above mentioned alternatives for the
computational modeling of quasi-brittle cracks, the mixed
finite element formulation here presented fits into the con-
tinuous approach, as the crack is represented at constitutive
level using a local stress versus strain relationship. There-
fore, the separation between the two opposite sides of the
crack is modelled through continuous (linear) displacement
and strain fields. No specific degrees of freedom are neces-
sary to model the existing or evolving cracks. Instead, the
kinematic enhancement provided by the independent inter-

polation of displacement and strains proves to be crucial in
the numerical solution of strain localization problems.

Discontinuous resolution of the displacement jump across
the crack and in conjunction with a traction versus separation
constitutive law, either via extended degrees of freedom or
embedment, can be included in the mixed FE formulation
as they are in the standard displacement-based one, but such
developments are not addressed in the present paper. With-
out them, the formulation does not require apropos trial or
test functions, or the use of specific quadrature rules in the
modeling of the cracks. Local remeshing is also compatible
with the mixed FE formulation, but is not considered in this
paper.

In previous works by the authors, the mixed formulation
has been derived and assessed through theoretical benchmark
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Fig. 7 Force–displacement results for several mesh sizes

tests and capability demonstration cases, in order to highlight
its advantages with regard to the standard form. However,
aptness of the proposed model to replicate the behavior of
engineering materials observed in experimental tests, specif-
ically related to the crackbehavior andpropagation, remained
open; mixed formulations for computing strain localization
has not been adequately validated through correlation with
experimental tests.

Therefore, the objectives of this paper are: (1) to present
the mixed strain/displacement formulation in matrix nota-
tion, ready-to-use for implementation in finite element codes,
(2) to demonstrate the application of this format in 2D and
3D applications, (3) to validate the proposed formulation
with experimental results. To meet the last two objectives,
an extensive comparison with experimental data observed
from the literature is performed.

The outline of the paper is as follows. In Sect. 2, the mixed
strain/displacement formulation for the solution of nonlin-
ear solid mechanics problems is presented in matrix form,
to be used in conjunction with an isotropic damage model
summarized in Sect. 3. Section 4 presents numerical simu-
lations performed in 2D and 3D using the proposed model.
The computation results are compared to available data from
experimental tests for validation purposes. Finally, conclu-
sions and extensions for future work are presented.

2 Mixed strain/displacement formulation

In the following, the mixed strain-displacement formulation
is laid out. Matrix and vector notation based on Voigt’s con-
vention for symmetric tensors is adopted, as customarily used
in FE literature and in codes.

The formulation of the mixed solid mechanics problem
in terms of the stress and displacement fields is classical
and it has been used many times in the context of lin-
ear elasticity. Mixed FEM have been so derived from the
Hellinger-Reissner Variational Principle [57,58]. However,
this is not the most convenient format for the material non-
linear problem. Most of the algorithms used for nonlinear
constitutive models in solid mechanics have been derived
for the irreducible formulation. This means that these pro-
cedures are usually strain driven, and they have a format in
which the stress is computed in terms of the strain. Conse-
quently, a mixed FE formulation in terms of the strains and
displacement fields as the one used here can incorporate these
procedures directly.

2.1 Variational form

In the following, the variational form of the nonlinear solid
mechanics problem is cast in terms of the displacement u
and strain ε fields. Writing the problem in matrix form, u
and ε are expressed in Voigt’s convention as vectors. For 2D
analysis, plane stress and plane strain problems, u = (u, v)T

has 2 components and ε = (
εx , εy, γxy

)T is a 3 component
vector. In 3D analysis, u = (u, v, w)T has 3 components and
ε = (

εx , εy, εz, γxy, γyz, γxz
)T has 6 components [59].

The strain and displacement fields are locally related
through the compatibility equation

ε = Su (1)
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Fig. 8 Vertical displacement and major principal strains along a vertical line for different load steps

Fig. 9 Vertical displacement and major principal strains along a vertical line for diferent sized meshes
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Fig. 10 Geometry of the wedge-splitting test and detail of load application

Table 2 Material properties of the wedge-splitting test

Young’s modulus 28.3 × 109 Pa

Poisson’s ratio 0.2

Tensile strength 2.27 × 106 Pa

Fracture energy 420 J/m2

where S is the differential symmetric gradient operator,
defined as

ST =
⎡

⎣
∂x 0 0 ∂y 0 ∂z
0 ∂y 0 ∂x ∂z 0
0 0 ∂z 0 ∂y ∂x

⎤

⎦ in 3D;

ST =
[

∂x 0 ∂y
0 ∂y ∂x

]
in 2D (2)

where ∂ = (
∂x , ∂y, ∂z

)T is the gradient operator in 3D and

∂ = (
∂x , ∂y

)T in 2D.
Correspondingly, the stress σ is a vector with 3 com-

ponents in 2D analysis, σ = (
σx , σy, τxy

)T , and 6 in 3D

analysis, σ = (
σx , σy, σz, τxy, τyz, τxz

)T , whereas the body

forces vector f has 2 in 2D, f = (
fx , fy

)T , and 3 components

in 3D, f = (
fx , fy, fz

)T . Cauchy’s equilibrium equation of a
body written in matrix form is

ST σ + f = 0 (3)

where ST is the differential divergence operator, adjoint to
the S in (1).

The stress vector σ and the strain vector ε are linked by
the constitutive equation:

σ = Dsε (4)

where Ds is the secant constitutive matrix. For the isotropic
damage model laid out in Sect. 3, the constitutive equation
is

σ = (1 − d)D0ε (5)

Pre-multiplying Eq. (1) by the secant constitutive matrix Ds

and introducing Eqs. (4) into (3) results in

−Dsε + DsSu = 0 (6)

ST (Dsε) + f = 0 (7)

The system of Eqs. (6)–(7) is the strong form of the mixed
ε/u formulation, completed with the boundary conditions
imposed on the boundary� of the body, partitioned in�u and
�t , corresponding to the Dirichlet’s and Newman’s condi-
tions, respectively, such that� = �u∪�t and {∅} = �u∩�t .

