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Abstract A local physical stability criterion for multidi-
mensional fracture problems modeled by the phase field
method is developed and studied. Stability analysis provides
a rigorous mathematical way to determine the onset of an
unstable damage growth and fracture of the structure. In this
work, stability is determined by examining the roots of a
characteristic equation that arise when a linear perturbation
technique is applied to the instantaneous partial differential
equation system in a general viscoplasticmaterial. It is shown
that such analysis is not limited to a particular degradation
function or energy split and could therefore be applied to a
wide range of cases. Numerical results are presented to ver-
ify the theoretical predictions assuming quadratic and cubic
degradation functions. Additionally we show that this sta-
bility criterion can be directly expanded to 2D with robust
mesh-insensitive predictive capabilities with respect to crack
nucleation and path. Several numerical examples are pre-
sented to verify these results.

Keywords Phase field · Fracture · Instability · Linear
perturbation

1 Introduction

The phase field method has gained significant attention in
recent years due to its ability to solve difficult moving bound-
ary problems. For example, it has been successfully applied
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to awide range of problems such as solidification or liquefac-
tion [1–3], solid-state phase transformation [4,5],martensitic
transformation [6,7], dislocation dynamics [8], grain growth
[9,10], twinning [11–13] among others.

In this work, the phase-fieldmethodology is used tomodel
fracture, which has been studied extensively in the literature
[14–25]. Here, cracks are approximated as diffused damage
zones that depend on a length-scale parameter l0 [16,26], as
depicted in Fig. 1.

Since the crack is approximated by a continuous func-
tion, special discontinuous shape functions or enrichments
as the one required for discrete description of fracture, can
completely be avoided. Additionally, complex crack patterns
such as branching and coalescence can easily be captured
with this approach. The phase-field formulation is regarded
by some as a subset of damage mechanics and is closely
related to gradient damage methods [27–29].

Loss of stability is often associated with structural col-
lapse, extensive damage or decreased reliability of the
numerical results. In quasi-static cases, phenomena like
bifurcation due to non-associatedflow law [30–32]will affect
the stability and lead to poor numerical performance, often
requiring more advanced stepping procedures (e.g. the arc-
length method [33]) and regularization techniques to prevent
mesh dependency in localization phenomena [34–37]. For
dynamic cases, stability often determines the transition of
a homogeneous solution into a non-homogeneous solution,
for example in a thermo-mechanical shearband localization
problem [38–40].

Local stability analysis provides important information
and insight into the deformation state associated with the
distribution of localization regions and the onset of material
failure. Some work reported in the literature upscale local-
ization processes to a coarser scale by injecting a strong
displacement discontinuity with cohesive surfaces at the
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Fig. 1 Schematic depiction of a solid � with a crack discontinuity
�. In the phase-field formulation the crack is described by the field c
where a black color corresponds to a fully damaged material (c = 1)

and a white color corresponds to a fully intact material (c = 0). The l0
parameter controls the width of the process zone

moment that a local instability is detected. For example such
multiscale approach has been reported for shearbands [41]
and fracture [42], among others [43–46].

One of the most important features that control the behav-
ior of the phase field method, is the so-called degradation
function. This function is used to degrade a chosen compo-
nent of the elastic strain energy (e.g. the energy associated
with tension) and is typically associatedwith the current state
of damage (i.e. the phase-field parameter).

The degradation function, denoted bym(c), can be chosen
arbitrarily as long as it satisfies the conditions necessary to
observe Gamma convergence [27] and boundedness of the
fracture force [20].

In the bulk of the work done on phase field methods, a
quadratic degradation function is typically used as it is the
only one for which �-convergence has been demonstrated
[22]. However, in recent years other degradation functions
have been developed [47]. For example a cubic degrada-
tion function has been suggested by [48] and was shown
to provide some advantages like closer resemblance to an
elastic-brittle behavior as expected and obtained by tradi-
tional methods and reduction of the mild degradation that
occurs away from the crack.

In this work we study the stability behavior of the phase-
field method applied to elasticity, rate-independent plasticity
and visco-plasticity with isotropic hardening. This work gen-
eralizes the work on stability analysis of the phase field
method[49] in the extension to multidimensional problems
with complex crack patterns and bifurcations, and the gener-
alization to generic degradation functions (here we analyze
and compare quadratic and cubic functions). Stability is
determined by examining the roots of a characteristic equa-
tion that arise due to a linear perturbation technique applied
to the instantaneous partial differential equation (PDE) sys-
tem. Instability is then defined if the real part of one of
the roots becomes positive, since each root corresponds
to the growth-rate of a perturbation, and a positive value
means that such perturbation will grow exponentially in
time.

A linear perturbation analysis ismore general than the loss
of ellipticity criterion determined by analysis of the acous-
tic tensor, since for rate-dependent materials the equations
remain elliptical and this criterion may not be appropriate, as
argued in the literature [50,51]. On the other hand, the lin-
ear perturbation method was successfully applied to various
localizationproblems including rate-dependentmaterials, for
example in the formation and propagation of shear bands in
metals [38,39,52–54].

This work is structured as follows. In Sect. 2 the governing
equations are presented and the problem is stated. In Sect. 3
the stability criterion for a general degradation function is
derived based on the linear perturbation method applied to
the 1D continuous PDE system. Additionally, the analysis is
expanded to a multidimensional version of the elastic prob-
lem. In Sect. 4 we present numerical simulations verifying
the analytical predictions and in Sect. 5 we investigate the
behavior of this approach in various 2D examples. Finally,
the conclusions are presented in Sect. 6.

2 Problem statement

Consider an elastic-viscoplastic solid subjected to loads and
appropriate boundary conditions. The phase field method is
used to model its fracture assuming small strains.

The governing equations of this problem are given by [55]

Momentum: ρüi = σi j, j + bi (1)

Damaged Elastic Const. Law:

σi j = Celas
i jkl ε

e
kl + [m(c) − 1]∂W

+

∂εei j
(2)

Strain-Displacement:

εei j = 1

2

(
ui, j + u j,i

)− ε
p
i j (3)

Phase-Field:

ρθcc̈ = Gc2l0c,i i − Gc

2l0
c − ∂m

∂c

(
W+ + P+) (4)
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Inelastic Const. Law:
˙̄γ p = g(σ̄ , γ̄ p) ≥ 0 (5)

In the momentum Eq. (1), ρ is the density, ui the displace-
ment field, σi j the stress tensor and bi the body force. In the
damaged elastic constitutiveEq. (2),Celas

i jkl is the fourth-order
elastic constitutive tensor, εei j is the elastic strain tensor,W

+
is the component of the elastic strain energy degraded by
damage and m(c) is the degradation function that relates the
phase-field parameter c with the damage in the solid.

