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Abstract The present paper is the second part of a twofold
work, whose first part is reported in Artioli et al. (Comput
Mech, 2017. doi:10.1007/s00466-017-1404-5), concerning
a newly developed Virtual element method (VEM) for 2D
continuum problems. The first part of the work proposed a
study for linear elastic problem. The aim of this part is to
explore the features of the VEM formulation when mate-
rial nonlinearity is considered, showing that the accuracy
and easiness of implementation discovered in the analysis
inherent to the first part of the work are still retained. Three
different nonlinear constitutive laws are considered in the
VEM formulation. In particular, the generalized viscoelastic
model, the classical Mises plasticity with isotropic/kinematic
hardening and a shape memory alloy constitutive law are
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implemented. The versatility with respect to all the consid-
ered nonlinear material constitutive laws is demonstrated
through several numerical examples, also remarking that
the proposed 2D VEM formulation can be straightforwardly
implemented as in a standard nonlinear structural finite ele-
ment method framework.

Keywords Virtual element method - Plasticity - Viscoelas-
ticity - Shape memory alloy - Material nonlinearity

1 Introduction

The virtual element method has been introduced recently in
[1,9-11,16] as a generalization of the finite element method
capable to deal with general polygonal/polyhedral meshes.
The VEM approach has experienced an increasing interest in
the recent literature, both from the theoretical (mathematical)
viewpoint, and on the applicative (engineering) side. In an
absolutely non-exhaustive way, in addition to the ones above
we here limit to cite the few works [12—15,17,24,30,35,44—
46]. However, we note that VEM is not the only recent
method that can make use of polytopal meshes, and we refer
to [18-20,23,36,41,42], again without pretending to provide
acomplete picture of the available approaches on the topic. In
the more specific framework of structural mechanics, VEM
has been introduced in [10] for (possibly incompressible)
two dimensional linear elasticity and general “polynomial”
order, in [24] for three dimensional linear elasticity and low-
est order, in [45] for general two dimensional elastic and
inelastic problems under small deformations (lowest order),
in [46] for contact problems and in [2] for applications in
geomechanics (again both contributions being for lowest
order).
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The present paper represents the continuation of the inves-
tigations started in [3]. In fact, the previous paper was devoted
to a new VEM formulation for linear 2D elastic problems;
the present paper is focused on the the extension of the
proposed developed VEM formulation to problems with
material nonlinearity. In particular, the aim of the paper is
to suitably modify the VEM proposed in Part I to a gen-
eral setting in which nonlinear inelastic constitutive behavior
is taken into account, for arbitrary order of accuracy (or
“polynomial” order). Moreover, a numerical assessment of
such VEM scheme is presented for three typical inelastic
problems:

— generalized Maxwell isotropic viscoelasticity;

— classical von Mises plasticity with linear isotropic/
kinematic hardening;

— shape memory alloy constitutive behavior modeled by
means of a macroscopic phenomenological approach.

All the considered problems fit into a general framework,
capable of modeling a wide class of inelastic effects, gov-
erned by a phenomenological constitutive law. A similar
approach using VEM technology has been initially presented
in [45], limited to the case of a low-order scheme. Here, we
extend the higher order schemes presented in [3] for linear
problems to material inelastic response. Analogously to [45],
one feature of the present approach is that the constitutive law
algorithm can be independently embedded as a self-standing
black-box, as in common nonlinear FEM codes. However, in
addition to considering a general “polynomial” degree, the
numerical tests presented in this paper generally differs from
the ones provided in [45], and some aspects concerning the
computational behavior of the proposed VEM scheme are
discussed. Ultimately, the method is shown to be an appeal-
ing alternative for inelastic problem with respect to standard
FEM.

An outline of the paper is as follows. In Sect. 2 the equi-
librium problem for a 2D medium characterized by inelastic
response, both in the continuous and in the VEM-discretized
frameworks, is introduced. Purposely, the formulation is here
kept quite general, in order to consider a wide gallery of
constitutive models. Furthermore, we remark that implemen-
tation details of the proposed approach may be found in [3],
where a comprehensive discussion in the linear framework
has been developed. The extension to solution of equilibrium
equations in the non-linear case, using a Newton-Raphson
strategy, follows standard steps, and it is not detailed in this
paper for brevity. Sect. 3 reviews three typical inelastic con-
stitutive models, belonging to the general category recalled in
Sect. 2.1, which will be used in the numerical tests. Numerical
results are given in Sect. 4. Section 5 draws some conclusion
and briefly present possible extensions of the schemes here
proposed and studied.

@ Springer

2 Statement of the problem
2.1 The continuous problem

In this section we present a quite general framework for
inelastic problems in 2D, under the assumption of small
strain and displacement. In the following the Voigt notation
is adopted, so that stress and strain tensors are represented
as 3—component vectors, and the fourth-order constitutive
tensor is represented as a 3 x 3 matrix.

Let £2 be a continuous body occupying a region of the
two-dimensional space R? in which the Cartesian coordi-
nate system (O, x, y) is introduced. The displacement field
is denoted by the vector u(x, y) = {u v}7 and the associated
strain defined as:

3, 0
0 9,
3y Oy

e(u) =Su withS = 2.1

Above, the symbol 9, indicates the partial derivative opera-
tor with respect to the (e)-coordinate. An additive decompo-
sition is considered for the total strain ¢ = &(u), assuming
the form:
e=¢e°+¢&", (2.2)
where &¢ is the elastic strain, and e is the internal vari-
able which represents the strain stemming from the inelastic
effects.