For the sake of conciseness, the prescribed displacements
are assumed to vanish on the boundary �u

u = 0 in �u (8)

The nontrivial case, u = ū in �u , can be accommodated
following standard arguments. Additionally, the prescribed
tractions on the boundary �t are expressed as

t = Ḡ
T
σ = t̄ in �t (9)

Where the projection matrix Ḡ is defined in [59] as

Ḡ
T =

⎡

⎣
nx 0 0 ny 0 nz
0 ny 0 nx nz 0
0 0 nz 0 ny nz

⎤

⎦ in 3D;

Ḡ
T =

[
nx 0 ny
0 ny nx

]
in 2D (10)

where n = (
nx , ny, nz

)T is the outward normal vector at the
boundary �t .

The variational formof the problem is obtained as follows.
Firstly, Eq. (6) is premultiplied by an arbitrary virtual

strain vector δε and integrated over the spatial domain to
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Fig. 11 Tensile damage
contour fills of the
wedge-splitting test, a 2D and b
3D solution

Fig. 12 Crack surface of the modelled wedge-splitting test

obtain the weak form of the constitutive and compatibility
relationships:

−
∫

	

δεTDsε d	 +
∫

	

δεTDsSu d	 = 0 ∀δε (11)

Secondly, Eq. (7) is premultiplied by an arbitrary virtual dis-
placement vector δu and integrated over the spatial domain

∫

	

δuT
[
ST (Dsε)

]
d	 +

∫

	

δuT f d	 = 0 ∀δu (12)

The virtual displacement δu complains with the boundary
conditions, so that δu = 0 in �u . Then, the Divergence
Theorem is applied to the first term of Eq. (12):

∫

	

δuT
[
ST (Dsε)

]
d	 = −

∫

	

(Sδu)T (Dsε) d	

+
∫

�

δuT
(
Ḡ

T
Dsε

)
d�

= −
∫

	

(Sδu)T (Dsε) d	 +
∫

�u

δuT
(
Ḡ

T
Dsε

)
d�

︸ ︷︷ ︸
=0

+
∫

�t

δuT
(
Ḡ

T
Dsε

)

︸ ︷︷ ︸
= t̄

d� (13)

In Eq. (13), the integral on the boundary is split in the bound-
aries�u and�t . The part corresponding to�u is zero because
the virtual displacement vanishes on that boundary. In �t ,
Eqs. (4) and (9) are used.

Therefore,

∫

	

(Sδu)T (Dsε) d	 =
∫

	

δuT f d	

+
∫

�t

δuT t̄ d� ∀δu (14)

which is the expression of the Virtual Work Principle, as the
right hand side term W (δu) = ∫

	
δuT f d	 + ∫

�t
δuT t̄ d�

represents the virtual work done by the tractions t̄ and body
forces f .

The resulting variational form of the mixed formulation
is:

−
∫

Ω

δεTDsε dΩ +
∫

Ω

δεTDsSu dΩ = 0 ∀δε (15)
∫

	

(Sδu)T (Dsε) d	 =
∫

	

δuT f d	

+
∫

�t

δuT t̄ d� ∀δu (16)

The mixed problem to be solved is to find the unknowns u
and ε that verify the system of equations composed by (15)
and (16) and that verify the boundary condition u = 0 on �u
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Fig. 13 Force–CMOD results for 2D and 3D analysis

Fig. 14 Geometry of the three-point and four-point beam (m)

Table 3 Material properties of the beams

Young’s modulus 38.0 × 109 Pa

Poisson’s ratio 0.2

Tensile strength 3.0 × 106 Pa

Fracture energy 69 J/m2

given the arbitrary virtual displacement δu, which vanishes
on�u and arbitrary virtual strain δε. Note that this variational
problem is symmetric if Ds is symmetric.

2.2 FE approximation

At this point, the FE discrete form of the problem is obtained
by discretizing the domain in FE, so that 	 = ∪	e, and
substituting the displacement u and the strain ε with the
FE discrete approximations û and ε̂ defined element-wise
as

u ∼= û = NuU (17)

ε ∼= ε̂ = NεE (18)

where U and E are vectors containing the values of the
displacements and the strains at the nodes of the finite
element mesh. Nu and Nε are the matrices containing
the interpolation functions adopted in the FE approxima-
tion.

In theGalerkinmethod, the same approximation is consid-
ered for the discrete virtual displacements and virtual strains
so that

δu ∼= δû = NuδU (19)

δε ∼= δε̂ = NεδE (20)

The submatrices ofNu andNε are diagonal matrices and the
corresponding components are N (i)

u and N (i)
ε interpolation

functions, (i) being the node counter.
Introducing these approximations, Eqs. (15) and (16) now

become:
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Fig. 15 Meshes used for the a 2D and b 3D analyses of the three-point and the four-point bending tests

Fig. 16 Tensile damage contour fills of the three-point bending test, a 2D solution, b 3D solution

Fig. 17 Tensile damage contour fill of the four-point bending test, a 2D solution, b 3D solution

−
∫

	

δETNT
ε DsNεE d	

+
∫

	

δETNT
ε Ds SNu︸︷︷︸

=Bu

U d	 = 0 ∀δE (21)

∫

Ω

(SNuδU)T︸ ︷︷ ︸
=δUT (SNu)

T =δUTBT
u

(DsNεE) dΩ

= Ŵ (δU) ∀δU (22)

where Bu is the discrete strain-displacement matrix defined
as

Bu = SNu (23)

The submatrices of Bu have the structure corresponding to
theS operator in Eq. (2), and their components are the Carte-
sian derivatives of the N (i)

u and N (i)
ε interpolation functions(

∂N (i)

∂x ; ∂N (i)

∂y ; ∂N (i)

∂z

)
, (i) being the node counter.