An additive decomposition of the strain in Eq. (3) is used,
in which the plastic strain tensor is given by

ε
p
i j =

t0∫

0

3

2

g(σ̄ , γ̄ p)

σ̄
Si jdt

′ (6)

where t ′ is a dummy integration parameter, t0 is the current
time. The function g(σ̄ , γ̄ p) is the flow law used to compute
the equivalent plastic strain rate ( ˙̄γ p).

The effective stress σ̄ is a conjugate quantity to the equiv-
alent plastic strain (γ̄ p) and is given by

σ̄ =
√
3

2
Si j Si j (7)

where the deviatoric stress Si j is

Si j = σi j − 1

3
σkkδi j (8)

and δi j is the Kronecker delta.
Note that the damaged elastic constitutive Eq. (2), is

obtained by considering that the total degraded elastic strain
energy is given by the sum of two factors W− + m(c)W+
where W− is the component of the strain energy that is not
affected by the fracture behavior (typically the compression
component of the strain) and W+ is the component of the
strain energy that is degraded by m(c). Hence, the stress can
in general be expressed as

σi j = ∂W−

∂εei j
+ m(c)

∂W+

∂εei j
(9)

which rearranging and noting that Celas
i jkl ε

e
kl = ∂W−

∂εei j
+ ∂W+

∂εei j

yields the damaged elastic constitutive Eq. (2).
Equation (4) is the typical phase field equation [15,16,19–

21], where c denotes the extent of damage or the phase-field
parameter, θc is the so called micro-inertia, Gc corresponds
to the fracture energy of the material (i.e. the critical energy
release rate which is a material parameter) and l0 is the pro-
cess zone parameter, where 2l0 roughly corresponds to the

dimension of the process zone, also known as the character-
istic length (See Fig. 1). The phase-field parameter c ranges
from 0 to 1, where the value of 0 corresponds to an uncracked
state and the value of 1 to a fully cracked state. When the
parameter l0 → 0, the approximation of the fracture energy
by the phase-field method converges to the fracture energy
of a discontinuous crack [56], provided that sufficient mesh
refinement within this zone is employed. Finally, P corre-
sponds to the total stored inelastic energy and P+ is the
component of the stored inelastic energy that is degraded
by damage and consequently contributes to fracture. Note
that in the current work we neglect the effect of micro-inertia
by setting θc = 0.

The total stored inelastic energy is given by [55,57]

P =
t0∫

0

(1 − χ)σi j ε̇
p
i j dt (10)

where χ is the so called Taylor–Quinney coefficient [58] that
gives the fraction of the total plastic work (σi j ε̇

p
i j ) that is dis-

sipated into heat, and t0 is the current time. The definition
of P+ depends on the micro-structural mechanisms that are
contributing to the generation of fracture surface. As a sim-
plifying assumption, P+ can be defined as being a constant
fraction of the plastic work, which yields

P+ =
t0∫

0

χ f σi j ε̇
p
i j dt (11)

where χ f , similarly to Taylor–Quinney, is the fraction of the
total plasticwork that goes into fracture generation.Naturally
the sum χ + χ f must not exceed the value of 1, i.e. χ f ≤
1 − χ .

The inelastic constitutive Eq. (5) depends specifically on
the chosen flow law. In this work we assume a flow law of
the form

σ̄ = Q(γ̄ p)R( ˙̄γ p) (12)

which is used formanypopularmaterialmodels such as John-
son Cook [59] or Litonski [60].

Thematerial considered for the numerical results is amod-
ified 4340 Steel with a Johnson–Cook constitutive law[59]
without thermal softening as given in (13). The material
parameters of this steel are presented in Table 1 and the mod-
ified Johnson–Cook parameters are given in Table 2. These
modifications served to enhance the differences between
different strain-rates to better verify the theoretical predic-
tions. The parameters used for the phase-field modeling
are the Critical Fracture Energy (Gc) and the Process Zone
Parameter(l0).
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Table 1 Material properties for 4340 Steel

Property name Symbol Value Unit

Mass density ρ 7830 kg/m3

Young’s modulus E 200 GPa

Poisson’s ratio ν 0.29 -

Shear modulus μ 77.5 GPa

Critical fracture energy Gc 12.5 kJ/m2

Process zone parameter l0 50 µm

Table 2 Johnson–Cook parameters for 4340 Steel

Property name Symbol Value Unit

Yield shear stress As 1300.0 MPa

Shear stress hardening parameter Bs 700.0 MPa

Strain hardening parameter N 0.26 -

Strain-rate hardening parameter ch 0.1 -

Reference strain-rate γ̇
p
r 1.0 103/s

τ =
[
As + Bs

(
γ p)N

] [
1 + ch ln

(
γ̇ p

γ̇
p
r

)]
(13)

Finally, the boundary conditions needed to solve the sys-
tem are

ui = ūi on ∂�u (14)

n j · σi j = t̄i on ∂�t (15)

ni · Hi = 0 on ∂� (16)

where ūi and t̄i are the prescribed boundary displacements
and tractions, respectively. Hi is the micro-traction defined
as Hi = Gc2l0c,i [55]. The entire boundary is given by
∂� = ∂�u ∪ ∂�t .

This model considers small strains, and additionally
neglects thermal effects. At t = 0 the system is considered
to be unstressed, undamaged and undeformed.

3 Stability analysis

3.1 1D characteristic equation

Recalling the linear perturbation method used for a stability
analysis process, a scalar function f (x) can be expanded in
a Taylor Series around some value x0. Taking only the first
order term, one can linearize the function and express it as

f (x) ≈ f0 + δ f (17)

where

f0 = f (x0) and δ f =
(

∂ f (x)

∂x

∣∣∣∣
x=x0

)

δx (18)

Hence, in our case we assume a perturbation of all
independent variables in the PDE system (u,c,σ ,γ̄ p). For
simplicity any of the fields will be represented by x and we
assume that the perturbations are periodic functions of time
and space, that is

δx = δ x̂ eωt+iky (19)

where ω corresponds to the growth-rate of the perturbation
and k the corresponding wave-number. The variables t , y
and i correspond to time, space and the imaginary unit

√−1,
respectively.

We study a 1D pure tension formulation of the prob-
lem stated in Sect. 2 with the linear perturbation method
and obtain a characteristic equation. In this formulation the
normal stress is represented by τ and the strain by γ . A
monotonic loading is assumed to avoid elastic unloading.