Setting the framework of generalized standard materials
with convex free-energy and dissipation potential and fol-
lowing standard thermodynamic arguments, we consider a
constitutive law for the body 2, such that the stress o is
given by the relationship:
o=0(x¢, 66" " H) (2.3)
where 7 is the time variable, x = {x, y}T € £ is the position
vector, the vector H contains all the history variables incor-

porated in the selected model, and a dot above a function
stands, as usual, for the time derivative.

Remark 1 We have defined the constitutive law (2.3) in full
generality, allowing for a rule depending on all the quantities
involved in the description of a generalized standard mate-
rial (but not temperature). However, we notice that in many
interesting situations, o depends only on (e, £, H) (see, for
instance [28,40]).

Rule (2.3) is coupled, respectively, with an evolution law
& for the inelastic strain, and an evolution law .# for the
history variables:
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&1, x) € .i”(t, x, &(1,X), é(t, X), (¢, X), Forall ¢ € (0, T], find u(¢, -) € V such that
é(t,x), H(t,x)) , . g
H(t,x) € 4(t,x et x), & x),e",x), 24 /Qa(t, X, &(t,x), é(t,x), e"(, %), &"(t, %),
&"(t,x), H(t,x)).
H(t,x) e(v(x))dx =/ b, x)Tv(x)dx VveW
2
&0, x) = eg‘(x) Vx € 22
Remark 2 Depending on the physical phenomenon under H(0,x) = Ho(x) Vxe€ £,
consideration, the evolution laws ¥ and .# may be 2.7

described by either a standard single-valued correspondence,
or amore general set-valued function. In particular, in several
interesting situations .’ turns out to be associated with the
sub-differential of a suitable yield function. For more details
we refer to [26] or [27], for instance.

Remark 3 In many constitutive models, for instance in the
examples of Sect. 3, the history variables can be explicitly
expressed as a function of the inelastic strains, say H (¢, X) =
w(ei“(t, x)). In such cases, by taking the time derivative of
this equation, it is possible to provide only the evolution law
Z (and the function ¢, of course) to completely determine the
model. In other words, the evolution law . can be computed
by means of . and ¢.

We denote with K7 the tangent matrix consistently com-
puted from the constitutive law (2.3), i.e.:

Kr(t,x, e(t,x), é(1,%), €™(t, %), &™(t,x), H(t, X))
0 . :
= a—a(t, X, &(t,X), &(1,x), €" (1, x),
&

é"(t,x), H(t, X)) 2.5)

The body §2 is subjected to distributed volume forces b.
For simplicity, and without loss of generality, we assume
that the displacements vanish on the whole boundary of 2.
Since we consider a quasi-static problem, at each time instant
the stresses and displacements must satisfy the equilibrium
equations and boundary conditions, that read:

in £2,

2.6
onl =052. (2.6)

divoe +b=0
u=20

Now, let V denote the space of admissible displacements
and W the space of its variations; both spaces will, in particu-
lar, satisfy the homogeneous Dirichlet boundary condition on
I'. Assuming initial values ez)“ (x) and H ((x) for the inelastic
deformation and the history variables, respectively, a possi-
ble variational formulation of our inelastic problem can be
written as:

where the displacements and history variables are sufficiently
regular in time and must satisfy the evolution laws (2.4).

2.2 The virtual element formulation

We now describe the virtual element method when applied
to the problem class described in Sect. 2.1. We will closely
follow the notations and the framework of [3], where the
virtual element philosophy for the easier problem of linear
elasticity, has been extensively detailed.

We start by presenting the discrete (virtual) space of
admissible displacements Vj,, which is the same of [10],
see also [3]. Let £2;, be a simple polygonal mesh on £2, i.e.
any decomposition of §2 into non-overlapping polygons E
with straight edges. The symbol m represents the number of
edges of a polygon E, and the typical edge of the polygon
E is indicated by e, (i.e. ¢ € dE). The space V; will be
defined element-wise, by introducing local spaces Vg and
the associated local degrees of freedom, as in standard Finite
Element (FE) analysis. On the other hand, differently from
standard FE, the definition of the local spaces Vg is not
fully explicit.

Let k be a positive integer, representing the “degree of
accuracy” of the method. Then, given an element E € §2,
we define:

Ve = {vw e [H(E)NCUE) : Av, € [Pra(E)I,

Vile € [Pr(e)]* Ve € JE},
(2.8)

where, for any subset F' € §2, Pr(F) is the space of polyno-
mials on F of degree < k, with the agreement that P_; = {0}.

The space V| is made of vector valued functions v;, such
that:

— vy is a polynomial of degree < k on each edge e of E,
ie. v, € [P(E)I%

— vy, is globally continuous on 9 E;

— the laplacian Avy, is a polynomial of degree < k — 2 in
E.

@ Springer
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For the dimension of the space Vy, g, it holds:

dim(Vy ) = 2mk + k(k — 1). (2.9)
As in standard FE methods, the global space V, € V is
built by assembling the local spaces Vg as usual:
Vio=1{veV : vlgeVyeVE € ;). (2.10)
As discrete space for the displacement variations, we choose
W, .=V,
We now introduce a projection operator IT

n: Vyg— Pk_l(E)2X2

sym

@2.11)

Vi = T1(vy)

to approximate the strain field &¢(vy) induced by the vir-
tual displacement v;,. Hence, for v, € Vy g, I1(vy) €
Pi_1(E)2x? is defined by:

sym

/En(vh)TeP :/Es(vh)TeP, Ve € Pro1(E)ye -
(2.12)

This operator represents the best approximation of the strains
(in the square integral norm) in the space of piecewise poly-
nomials of degree k — 1. We refer the reader to [3] for details
on the construction and implementation of the operator /7.