In (22), Ŵ (δU) is the work done by the tractions t̄ and
body forces f defined as

Ŵ (δU) =
∫

Ω

δUTNT
u f dΩ +

∫

Γt

δUTNT
u t̄ dΓ (24)

In (21) and (22) and henceforth, integrals over the domain
are understood as the sum of the integrals over the elements
in the FE mesh
∫

	

(·) d	 =
∑

e

∫

	e

(·) d	e
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Fig. 18 Modelled crack surfaces for the a three-point and b four-point bending cases

Also, with some abuse of notation, U and E (and δU
are δE) are to be interpreted as the nodal values over the
whole FE mesh. This implies the corresponding assembling
operations for elemental matrices and vectors into global
entities.

Note again that, if matrix Ds is symmetric, the discrete
system (21)–(22) is symmetric but indefinite.

The virtual displacement δU and virtual strain δE nodal
vectors that appear in Eqs. (21)–(22) are arbitrary. Therefore,

the system of equations for the mixed Galerkin method
becomes

−
(∫

	

NT
ε DsNεd	

)
E +

(∫

	

NT
ε DsBu d	

)
U = 0 (25)

(∫

Ω

BT
u DsNε dΩ

)
E =

∫

Ω

NT
u f dΩ +

∫

Γt

NT
u t̄ dΓ (26)

And the algebraic system of Eqs. (25)–(26) can be written in
matrix form as
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Fig. 19 Computed crack paths
compared to experimental
results for a three-point and b
four-point bending cases

[−M G
GT 0

] [
E
U

]
=

[
0
F

]
(27)

where
[
E U

]T
is the array of nodal values of strains and

displacements and

M =
∫

	

NT
ε DsNεd	 (28)

G =
∫

	

NT
ε DsBu d	 (29)

F =
∫

Ω

NT
u f dΩ +

∫

Γt

NT
u t̄ dΓ (30)

M is a mass like projection matrix, G is the discrete gradient
matrix and F is the vector of external nodal forces.

In the system (27), the nodal values E can be formally
eliminated to write the solution in terms of the nodal dis-

placements U only, as follows. From the first equation in
(27), the nodal values for the strains E can be obtained
as

E = M−1GU (31)

which can be substituted into the second equation to yield

U =
(
GTM−1G

)−1
F (32)

where
(
GTM−1G

)−1
is the Schur complement of−M in the

system (27).

2.3 VMS stabilization

To ensure solvability (i.e. uniqueness) and stability of the
solution in the algebraic system of Eq. (27), the interpola-

123



Comput Mech (2017) 60:767–796 779

Fig. 20 Load-CMOD curves for a the three-point and b four-point bending tests

tion functions in (17)–(18)must satisfy the Inf-Sup condition
[60–62]. This condition is not verified if equal interpola-
tions are used for strains and displacements. In that case,
the solution is unstable, and uncontrollably spurious oscil-
lations may appear in the computed displacement field. To
be able to circumvent the strictness of the Inf-Sup condi-
tion and to use linear approximations in both interpolation
functions, a stabilization procedure is necessary to provide
the necessary stability to the mixed discrete formulation.
The stabilization procedure consists in the modification of
the discrete variational form using the Orthogonal Subscales
Method, introduced in [63] within the framework of the
Variational Multiscale Stabilization methods [64,65], and
adopted herein.

Thebasic ideaof the stabilizationprocedure is to substitute
the approximation of the discrete strain in Eq. (18) by the
following stabilized discrete field

ε ∼= ε̂ = NεE + τε (BuU − NεE)

= (1 − τε)NεE + τεBuU (33)

where τε is a stabilization parameter with value 0 ≤ τε ≤ 1.
Note that for τε = 1, the strain interpolation of the standard
irreducible formulation is recovered:

ε ∼= ε̂ = BuU (34)
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Fig. 21 Force–CMOD curves for different beam sizes

Making the corresponding substitution in Eqs. (15) and (16),
the final stabilized set of mixed FE equations is:

− (1 − τε)

∫

	

δETNT
ε DsNεE d	

+ (1 − τε)

∫

	

δETNT
ε DsBuU d	 = 0 ∀δE (35)

(1 − τε)

∫

Ω

δUTBT
u (DsNεE) dΩ

+τε

∫

Ω

δUTBT
u DsBuU dΩ = Ŵ (δU) ∀δU (36)

The stabilization used is variationally consistent: converging
values of the unknowns ε and u which satisfy the Galerkin
system (21)–(22) also satisfy the stabilized form (35) to (36).
This is because residual-based stabilization procedures do
not introduce any additional approximation nor any consis-
tency error. For a converged solution, when the size of the
element h tends to zero, h → 0, ε → NεE = BuU and the
stabilization term vanishes. For non-converged situation, the
added terms τε (BuU − NεE) are small, as they depend on
the difference between two approximations of different order
to the same quantity.

Therefore, for a given FE mesh, using different values of
the stabilization procedure yields slightly different results.
However, the consistency of the residual-based stabilization
guarantees convergence to the unique solution. Using differ-
ent stabilization parameters on the same mesh is akin to use
different FE interpolations of the same order of convergence
with the same nodal arrangement.

