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Abstract In this article we introduce a fiber orientation-
adapted integration scheme for Tucker’s orientation aver-
aging procedure applied to non-linear material laws, based
on angular central Gaussian fiber orientation distributions.
This method is stable w.r.t. fiber orientations degenerating
into planar states and enables the construction of orthotropic
hyperelastic energies for truly orthotropic fiber orienta-
tion states. We establish a reference scenario for fitting
the Tucker average of a transversely isotropic hyperelastic
energy, corresponding to a uni-directional fiber orientation,
to microstructural simulations, obtained by FFT-based com-
putational homogenization of neo-Hookean constituents.We
carefully discuss ideas for accelerating the identification pro-
cess, leading to a tremendous speed-up compared to a naive
approach. The resulting hyperelastic material map turns out
to be surprisingly accurate, simple to integrate in commercial
finite element codes and fast in its execution.We demonstrate
the capabilities of the extracted model by a finite element
analysis of a fiber reinforced chain link.
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1 Introduction

The primary obstacle for the derivation of simple homoge-
nization formulae for the effective inelastic or hyperelastic
behavior of fiber reinforced composites is the lack of useful
analytical solutions. This situation contrasts with the linear
elastic case, where Eshelby’s solution [10,11] for a single
ellipsoidal inhomogeneity in a homogeneous matrix serves
as the basis for a variety of extremely powerful and predictive
mean-field homogenization techniques [8,22,39,59].

To overcome this lack of analytical solutions, two main
ideas emerged. On the one hand, resorting to linear com-
parison principles, see Ponte-Castañeda and Suquet[48] for
an overview, yields insight into the structure of effective
material properties. On the other hand, the importance of
numerical solution methods for characterizing the effective
nonlinear behavior of composites cannot be underestimated.
Almost all approaches for such a characterization are based
on computational techniques, ranging from calculations for
rather simple structures substituting Eshelby’s explicit solu-
tion to full-field microstructural simulations resolving the
full microstructural features.

One of the former techniques is Doghri’s method of
pseudo-grains [29], where the response of the uni-directional
fiber orientation state is subsequently averaged to account for
distributed fiber orientations. The approach is rather general,
and can be applied to a variety of inelastic material behav-
ior. Similar considerations were carried out by Li et al. [32],
based on Miehe’s microsphere method [36].

There is a vast literature on full-field microstructural
solvers, among them finite element [20], finite differ-
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ence [51], finite volume [4] and pseudospectral meth-
ods [42]. With the help of these solvers access to all
microstructural features can be gained. However, all of them
demand computational resources exceeding the computa-
tional resources necessary for conventional finite element
simulations on the macro scale, see for instance Mosby-
Matouš [40].

To alleviate the computational burden of full field simu-
lations, model order reduction techniques [34,35] for com-
puting effective inelastic properties are gaining popularity.
Also, full field simulations are used as a replacement for
experiments whose results are subsequently fitted to pre-
defined anisotropic material models. Indeed, conducting
experiments for a prescribed fiber orientation state excluding
boundary effects for complex loading scenarios like shear-
ing can be challenging. Instead, characterizing the (often
isotropic) material behavior of the constituents and subse-
quently accounting for small process-induced alterations of
the materials’ characteristics by simple tensile tests appears
to be a practical solution.

This work is focussed on the latter scenario: in the con-
text of hyperelasticity we generate deformation-stress pairs
for a variety of fiber orientation tensors and prescribed load-
ing scenarios with the help of the FFT-based computational
method of Moulinec-Suquet [42]. Then, we fit the obtained
data to some pre-defined material model explicitly taking
into account the fiber orientation states.

At first glance, this work shares many similarities with Li
et al. [32],Kammounet al. [29] orYvonnet et al. [58].Our key
contribution is a method for obtaining an anisotropic mate-
rial model from a transversely isotropic model, explicitly
taking into account the fiber orientation, with very beneficial
structural properties. Averaging transversely isotropic hyper-
elastic energies has been considered before, for instance
in the work of Miehe [36], Kammoun et al. [29] or Li
et al. [32]. Miehe restricts to an isotropic distribution of
directions. Taking into account distributed directions, as for
fiber orientation distribution functions, introduces an addi-
tional difficulty: the fiber orientation states can degenerate
to two-dimensional distributions. Hence, a fixed number of
Gauss points on the sphere cannot integrate such functions
with sufficient accuracy, see for instance Li et al. [32], who
states that not even 600 Gauss points yield sufficient accu-
racy. That would not be a problem if these two-dimensional
states were infrequent. However, quite the opposite is the
case. In particular for thin-walled structures the occurring
fiber orientation states are almost exclusively close to pla-
nar.

To overcome these limitations we take a closer look
at the modelling of fiber orientations and their evolution
during injection molding. A particular class of fiber orien-
tation distribution functions, called angular central Gaussian
distributions [54], plays a dominant role for injection mold-

ing simulations, as they constitute an exact solution for
a simplified model of fiber orientation dynamics [47], in
particular in terms of the so-called (fast) exact closure
[38]. Angular central Gaussian distributions have the nice
property that they can be obtained from an isotropic dis-
tribution on the sphere by a global transformation. This
observation, which also forms the basis of fiber-filled
volume element structure generators, see Ospald-Herzog
[21], can be used for our problem. Given a set of Gauss
points on the sphere, taylored for the isotropic distribu-
tion, fiber orientation distribution adapted Gauss points can
be obtained by applying the previously mentioned global
transformation to the original Gauss points. Using this
idea, rotations and degenerations of the fiber orientation
are easily taken care of, preserving symmetries and requir-
ing only very few Gauss points compared to previous work
[32].

The nonlinear version of Tucker’s averaging procedure [5]
preserves structural properties of the transversely isotropic
hyperelastic energy density and the fiber orientation distri-
bution in the sense that convexity properties of the energy
density are inherited, as well as symmetry properties of
the orientation distribution. At this point it should be men-
tioned that writing down, for instance, a fully orthotropic
quasiconvex hyperelastic energy density with good approx-
imation properties by hand is difficult, see Schröder-Neff
[53].