The perturbed equations obtained by this procedure are

ρδü = δτ ′ (20)

δτ = E

(
m0δγ

e + γ e
0

∂m0

∂c
δc

)
(21)

δγ e + δγ p = δu′ (22)

δc = αδc′′ − β
∂2m0

∂c2
W+

0 (1 + f p0 )δc

− β
∂m0

∂c

(
∂W+

0

∂γ e
δγ e + ∂P+

0

∂γ p
δγ p

)

(23)

δτ = ∂τ

∂γ p
δγ p + ∂τ

∂γ̇ p
δγ̇ p (24)

where

f p0 = P+
0

/
W+

0 (25)

Recall that, as noted in (18), a variable with a subscript 0
corresponds to the value of that variable (or its derivatives)
at the solution point being perturbed. For example, m0 cor-
responds to the value of the degradation function m(c) at the
current equilibrium point.

Resolving all spatial and temporal differentiations, the
independent variables can be eliminated by manipulation of
(20)-(24), which will yield a cubic normalized characteristic
equation of the form

C0 + C1ω̃ + C2ω̃
2 + C3ω̃

3 = 0 (26)

123



Comput Mech (2018) 61:181–205 185

whereCi are the coefficients of the polynomial characteristic
equation that depend on material parameters (E ,Gc,…) and
the current values of the solution (m0, W

+
0 , P+

0 , …). The
reader is referred to Appendix A for the specific values of
Ci .

Subsequently, we apply the Routh-Hurwitz stability con-
ditions to the characteristic equation. These state that a third
order polynomial will be stable, i.e. all its roots are on the
negative real half-plane, if the following conditions are met:

Ci > 0 i = 0, 1, 2, 3 and C1C2 > C3C0 (27)

Therefore, a necessary and sufficient condition for insta-
bility is that at least one of these inequalities will not be
satisfied. Analyzing each condition individually leads to a
final criterion for the existence of a root of the characteristic
equation with positive real part, (i.e. instability), as follows

φ

θ
> φc (28)

with φ = 2βW+
0 , θ = 1 + αk2. The parameter α = 4l20 is

referred to as the gradient coefficient and corresponds to the
square of the characteristic lengthof themodel.Asmentioned
before, 2l0 defines the width of the diffused crack, which
means that as l0 decreases, the value of α also decreases,
making the crack narrower. The parameter β = 2l0

Gc
, relates

the amount of energy that contributes to fracture with the
critical fracture energy Gc (a material property). Therefore,
the term β(W+ + P+) quantifies the amount of energy with
respect to Gc driving the evolution of the smeared crack and
serves as the source for the phase-field term.

The critical instability energy is defined as

φc = 1

1
m0

(
∂m0
∂c

)2 − 1+ f p0
2

∂2m0
∂c2

(29)

The limiting value of θ for the earliest onset of instability
is θ = 1, which leads to the expression for instability

φ > φc ⇒ φ − φc > 0 (30)

The reader is referred to [49] for additional details.

3.2 Application to cubic degradation function

A cubic formulation for the degradation function was pro-
posed by [48]

m(c̄) = (3 − s)c̄2 + (s − 2)c̄3 (31)

with c̄ = 1 − c in our formulation. The parameter s con-
trols the behavior of the degradation function at the onset of

Fig. 2 Stress-strain curves for different values of s in an elastic mate-
rial. Geometry and material parameters are given in the results section
and in Appendix B

damage, i.e. ∂m
∂c

∣∣
c=0 = −s. A value of s = 2 degenerates

the cubic equation into the quadratic one. The cubic degra-
dation function allows for a more “linear” behavior of the
stress-strain curve before the peak stress, as opposed to the
quadratic function.

In Fig. 2, the behavior of the stress-strain curve of an
elastic material is demonstrated. Here one can see that the
peak value of stress increases as the s parameter goes from
2, equivalent to a quadratic degradation function, to 0. Note
that the smaller the value of s, the closest the stress-strain
curve will be to a linear behavior before the peak stress.

Plugging the degradation function back onto (29), the con-
dition for instability is obtained

φ > φc = 1/(3 − s)
(2+3ac̄)2
1+ac̄ − (1 + f p0 )(1 + 3ac̄)

(32)

where a = s−2
3−s . Note that f

p
0 is the ratio between the plastic

work and the elastic work that contribute to fracture, as given
in (25).

Figure 3 represents the degradation function (m(c)) and
the critical energy (φc) as a function of c and s. The cubic
degradation function with s = 0 gives a horizontal tangent at
c = 0. In practice this presents problems from the numerical
point of view and a sufficiently small number should be used
instead of 0. If s = 2 (quadratic) then the stability condition
is independent of c as confirmed by other methods in the
literature [15,18]. However, for any other value of s, the
stability condition will be dependent on c, as can be seen
in Fig. 3b.

Despite the results of Fig. 3b, we are only really interested
in the value of φc at the critical point, i.e. at themoment when
the solution becomes unstable due to φ = φc. Therefore we
compute anddepict in Fig. 4 the critical phase-field parameter
(cc) and the critical energy (φc) as a function of s and f p for
the cubic degradation function at the moment of instability.
The value of cc is obtained by considering the phase-field
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(a) (b)

Fig. 3 a Degradation function m(c) (left) and b critical energy ϕc(right) for the cubic formulation (31) with respect to c and s. The fully quadratic
result in elasticity (P+ = 0) recovers the critical values of φc = 1/3

(a) (b)

Fig. 4 a Critical phase-field parameter cc (left) and b critical energy φc(right) for the cubic degradation function (31) with respect to s and f p .
The fully quadratic result in elasticity (P+ = 0) recovers the critical values of cc = 0.25 and φc = 1/3. [15,18,48]

Eq. (4) in a uniform state (c,i i = 0) and setting φ = φc as
follows

c = −βW+ ∂m

∂c

(
1 + f p0

)⇒ φc(cc)

= − 2cc
∂m(cc)

∂c

(
1 + f p0

) (33)

plugging φc from Eq. (32) solving for cc results in an
expression for cc with a cubic degradation function (see
Appendix C).

Additionally, by plugging the resulting cc back into φc

(32) we can compute the value of the critical energy at the
moment of instability. The value of critical energy for f p = 3

is not represented as it corresponds to the limit case where
the energy goes to infinity. This becomes clear by setting c̄
to zero in Eq. (32). In the limit case of s = 2 (i.e. quadratic
degradation) in elasticity, the critical values of cc = 1/4 and
φc = 1/3 are obtained, as expected from earlier literature
results [15,18,25,48].

3.3 Stability criterion by eigenvalue analysis of the
discrete system

The stability of a problem can also be analyzed from a numer-
ical perspective by making use of the concept of Lyapunov
stability where a local eigenvalue analysis of a particular par-
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tition of the element Jacobian matrix (or Tangent Stiffness
Matrix) is analyzed, as presented in [39].

As [61] stated: “arbitrarily slow perturbations in a rate-
dependent solid can only grow from quasistatic solutions.”
By arbitrarily slow perturbations it is understood that per-
turbations with small but positive growth-rate or the first
eigenvalue which crosses the real half plane and becomes
positive, correspond to the onset of instability.