Moreover, note that optimal convergence rate in linear
problems is obtained reducing the stabilization on mesh
refinement [49], such that

τε = cε

h

L0
(37)

where cε is an arbitrary positive numbers, h is the finite ele-
ment size and L0 is the characteristic size of the problem.
In nonlinear problems involving damage, the stabilization
parameter is affected by the reduction of stiffness in the dam-
aged elements, so that

τε = (1 − d) cε

h

L0
(38)

When quasi-incompressible situations need to be mod-
elled, additional consistent stabilization terms, equally based
on residual considerations at discrete level, need to be
added [51].

The stabilized system of equations is

[−Mτ Gτ

GT
τ Kτ

] [
E
U

]
=

[
0
F

]
(39)

with Mτ = (1 − τε)M, Gτ = (1 − τε)G and Kτ = τεK
with

K =
∫

Ω

BT
u DsBu dΩ (40)

In the stabilized system (37), the nodal values U can be for-
mally computed as

U =
(
GT

τ M
−1
τ Gτ + Kτ

)−1
F (41)
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Fig. 22 Crack path in a the small specimen and b the large specimen

where, now, the stabilization ensures definitiveness, unique-
ness and stability of the solution ifK is positive definite. Note
again that for τε = 1, the stable solution of the standard form
U = K−1F is recovered.

The discrete approximation in Eq. (33) is not to be inter-
preted point-wise, as in the VMSmethod only the variational
effect of the stabilization is sought for. This means that the
internal variables and secant matrix of the constitutive equa-
tions can be computed according to either of the alternative,
discrete strain approximation (20) or (33).

2.4 Implementation and computational aspects

Nonlinear constitutive behavior such as the one considered in
thiswork (seeSect. 3) requires an iterative procedure for solv-
ing the resulting nonlinear system of equations. In the present

work, an iterative Picard’s secant algorithm has been used.
The problem is solved incrementally in a (pseudo) time step-
by-step manner, solving the nonlinear system of equations at
each step. Convergence at each time step is achieved when
the ratio between the norm of residual forces and the norm of
total external forces is lower than a certain imposed tolerance.
Some of the analysis were performed under CMOD (crack
mouth opening displacement) control in order to capture the
complete post-peak behavior.

3 Isotropic damage model

For the evaluation of the stresses from the strains and the eval-
uation of the secant constitutivematrixDs , in Eqs. (4) and (5),
an isotropic damage model is used. The model adopted here,
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Fig. 23 Comparison of 2D plane strain, 2D plane stress and 3D hypothesis

Table 4 Material properties of the three holed notched beams

Young’s modulus 3.102 × 109 Pa

Poisson’s ratio 0.35

Tensile strength 7.0 × 106 Pa

Fracture energy 500 J/m2

suitable for concrete, defines the effective equivalent stress
through the Rankine and the Drucker–Prager criterions.

From Eqs. (4) and (5)

Ds = (1 − d)D0 (42)

where d is the internal damage index and D0 is the elastic
constitutive matrix. The damage index d is an internal vari-
able that measures the loss of stiffness of the material and it
ranges 0 ≤ d ≤ 1.

For the computation of the evolution of the internal dam-
age index, the effective stress σ̄ is defined as σ̄ = D0ε.
The corresponding equivalent effective stress σeq is defined
through the damage criterion, σeq = F (σ̄ ). Tensile damage
is modelled according to Rankine’s criterion, so that

σeq = F (σ̄ ) = 〈σ̄1〉 (43)

where σ̄1 is the major principal effective stress and 〈·〉
are the Macaulay brackets, such that 〈x〉 = x i f x ≥
0, 0 i f x < 0. For mixed loading, a Drucker–Prager
criterion is used, so that

σeq = F (σ̄ ) = 3

3 + tanφ

(√
3J2 + tan φ

I1
3

)
(44)

When I1 and J2 are the first and second effective stress invari-
ants andφ is the internal friction angle of thematerial; this can
be related to the uniaxial tensile and compressive strengths,
ft and fc, as

tan φ = 3
fc − ft
fc + ft

(45)

The damage criterion, F, is defined as

F = σeq − r (σ̄ ) ≤ 0 (46)

where r is the current stress-like damage threshold. Its initial
value is the tensile strength of the material, r0 = ft . The
current value of the damage threshold is explicitly updated
as

r = max
(
r0,max σeq

(
t̂
))

t̂ ∈ [0, t] (47)

This follows from the Kuhn–Tucker optimality and consis-
tency conditions. It guarantees the irreversibility of damage
and the positiveness of the dissipation.

The evolution of the internal damage variable is defined
by

d = d (r) = 1 − r0
r
exp

(
−2HS

( 〈r − r0〉
r0

))
(48)

where HS is the positive softening parameter, which controls
the rate of material degradation.

In FE simulations of quasi-brittle failure, the softening
parameter is linked to thematerial fracture energyG f , which
is a property of the material, in the following way:
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Fig. 24 Geometry for the three
notched beams (m)

HS = H̄Sb

1 − H̄Sb
(49)

where b is the bandwidth of the smeared crack and H̄S is

H̄S = ( ft )2

2EG f
(50)

ft being the tensile strength and E the Young’s modulus. In
this work

b = (1 − τε) 2h + τεh = (2 − τε) h (51)

where h is the finite element size. This is coherent with
the approximation adopted for the discrete strain field in
Eq. (33).
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(a)

(b)

(c)

Fig. 25 Experimental and computed crack paths for the three notched
beams. Experimental results taken from [72]

4 Numerical simulations

In this section, six numerical simulations are performedusing
the mixed strain/displacement FE formulation laid out in the
aforesaid. The numerical solutions are compared with the
results of experimental tests reported in the literature. The
simulations are:

1. An L-shaped panel subjected to a vertical load
2. A wedge-splitting test
3. Two mixed mode bending beam tests
4. Three notched beams with holes
5. Four-point bending test on a doubly-notched beam
6. Non-planar crack on a three-point bending test on skew

notched beam

The examples have been solved using both 2D and 3D finite
elements, using triangles or quadrilaterals for 2D and tetra-
hedra, hexahedra or prisms for the 3D simulations. All the
problems are studied by means of a smeared crack approach.
No tracking technique is used in any of the cases.