The invariant-based hyperelastic energy for unidirectional
discontinuously reinforced composites introduced in Gold-
berg et al. [18] serves as our starting point. In contrast
to Kammoun et al. [29] we do not use this energy for
homogenization, i.e. one first identifies the material param-
eters and subsequently averages. Instead, we rely upon an a
posteriori strategy, i.e. we leave the parameters of the trans-
versely isotropic model free and fit the averaged model to
the microstructure simulation data. This idea, albeit simple,
reduces the average relative stress error by a factor of two
compared to the a priori approach, at least for the computa-
tional example in this work (polypropylene reinforced with
20 vol-% glass fibers).

This article is organized as follows. Section 2 discusses
homogenization at finite strains briefly. Then, in Sect. 3,
the structural properties of Tucker’s averaging procedure
are discussed and specialized to the angular central Gaus-
sian distribution. We detail on the identification strategy
for the effective model in Sect. 4, discussing the different
fiber orientation states, FFT-based computational homoge-
nization and the used transversely isotropic model. Last but
not least we identify a material model for glass fiber rein-
forced polypropylene, compare its results to approaches in
the literature, study the sensitivity to reducing the number of
necessary precomputations and apply it to the large defor-
mation of a fiber reinforced chain link.
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2 Homogenization at finite strains

Let Y = [0, L1]×[0, L2]×[0, L3] be a volume with dimen-
sions L1, L2 aswell as L3 and let K materials (k = 1, . . . , K )
with hyperelastic energy functions Wk be given, defined on
disjoint subsets Ωk ⊂ Y whose closure covers Y . Accord-
ing to Hill [23], the effective hyperelastic energy W̄ to the
prescribed deformation gradient F̄ ∈ R3×3 with det F̄ >

0 computes from the multi-cell homogenization problem
[17,43]

W̄ (F̄) = inf
n≥1

inf

{
1

|nY |
∫
nY

W (X, F) dX

∣∣∣∣
u : nY → R3 periodic, F = F̄ + ∇u},

(2.1)

where W (X, F) = ∑K
k=1 χΩk(X)Wk(F), χS denotes the

characteristic function of the set S and W is extended
(L1, L2, L3)-periodically. In contrast to homogenization at
small strains, compare Miehe-Koch [37], it might be insuffi-
cient to work on the original cell Y . Due to the non-convexity
of the hyperelastic energyW , in addition to the local displace-
ment fluctuation u the critical number of unit cells n needs to
be determined. A typical procedure would be to start at n = 1
and to subsequently increase n until the effective energy does
not change by increasing n further. In general, the number n
and the corresponding ensemble of cells nY depend on the
macroscopic deformation gradient F̄ , see Schröder [52].

The formal Euler-Lagrange equation associated to the
homogenization problem (2.1) reads

Div(P) = 0, (2.2)

where P = ∂W
∂F denotes the first Piola-Kirchhoff stress

tensor, and Div refers to the (weak) right divergence, i.e.
Div(P)i = ∂ j Pi j in Cartesian coordinates. Once the dis-
placement fluctuation u : nY → R3 is determined, the
effective first Piola-Kirchhoff stress is computed by volume
averaging

P̄ = 1

|nY |
∫
nY

P(X, F̄ + ∇u) dX.

We will also use the short hand notation 〈P〉nY for the latter
average. The effective first Piola-Kirchhoff stress is related
to the effective hyperelastic energy by the usual relation P̄ =
∂W̄
∂ F̄

, seeHill [23].Notice that not every stressmeasure at finite
strains canbe consistently averaged.Apart from thefirst Piola
Kirchhoff stress also the Cauchy stress can be averaged

σ̄ = 〈σ 〉,

where the latter average is carried out on the deformed ele-
ment, s.t. the relation σ̄ = det(F̄)−1 P̄ F̄T holds.

For moderate deformations it is believed that only a sin-
gle cell Y , i.e. n = 1 is sufficient, see Neukamm-Schäffner

[45] for a theoretical investigation. We will rely upon this
hypothesis throughout this work.

3 Tucker averaging and the structure of an
effective model

3.1 Tucker’s orientation averaging at finite strains

Advani-Tucker [5] suggested a procedure to obtain the effec-
tive linear elastic stress of a fiber reinforced composite from
knowledge of the fiber orientation distribution function ψ

and the effective elastic tensor corresponding to an aligned
fiber orientation state. In this linear elastic context, the fiber
orientation distribution enters into the effective elastic tensor
only through the second and fourth order orientation tensors

A =
∫
S2

(p ⊗ p) ψ(p) dS(p) and

A =
∫
S2

(p ⊗ p ⊗ p ⊗ p) ψ(p) dS(p),

where dS denotes the standard surfacemeasure on the sphere
S2 ⊆ R3 and the fiber directions {p} are measured in the
Lagrangian configuration. From a mechanical point of view,
this averaging procedure can be interpreted as a variant of
Voigt’s upper bound [55], a very simple formula for obtaining
an estimate for the effective elastic response. The advan-
tage ofAdvani-Tucker’s procedure comes from its simplicity,
together with its beneficial structural properties (see below).
However, as already mentioned, this averaging gives rise to
an upper bound and thus overestimates the stiffness of the
composites, see Sec. 5.4 for a discussion.