In order to solve the constitutive evolution equation
detailed in the next section, a Euler time integration is
performed. To this end, we introduce a sub-division of
the time interval [0, T'] into smaller intervals [#,, t,,41] for
n = 0,1,..,N — 1, such that the time step is defined by
At = tyy41 — ty. Correspondingly, partial loadings evaluated
at t, are denoted as b" = (n/N)b foralln =0,1,..., N — 1.

We assume, as in standard engineering procedures, a con-
stitutive algorithm that is an approximation of the constitutive
and evolution laws (2.3), (2.4). In Finite Element analysis,
this pointwise algorithm can be coded independently from
the global FE construction and can be regarded as a “black-
box” procedure that is applied at every Gauss point and at
every iteration step. In the present Virtual Element method,
we want to keep the same approach; in other words, our
scheme will be compatible with any black-box constitutive
algorithm that falls in the general setting below and that can
be imported from other independent sources.

Let @ represent the constitutive algorithm, in the frame-
work of the strain driven procedure based on a backward-
Euler approach. Hence, given:

1. a value for the strain &}, (x) at time #,,
2. a value for the inelastic strain (¢™)" (x) at time #,,,

@ Springer

3. a value H"(x) = H(t,, x) for the internal variables at
time 1,,,
4. atentative value for the strain eZ‘H (x) at time #,,41,

the algorithm computes the stresses at time #,,+ 1, and updates
the inelastic strains and the history variables (i.e. it returns
also (¢! (x) and H"*!(x)). We thus write the computed
stress at time 7,41 and spatial location x as

") =G (tar1, X, €} (%), (6™ (x), H"(x), &} (%)).
(2.13)

pointing out that the functional dependence of the updated
stress tensor 6”71 (x) on quantities evaluated at time #, (and
not only at time #,1) is to be viewed in algorithmic sense.
For a given element E € £2),, we now select a suitable set
of np = np(E) points {x; g} C E,fori =1,...,np. These
points may be seen as the VEM analogous to the Gauss points
for developing the numerical quadrature in standard Finite
Elements. We then denote with H ]fg the vector collecting the
values {H (tx, X, g)}i7 |, fork = 1,2, ..., N. Similarly, we set
H¥ as the vector collecting all the vectors HX., with E € £2;,
The Virtual Element scheme reads, forn =0, 2, ..., N—1:

Find uZ“ € Vj, (and the updated H "+1) such that

ap(a}, H", uZH,Vh) =< bt v, >, Vv, € V.
(2.14)

Above, the form ay, (uy, H"; uZ“ , Vi) is the sum of local

contributions:

. 1 E . 1
ah(u27 Hl’l’uZ+ ’V/’L) = Z ah (u;lp H’Z{‘auz+ ’V/’L)'
Ee2,
(2.15)

To emphasize the dependence on the displacement field
u 't we set (cf. (2.13)):

o~ 1 1 . o~ 1
" xi gt =7 (fn+1, Xi £, €5 (X ), (™) (Xi E),

H'xi6) e) xip)). (216)

where, given IT defined by (2.12), we have:

—

. &, (X E) := I1(u})(x; ) is the computed total strain at
(tn> Xi,E);

2. (e™)"(x;, k) is the computed inelastic strain at (¢,, X; £);

H" (x; ) are the computed history variables at (#,, X; £);

4, eZH(X,-,E) = H(uZH)(xi,E) is the unknown total strain

at (fp+1, Xi,E)-

hed
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The local form is thus given by

np
E S B ~ntl +I\T
ay (W, Hipswp ™ ovy) 0 =Y 026" (g, u)p ™
i=1

O Y& ) + SE v,
(2.17)

where {w; E}:Z | is a suitable set of weights, and S E (wy, vp)
= «(E)sE (uy, vy) is a stabilization term, similar to the
one involved in the linear case, see [3]. However, as investi-
gated in [45], in the present inelastic quasi-static setting the
parameter «(E) needs to be differently chosen, to improve
the robustness of the method. More precisely, we here select
the mean value of the trace of the tangent matrix computed
at time t,, cf. (2.5):

1 &
a(E) = — > wipte (Kr(ty. Xi g 1)), H(ty, Xi.£))) .
i=1

(2.18)

where cg is the barycenter of E.
Finally, the computation of the loading term < bl LV >
in (2.14) follows exactly the guidelines of [3,10].

Remark 4 We remark that the local form in (2.17) is to be

T

intended as the approximation of the energy integral [ o” &

E
over the polygon E. Consequently, the form in (2.15) repre-

sents an approximation of the global internal energy | o Te

over the whole domain §2.

Remark 5 The points {x; g};~, and the weights {w; g},
must be chosen to make the associated integration rule exact
for polynomials of degree up to 2(k — 1), as it happens for
standard triangular Finite Elements of degree k. Since we
are here treating general polygons, such rules can be built,
for instance, either by using a coarse sub-triangulation (that
in the convex case is very easy to build), or by adopting
more specific approaches, see [31]. Note moreover that, to
make the presentation as easy as possible, the selection of
points {x; g} C E,fori =1, ..., np(E) is here independent
of the time variable. However, we remark that, in practice,
the points {x; g} might suitably vary at each time instant,
following a sort of an “adaptive” strategy.