For this, calculations are performed with an enhanced
version of the finite element program COMET [66]. Pre-
and post-processing are done with GiD [67], developed at
CIMNE (International Center for Numerical Methods in
Engineering).

4.1 L-shaped panel

The numerical analysis of a concrete L-shaped panel sub-
jected to vertical load is considered; corresponding exper-
iments are reported in [68]. Other numerical solutions are

Fig. 26 Force–CMOD curve for the notched beam without holes
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Fig. 27 Force–displacement curve for the notched beam without holes

1 2

3 4

5 6

Fig. 28 Crack propagation and evolution of major principal stresses in the notched beam without holes

reported in [41] and [42]. Reference [41] used embedded
crack methods and crack tracking auxiliary techniques while
reference [42] used extended finite elements for making their
computations.

The geometry and loading is shown in Fig. 1 and themate-
rial parameters are given inTable 1.The thickness of the panel
is 0.1 m.

The load F is applied via increments of vertical displace-
ment at the top left corner of the panel.

This example is solved with the mixed FEM using 2D
quadrilateral and 3D hexahedral elements. The computa-
tional domain is discretizedwith fully structuredmesheswith
elements of 8.33mm, resulting in a mesh of 11,041 nodes
for the 2D analysis and 44,164 nodes for the 3D analysis,
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Fig. 29 Geometry of the four-point bending test on a doubly-notched beam

Table 5 Material parameters of the four-point bending test on a doubly-
notched beam

Young’s modulus 27 × 109 Pa

Poisson’s ratio 0.18

Tensile strength 2.0 × 106 Pa

Fracture energy 100 J/m2

Compressive strength 3.0 × 107 Pa

shown in Fig. 2. The 3D mesh is obtained by the out-of-
plane extrusion of the 2D mesh. For the 2D analysis, plane
stress conditions are assumed.

Figure 3 shows the computed tensile damage contour fills
for an imposed vertical displacement of 1mm obtained in the
2D and 3D analyses. Both results are identical, as the same
mesh configuration is used in the XY plane of the panel in
the 2D and 3D cases.

In the present FE formulation, the separation between the
two opposite sides of the crack is modelled through contin-
uous (linear) displacement and strain fields and the crack is
accordingly smeared. The crack surface in the 3D analysis
can be depicted as in Fig. 4, plotted as an iso-level surface of
the norm of displacements. It corresponds exactly with the
crack path obtained in the 2D analysis.

These results are within the experimental range obtained
by [68], as can be observed in Fig. 5. In the FE-simulation, the
crack propagates as expected from the experimental tests; no
spuriousmesh bias is observed, although no auxiliary local or
global crack tracking techniques is used, nor any initial notch
or flaw is imposed in the geometry of the panel to assure the
correct crack path at the early stages of the crack formation,
contrary to [41] and [42].

Figure 6 shows the computed load-imposed vertical dis-
placement curve obtained in the 2D and 3D simulations,
compared to the results from the tests in [68]. As shown,
the numerical curves are almost overlapping, demonstrating

the closeness of plane stress assumption in 2D. The results
are inside the experimental range observed in the tests. It can
be seen that the peak is accurately reproduced, as well as the
general behavior of the curve.

4.1.1 Independence of results with FE size

Thanks to the regularization procedure introduced in Eq.
(49), the computed structural response is independent from
the resolution of the FE mesh. This is shown in Fig. 7, where
the Force–Displacement curve obtained from grids of differ-
ent sizes (h=4, 8, 12mm) are compared. The results obtained
in the 3D analysis (h = 8 mm) are also shown. All the results
are practically overlapping, demonstrating mesh-size inde-
pendence.

4.1.2 Convergence of displacement and strain fields

In order to illustrate the convergence of the displacement and
strain fields provided by the smeared crack approach with
mixed FE formulations, a vertical cut, shown in Fig. 1, is
considered. Along this line, the profiles of vertical displace-
ments and major principal strains are shown in Fig. 8 for
several load steps and in Fig. 9 for different mesh sizes.

Figure 8, left column, shows how the displacement jump
across the crack (CMOD) evolves as the load increases; it can
be observed that, in all the meshes, the displacement jump is
smeared across one element, an optimal representation of a
strong discontinuity for the given mesh resolution. Figure 9,
left, shows that the results practically overlap, demonstrating
mesh size independence.

Figure 8, right column, shows the corresponding evolution
of the strains as the load increases and the crack is formed.
Note that: (a) the strain field is continuous, (b) the effective
width of the strain localization band is 2h, (c) the value of the
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Fig. 30 Tensile damage con tour fills of the four-point bending test on a doubly notched beam for a the 2D and b the 3D computations

Fig. 31 Crack path of the four-point bending test on a doubly notched
beam

peak strain is inversely proportional to the mesh resolution,
(d) the numerical solution approximates the Dirac’s delta
derivative of a discontinuous displacement field, as can be
seen in Fig. 9, right.

4.2 Wedge-splitting test

In this second example, a wedge-splitting test of a concrete
specimen is considered. The test was experimentally car-
ried out by [69]. Reference [28] found similar results using

embedded crackmethods, as did reference [34] usingXFEM.
Reference [43] used embedded crack methods and crack
tracking to compute a specimen with the same shape but
in a reduced size.

The geometry is depicted in Fig. 10 and the material prop-
erties are given in Table 2. The detail of the load application
is shown in Fig. 10. The thickness of the specimen is 0.4 m.