We generalize Tucker’s averaging procedure to the set-
ting of hyperelasticity as follows. Suppose a fiber orientation
distribution function ψ is given, together with a family
{W (·, p)}p∈P of hyperelastic stored energy functions. Each
W (·, p) : F �→ W (F, p) is parametrized by a direction p ∈
S2 and constitutes an effective hyperelastic energy for the
fiber orientation state aligned in direction p. For reasons of
frame independence, this family of energies satisfies the con-
sistency condition

W (F, Qp) = W (QT F, p), F ∈ R3×3, det F > 0,

Q ∈ R3×3, QT Q = Id, det Q = 1, (3.1)

which says that if we apply the same orthogonal transfor-
mation to the microstructure and the applied load, the stored
energy of this transformed configuration coincides with the
energy of the original configuration. Then, the corresponding
orientation-averaged stored energy function is defined via
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W̄ AT (F) =
∫
S2

W (F, p)ψ(p) dS(p),

F ∈ R3×3, det F > 0, (3.2)

where the superscript AT stands for Advani-Tucker. The
probability density functionψ is non-negative and integrates
to 1. Thus, (3.2) represents a convex combination of energy
densities. In particular, properties like rank-one-, poly- and
quasiconvexity are inherited from the particulate energy den-
sities {W (·, p)}p∈P . Furthermore, if the fiber orientation
distribution function ψ posses a particular sample symme-
try, this symmetry is inherited by the Advani-Tucker average
W̄ AT . Indeed, suppose that ψ(Qp) = ψ(p) for all p ∈ S2

and a fixed matrix Q ∈ R3×3, det Q > 0. Then, invoking
(3.1), we see for every F

W̄ AT (QT F) =
∫
S2

W (QT F, p)ψ(p) dS(p)

=
∫
S2

W (F, Qp)ψ(p) dS(p) (q := Qp)

= det Q
∫
S2

W (F, q)ψ(QTq) dS(q)

= det Q
∫
S2

W (F, q)ψ(q) dS(q)

= det Q W̄ AT (F).

The prefactor det Q vanishes if Q is an orthogonal transfor-
mation. In particular, averaging the isotropic fiber orientation
ψ ≡ 1

4π always leads to an isotropic orientation average
W̄ AT . Also, an orthotropic ψ yields an orthotropic W̄ AT

with the same axes of orthotropy.
We consider the latter two key structural properties to be

particularly powerful for constructing an effective hyperelas-
tic energy for short fiber reinforced composites.

From the definition of relation (3.2) we see that the large
deformation stress measures also arise from an orientation
averaging procedure. In contrast to the (exact) homogeniza-
tion of Sect. 2 also the second Piola-Kirchhoff stress S,
which arises as the derivative of the hyperelastic energy with
respect to the right Cauchy-Green tensor C = FT F , can be
averaged. As differentiation commutes with integration one
obtains

S̄ AT (F) =
∫
S2

ψ(p)S(F, p) dS(p)

=
∫
S2

ψ(p)2
∂W

∂C
(F, p) dS(p)

= 2
∂

∂C

∫
S2

ψ(p)W (F, p) dS(p) = 2
∂W̄ AT

∂C
(F),

where we utilized the definition

S(F, p) = 2
∂W (F, p)

∂C
.

For notational simplicity and if no confusion arises we occa-
sionally consider the second Piola-Kirchhoff stress tensor S
and the energy W as functions of the right Cauchy-Green
tensor.

3.2 The angular central Gaussian distribution and
efficient integration

In principle, any fiber orientation distribution ψ leads to the
beneficial structural properties advertized in Sect. 3.1. How-
ever, there are two distinct constraining factors for choosing
ψ . On the one hand,ψ should accurately represent the occur-
ing fiber orientation in a fiber reinforced composite structure.
On the other hand,ψ should enable efficient handling, in par-
ticular in terms of carrying out the integration (3.2).

A class of fiber distributions satisfying both of these
requirements is given by the three dimensional angular
central Gaussian (ACG) distributions, see Tyler [54] for a
discussion from the statistician’s point of view. These dis-
tributions are parameterised by a symmetric and positive
definite 3×3 matrix B with determinant one, and defined by

ψB(p) = 1

4π
(pT Bp)−

3
2 , p ∈ S2. (3.3)

It can be shown, see [9,33], that these functions ψB(t)
constitute exact solutions to Jeffery’s equation [24], which
governs the dynamics of a single ellipsoidal fiber in shear
flow. In particular, working with these distributions can be
extremely advantageous for injection molding simulations,
see Montgomery-Smith and co-workers [38].

In most practical applications, the local fiber orientation
is described by the fiber orientation tensor A of second order.
Montgomery-Smith et al. [38] show that there is a one-to-one
correspondence between parameters B for the angular central
Gaussian distribution (3.3), i.e. positive definite 3×3matrices
B with determinant one, and non-degenerated fiber orienta-
tion tensors of second order, i.e. positive definite 3×3matrices
A with trace one, connected by the defining relationship

A =
∫
S2

p ⊗ pψB(p) dS(p).

Montgomery-Smith et al. [38] discuss the efficient compu-
tation of the latter integral.

There is another striking advantage of the ACG distribu-
tions, namely in terms of numerical integration on the sphere.
In the context of ACG the general averaging formula (3.2)
takes the form

WB(F) = 1

4π

∫
S2

(pT Bp)−
3
2W (F, p) dS(p),

F ∈ R3×3, det F > 0. (3.4)
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Due to the strong nonlinearity of the stored energy functions
W (·, p) arising in hyperelasticity this integral needs to be
evaluated by numerical means in practice. However, con-
ventional Gaussian quadrature schemes on the sphere (cf.
[7,19,31]) appear to be unsuited, as the fiber orientation
density can be strongly localized. For instance, if the sec-
ond order orientation tensor has rank one A = p⊗ p, then
only the Dirac distribution 1

2 (δp + δ−p) realizes A. Also, if
A is close to p⊗ p, the corresponding fiber orientation dis-
tribution function is strongly localized around the points p
and −p. To circumvent these problems, we make use of the
transformation of variables formula
∫
S2

ψB(p)W (F, p) dS(p) = 1

4π

∫
S2

W (F, t (p)) dS(p)

with the transformation t (p) = B− 1
2 p

‖B− 1
2 p‖

, (3.5)

valid for any function W on the sphere. Formula (3.5)
converts anyACGdensityψB to a uniformdistribution, trans-
ferring the distribution data into the evaluation of the function
W via the transformation t . The change of variable rule (3.5)
is implicit in previous work, like in Dinh-Armstrong [9]. We
provide a self-contained derivation in Appendix A. For the
transformedproblem, standard quadrature rules on the sphere
can be applied, i.e.