In the current dynamic fracture model, to obtain the resid-
ual equations we first define the weak form of the governing
equations by multiplying each equation in (1)–(5) by its cor-
responding weight function, integrating over the problem
domain and using integration by parts where necessary.

ru =
∫

�

wu
i ρüi d� +

∫

�

wu
i, jσi j d� −

∫

�

wu
i σi j n j d� (34)

rσ =
∫

�

wσ
i jσi j d� −

∫

�

wσ
i j

[

Celas
i jkl ε

e
kl + [m(c) − 1] ∂W

+

∂εei j

]

d� (35)

rc =
∫

�

wcc d� +
∫

�

wc
,i4l

2
0c,i d� +

∫

�

wc 2l0
Gc

∂m

∂c
(W+ + P+) d�

(36)

rγ̄ p =
∫

�

wγ̄ p ˙̄γ p d� −
∫

�

wγ̄ p
g(T, σ̄ , γ̄ p) d� (37)

Note that the Strain-Displacement equation is not explicitly
included in the weak form, but it is implicitly taken into
account when computing the elastic strain in the Damaged
Elastic Constitutive Law.

Accounting for the Babuska-Brezzi condition [62–64] in
mixed finite element formulations, the shape functions for
each field must be chosen with care. To this end, we choose
C0 shape functions for displacement and phase-field param-
eter, and piecewise continuous functions for the stress and
equivalent plastic strain.

The residual equations can be grouped into a residual
vector r and a solution vector x with displacements, stress,
phase-field and plastic strain as

x =

⎡

⎢⎢
⎣

ui
c

sigmai j
γ̄ p

⎤

⎥⎥
⎦ r =

⎡

⎢⎢
⎣

ru
rc
rσ

rγ̄ p

⎤

⎥⎥
⎦ (38)

The coupled nonlinear problem can then be stated as

− r(x0, ẋ0, ẍ0) = M · δẍ + C · δẋ + K · δx (39)

where r(x, ẋ, ẍ) is the vector with the residual of each equa-
tion in the set of governing equations of the problem and x
is the solution vector which contains all field variables being
solved for (ui , c, σi j , γ̄ p). M · δẍ, C · δẋ and K · δx are the
obtained by computing the Gâteaux differential [65] of the
residual(r) in the δẍ, δẋ and δx directions as follows

M · δẍ = dδẍr(x, ẋ, ẍ) = d

dε
r(x, ẋ, ẍ + εδẍ)

∣
∣∣∣
ε=0

(40)

C · δẋ = dδẋr(x, ẋ, ẍ) = d

dε
r(x, ẋ + εδẋ, ẍ)

∣∣∣∣
ε=0

(41)

K · δx = dδxr(x, ẋ, ẍ) = d

dε
r(x + εδx, ẋ, ẍ)

∣
∣∣∣
ε=0

(42)

The Jacobian matrix is then built by approximating the
rate and acceleration of the solution increment (δẋ and δẍ)
with a Newmark-beta[66] time-integration scheme such that
(39) becomes

J · δx = −r(x0, ẋ0, ẍ0) (43)

where the Jacobian matrix J is given by

J =

⎡

⎢⎢
⎣

M∗
uu 0 KL

uσ 0
Gcu KL

cc + Gcc Gcσ Gcγ̄ p

KL
σu Gσc KL

σσ Gσ γ̄ p

0 0 Gγ̄ pσ C∗̄
γ p γ̄ p + Gγ̄ p γ̄ p

⎤

⎥⎥
⎦

(44)

with the superscript (∗) indicating that the matrix has been
scaled by the constants that result from the time-integration
scheme used.

The quasi-static finite element formulation of the sys-
tem can be acquired by considering the K component of the
Jacobain matrix, i.e. the component of the Jacobian matrix
that is affecting the non-rate terms of the governing equa-
tions. Hence, the matrix K is given by

K =

⎡

⎢⎢
⎣

0 0 KL
uσ 0

Gcu KL
cc + Gcc Gcσ Gcγ̄ p

KL
σu Gσc KL

σσ Gσ γ̄ p

0 0 Gγ̄ pσ Gγ̄ p γ̄ p

⎤

⎥⎥
⎦ (45)

whereK = KL+G represents the sum of the stiffness matri-
ces associated with linear material behavior such as elasticity
and thermal diffusion (KL) and the tangent stiffness matri-
ces associated with material non-linear behavior (G). Note
that the matrix K is nonsymmetric and will potentially lead
to complex eigenvalues. We refer to [55,57] for additional
details on this formulation, which was implemented in the
finite element software FEAP [67].

Therefore, the stability condition based on the numerical
approximation is obtained when there exists an eigenvalue
of K with a positive real part, i.e.

Re
[
eig (K)

]
> 0 (46)

The main advantage of this process is that it is straight
forward to apply and will be as accurate as the FEM approx-
imation. An implicit assumption of this method is that the
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(a) (b)

Fig. 5 Stress-strain curves for different values of strain-rate in an visco-plastic material with s = 0.5 a P+ = 0 b P+ �= 0 with χ f = 0.01

(a) (b)

Fig. 6 Stability analysis of an elastic material for different values of s
in the degradation function. The bar is loaded at ε̇ = 5.03 s−1. Figure 6a
shows that when the colored lines that correspond to the quantity φ−φc
cross the value of zero, i.e. the instability condition (Eq. 30) is met, then

the stress will be at its peak value. Figure 6b shows a simplified plot with
only the stress-strain curves and the instability points a stress-strain
(black) and stability condition (colored lines). b Onset of instability
marked on stress-strain curves

values for the wave-length of the perturbation are limited to
permutations of the degrees of freedom within the element
discretization. In other words, the wave-lengths are locked
to the element size. Nonetheless, we neglect the influence of
this effect since, as mentioned earlier, the limit case is given
by k → 0, which corresponds to an infinitely large wave-
length of the perturbation (i.e. uniform solution), which can
be easily captured by the Finite Element discretization of the
problem.

While this approach will be shown in the next sec-
tion to agree well with both analytical criteria for shear
bands and fracture, one limitation of this method is that
it does not distinguish between the types of failure modes

as is clearly obtained with the analytical criterion. Another
drawback of the spectral method is its higher computa-
tional burden, as it requires a solution of an eigenvalue
problem at each element and will slow down the anal-
ysis, which might be significant in large scale parallel
computations.