This problem is solved using 2D triangular and 3D prism
elements. The 2D computational domain is discretized with
an unstructured mesh with elements of 40 mm of size, result-
ing in 7488 nodes for 2D. The numerical analysis is carried
out under the hypothesis of plane stress. The 3D mesh is
obtained by the out-of-plane extrusion of the 2Dmesh result-
ing in a semi-structured mesh of 29,952 nodes.

This problem is solved using an arc-length algorithm con-
trolling the crack mouth opening displacement (CMOD) at
the points of load application.

Figure 11 shows the tensile damage distribution in the
specimen for an imposed horizontal displacement of 5mm
obtained in the 2D and 3D analyses. Both results are iden-
tical because the same mesh configuration is used in the
XY plane for the 2D and the 3D cases. These results agree
with the experimental tests carried out by [69]. The crack
path is vertical, as expected because of the symmetry of
the geometry and the loading conditions. The crack surface
obtained in the 3D analysis is shown in Fig. 12, displayed as
the level set surface of X-displacements. No auxiliary crack
tracking technique has been used. No spurious mesh bias is
observed.

Figure 13 shows the load versus crack mouth opening
displacement curve in the 2D and 3D cases, which are also
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Fig. 32 Displacements of the four-point bending test on a doubly notched beam

(a) (b)

Fig. 33 Central piece of a the modelled crack surfaces for the four-point bending test on a doubly notched beam and b a similar experiment [74]

Fig. 34 Force–displacement curve of the 2D and 3D simulations of the four-point bending test on a doubly notched beam
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1 2

3 4

Fig. 35 Crack propagation and evolution of major principal stresses
in the four-point bending test on a doubly notched beam

compared to the results from the tests in [69]. Again, 2D and
3D results are almost overlapping. As can be seen, the results
are very close to the experimental tests. They are also very
close to the computational results of references [28,34] and
[43].

4.3 Three-point and four-point bending tests

In this section, beams subjected to three-point and four-point
bending tests are considered. The experimental tests were
carried out by [70]. Other numerical results are reported in
[71] and [34], where crack tracking auxiliary techniques are
used. In Fig. 14 the geometry of the tested beams is shown.
Two cases are considered. In the first one, the stiffness at
the upper left support is assumed equal to zero (K=0), as

Table 6 Material properties of the three-point bending test on a skew
notched beam

Young’s modulus 28 × 109 Pa

Poisson’s ratio 0.38

Tensile strength 40.0 × 106 Pa

Fracture energy 500 J/m2

in a three-point bending test, while in the second one it is
considered infinite (K = ∞), as in a four-point bending test.
The thickness of the specimen is 0.05m. The properties of
the material are given in Table 3. For the 2D analysis, plane
stress conditions are assumed.

The problem is solved using an arc-length algorithm con-
trolling the crack mouth opening displacement (CMOD) at
the notch.

For this example, 2D triangular and 3D tetrahedral ele-
ments are used. In the 2D analysis, the computational domain
is discretizedwith a fully unstructuredmeshwith 2.5mmele-
ments, resulting in 18,738 nodes. For the 3D analysis, a fully
unstructured tetrahedral mesh of 50,389 nodes and 2.5mm
element-size has been considered. Both meshes are shown in
Fig. 15.

Figures 16 and 17 show plots of the computed tensile
damage index in the cases considered. It can be observed
that the crack path changes significantly depending on the
boundary conditions applied to the beam. The 2D and 3D
results for each case are almost overlapping. In Fig. 18 the
crack surfaces in the 3D analyses are shown, plotted as an
iso-level surface of the X-displacements. There can be seen
the fully unstructured mesh used for the computation of the
beams, which is fine enough to model the crack surface with
precision. As can be seen in Fig. 19, the numerical results
agree with the experimental tests. References [71] reported

Fig. 36 Geometry of the
three-point bending test on a
skew notched beam (m)
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(a) (b)

Fig. 37 Meshes used for the a structured and b unstructured analyses of the three-point bending test on skew notched beam

Fig. 38 Crack surfaces of the three-point bending test on skew notched beam for a structured and b unstructured 3D tetrahedra mesh

very similar crack paths using a global tracking algorithm.
Also, [34] found very similar results using XFEM and the
same global tracking algorithm.

Figure 20 shows the load-CMOD curves for both the 3
and 4 point bending tests. The results are similar to the ones
obtained in references [71] and [34]. The three-point bend-
ing test shows very good agreement with the experimental
results obtained by [70] both in the 2D and 3D analyses, even
if at the last stages of the simulation the strength is slightly
underestimated. The peak force is slightly lower in the 3D
analysis. The four-point test has its peak slightly outside the
experimental range of results. This occurs also in the numer-
ical references [71] and [34].

4.3.1 Structural size effect

Structural size effect addresses the question of how the load
capacity of geometrically similar structures varieswhen scal-
ing up or down their relative sizes. Experimental evidence

shows that, for a given structural problem, ductile behavior
corresponds to the small scale limit (appropriate for small
laboratory specimens), while brittle fracture occurs in the
large scale limit (apt for structures of very large dimen-
sions). Thus, it is of practical interest to develop analytical
and numerical tools suitable to bridge the gap between per-
fectly ductile and perfectly brittle behavior, i.e. suitable for
the range of quasi-brittle failure [54].

In quasi-brittle fracture, size effect does not only affect
the load capacity (peak load), it also reflects on the post-
peak behavior (ductility) of the structure. The capability of a
quasi-brittle structure to absorb energy decreases, in relative
terms, as the structure size increases [54].