3 Constitutive models
In this section, a set of phenomenological nonlinear consti-

tutive models are briefly presented, in the so called energetic
format (see [29], for instance), in order to give discussion

and applications a unified layout. The first model is the gen-
eralized Maxwell viscoelastic model [48], then the classical
von Mises plasticity model with linear isotropic and kine-
matic strain hardening is illustrated [37]. Finally, the shape
memory alloy model proposed in [39] and, then, modified in
[7,21] is presented. The introduced models are chosen to ver-
ify the effectiveness of the VEM methodology in reproducing
classical nonlinear effects such as viscoelasticity plastic-
ity, and shape memory of structural elements, and to prove
superior behavior in such instances with respect to standard
displacement-based finite element schemes.

3.1 Generalized Maxwell isotropic viscoelastic
constitutive model

The considered constitutive model is comprised of a linear
elastic element in parallel with M spring-dashpot linear ele-
ments, leading to a Helmholtz internal energy density of the
following kind:

M
1 1
Ue(e, q(m)) _ ES(O)D(O)S(O) + 3 Z q(m)D(m)q(m) 3.1

m=1

where €@ = & and D© are the strain and linear elasticity
matrix associated with the single elastic element; the terms
q" and DY, m = 1, ...M, are the partial strains and elas-
ticities in the dissipative spring-dashpots elements [48].

Applying standard continuum thermodynamics, the con-
stitutive equation is derived [48]:

M
a(t) =DV 1)+ > D"Mq"™ (1)

m=1

(3.2)

In the above equation, each partial strain q(¢) evolves
according to:

1

m _
amd =€

q" + 3.3)

where the terms A are coefficients of relaxation. In an

integral form, the stress-strain behavior may be described
through a convolution form as:

t
o(t) = D(1)e(0) +/ D(t —1)édr. (3.4)
0

where components of D(¢) are relaxation moduli functions.

Assuming isotropic material behavior, and considering a
purely deviatoric inelastic response, the above relations sim-
plify according to:

s(t) =2G(t)e (3.5)

@ Springer



648

Comput Mech (2017) 60:643-657

with § =qey 0, and e =gey €, and with G(¢) defined as the
shear modulus relaxation function.
In integral form the constitutive behavior is described as:

t
s(t) = /

The integral equation form may be defined as a generalized
Maxwell model by assuming the shear modulus relaxation
function in Prony series form [48]:

2G(t — 1) édt (3.6)

M
G =G (Mo + 3 exp(—r/m) . (3.7)

i=1

Remark 6 1t is noted that the present constitutive model
falls in the general framework outlined at the beginning of
Sect. 2.1. In particular, inelastic strains are given by the col-
lection & = {e!""} = {q"}, m = 1, ..., M i.e. the partial
strain tensors, while H = J as no history variables are con-
sidered. Moreover, in every spring-dashpot element, the total
strain is additively split in elastic and viscous parts cf. (2.2).
The evolution law for the partial strains (cf. (3.3)) is repre-
sented by a standard single-valued correspondence of viscous
type, cf. (3.3):

Z(m) — j(m)(e’ ein,m) —é— 1 in,m.

Ok (3.8)

Accordingly, the evolution law for the inelastic strains are
given by the collection, cf. (2.4):

L =L, ") ={LM (&, emmM_ (3.9)
M= .

3.2 Plasticity model

The von Mises plasticity model with combined linear
isotropic/kinematic hardening is considered [8].

The strain is split into the deviatoric, e, and volumetric
(spherical), 6, parts resulting:

1
e=e+ =01,

5 (3.10)

where e =gy €, 0 = tr &. Both the deviatoric and spherical
strains are decomposed in the elastic and plastic parts:

e=e"+e¢f
0 =06°.

@3.11)
(3.12)

indicating a purely isochoric plastic flow.

@ Springer

For an isotropic material, the Helmholtz free energy den-
sity assumes the form:

Y=y +y" (3.13)
where:

Yo (e®) = %K(W +Glle|? (3.14)
YU(eP) = %flkinnepn2 (3.15)

where K and G are, respectively, the bulk and shear elastic
moduli, and H¥" is the linear kinematic hardening parameter.

By standard thermodynamic arguments, the constitutive
equations are defined as:

S € Oy
X S —aep¢,

(3.16)
(3.17)

Here, the symbol 9 represents the subdifferential operator
in the sense of Convex Analysis. However, in our case the
function v is differentiable, and the above inclusions are
indeed equalities involving usual partial derivatives. The rel-
ative stress X in Eq. (3.17) is usually rewritten as:
X=s—« (3.18)

where s is the stress deviator, and « is the back stress tensor,
which are given, respectively, by:

s =2G (e —eP)

o = HXinep

(3.19)
(3.20)

The activation of the plastic flow is governed by the von-
Mises yield function expressed in terms of the relative stress:

f (X eP) = IX] - Qay

> (3.21)

which defines the elastic domain as the set & =
{X € SymDev : f(X) < 0}. The function oy = oy, + HieP
is the uniaxial yield stress, depending on the initial yield
stress oy, on the isotropic hardening parameter H i and on
the accumulated plastic strain

t
éP=/ [16P]|dz.
0

The evolution law for the plastic strain tensor is associated
to the yield function inasmuch it results:

(3.22)

&P =7Vxf (3.23)
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from which it follows

2.

eP = £§. (3.24)
2

The evolution is complemented by the Kuhn-Tucker opti-

mality conditions:

(f=0.