∫
S2

ψB(p)W (F, p) dS(p) ≈
N∑
i=1

wiW (F, t (pi )), (3.6)

where {pi }Ni=1 is a set of quadrature points on the sphere, and
wi > 0 are the corresponding positive quadrature weights
with

∑N
i=1 wi = 1.

Figure 1 visualizes the transformed Gauss points for dif-
ferent orientations. The untransformed points are represented
by 210 uniformly distributed points {pi } on a hemisphere of
S2 as shown in Fig. 1a. The remaining figures show examples
of the transformed points {t (pi )} for different ACG distri-
bution parameters B, calculated from the fiber orientation
tensor A of second order. The transformedGauss points adapt
accurately to the features of the correspondingACGfiber ori-
entation distributions.

4 Identification of the effective model

We wish to identify an effective hyperelastic model for short
fiber reinforced composites, taking into account both the
local fiber orientation state and the applied deformation.
For that purpose, in a first step we generate training data
by microstructural simulations. More precisely, we iden-
tify independent fiber orientation states and sample points
uniformly in the resulting configuration space. Then, we

determine a number of test deformations, whose hyperelastic
effective stress is computed, for each pre-identified fiber ori-
entation state, by FFT-based computational homogenization.

In a second step we introduce a robust transversely
isotropic stored energy function, depending on a number
of parameters α. The orientation averaging procedure of
Sect. 3.1 gives rise to a family of stored energy functions,
depending on the fiber orientation state and yet undetermined
parameters α. In the final step we use a least squares method
to find those parameters which fit the training data best.

4.1 Essentially different fiber orientations and their
generation

In commercial injection molding software [1–3], the local
fiber orientation state is described by the fiber orientation
tensor A of second order, determined from a finite set of
directions {p1, . . . , pN } by the formula

A = 1

N

N∑
i=1

pi ⊗ pi .

Thus, A is a symmetric and positive semidefinite 3×3matrix.
Suppose, for each such fiber orientation state A we have an
effective hyperelastic stored energy function WA. By mate-
rial objectivity, simultaneously changing the frame for A
and the deformation F preserves the stored energy. Trans-
lated into mathematical terms this amounts to the identity
WA(QT F) = W (F, QAQT ) for any second order fiber ori-
entation tensor A, deformation gradient F and orthogonal
transformation Q. The latter consistency condition can also
be read in reverse. As any fiber orientation tensor A admits
an eigenvalue decomposition A = UΛUT with orthogonal
U and diagonal Λ = diag (λ1, λ2, λ3) with λ1 ≥ λ2 ≥ λ3,
it suffices to construct stored energy functions for diagonal
fiber orientation tensors. Taking into account the normaliza-
tion tr(A) = 1, which translates into λ1 + λ2 + λ3 = 1, it
suffices to consider a two-dimensional configuration space
instead of the six- (or five-)dimensional space of all fiber
orientations, reducing the computational complexity signifi-
cantly.

To generate training data for the current investigation, in
addition to the fiber orientation, prescribed loading scenar-
ios are required. We chose four different loading scenarios,
corresponding to uniaxial, planar and volumetric extension
as well as a shear load case. These deformation scenarios are
illustrated in Fig. 3a–d, and the corresponding mixed bound-
ary conditions are listed in Table 1.

4.2 FFT-based computational homogenization

For the computation of the hyperelastic response of the
prescribed deformation scenarios on the various volume ele-
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Fig. 1 Visualization of
(transformed) integration points
for some second order fiber
orientation tensors A and
B-tensor. Only half of the points
(with x ≥ 0) are actually used,
due to the symmetry
ψB(p) = ψB(−p). a
A = diag( 13 , 1

3 , 1
3 ),

B = diag(1, 1, 1). b
A = diag( 12 , 1

3 , 1
6 ),

B ≈ diag(0.430, 0.891, 2.61) c
A = diag( 23 , 0, 1

3 ),

B→diag(0,∞, 0), B33
B11

→2
1
3 . d

A = diag( 56 , 1
12 , 1

12 ),
B ≈ diag(0.0611, 4.05, 4.05)

ments we use the FFT-based computational homogenization
method of Moulinec-Suquet [41,42], extended to the hyper-
elastic setting in Lahellec et al. [30]. In this context, the
governing differential equation (2.2) is discretized on a reg-
ular Cartesian grid using a discretization by trigonometric
polynomials and reduced integration, Schneider [49] and
Vondřej et al. [56], which behave very similar to trilinear
finite elements with reduced integration, see Schneider et al.
[50]. To each element which is completely contained in a
single material phase we associate the corresponding hyper-
elastic stored energy function to the Gauss point. Elements
containing interfaces are furnished with so-called compos-
ite voxel properties, see Ospald et al. [28], i.e. the effective
hyperelastic properties of a laminate consisting of themateri-
als contained in the element, and the direction of lamination
corresponding to the (linearized) material interface. Using
composite voxels significantly increases the accuracy of
Cartesian grid-based computational homogenization results,
see Kabel et al. [27] and Ospald et al. [28]. In particular, a

much lower number of elements suffices to reach the desired
accuracy.