In reference [70], structural size effect was investigated
when testing the beams. For this, smaller specimenswith half
the original size, i.e., a height of D=75mm, and double size,
i.e. D=300 mm of height, where also experimentally tested.
These cases have also been simulated computationally for
the three-point beam and are reported in the following.
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Fig. 39 Crack paths of the three-point bending test on skew notched
beam

In Fig. 21, the Force–CMOD curves of the three consid-
ered cases, small (D=75mm), medium (D=150mm) and
large (D=300mm), are shown. The computed results show
very good agreement with the experimental ones of reference
[70], even if the dissipated energy is slightly underestimated.
In Fig. 22, the computed crack paths also show very good

agreement with the experimental results for the small and
large specimens.

4.3.2 Plane strain versus plane stress

The plane stress hypothesis adopted in the 2D computation
may be verified by comparing the results obtained against
those obtained under plane strain assumptions. Figure 23
shows the force–CMOD results for both considerations. The
3D analysis is also included. All three cases are almost over-
lapping and equally close to the experiments. This indicates
that the standard engineering practice of neglecting Poisson’s
effect in beam theory can be extended into the non-linear
range.

4.4 Notched beams with holes

A more involved example is considered in this section to
explore the performance of the proposed finite element for-
mulation. Here, a notched beam with holes, experimentally
tested and numerically computed by [72], is considered.
Other numerical solutions are reported in [41,72] and [73].
Reference [41] modelled this example using crack tracking
and embedded methods and [73] used fracture mechanics.
Instead [72] used a probabilistic approach, where geometric
and material uncertainties are considered when computing
the crack path and load-displacement curves.

The tested beam is made of plexiglass; the properties used
for the simulation are given in Table 4.

Fig. 40 a Experimental [77]
and computed crack surfaces
with b structured and c
unstructured meshes (a) (b) (c)
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(a) (b)

Fig. 41 Evolution of the crack surface in a the experiment [77] and in b the present simulation

Fig. 42 Computed evolution of the twist angle of the crack front with
the height over the notch

For comparison purposes, three different geometries
regarding the position of the notch and the holes, shown in
Fig. 24, are studied. In the original experiment inches were
used as units of length.

In the first case, the beam is notched but has no holes;
the notch is 6′′ from the center and 1′′ long. In the second
case, the beam has three holes of diameter 0.5′′ at 4′′ from
the center and a notch identical to the previous case. In the
third case, the hole layout is the same as in the second case
and the notch is 4.5′′ from the center and is 1.5′′ long. The
thickness of the beam is 0.5′′ . For the 2D analysis, plane
stress conditions are assumed.

In all cases, 2D triangular elements are used. The domain
is discretized with unstructured meshes of 1mm elements in
the central part, where the crack forms, and of 2.54mm in

the rest of the beams, resulting in 44,956, 52,884 and 52,600
nodes, respectively.

The simulation is done using an arc-length algorithm con-
trolling the crack mouth opening displacement (CMOD).

Figure 25 shows the computed crack paths next to the
experimental results reported in [72]. It can be observed that
the crack paths are different depending on the notch position
and the presence of the holes. The crack path for the case
without holes is almost identical to the experimental result.
In the other two cases, the numerical results also show good
agreement with tests. The present results are comparable to
those obtained in [41,72] and [73].

Figure 26 shows the load-CMOD curve for the case with-
out holes, the only one reported in [72]. The computed results
show good agreement with the ones obtained experimentally.
In Fig. 27 the force vs displacement curve at the point of load
application is presented. The numerical results are stiffer than
the experimental ones. This was also observed in the numer-
ical results reported by [72]. Note that the local response at
the point of load application is very dependent on the actual
details of the experimental set-up. Nevertheless, the overall
resemblance of the results is remarkable, in terms of peak
values, snap-back response and dissipated energy.

Figure 28 shows the crack propagation and evolution of
major principal stresses in the notched beam without holes.
In the elastic range, stresses concentrate in the vicinity of
the tip of the notch. This causes the crack to start and
propagate through the height of the beam and towards the
point of application of the load as also shown in Fig. 25a.
The strain/displacement FE formulation is able to repre-
sent this progressive failure of the beam with noteworthy
accuracy.

4.5 Four-point bending test on a doubly-notched beam

The numerical analysis of a four-point bending test on a
doubly notched beam is considered next. The corresponding
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experiments are reported in [74]. Other numerical solutions
are reported in [37,75,76]. In [37] an adaptive particle mesh-
less method was used, while in [75] the boundary element
method was employed. Reference [76] considers a localiza-
tion limiter introduced to regularize the problem. All these
simulations are in 2D.

The beam geometry and loading is shown in Fig. 29 and
the material parameters are given in Table 5. The thickness
of the beam is 0.1m. The structural problem presents polar-
symmetry about the geometrical center. Thus, two symmetric
cracks are expected to appear, starting from the top of the
notches and propagating towards the opposite top and bot-
tom faces of the beam. The cracks open and propagate under
mixed Modes I and II (opening and shearing) loading. The
ratio between the uniaxial compressive and tensile strengths
is 15 [74].

In this section, the problem is analyzed in 2D, assuming
plane stress conditions, and in 3D. The objective is to assess
the performance of the proposed formulationwhenmore than
one crack appears.

The simulation is performed using an arc-length algorithm
controlling the crack mouth opening displacement (CMOD)
at the upper notch.

This example is solved using 2D quadrilateral elements
and 3D hexahedra. In 2D the computational domain is dis-
cretized with a fully structured mesh of 1mm size, resulting
in a 54,021 node mesh. In 3D, the computational domain is
partitioned using hexahedra elements of 1.5mmsize, ensuing
a structured mesh of 53,998 nodes.

Figure 30 shows the tensile damage contour fills obtained
in the 2D and 3D simulations. Due to the polar symmetry of
the beam geometry and loading, two polar-symmetric cracks
appear and propagate. These results are concordant with the
ones observed in the experiments by [74]; the cracks prop-
agate as expected. The computed 2D and 3D paths of both
cracks are almost overlapping and are inside the experimental
ranges obtained in the tests, as can be observed in Fig. 31.