£>0 (3.25)

for the plastic rate parameter .

Remark 7 Tt is noted that the present constitutive model
falls in the general framework outlined at the beginning of
Sect. 2.1. In particular, the inelastic strain is the plastic strain,
i.e. e = eP; the history variable is simply H = e, and the
total strain is still additively split into elastic and plastic parts,
cf. (2.2). Using relations (3.18), (3.24) and (3.20), the evolu-
tion law in this case is given by [cf. (2.4) and (3.23)]:

2G dev (e - ein> - H

L= L, e &M H) =2 6" :
12G dev (3 - sm) - H]

(3.26)

We also notice that, due to Eq. (3.20) and Remark 3, we
could have provided the only evolution law .Z to describe
the model.

3.3 Shape memory alloy constitutive model

The local thermodynamic state of the material is defined by
the infinitesimal strain €, the absolute temperature 7', and by
the symmetric transformation strain tensor e'f, assuming the
strain additive decomposition:
e=¢+e" 3.27)
into elastic strain, €%, and transformation strain. The quan-
tity e is the inelastic strain associated with the phase
transformation, assumed to be traceless indicating phase
transition to be isochoric [34]. The transformation strain
is constrained to belong to the saturation domain . =
{e" € SymDev : c(e") < 0}, where c(e") = [[e"]|?/f — 1,
and ¢ is a material parameter related to the maximum trans-
formation strain reached at the end of the forward isothermal
transformation during a uniaxial test. Given its tensorial char-
acter, e is capable of representing the reorientation of the
product phase in the saturated condition [7].

The Helmbholtz free energy density ¥ is here taken as a
strictly convex potential depending on the local thermody-
namic state of the material:

V(e e, T) = y°(e®) + YN (e, T) + v (e, (3.28)

under the constraint e € .¥. Here:

— ¢ is the elastic strain energy, which, assuming linear
isotropic elastic behavior, is given by:

1

Ye(e) = K €)% + G| deve®|? (3.29)
with K the bulk modulus and G the shear modulus;

— M is the chemical energy, associated with the thermally-
induced martensitic transformation:
YRE T) = BAT|je"| (3.30)
with 8 a material parameter related to the dependence
of the critical stress on the temperature, and AT+ =
(T — My),being Mt the temperature corresponding to the
end of the forward transformation, and (e) the positive
part of the argument;

— ' is the transformation strain energy, associated with
transformation-induced strain hardening:

trotr 1 try 2
Vi) = Shlel (3.31)

with i amaterial parameter defining the slope of the linear
stress - transformation strain relation in the uniaxial case.

As a consequence of the principle of maximum inelastic
dissipation [26], the thermodynamic equilibrium state is
expressed in terms of the quantities thermodynamically con-
jugate to the arguments (&°, e, T). By definition:

o = aé‘e‘(// ’
X = -0y — Qv L, (3.32)
n=-—ory.

where o is the Cauchy stress, X is the symmetric trace-
less thermodynamic stress, and 7 is the entropy density. Eq.
(3.32); is usually rewritten as:
X=s—« (3.33)
where s is the stress deviator, and « 1s the back stress tensor,
given by:

o = BAT  dpr ||| 4+ h e + o7 o (") (3.34)
Moreover, the indicator function .# (e'") of the saturation
domain is introduced:

{ ") =0 if c(e") <0

F o (e") = 400 otherwise (3.35)

@ Springer
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whose subdifferential results:

{0} if c(e™) < 0
der I (€") = { ¥ dawc(e™) if c(e) =0 (3.36)
7 if c(e™) > 0

being y € Ra’ the Kuhn—Tucker parameter associated with
the thermodynamic reaction explicated by the saturation con-
straint.

The phase transformation mechanism is governed by a
flow law for the transformation strain, assigned in terms of a
transformation function f (X) which defines the set of admis-
sible thermodynamic stresses as the nonempty, closed elastic
domain in deviatoric stress space':
& = {X € SymDev : f(X) <0} 3.37)
The function f(X) is typically expressed in the guise of a
plasticity yield function, deviatoric isotropic, and represented
in this context in von-Mises form [5]:

2
JX) = IX]] - \/;Gyo

Accordingly, activation of inelastic flow is ruled as follows:

(3.38)

{if fX) <0,e"=0
In particular, the flow law is obtained by postulating the prin-
ciple of maximum inelastic (or transformation) work rate
[25,26], implying convexity of the elastic domain, and lead-
ing to an associated flow rule in the form:
" =7V F(X) (3.40)
being X the admissible thermodynamic stress at equilibrium,
with the Kuhn—Tucker conditions for the inelastic rate param-
eter g‘

£=0, {f=0. (3.41)
Remark 8 1t is noted that the present constitutive model
falls in the general framework outlined at the beginning of
Sect. 2.1. In particular, the inelastic strain is the transfor-
mation strain, i.e. & = e'f; the history variable is simply
H = «, and the total strain is still additively split into elastic
and transformation parts, cf. (3.27). Due to Eq. (3.34), the

model description is determined by providing only the evo-
lution law .Z for the inelastic strains, cf. Remark 3. Using

! In the following, the space of symmetric traceless second-order ten-
sors is denoted by SymDev.