The original idea of Moulinec-Suquet [41] consists of
rewriting the equilibrium equation (2.2) as a perturbation of
a non-physical problem with a constant coefficient c0 > 0,

Div [P(F)] = 0 ⇔ c0Div∇u = −Div [P(F) − c0F]

with F = F̄ + ∇u. As u is peridiodic, the left hand side
can be inverted in terms of Fourier series. Writing G0 =
(c0Div∇)−1, we arrive at the equation

u = −G0Div [P(F) − c0F] ,

which can be equivalently rewritten in terms of the local
deformation gradient F

F + Γ 0 [P(F) − c0F] , Γ 0 = ∇G0Div. (4.1)
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Fig. 2 Visualization of the diagonal components of a second order
fiber orientation tensor in the unit simplex. Computer generated RVEs
using the ACG distribution are shown for some moments within the red

sub-triangle, marked by red bullets. All other fiber orientation states can
be obtained by orthogonal transformations. (Color figure online)

The latter equation is known as the Lippmann-Schwinger
equation in hyperelasticity and, for proper choice of c0, gives
rise to a fixed point method to solve the equilibrium equation
(2.2) [25,30]. The operator Γ 0 has an explicit expression
in terms of Fourier coefficients [30], giving rise to a solution
method which requires only storing the deformation gradient
F in memory. In particular, an assembling of the system
matrix is not necessary.

As a consequence, comparatively large computations can
be carried out with modest memory requirements. There is
also a variant of this Lippmann-Schwinger equation account-
ing for mixed boundary conditions, see Kabel et al. [26] for
the technical details.

4.3 Setting up a model transversely isotropic energy

For the fiber (f) and the matrix (m) phases we choose neo-
Hookean energy densities

Wm = Gm

2
(J1 − 3) + Km

2
(J3 − 1)2 and

W f = G f

2
(J1 − 3) + K f

2
(J3 − 1)2,

with J1 = J
− 2

3
3 tr(FT F) and J3 = det F . The shear and

bulk moduli selected, see Table 2, correspond to those of
polypropylene and e-glass, taken from the experimental data
of Fliegener et al. [13].
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(a) (b)

(c) (d)

Fig. 3 Deformationmodes considered for the training data. aUniaxial
ext. (D1). b Shear (D2). c Volumetric ext. (D3). d Planar ext. (D4)

Table 1 Boundary conditions for the different deformations of
Fig. 3a–d

Uniaxial extension (D1):⎡
⎣P11 = 0 F12 = 0 F13 = 0
F21 = 0 P22 = 0 F23 = 0
F31 = 0 F32 = 0 F33 = λ

⎤
⎦ λ ∈ [1, 1.3]

Shear (D2):⎡
⎣F11 = 1 F12 = 0 F13 = 0
F21 = 0 F22 = 1 F23 = κ

F31 = 0 F32 = 0 F33 = 1

⎤
⎦ κ ∈ [0, 0.3]

Volumetric extension (D3):⎡
⎣F11 = λ F12 = 0 F13 = 0
F21 = 0 F22 = λ F23 = 0
F31 = 0 F32 = 0 F33 = λ

⎤
⎦ λ ∈ [1, 1.2]

Planar extension (D4):⎡
⎣P11 = 0 F12 = 0 F13 = 0
F21 = 0 F22 = λ F23 = 0
F31 = 0 F32 = 0 F33 = λ

⎤
⎦ λ ∈ [1, 1.3]

As the starting point of the orientation averaging pro-
cedure we use the transversely isotropic material model of
Goldberg et al. [18]

W (F, p) = α1

2
(J1 − 3) + α2

2
(J3 − 1)2

+α3

(
I4(p) + 2I4(p)

− 1
2 − 3

)
, (4.2)

Table 2 Material parameters for the matrix (m) and fiber ( f ) material

Gm [GPa] Km [GPa] G f [GPa] K f [GPa]
0.56 2.35 29.66 36.46

with the invariant I4(p) = C : p ⊗ p ≡ ‖Fp‖2,
which depends on three positive material parameters α =
(α1, α2, α3). The first two terms of (4.2) correspond to the
shear and bulk moduli of a neo-Hookean material and are
supposed to cover the isotropic behavior of the compos-
ite, whereas the third term takes into account the fibers’
influence, resembling uniaxial incompressible extension of
a neo-Hookean material. The second Piola-Kirchhoff stress
Sp computes as

Sp = α1 J
− 2

3
3 dev(C)C−1 + α2 J3(J3 − 1)C−1

+ 2α3

(
1 − I4(p)

− 3
2

)
p⊗ p,

cf. Goldberg et al. [18]. To take into account the fiber ori-
entation distribution we apply orientation averaging with the
ACG distribution (3.6), resulting in

SB = α1 J
− 2

3
3 dev(C)C−1 + α2 J3(J3 − 1)C−1

+ 2α3

N∑
i=1

wi

(
1 − (t Ti Cti )

− 3
2

)
ti ⊗ ti , (4.3)

and the Cauchy stress tensor arises from the push-forward

σB = J−1
3 FSBF

T .

4.4 Fitting strategy

Suppose there is a set of fiber orientations A1, . . . , AnF with
corresponding B-tensors Ba, . . . , BnF which is sufficiently
dense in the fiber orientation triangle, cf. Fig. 2. Suppose
that for each such orientation, a number nL of load cases
was computed numerically, leading to pairs of deformation
gradients and Cauchy stresses (F̄i j , σ̄i j ) for fiber orientation
indices i = 1, . . . , inF and loading indices j = 1, . . . , nL .