Also because of the polar symmetry of the problem, the
central part of the beam rotates, with respect to the central
point, as can be seen in Fig. 32, where contour fills of the
displacements are shown. The displacement “jump” across
the cracks can also be observed neatly.

The crack surfaces in the 3D analysis are depicted in
Fig. 33, plotted as iso-level surfaces of the norm of dis-
placements. In this way, the performed simulation allows
to observe a 3D representation of the piece formed during
the experiment. This case illustrates the performance of the
proposed method to deal with several cracks propagating at
the same time in 2D and 3D. As no auxiliary tracking tech-
nique is required, the present formulation can handle this
situation, which does not represent an extra hindrance to the
formulation.

In Fig. 34, the Force–displacement curve at the point of
load application is shown for the 2D and 3D computations.
The computed results show very good agreement with the
experimental ones of reference [74], and alsowith the numer-
ical results in [37,76].

Figure 35 shows the crack propagation and evolution of
major principal stresses in the doubly-notched beam. Again
it can be seen how in the elastic range stresses concentrate at
the vicinity of the crack, causing its propagation through the
height of the beam and towards the points of application of
the loads, as seen in Figs. 30, 31 and 34a. Note that the stress
field is polar symmetric in the linear and in the nonlinear
behavior.

4.6 Three-point bending test on a skew notched beam

In this section, a skew notched beam subjected to three-point
bending is considered. The experimental tests were carried
out by [77] using Plexiglass, to better reveal the evolution
of the crack. Other numerical results are reported in [78],
where a dual boundary element method (DBEM) was imple-
mented and in [79],where the extendedfinite elementmethod
(XFEM) was used.

In Fig. 36 the geometry of the tested beam is shown. The
notch has a deviation of 45◦ with respect to the lateral faces
of the beam. The thickness of the specimen is 0.01m. The
properties of the material are given in Table 6. The structural
problem is skew-symmetric with respect to the vertical lon-
gitudinal and transversal mid-planes of the beam. Therefore,
a non-planar crack is foreseen to materialize at the tip of the
skew notch under mixedMode I andMode III loading and to
propagate upwards while twisting around the vertical central
axis until it is oriented normal to the longitudinal axis.

Due to the deviation of the notch, this example can only
be solved in 3D. The load is applied imposing increments
of displacement at the center of the top of the beam. 3D
tetrahedral elements are used in a fully structured mesh of
21,516 nodes and 1.5mm element size in the central area
of interest. The elements of the structured mesh are laid out
in a crisscross pattern. Another mesh, fully unstructured, of
14,709 nodes and 1mm element size is also considered. Both
meshes are shown in Fig. 37.

In Fig. 38 the crack surfaces are shown, plotted as an iso-
level surface of the horizontal displacements along the axis of
the beam. Both the structured and unstructured meshes used
for the computation of the beam are fine enough to model the
crack surface with precision. As can be seen in Fig. 39, the
numerical results agree well with the experimental results.

In Fig. 40, the crack surface computed in the simulations is
compared to the one observed in the tests. The results are opti-
mal within the spatial resolution of the considered meshes.
Figures 38, 39, 40 show that results with the structured and
unstructuredmeshes are in good agreementwith experiments
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Fig. 43 Crack propagation and
evolution of major principal
stresses in the three-point
bending test on skew notched
beam

1 2

3 4

aswell aswith the skew-symmetry conditions of the problem.
Evolution of the crack surface is shown in Fig. 41.

Detail of the evolution of the twist angle of the crack front
with the height over the initial notch is shown in Fig. 42. A
distinct anti-symmetric crack trace along the straight crack
front can be noticed. This is because of the combination of
Mode I and the antisymmetric Mode III loading conditions
along the initial notch.The initial crack plane is inclined 45◦
and ends at 90◦ and only Mode I along the final crack fronts.

Figure 43 shows the crack propagation and evolution of
major principal stresses in the skew notched beam. Once
more, in the elastic range, stresses concentrate in the vicinity
of the tip of the notch. This causes the crack to start and
propagate through the height of the beam and towards the
point of application of the load.

5 Conclusions

In this work, the FE modeling of quasi-brittle cracks in 2D
and 3D with enhanced strain accuracy is performed. To this
end, a mixed strain/displacement formulation is presented, in
a matrix and vector notation, based on Voigt’s convention, in
a ready-to-use format for its implementation in finite element
codes. Then, experimental validation is performed by means
of several simulations which are compared to experimental
tests reported in the literature.

The proposed formulation is used in conjunction with
an isotropic damage model suitable for the prediction of
cracking in 2D and 3D applications. Finite element simu-

lations using triangles, quadrilaterals, tetrahedra, hexahedra
and prisms in structured, semi-structured and unstructured
meshes are performed.

An extensive comparisonwith experimental data observed
from the literature is carried out, to assess the capacity of the
proposed formulation to model the behavior observed in the
experimental tests. Several numerical simulations have been
exhibited to illustrate the capacity of the formulation to solve
strain localization problems in accordance to experimental
results.

Problems involving propagation of single and multiple,
straight and curved cracks in 2Dand3D, aswell as non-planar
cracks in 3D are addressed. Aspects related to the discrete
solution, such as convergence regarding mesh resolution and
mesh bias, as well as other related to the physical model, like
structural size effect and the influence of Poisson’s ratio, are
also investigated.

The enhanced accuracy of the computed strain field leads
to accurate results in termsof crackpaths, failuremechanisms
and force displacement curves. Spurious mesh dependency
suffered by both continuous and discontinuous irreducible
formulations is avoided by the mixed FE, without the need
of auxiliary tracking techniques or other computational
schemes that alter the continuum mechanical problem.
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