4 Numerical results in 1D

The 1D formulation used in this section is an idealized
version of the Split-Hopkinson bar experiment [68–70].
Consider a 1D steel rod subject to a set of tension loads
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(a) (b)

Fig. 7 Evolution of the phase field and degradation for different val-
ues of s as a function of the nominal strain. As the value of s decreases
away from the quadratic degradation function s = 2, the growth of the
phase-field parameter c and the reduction of the degradation function

m(c) will be delayed . This means that a smaller s value reduces the
non-linearity before the instability point, giving the stress-strain curve
a more linear behavior before the formation of the crack a phase field
parameter (c) b degradation function (m(c))

(a) (b)

Fig. 8 Stress-strain curves for different values of strain-rate in an elastic material a s = 2 (quadratic) b s = 0.01 (cubic)

corresponding to a multitude of strain rates, which are
modeled using a displacement control approach. A finer
discretization of the bar is employed in the center to bet-
ter capture the steep gradients associated with the crack
while a coarser mesh is employed further away. A Johnson–
cook type material law is employed excluding thermal
effects and a small imperfection that reduces the yield
stress and the critical fracture energy is applied in the
center. A detailed description of the discretization and mate-

rial parameters of the model can be found in Sect. 2 and
Appendix B.

Figure 5 depicts the behavior of the stress-strain curve of
a visco-plastic material with and without the contribution of
P+, where a χ f = 0.01 was used for the case with P+ �= 0.
In both cases, as the rate of deformation increases, the peak
value of stress occurs for a smaller value of strain due to the
rate-hardening behavior of the material. When P+ = 0, the
value of the peak stress is the same for all cases since soften-
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(a) (b)

(c) (d)

Fig. 9 Stability analysis of an elastic material for different strain rates,
with s = 0.5. a and c show the stress-strain (black lines) and the stability
condition (colored lines), with P+ = 0 and P+ = 0, respectively.When
the colored lines that correspond to the quantityφ − φc cross the value

of zero, i.e. the instability condition (Eq. 30) is met, then the stress will
be at its peak value. Figures b and d show the correspondent simplified
plots with only the stress-strain curves and the instability points

ing is only due to the phase-field degradation, which in turn
only depends on the elastic energy. On the other hand, when
the phase field is also affected by the accumulated inelas-
tic work that contributes to fracture, i.e. P+ �= 0, then the
critical stress and the critical strain are reduced, causing an
earlier onset fracture.

4.1 Comparison between degradation functions in an
elastic material

In Fig. 6 the stability condition (30) is plotted for differ-
ent values of s in an elastic material loaded at strain-rate of
ε̇ = 5.03 s−1. It can be observed that the stability condi-
tion accurately recovers the peak stress, which confirms the
analytical result.

When the problem is homogeneous, the value of φ is only
a function of the nominal strain. Therefore, before the for-
mation of the crack, the differences in φ − φc between the
models are strictly due to the difference between the values
of φc. This explains why the value of φ − φc is the same for
s = 0.01 and s = 2, since (as can be observed in Fig. 3b)
the value of φc is very similar in both cases.

For the cubic case with s = 0 there is an interesting phe-
nomenon where it can be observed an increase of φc that
delays the instability point. This is consistent with the behav-
ior of the curve with s = 0 in Fig. 3b that initially grows for
small values of c.

In addition, since the value of φc for s = 0 stays close
to 1/3 almost up to the instability point, it is expected that
the value of c remains close to zero during this time. This
can be confirmed by observing the value of c as a function
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(a) (b)

Fig. 10 Evolution of the phase field parameter (c) in a visco-plastic material a P+ = 0 b P+ �= 0

(a) (b) (c)

Fig. 11 Comparison between analytical criterion and eigenvalue criterion in an elastic material for different values of the degradation function
parameter s a s = 0.01 b s = 0.5 c s = 2.0

(a) (b) (c)

Fig. 12 Comparison between analytical criterion and eigenvalue criterion in an visco-plastic material for different strain-rates and P+ = 0
a ε̇ = 1 × 10−3s−1 b ε̇ = 2 × 10−3s−1 c ε̇ = 5 × 10−3s−1
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H

HH/20

H/4

Fig. 13 Full geometry of the square with preexisting crack problem.
Dimension H=10mm

of the nominal strain in Fig. 7a. As the value of s decreases
towards the limit value of zero, then c will depart later from
the undamaged case (c = 0).

Remarkably, all three functions intercept at c = 1/3. To
understand this we first note that the models are still homo-
geneous at this point, even though we are already past the
instability point. Consequently, the homogeneous solution
can be obtained by plugging ∂m

∂c for the cubic formulation in
(4) (note that in elasticity P+ = 0) and is given by

φ = 2c

3(1 − c)
[
2c + s( 13 − c)

] (47)

which means that if c = 1/3, then the value of the nom-
inal strain for the homogeneous solution is independent of
s, causing the intersection. This expression also recovers the
critical value of c = 1/4 for the elastic case (s = 2) as shown
in the literature [15,25].

Figure 7b depicts the value of the degradation function
with respect to the nominal strain. The advantage of the
cubic degradation function is demonstrated as it prevents

(a) (b)

(d)

(c)

(e) (f)

Fig. 14 Snapshots of the phase field parameter distribution in the plate
at different times. The results shown here correspond to the elastic
model. The mesh is deformed according to the displacement field and

fracture develops in Mode I at the middle of the plate a stress versus
strain b t=3.1µs c t=6.3µs d t=8.6µs e t=10.2µs f t=11.4µs
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Fig. 15 Stability condition φ−φc in elastic material with l0 = 0.2mm
at t = 9µs. The red regioncorresponds to a positive criterion and con-
sequently an unstable region. Different mesh sizes are shown to produce

the same unstable region ahead of the crack. Elements belonging to the
crack (i.e. c ≥ 0.97) were removed a very coarse mesh b coarse mesh
c medium mesh d fine mesh

the material from deteriorating almost up to the critical point
(peak stress), allowing for a linear elastic behavior before the
onset of degradation. This is in stark contrast to the quadratic
formulation that begins degrading from the onset of elastic
deformation, driving the material to never exhibit a linear-
elastic behavior.

Finally, we show the effect of strain-rate loading in the
elastic case. Figure 8 shows the stress-strain curves for
both the quadratic case and the cubic case. As expected,
the deformation up to the critical point is independent
of the strain-rate. However, post instability, the collapse
becomes a function of strain-rate, being delayed for increas-
ing strain-rate. This happens because faster rates require
larger growth-rates of the perturbation to collapse, which
then leads to a delayed collapse.