@ Springer

relations (3.33) and (3.38), such an evolution law in this case
is given by (cf. (2.4) and (3.40)):
L = L, " " H)

. 2G —e"\ - H
_ 3 jein 2Gdev (e =€) .
12G dev (€ — &™) — H|

(3.42)

4 Numerical results

The present section is devoted to validation of the pro-
posed VEM formulation in conjunction with the inelastic
constitutive models previously examined (see Sect. 3). A
set of classical benchmarks is presented in order to assess
accuracy of the proposed approach in comparison with stan-
dard Lagrangian displacement finite element schemes and
hence to show the good properties of the VEM in regard to
robustness and capability of efficient treatment of material
nonlinearity. Noteworthy, the main tools of nonlinear finite
element analysis of continua and structures such as Newton’s
method for solving equilibrium equations are still retained in
the present context, highlighting the versatility of the VEM
methodology.

4.1 On the integration rule for polygons

This introductory section precedes the numerical test cam-
paign inasmuch it gives some hints on the actual imple-
mentation of the method outlined in Sect. 2.2. In particular,
attention is centered on the computation of the residual equa-
tion which, in turn, entails computation of stress and material
tangent stiffness at quadrature points over a polygon. A key
point in such a procedure is computation of area integrals
over polygonal domains. The problem obviously refers to
cases k > 2 2. In the present context, given the convexity of
all polygons in any mesh, a mere sub-triangulation of each
polygon in m triangles is adopted, by choosing the centroid
as the common vertex shared by all triangles and tracing
rays from such point to the vertexes. By doing so, any area
integral can be computed through summation of the integral
contributions stemming from each sub-triangle, computed,
for instance, adopting Gaussian quadrature for triangles [48]
and leading to a total of (at most) ms integration points on
each polygon, being s the number of (interior) Gauss points
per sub-triangle. Of course, this integration strategy presumes
to process the entire mesh element-wise in the integral com-
putation loop.

A different convenient strategy is to use a quadrature for-
mula for sub-triangles with integration points also on the

2 Note that, in the case k = 1, a single Gauss point for the whole
polygon (for instance at the centroid of the element) is sufficient, see
[45].
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boundary of the element and not only in the interior. For
example, in the case k = 2, a convenient strategy is to use
a quadrature formula for sub-triangles with a single integra-
tion point on each edge (at the midpoint), amounting to a
total of 2m integration points over a single polygon, i.e. one
point for each polygon edge [resp. for each polygon ray].
This, in general, leads to a further saving in computational
cost, considering that any single edge integration point is
shared by two adjacent polygons, hence is processed once on
the overall computations. This of course implies to process
the entire mesh in a modified manner, i.e. edge/polygon-ray-
wise, instead of in an element-by-element fashion. The latter
strategy has been adopted throughout the following VEM
computations for k = 2.

Finally, in the case of non-convex elements one could
either apply a more general sub-triangulation algorithm (such
as those based on the minimal number of triangles and that
avoid generation of new vertexes) or make use of more
advanced (and efficient) integration rules on polygons, a topic
that has been widely studied in the literature (see for instance
[32,33,38]).

4.2 Thick-walled viscoelastic cylinder subjected to
internal pressure

The first benchmark regards a thick-walled cylinder charac-
terized by a viscoelastic constitutive response. The cylinder,
subjected to internal pressure, has inner [resp. outer] radius
R; = 2[R, = 4]. For symmetry, only a quarter of the cylin-
der cross section is studied, as reported in Fig. 1, imposing
zero normal displacement along the radial edges. The mate-
rial is considered to be isotropic and modeled by viscoelastic
response in deviatoric stress-strain only, in compliance with
the constitutive model outlined in Sect. 3.1. The material
properties are set assuming M = 1l and A} = A = 1, i.e.
a standard linear solid [48] is considered. Young’s modulus
and Poisson’s ratio are set E = 1000, v = 0.3, respec-
tively. Two sets of viscoelastic parameters are adopted for the
present analysis (cf. (3.7)), i.e. (1o, 11)ve; = (0.01,0.99)
and, ((o, 11)ver = (0.3, 0.7), respectively. The former case
is calibrated in such a way that the ratio of the bulk modu-
lus to shear modulus for instantaneous loading is given by
K /G(0) = 2.167 and for long time loading, say att = 8§, by
K/G(8) = 216.7, which indicates a nearly incompressible
behavior for sustained loading cases (at + = oo the Poisson
ratio results 0.498). The second material set indicates a sort
of intermediate response for theoretically infinite time after
loading application.

The structural response for a suddenly applied internal
pressure p = 10 is computed through 20 unit time inte-
grations. In particular, time integration of the constitutive
equation is performed for a set of discrete points #, k =
1, ..., 20; by using the generalized Maxwell model in Prony

)

x R e G S R
A

B
R,

} R }
! !

Fig. 1 Thick-walled viscoelastic cylinder subjected to internal pres-
sure. Geometry, boundary conditions, applied load

series form (cf. Eq. (3.7)), solution is reduced to a recur-
sion formula in which each material state is computed by a
simple update of the previous one. Details concerning the
implemented algorithm may be found in [47]. It is noted
that, albeit the adopted constitutive model is intrinsically
three-dimensional, the above mentioned 2D solution proce-
dure developed in the context of the plane strain assumption
can be carried out without any modification of the standard
integration algorithm illustrated in [47].