Wewish to determine the parameters α of the model (4.2),
s.t. the computed Cauchy stress σBi (F̄i j ) is as close as possi-
ble to the computed Cauchy stress σ̄i j . For that purpose, we
minimize the variation of the relative stress error

1

nFnL

nF∑
i=1

nL∑
i=1

‖σBi (F̄i j ) − σ̄i j‖2
‖σ̄i j‖2 (4.4)

where we use the Frobenian norm ‖S‖2 ≡ tr(ST S) for the
stress. We utilize this form because it is quadratic in the
stresses σBi (F̄i j ). In particular, if the parameters to be fit-
ted enter the energy only as linear factors of some predefined
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Table 3 Relative errors D for
fittings with different energy
densities

Energy density Ansatz α1[GPa] α2[GPa] α3[GPa] D[%] D−Dref
Dref

[%]

Wref α3(I4 + 2I
− 1

2
4 − 3) 0.934 2.985 0.958 4.414 0.0

W1 α3(I
−1
4 + 2I

1
2
4 − 3) 0.919 3.064 1.077 5.390 22.111

W2 α3(I4 − 1)2 0.996 2.919 0.456 7.759 75.781

W3 α3( Ī4 + 2 Ī
− 1

2
4 − 3) 1.153 2.986 0.920 11.684 164.700

W4 α3(K1 − 1) 1.356 3.467 0.102 23.636 435.470

energies, like in the Goldberg form (4.2), the optimality sys-
tem for minimizing (4.4) is linear and thus readily inverted.

In the numerical demonstration Sect. 5; Table 3, we will
compare the performance of energy (4.2) to different propos-
als in the literature.

5 Numerical demonstration

5.1 Documentation of the set-up

We have discretized the fiber orientation triangle uniformly,
cf. Fig. 4a, leading to a total of nF = 91 fiber orientations.
For each of these fiber orientations, a volume element was
generated using the random sequential adsorption algorithm
[12,57] for spherocylinders with an aspect ratio of 10 and
a fiber volume fraction of 20%. The volume elements were
assumed cubical with an edge length of twice the fibers’
length, each one incorporating 210 fibers. Examples of such
generated structures are depicted in Fig. 2. In Goldberg et al.
[18] it was shown that a volume elementwith twice the fibers’
length is representative for tension in fiber direction of a uni-
directional hyperelastic composite. As precisely this loading
case represents the situation with the highest contrasts and
the most severe deformation, twice the fibers’ length con-
stitutes a sufficient dimension for a representative volume
element for the other orientation states.

Then, each of these 91 volume elements was discretized
by a regular Cartesian grid with 643 elements. To take into
account the exact position of the interfaces, the model order
reduction method of Ospald et al. [28] was used, where each
voxel containing a material interface gets assigned an appro-
priately rotated effective hyperelastic energy corresponding
to a hyperelastic laminate. This method significantly reduces
the number of elements required for obtaining an accurate
effective elastic stress response, see Ospald et al. [28] for
details.

Then, each of these discretized elements was subjected to
the loading scenarios depicted in Fig. 3a–d in five equally
distributed loading steps, and solved by the basic scheme
for hyperelasticity (4.1) and the staggered grid discretization
[51] until the convergence criterion

‖Fn+1 − Fn‖/‖F̄‖ ≤ .5 × 10−4,
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Fig. 4 Fiber orientation states used for generation of volume elements
and parameter identification as well as fiber orientations (eigenvalues
of A) present in the chain link depicted in Fig. 7a. a Fiber orientations
used for parameter identification. b Fiber orientations present in the
filled chain link part

was satisfied. For each of the 91 orientations and the four
different load scenarios, the computation of thefive load steps
took between 23 and 860s (78 s on average) on a workstation
with 4 Intel Xeon E7-4880 v2 CPUs (15 cores each, 38400
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Fig. 5 Comparison of identifiedmaterial model (surface plot) with RVE data (bullets) for all four deformations. aUniaxial extension in z-direction.
b Shearing in the y-z-plane. c Volumetric extension in the y-z-plane. d Planar extension in the y-z-plane

KB cache), and 32 threads OpenMP, using the OpenMP-
parallel C++ implementation of FFT-based computational
homogenization at TU Chemnitz, see Ospald et al. [28].

5.2 Identification of the model coefficients and
comparison to other model strain energy density
functions

The data whose generation was described in the previous
section formed the basis for the fitting of the Tucker-averaged
hyperelastic energy function (3.2) and (3.4), respectively.

The dominant scalar stress values are plotted in Fig. 5 as
bullets, for each of the four deformations (different images)
and eachof thefive load steps (different heights in onefigure).
For the identificationwechoose N = 210Gauss points on the
sphere, see Fig. 1a, with corresponding quadrature weights
wi computed with the help of the corresponding Voronoi
diagrams (cf. [15]). We will see in the next section that a
lower number of Gauss points already provides sufficient

accuracy for the ansatz (4.2). However, we wish to assess
the performance of other transversely isotropic stored energy
functions occuring in the literature without worrying about
integration accuracy.

For the comparison we keep the first two terms of (4.2),
which correspond to an isotropic neo-Hookean energy den-
sity, and only vary the third term encoding the anisotropic
effects. The densities W2 and W4 are proposed in Balzani’s
work [6]. They both allow an exact analytical averaging,
noticing

∫
S2

(I4 − 1)2ψ(p) dS(p) = C : A : C − 2C : A + 1,

and
∫
S2

(K1 − 1)ψ(p) dS(p)

=
∫
S2

(I5 − I1 I4 + I2 − 1)ψ(p) dS(p)
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Table 4 Identified material
parameters and relative errors D
for different fittings

Row Variations α1[GPa] α2[GPa] α3[GPa] D[%] D−Dref
Dref

[%]

1 All orientations (91) 0.934 2.985 0.958 4.414 0.0

2 Only UD 0.992 3.009 1.019 6.325 43

3 UD and isotropic 0.971 2.992 1.016 5.580 26

4 UD + iso + iso planar 0.949 2.971 0.980 4.618 4.6

5 D1 0.907 2.901 0.929 5.368 21

8 D1, D2 0.898 3.019 0.947 5.004 13

9 D1, D3 0.907 2.901 0.929 5.368 21

10 Up to 4th step 0.944 2.978 0.971 4.489 1.7

11 Up to 3rd step 0.946 2.984 0.970 4.501 2.0

12 Up to 2nd step 0.950 2.990 0.967 4.513 2.2

13 Up to 1st step 0.954 2.996 0.961 4.521 2.4

= C2 : A − I1(C : A) + I2 − 1.