4.2 Application to a visco-plastic problem

In Figure 9 the stability condition (30) for s = 0.5 and differ-
ent values of strain-rates is plotted for a visco-plasticmaterial
with and without the influence of P+. As in the elastic mate-
rial case, the stability condition accurately recovers the peak
stress, which confirms the analytical result. The plots corre-
sponding to P+ = 0 have larger values of the critical strain
(i.e. the strain at the instability point) when compared to
P+ �= 0. Additionally, the critical stress (i.e. the stress at
the instability point) is constant when P+ = 0 but becomes
smaller with the decrease in strain-rate for P+ �= 0. This is
due to the fact the lower strain-rates have lower values of the
yield stress, which generates more yielding and therefore a
stronger contribution of P+ into the phase-field equation.
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0 0.25 0.5 0.75 1

c

(a) (b)

(c) (d)

(e) (f)

Fig. 16 Influence of the characteristic length l0 on the size of the unsta-
ble region ahead of the crack in an elastic material. The plate is colored
based on the value of the phase-field parameter (c) and the condition
φ = φc is delineated with a red line. a l0 = 0.5%H b l0 = 1.0%H c
l0 = 1.5%H d l0 = 2.0%H e l0 = 2.5%H f l0 = 3.0%H

The critical value of the phase-field parameter (cc) for the
case of P+ = 0 can be computed using Eq. C.1 with the
value of s used in this section (s = 0.5). Since the value
of cc is a function of only s and f p, and considering that
for P+ = 0 the value of f p = 0, then the critical value
of the phase-field parameter is obtained as cc = 0.21661.
This can be observed in Fig. 10a, where the crosses were
placed based on the condition of φ = φc. On the other hand,
if P+ �= 0, then there is no unique value of the critical c
for all strain-rates due to the dependency on f p. This can be
seen in Fig. 10b, where the crosses that represent the critical
point given by φ = φc no longer match a constant value of
cc = 0.21661.

Fig. 17 Stress-strain curves for different values of yield stress. The
stress represented here is the average in the entire plate of the Von-
mises stress

4.3 Prediction based on numerical eigenvalues
construction

In this section we demonstrate that the numerical eigenvalue
criterion, i.e. the result of an eigenvalue analysis on the stiff-
ness part of the Jacobianmatrix, recovers the analytical result.
Figure 11 shows the values of φ, φc and the Eigenvalue as
a function of the nominal strain for an elastic material with
different values of s.

Figure 12 depicts the same quantities but in a visco-plastic
material for different strain-rates. In all cases the the criterion
φ ≥ φc is matched by an eigenvalue ω such that Re[ω] ≥ 0.

5 Numerical results in 2D

5.1 A square steel plate with preexisting crack

In this section we study the effect of mesh size and charac-
teristic length (l0) on the size of the instability region ahead
of the crack.

A steel square plate is considered as shown in Fig. 13 with
dimensionH=10mm.The plate is stretched uniaxially under
a displacement control loading defined by the velocity profile
shown in Fig. 32 with vr = 10m/s, which corresponds to a
nominal strain-rate of 103 s−1 and tr = 1.25μs. A Johnson–
Cook material law is used and the respective parameters are
the same as the ones presented in Sect. 2 and Appendix
B. Additionally, we also study an elastic material , with a
quadratic degradation function and with l0 = 0.2mm.

In Fig. 14 are depicted several snapshots of the evolution
of the crack along time in an elasticmaterial. The crack nucle-
ates at the tip of the preexisting crack and proceeds in mode
I along the horizontal direction of the plate. Henceforth the
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(a) (b) (c)

Fig. 18 Influence of the yield stress on the unstable region ahead of the crack. The plate is colored based on the value of the equivalent plastic
strain (γ̄ p) and the condition φ = φc is delineated with a red line a elasticity b plasticity - σy =600MPa c plasticity - σy =500MPa

2H

H/40

H/2

H/2

Fig. 19 Full geometry of the notched steel plate problem. Dimension
H = 10mm

analysis will focus on the influence of several characteristics
of the model in the behavior of the stability condition. Unless
otherwise specified, the figures are shown at time t = 8.6µs.

5.1.1 Mesh size

In Fig. 15 we show the effect of mesh size on the stability
criterion. The results presented for an elastic material law
indicate that the size of the instability region is seemingly
unaffected by the mesh density.

Sincemesh refinement is in general needed formore accu-
rate crack propagation, this results is particularly important
since it suggests that a coarse mesh is sufficient to deter-
mine, with reasonable accuracy, the unstable region ahead of

the crack. Consequently, the unstable region may be refined
in places where crack propagation is expected to properly
capture the steep gradients. Such local refinement allows for
good accuracy at a minimal computational cost.

In summary, this result suggests that an efficient and accu-
rate condition for mesh refinement can be based on the
stability criterion proposed.

5.1.2 Length scale

The influence of changing the length-scale parameter (l0) on
the size of the unstable region is studied. The length-scale
l0 is taken between 0.5% to 3% of the H dimension of the
plate. Figure 16 demonstrates that, as expected, the size of the
unstable region ahead of the crack will be related to the value
of the phase-field parameter (c), which in turn is strongly
affected by the length-scale parameter.

Additionally, notice that the boundary of the unstable
region is closely related to the condition c = 0.25 which is in
accordance with the critical value of the phase-field param-
eter derived for a 1D homogeneous elastic case by [15] and
also shown in Eq. 47.

As expected from the phase-field formulation, if the mesh
is sufficiently dense, then a smaller value of l0 will lead to
a sharper and more narrow crack geometry. This is also true
for the stability condition, where a smaller value of l0 leads
to a sharper instability region ahead of the crack.

5.1.3 Plasticity and yield stress

The contribution of plasticity and the value of the yield stress
has a direct effect on the crack behavior of this problem. In
Fig. 17 the average Von-mises stress in the plate as the anal-
ysis progresses for different levels of yield stress is shown.
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The effect of plasticity is clearly visible in the delay of the
crack formation and reduction of the stress.

Figure 18 shows the effect of plasticity and P+ in the
distribution of the unstable points on the domain, i.e. the
location of the instability.

The three plots do not correspond to the same point in time
but to similar positions of the crack tip during propagation
since, as can be seen in Fig. 17, the stress decrease associated
with the propagation of fracture is delayed in the presence of
plasticity.

Figure 18 reveals that accumulation of plastic deformation
near the tip of the initial crack increases the size of the unsta-
ble region. This is due to the fact that the material possesses
considerable strain hardening, which means that the elastic
strains, and consequently the elastic energy, will increase
as the regions with larger plastic deformation are subject to
more hardening. In fact, the enlarged instability region at the

concentration of plastic deformation remains the same once
the crack starts propagating.

5.2 Impact into a notched steel plate—the influence of
the type of degradation function

The behavior of a notched steel problem is studied in this sec-
tion where elasticity is considered and the parameters of the
model are given in Section 2 and Appendix B. The geom-
etry of the problem is related to the well known Kalthoff
problem[71] and is depicted in Fig. 19. The plate is loaded
with displacement control defined by the velocity profile
shown in Fig. 32 with vr = 10m/s, which corresponds to
a nominal strain-rate of 103 s−1 and tr = 1.25µs.