In the present work, a comparison is drawn between
the proposed VEM formulation, for k¥ = 1 and k = 2,
and quadrilateral displacement based finite elements with
four nodes Q4 (linear quadrilateral) and nine nodes Q9
(quadratic quadrilateral) [47]. Several types of mesh are con-
sidered, as portrayed in Fig. 2a, d, comprising a structured
convex symmetric quad (a), a structured skew-symmetric
convex/concave quad (b), a random-based concave quad (c),
and a random-based Voronoi convex poly (d) case, respec-
tively. Comparison with FEM solution is referring only to
mesh (a) for natural reasons. A reference solution is com-
puted with mixed u — p —e" quadrilateral finite elements (see
[48]) and an overkilling space discretization. The integration-
step versus displacement curves for control points A and B
(see Fig. 1) is shown in Fig. 3a, b for the compared solutions
together with the reference one, for the two material param-
eter sets vel and ve2 introduced above. It is observed that
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Fig. 2 Thick-walled
viscoelastic cylinder subjected
to internal pressure. a structured
symmetric convex quadrilateral
mesh m; b structured
skew-symmetric concave quad
mesh m»; ¢ unstructured
concave quad mesh m3;

d random-based Voronoi
tessellation my
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Fig. 3 Thick-walled viscoelastic cylinder with internal pressure. Integration step versus radial displacement curves for control points A (higher

curve), and B (lower curve). a case (1o, (1)ve; = (0.01,0.99); b case (110, 41)ver = (0.3, 0.7)
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the k = 1, 2 VEM formulations present a response in excel-
lent agreement with standard displacement finite elements,
for a convex quadrilateral spatial discretization. Moreover,
VEM solutions prove accurate even for non structured con-
vex/concave and highly distorted polygonal reticulations of
the domain, thus proving the efficiency of the proposed for-
mulation.

This simple benchmark highlights indeed how implemen-
tation of the proposed VEM method into existing structural
codes results straightforward and how numerical tools such
as integration algorithms for viscoelastic constitutive equa-
tions translate immediately into the new framework without
modification.

4.3 Perforated plastic plate

A rectangular strip with 2L = 200 mm width and 2H = 360
mm length containing a central circular hole of 2R = 100
mm diameter is considered (viz. Fig. 4a). Material obeys to a
plastic constitutive model (see Sect. 3.2), and is characterized
by E = 7000 kg/mm?, v = 0.3, oy o = 24.3 kg/mm? [48].
Plane strain assumption is here invoked as well, hence any
(native 3D) integration algorithm for the constitutive model
reviewed in Sect. 3.2 may be coherently utilized for the pur-
pose of computing stress update at the integration point level
in the VEM framework. To this end, for the present compu-

o
[ LTI 4
b 4
B 4
b d
b 4
B 4
b d
b a
B 4
b d
p 4
4
v d
4
@ak

it
t

—e—

Fig. 4 Perforated plastic plate. Geometry, boundary conditions,
imposed displacement

tation, a standard backward Euler scheme with return map
projection is used [37].

Owing to symmetry, only one quadrant of the perfo-
rated strip is discretized as shown in Fig. 4a. Displacement
boundary restraints are prescribed for normal components
on symmetry boundaries and on top and lateral boundaries.
Loading is applied by a uniform normal displacement § = 2
mm with 200 equal increments on the upper edge, see Fig.
4a. A quarter of the plate is discretized with a quadrilateral
structured [resp. unstructured] (Quad (s) [resp. Quad (u)])
mesh, a triangular (Tri) mesh, and a centroid based Voronoi
tessellation (viz. Fig. 4b—d) generated by using the code pre-
sented in [43]. The simulation campaign is set considering
virtual elements of order k = 1 and k = 2, for the adopted
meshes. For comparison and validation purposes, triangu-
lar [resp. quadrilateral] displacement based finite elements
of type T3 (linear), 76 (quadratic) [resp. Q4 (linear), and
09 (quadratic)] (see [47]) are used for the first two meshing
layouts. A reference solution obtained with an overkilling
discretization of u — p — &V quadrilateral mixed finite ele-
ments (see [48]) is computed for comparison purposes. In
passing, we note that VEM elements with m = 3,k = 1
and triangular Lagrangian finite elements 7'3 coincide, hence
results pertaining only to the previously indicated schemes
are reported jointly.

Validation of accuracy and robustness in terms of con-
vergence is given in Table 1, where the values of horizontal
[resp. vertical] displacement of point A [resp. B] (see Fig.

Table 1 Perforated plastic plate

u A (mm) u g (mm) Avg. iter/step
Linear elmts. Linear elmts.
VEM—Quad (s) 2.538 1.819 4.86
VEM—CQuad (u) 2.538 1.818 5.22
VEM—Tri/FEM - T3 2.485 1.823 5.04
VEM—Voronoi 2.540 1.815 4.63
FEM—Q4 (s) 2.692 1.836 5.44
FEM—Q4 (1) 2.689 1.835 6.09
Quadratic elmts. Quadratic elmts.
VEM—AQuad (s) 2.720 1.851 6.43
VEM—Quad (u) 2.718 1.851 6.75
VEM—Tri 2.719 1.852 6.11
VEM—Voronoi 2.714 1.852 6.21
FEM—QO9 (s) 2.733 1.853 6.70
FEM—Q9 (u) 2.732 1.855 7.24
FEM—T6 2.719 1.853 6.11
Reference solution 2.741 1.859