W3 is similar to Wref but instead of averaging the energy
density, only the invariant I4 is averaged, leading to

Ī4 =
∫
S2

I4ψ(p) dS(p)

=
∫
S2
C : p ⊗ pψ(p) dS(p) = C : A,

the Frobenian inner product of the right Cauchy-Green ten-
sor C and the fiber orientation tensor A of second order. For
this approach, advocated in Freed [14] and Gasser [16], no
integration on the sphere is necessary. In particular, the evalu-
ation ofW3 is comparatively fast.W1, likeWref , is motivated
by an uniaxial incompressible extension of a neo-Hookean
material, but is designed tomimick the behavior of the second
basic invariant I2.

The results of minimizing the objective (4.4) are listed in
Table 3, both in terms of the identified parameters and the
associated root mean square (RMS) D, defined by

D =
√√√√ 1

nFnL

nF∑
i=1

nL∑
i=1

‖σBi (F̄i j ) − σ̄i j‖2
‖σ̄i j‖2 . (5.1)

The lowest value of D, ≈ 4.14%, is reached for Wref .
Among the additional energies,W1 comes closest toWref , but
the RMS already deviates by 22%. The second density W2

reaches almost twice the RMS ofWref . As already explained,
its simple polynomial character permits an exact analytical
averaging. However, the associated second Piola-Kirchhoff
stress is linear in I4, and thus cannot reproduce the nonlin-
ear behavior of the composite material.W3 leads to an almost
tripledRMScompared toWref . Using the averaging approach
of Freed [14] and Gasser [16] appears not applicable to com-
posites. Finally, W4 performs worst in this comparison, with
more than four times the RMS of Wref .

To summarize, Tucker-averaging the energy density Wref

leads to the lowest average stress error among the consid-
ered energy densities, which is, on average, well below 5%.
In Fig. 5 we plot the dominant coefficients of the Cauchy
stress tensor for each deformation and compare the identi-
fied material model (Table 4 row 1) to the data obtained by
FFT-based computational homogenization. All four subplots
exhibit good accordance of material model and computa-
tional data. The material model is capable of reproducing
both the qualitative and the quantitative stress distribution
over the fiber orientations.

5.3 Reducing the number of Gauss points

In the previous section we explicitly neglected the influence
of the number of Gauss points. As we have the application
of the derived material model to computing the hyperelastic
component in mind, the integration of the derived material
model in a user-defined material routine and the associated
computational cost play an important role for our investi-
gation. Therefore, we have generated different sets of Gauss
pointwith associatedGaussweights, ranging from twoGauss
points up to 632 Gauss points, and minimized the objective
D using the energy Wref , see (5.1), for each of these sets.
The associated minimal values are plotted in Fig. 6. It can
be seen that with increasing number of Gauss points, the
minimal RMSs decrease monotonously, up to a plateau at
about D ≈ 4.414%. Thus, we see that N = 32 Gauss points
already suffice for reaching the minimal RMS. Furthermore,
increasing the number of Gauss points further does not lead
to a noticeable decrease in the average relative error.

This small number of Gauss points, N = 32, is remark-
able in itself, and results from the transformation of theGauss
points according to (3.5). If non-orientation-adapted Gaus-
sian integration is used, about 10 times the number of Gauss
points are required to reach a lower accuracy, compare Li et
al. [32].
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Fig. 6 Difference of material model and RVE data for different sets of
integration points

5.4 Sensitivity analysis

In this paragraph we study whether all fiber orientations, the
four loading scenarios, cf. Figure 3a–d, and the five load steps
are really necessary for the identification. Indeed, if some of
those could be left out, we could accelerate the computations.

The data is collected in Table 4, and the first row shows
the result for a complete fitting, meaning when we employ
all 1820 stress tensors and yields the relative error Dref =
4.414%.

First, we study the influence of the fiber orientation. If
only the unidirectional (UD) fiber orientation state is used for
the minimization, the average relative stress D is about 50%
higher than if all fiber orientations are taken into account.
Notice that this scenario corresponds to the usual grain-based
homogenization process [29], where only amaterial model is
fitted to the unidirectional fiber orientation, and the other fiber
orientation states are covered by subsequent averaging of the
UD response. Already at small strains, it is known that such
a procedure is error-prone, seeMüller et al. [44]. Leaving the
parameters for the UDmodel “free” and identifying them for
all fiber orientations at the same time leads to much better
results.

Taking into account both the UD and the isotropic fiber
orientation states decreases the average relative error D sig-
nificantly, and further incorporating the planar isotropic fiber
orientation state leads to a RMS which is already very close
to the result computed with all 91 different fiber orientation
states.

In a second study,weuse all fiber orientations but only sub-
sets of the four deformations. Here a combination of uniaxial
extension D1 and shear loading D2 comes closest toDref , but
still holds a relative difference of around 13%. Notice that it
is neither possible to solely rely on shear loading D2 or volu-
metric extension D3 for the identification of all threematerial

parameters α1, α2 and α3, because for these loadings some
summands in (4.2) contribute nothing to the energy density.

Last but not least we vary the number of load steps, i.e. we
identify only for smaller deformations aswe leave out the last
load steps. Here we see that even a fitting to only 20% of the
given amplitude yields a relative difference smaller than 3%.

To sum up, for the identification of the material model,
only the “extreme” fiber orientation states uni-directional,
planar isotropic and isotropic are dominating. Furthermore,
as the composite behaves approximately neo-Hookean when
loaded in a fixed direction, not all five load steps are strictly
necessary.

As can be seen from Table 5 using only these three
“extreme”fiber orientation states also gives an computational
speedup of factor 36 compared to using all 91 fiber orienta-
tions.

5.5 Application to an injection-molded chain link

In this final paragraph we used the material model with fitted
coefficients from Table 4 to conduct a finite element analysis
of a chain link used for conveyor belts, see Fig. 7 for the
CAD geometry. For the production, it is possible to choose
four different injection points. To study an extreme case, we
chose only one injection point.