Figure 20 depicts the value of the phase-field parameter (c)
for an elastic material with a quadratic degradation function
(s = 2) at different moments in time. The speed of prop-

(a) (b) (c)

Fig. 20 Evolution of the phase-field parameter in time, showing the propagation of the crack at an angle ≈ 65o. The material is elastic and a
quadratic degradation function is used a t = 16.75 µs b t = 18.5 µs c t = 19.5 µs

(a) (b) (c)

Fig. 21 Evolution of the Von-Mises stress in time, showing the
propagation of the crack and the consequent unloading of the solid
in the shadow of the crack. The material is elastic and a quadratic

degradation function is used a t = 16.75µs b t = 18.5µs c t =
19.5µs
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Fig. 22 Degradation function
m(c), Stability condition φ − φc
and eigenvalue condition in
elastic material for t = 20 µs. a
and b show the degradation
function for s = 0.01 and s = 2,
respectively. c and d show the
stability condition for s = 0.01
and s = 2, respectively. e and f
show the eigenvalue condition
for s = 0.01 and s = 2,
respectively

(a) (b)

(c) (d)

(e) (f)
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Fig. 23 Full geometry of the branching problem. Dimensions in mm.
τ̄y is the applied traction at the top and bottom boundary. A and B are
two points used for field plots. The point A corresponds to the notch
tip and the point B to an intermediate position along the expected crack
path

agation and the angle of the crack are in good agreement
with the values reported in past literature[71,72]. In Fig. 21
is depicted the evolution of the von-Mises stress in the plate,

showing the stress concentration and the unloading due to
the crack.

Figure 22 depicts the value of the degradation function
(m(c)) and the stability criterion (φ − φc) for a quadratic
(s = 2) and cubic (s = 0.01) behavior ofm(c). As expected,
the quadratic degradation function tends to degrade more the
material away from the crack surface. The stability condition
successfully detects the unstable region ahead of the crack
for both cases.

5.3 Crack branching benchmark example

Next, we study the behavior of the analytical criterion and
the eigenvalue methodology on a crack branching problem.
We study a pre-cracked steel plate pulled in Mode I with
a constant tension at the boundary. The specifications of the
problem are obtained from the literature [15] and reproduced
in Fig. 23. The results match previous numerical simulations

(a)

(b)

(c)

Fig. 24 Crack branching results in an elastic material with quadratic degradation. A comparison between the phase field parameter, the eigenvalues
and the φ parameter a phase field b eigenvalue c φ
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Fig. 25 Snapshots of crack branching results in an elastic material
with varying mesh densities. The red shading marks the regions where
φ > φc = 1/3. The mesh is deformed proportionally to the displace-

ment field, amplified by a factor of 5. Elements with a phase field value
above 0.97 are removed a coarse mesh (1062 elements) b intermediate
mesh (3541 elements) c fine mesh (11053 elements)

of the problem using different methods like phase-field[15],
XFEM [73] or peridynamics [74], as well as experimental
results [75]. A Johnson–Cook material law is used and the
respective parameters are the same as the ones presented in
Sect. 2 and Appendix B.

The branching problem is modeled assuming an elastic
material and a quadratic degradation function.

In Fig. 24 a comparison between the phase field param-
eter, the eigenvalues and the φ parameter for two differ-
ent moments in time are shown. These results confirm
that the condition φ > φc (where φc = 1/3 in a
quadratic degradation) predicts well the unstable elements
both qualitatively by marking the cracked elements and
the crack front, and quantitatively by comparison with
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Fig. 26 Crack branching for a very low traction of τ̄ = 0.1τ̄re f . The plotting properties are the same as in Fig. 25. The three snapshots are
demarcated in Fig. 30a a t=250µs b t=500µs c t=750µs

Fig. 27 Crack branching for a low traction of τ̄ = 0.5τ̄re f . The plotting properties are the same as in Fig. 25. The three snapshots are demarcated
in Fig. 30b a t=50µs b t=100µs c t=150µs

Fig. 28 Crack branching for the reference traction, τ̄ = 1.0τ̄re f . The plotting properties are the same as in Fig. 25. The three snapshots are
demarcated in Fig. 30c a t=25µs b t=50µs c t=75µs

Fig. 29 Crack branching for a high traction of τ̄ = 4.0τ̄re f . The plotting properties are the same as in Fig. 25. The three snapshots are demarcated
in Fig. 30d a t=6.25µs b t=12.5µs c t=18.75µs

the numerical approach for local instability given by the
eigenvalues.

In Fig. 25 the evolution of the problem for three meshes is
presented. The value of φ is computed for each element and
is shown to predict quite accurately the region ahead of the
crack where it is about to propagate, including the branching
point.

Additionally, notice that the size of the unstable region
ahead of the crack seems to be independent of the mesh-size.
This confirms the prediction that the intrinsic wave-length
that depends on the element size is in fact not restrictive for
this problem since the first detection of instability is associ-
ated with the uniform mode.
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(a) (b)

(c) (d)

Fig. 30 Stress (σyy) as a function of time for points A (blue circle)
and B (green triangle), corresponding respectively to the points in
Fig. 23. The red vertical lines demarcate the three snapshots of the
previous figures. Each subfigure is shown with respect to the four dif-

ferent values of applied traction corresponding to Figs. 26–29 a very
low traction: τ̄ = 0.1τ̄re f . b Low traction: τ̄ = 0.5τ̄re f . c Reference
traction: τ̄ = 1.0τ̄re f . d High traction: τ̄ = 4.0τ̄re f

Next we analyze the effect of different traction lev-
els applied to the plate boundaries. Figures 26–29 show
the stability condition and crack propagation for four dif-
ferent values of applied traction at the boundary. These
traction values are taken as a fraction of the reference
traction τ̄re f used before and are named as very low
stress (0.1), low stress (0.5), reference stress (1.0) and
high stress (4.0). Each figure shows three snapshots in
time. It can be seen in Fig. 26 that the very low trac-
tion can only initiate some damage at the crack tip but the
loading is not sufficient to cause crack propagation. The
low and reference traction levels in Figs. 26–27, respec-
tively, illustrate crack propagation and branching, however,
it is interesting to note that the branching point is sen-
sitive to the applied traction and a lower traction level
yields earlier branching while the higher (reference) trac-
tion results in a later branching. Furthermore, Fig. 29
shows that for very high traction levels, branching does
not occur. In this case, the elastic waves due to the
loading travel parallel to the boundary and once they
meet in the center the crack propagates in a mode I like
behavior.