Comparative assessment of accuracy and convergence in terms of dis-
placement components u4 and vp at the end of loading history, and
average number of iterations per load step
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g‘:\ll)ilCeCZ Shape memory alloy Time [—] 0 | ) 3 4 5
Load g (N/mm) 0 g™ 0 —g™m 0 0
Temperature T (K) room Troom Troom Troom Troom Treom 4 g()
Loading history chart for applied load and temperature
g X 10* ' ' ' ' ' ' ' plex highly nonlinear material behavior, as the one shown by
shape memory alloy materials (cf. Sect. 3.3).
181 1 A typical clamped semicircular SMA arch device is con-
6l | sidered ([6,21,22]), as portrayed in Fig. 7a with indication
f of applied traction forces on the free end. Inner [resp. outer]
14 i radius is R; = 3.5 mm [resp. R, = 4.5 mm]. Material
E? parameters for the constitutive model are: E = 53000 MPa,
el2r 1 v =0.36, e, = 0.04, My =223 K, h = 1000 MPa, 8 = 2.1
3 | | MPa/K, oy,o = 50 Mpa [21].
% Differently from previous numerical tests, plane stress
S 08 8 assumption is adopted in this case. The original 3D form
e of the constitutive model reviewed in Sect. 3.3 is integrated
06 | at the integration point level with the innovative state update
04l i algorithm recently proposed in [4,5]. To comply with plane
i stress condition, a further nonlinear constraint onto the stress
02f 1 state stemming from the state update is applied through a
o | reduction algorithm with nested iterations, as outlined in

0 50 100 150 200 250 300 350 400
Load step []

Fig. 6 Perforated plastic plate. Reaction sum versus vertical displace-
ment of upper edge curves. Comparison between VEM formulation
and standard FEM for various meshes. Quadratic VEM (k = 2) and
quadratic Lagrangian FEM (76, Q9) elements

4a) at the end of the loading history are reported for the com-
pared different methods, together with the average number
of Newton iterations per incremental loading step. A good
agreement, for both components, obtained with linear and
quadratic VEM/FEM formulations is observed, a slight edge
in terms of efficiency in favor of the VEM methodology is
found as well, especially when a distorted mesh is adopted
(cf. mesh Quad (u) convergence results)(Fig. 5). The struc-
tural response of the structure to the applied load is reported
in Fig. 6, where load-displacement curves for the quadratic
methods are reported, still in excellent agreement.

The present benchmark validates the proposed VEM
methodology in terms of accuracy and efficiency with respect
to standard FEM, indicating a good performance of the for-
mer in terms of mesh versatility and convergence robustness.
Implementability of the innovative VEM methodology in a
standard nonlinear FEM analysis code is still retained.

4.4 Shape memory alloy device

The present numerical test aims at proving the capability of
the proposed VEM methodology in conjunction with com-

[40,47], for instance. All in all, when looked at in a lower-
to-upper operational level, the solution procedure amounts
to an initial boundary problem on a 2D domain with triple
nonlinearity, namely at: constitutive update, plane stress con-
straint prescription, and equilibrium problem solution level,
respectively.

The structure is subjected to a load-temperature controlled
loading history which comprises 5 pseudo-time branches as
indicated in Table 2, supposing proportional loading, with
40 equal increments during the first 4 branches and N = 10
equal increments during the final heating branch. Loading
parameters are gmax = 60 N/mm, Tyoom = 223 K. The VEM
solution is obtained with the mesh of quad elements shown
in Fig. 7b (grey palette). The results presented herein refer
to the quadratic case, i.e. k = 2.

The deformed configurations on the adopted mesh at t =
1 (cyan palette) and + = 3 (red palette), respectively, are
presented in Fig. 7b. The functioning curve for the analyzed
SMA device reports applied load vs. horizontal displacement
of point A (cf. Fig. 7 a) as can be seen in Fig. 8, where we
can appreciate the classical shape recovery exhibited by the
arch device.

5 Conclusion
The VEM formulation presented in Part I [3] for 2D elas-

ticity problem, has been extended to the case of nonlinear
inelastic material response. In particular, three classical and
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Fig. 7 Shape memory alloy
device. a Geometry, boundary
conditions, applied load; b
adopted quadrilateral mesh:
reference configuration (grey
palette), deformed
configurations at t = 1 (cyan
palette) and t = 3 (red palette)

60 T T T T T T T

a0} S 1

20+ |

Appied load [N/mm]
o
i

! ! !

-60 DM L L 1
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

Load edge displacement [mm)]

Fig. 8 Shape memory alloy device. Applied load versus point A dis-
placement curve

typical nonlinear material models have been considered, i.e.
the Maxwell viscoelasticity, the Mises plasticity, and a SMA
constitutive law.

It is remarked throughout the paper that material nonlin-
earity laws are implemented in the VEM code substantially
in the same way as in standard FEM framework. Thus, the
solution algorithm for the typical integration point can be
regarded as a black-box that can be extracted from classical
FEM implementation and introduced in VEM code, with-
out substantial changes. In VEM formulation, the integration
over domains characterized more than three edges has been
performed dividing the polygon in triangles and using Gauss
quadrature technique on each triangle.

Numerical results remark the ability of the VEM formula-
tion to get accurate solutions for linear [3] and, now, also for
nonlinear 2D structural problems. Solutions obtained using
VEM are accurate when compared to FEM ones and, as a
positive byproduct, require in general less iterations than

@ Springer
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(b)

FEM approach when the same tangent (Newton) algorithm
is adopted.

Finally, the two parts of the present study, devoted to the
development of a VEM formulation for linear and nonlin-
ear 2D structural problems, demonstrate the accuracy of the
approach and, also, the simplicity of the implementation into
any available FEM code. These two features make the VEM
very interesting for a wide class of structural applications
and highlight the possibility of including VEM elements in
available commercial FEM codes element libraries.
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