These observations are accompanied by local field plots
at point A and B depicted in Fig. 23. Thus, Fig. 30 shows
the stress (σyy) at points A and B as a function of time, for
each applied traction. It is interesting to note that in the low
traction case in Fig. 30a the stress at point A is strongly
oscillating due to dynamic wave propagation and the dam-
age that initiated at this point, while point B is undamaged
and only minor dynamic oscillations are observed. Figures
30b, c which correspond to the two branching scenarios
illustrated in Figs. 27–28 show that the stress at point A ini-
tially increases due to damage accumulation but once damage
reaches its peak value the stress collapses and crack propa-
gates through this point. The stress behavior at point B is
also initially oscillatory with a rapid increase at some point
due to more complex branching effects that occur earlier in
the low traction level as compared with the reference trac-
tion. Finally, Fig. 30d shows that the stress at points A and B
grows at a similar rate which indicates that damage initiates
at approximately the same time but then the stress quickly
collapses at point A while a more slow collapse is observed
at point B due to the effect of the notch tip.
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6 Concluding remarks

In this paper, fracture is modeled by the phase-field method
and a stability criterion is derived for a general degra-
dation function in visco-plastic materials. The numerical
results showgood agreementwith the theoretical predictions,
including the critical value for the phase-field parameter.

It is shown that this condition can be expanded and applied
to multi-dimensions. To this end, a series of examples in 2D
is investigated and the stability condition successfully detects
and predicts the formation and propagation of cracks, even
in complex situations like crack branching.

The results are compared to the numerical stability con-
dition given by the eigenvalues of the stiffness part of the
element Jacobian matrix. Both approaches show excellent
agreement in predicting the instability point, which also
serves as a reliability confirmation of the analytical criterion.

Furthermore, the instability region ahead of the crack is
shown to be mesh independent and a function of the length-
scale parameter l0, which is consistent with the phase-field
method. Hence in future work, such criterion could provide
a reliable approach for local mesh refinement in the path of
cracks.
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Appendix A: Terms of the characteristic equation

The characteristic equation in 1D has the following form.

C0 + C1ω̃ + C2ω̃
2 + C3ω̃

3 = 0 (A.1)

with the following expressions for the coefficientsC0,C1,C2

and C3

C0 = Bαk2ζ

C1 = Aαk2ζ

C2 = B
[
1 + Aζ + Pg(1 − ζ ) + Pt (1 − ζ )

]

C3 = A
[
1 + Pt (1 − ζ )

]

where

ω̃ = ω

fe
(A.2)

fe =
√

Em0

αρ
(A.3)

ζ =
θ −

[(
∂m0
∂c

)2
/m0 − (1+ f p)

2
∂2m0
∂c2

]
φ

θ + (1+ f p)
2

∂2m0
∂c2

φ
(A.4)

A = Em0

Q0
= Em0

∂τ
∂γ p

(A.5)

B = Em0

fe R0
= Em0

fe
∂τ

∂γ̇ p

(A.6)

Pt = Em0
∂P+

0

∂τ

/
∂W+

0

∂γ e
(A.7)

Pg = Em0

Q0

∂P+
0

∂γ p

/
∂W+

0

∂γ e
(A.8)

where ω̃ is the normalized growth-rate and fe is the char-
acteristic frequency, which can be understood as the inverse
of the time it takes for an elastic wave to propagate through
the characteristic length l0. The variable ζ condenses the
behavior of the phase-field formulation and depends on the
non-dimensional parameters that represent the two main
drivers of the phase-field equation: the regularization term (in
θ ) and the source term (in φ). The variable ζ also depends on
the choice of degradation function and the influence of P+
on the system.

Appendix B: 1D Numerical properties

The rod is discretized with varying element size to properly
capture the localization. Considering symmetry, the relative
position of the elements (p) from the center to one edge
(half-rod) can be defined by the following function

p(x̄) =
{
S0 x̄ for x̄ ≤ β

S0 x̄ + (1 − S0)
(
x̄−β
1−β

)P
for x̄ > β

(B.1)

where x̄ the relative node number, P is the exponent used
for varying the element size, β is the percentage of nodes
concentrated at the center of the rod with constant element
size and S0 is the slope for the central elements, defined as:

S0 = de
L
N (B.2)

where L and N are the length and the number of nodes of
the half-rod, respectively and de defines the constant element
size in the center of the rod.

In the following sections, the results are presented for N =
101, β = 0.25, P = 5, deL = 1×10−4 and L = 0.5×10−3m.
All values refer to the half-rod, which means that the final
length will be 10−3m. The total number of nodes will be
201 since the central node is repeated. Figure 31a shows the
relative position of the nodes in the half-rod as a function
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(a) (b)

Fig. 31 Representation of a 1D right half-rod. The black dot marks β a position of nodes b element sizes

Fig. 32 Velocity profile used as a loading function

of the relative node number and Fig. 31b shows the relative
element size also as a function of the relative node number.

A hyperbolic secant type of imperfection is considered at
the center of the rod which will scale the material parameters
As , Bs and Gc by the factor

ηimp(rn) = 1 − αred

(
2

ern + e−rn

)
(B.3)

where αred is the reduction of the material parameters in
percentage at the center of the imperfection and rn is the
normalized distance given by

rn(x, y) = abs(x − x0)

r0
(B.4)

with x0 representing the center of the imperfection and r0
its radius. For the problem studied αred = 0.01, r0 =
L/100µm and x0 = L/2 = 500µm.

The velocity of the loading is defined as shown in Fig. 32
with vr being the steady velocity and tr the time to reach that
velocity. The S-curve is a polynomial that guarantees that the
derivative of the Jerk1 is continuous. We choose this to avoid

1 Jerk is the derivative of the Acceleration with respect to time and is
the quantity responsible for generating elastic waves.

discontinuities and kinks in the profile of the Jerk since the
system is sensitive to the applied velocity.

Appendix C: Critical phase-field cc

cc = Re

⎡

⎣ 1

6a2( f p − 5)

⎛

⎝−
i
(√

3 − i
)
K1

K3
+K2 + i

(√
3 + i

)
K3

⎞

⎠

⎤

⎦

(C.1)

where

K1 = a2(2a( f p − 2) + f p − 3)2 (C.2)

K2 = 2a(a( f p − 11) + f p − 7) (C.3)

K3 = 3

√

K4 + K5 +
√

−a6(3a + 2)( f p − 5)2( f p + 1)(K6 + K7)

(C.4)

K4 = −8a6( f p − 2)3 − 12a5( f p − 3)( f p − 2)2

−3a4
(
f p3 − 7 f p2 + 27 f p − 61

)
(C.5)

K5 = a3
(
f p3 − 9 f p2 + 3 f p + 77

)
(C.6)

K6 = 16a3( f p − 2)3 + 24a2( f p − 3)( f p − 2)2 (C.7)

K7 = 3a
(
3 f p3 − 23 f p2 + 69 f p − 97

)
+ 8(3 f p − 13)

(C.8)

with

a = s − 2

3 − s
(C.9)
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