To obtain the fiber orientation within the chain link,
we rely upon an injection molding simulation carried out
using the OpenFOAM-based injectionMoldingFoam solver,
see Ospald [46] for details. The distribution of the resulting
fiber orientations’ eigenvalues within the fiber orientation tri-
angle is shown in Fig. 4b. For each element, a graffiti was
sprayed into the fiber orientation triangle. Thus, the relative
frequency of occurrence is proportional to the shading in the
figure.

We chose the isotropic fiber orientation tensor as initial
condition at the inlet, which iswhy it appears in Fig. 4b. Then,
during the flow, the fiber orientation quickly approaches an
almost planar state. Indeed, almost all fiber orientations are
concentrated close to the line connecting an almost uni-
directional and an almost planar isotropic state.

For the finite element analysiswe use the commercial soft-
ware ABAQUS 6.14–1. The material model is integrated into
an ABAQUS user-defined material function (UMAT ), relying
on solution dependent variables (SDV ), which are introduced
by the user routine SDVINI. Given the fiber orientation tensor
A, the latter user routine reads the untransformed fiber direc-
tions {pi } and the corresponding weights wi from a text file,
determines the transformed directions {ti } and stores them as
SDV. The effective stress, together with the material tangent,
is computed using (3.5) and (4.3).

For the analysis, we apply an external force F = 100N to
the inner sides of the shafts, compare Fig. 7a. The geometry
is discretized by 102257 10-node, i.e. quadratic, tetrahedra,
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Table 5 Runtime of the RVE
simulations for obtaining σ̄i j for
different sets of fiber
orientations and all experiments
D1, . . . , D4

Row Variations # Of simulations Runtime [min] Speedup

1 All orientations (91) 364 474 1

2 Only UD 4 4.7 101

3 UD and isotropic 8 9.6 49

4 UD + iso + iso planar 12 13.3 36

(a)

(b)

Fig. 7 External forces applied to the chain link as well as mesh and
stress field. a External forces applied to the chain link. bMesh and von
Mises stress field

associated to the element type C3D10 in ABAQUS, resulting
in 409028 integration points.

The computations were run on a desktop computer with
a Intel i7-3770 CPU@3.40 GHz (4 cores) and 16 GB RAM
@1333 MHz, and took 770s with N = 210 fiber directions
{ti }. Figure 7b shows the resulting von Mises stress field in
the deformed chain link. The comparison of deformed and
undeformed geometry reveals a large deformation pointing
out the necessity of a hyperelasticmaterial. It can be seen that
the stress accumulates at the flanks of the chain link as the
fibers are aligned in parallel to the direction of the external
forces in those areas. The fibers in the chain link’s middle
part, however, are smaller because they are mostly aligned
orthogonally to the external forces. Figure 9 illustrates both
the fiber orientation and the von Mises stress field in the
chain link’s middle plane. Here, too, the stresses reach their

Fig. 8 Comparison of chain link’s deformation with (green) and with-
out (white) anisotropic term in material model. (Color figure online)

maximum in areas where the majority of the fibers is aligned
in the direction of the external forces. The principal fiber
orientation degree OD in Fig. 9a is defined as

OD = 3

2
λmax − 1

2
∈ [0, 1]

where λmax denotes the largest eigenvalue of A, which is
always greater equal than 1

3 . Consequently OD = 0 corre-
sponds to an isotropic and OD = 1 to a unidirectional fiber
orientation. The principal fiber orientation in Fig. 9b is the
eigenvector associated to λmax scaled by OD.

Last but not least we compare our fully anisotropic model
to the response computedby an isotropic neo-Hookeanmodel
which we fit to our training data. Comparing both deformed
structures, see Fig. 8, exhibits drastic differences. The chain
link has a length of l0 = 37.4mm in the undeformed config-
uration. The length in the deformed configurations becomes
liso = 52.2mm and laniso = 47.9mm respectively. We con-
clude that taking into account the material’s anisotropy is
crucial for predicting the deformation.

6 Summary and outlook

This article was devoted to studying a fiber orientation-
adapted integration scheme for Tucker’s orientation averag-
ing procedure applicable to non-linearmaterial laws,which is
stable w.r.t. fiber orientations degenerating into planar states.

We have established a reference scenario for fitting
the Tucker average of a transversely isotropic hyperelastic
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(a) (b)

(c) (d)

Fig. 9 Visualization of fiber orientation and von Mises stress in a cross section of the part. a von Mises stress. b Second order fiber orientation
tensor component Ayy . c Principal fiber orientation degree. d Principal fiber orientation

energy, corresponding to a uni-directional fiber orientation,
to microstructural simulations, obtained by FFT-based com-
putational homogenization.

The resulting hyperelastic material map turns out to be
surprisingly accurate, simple to integrate in commercial finite
element codes and fast in its execution.

From a theoretical point of view it would be interesting to
investigate further which transversely isotropic hyperelastic
stored energy functions possess good structural properties

(like quasi-convexity), while at the same time providing
effective properties that can be fitted accurately to experi-
mental or computational data.

A purely elastic description of the mechanical behavior
of fiber reinforced composites does not accurately model
the various phenomena involved. Thus, the elastic consid-
erations of this article should be considered a starting point
for more investigations involving more elaborate material
behavior. For instance, it would be interesting to see whether
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the proposed method can be used to accurately predict the
effective behavior of composites with constituents undergo-
ing viscoelastic or elastoplastic behavior at finite strains.
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Appendix

A Derivation of the integral transformation
formula

This section is devoted to derive the identity (3.5), i.e.

∫
S2

ψB(p)W (p) dS(p) = 1

4π

∫
S2

W (t (p)) dS(p) (A.1)

where W is a function on the sphere S2, t (p) = B− 1
2 p

‖B− 1
2 p‖

,

ψB = 1
4π (pT Bp)− 3

2 , and B is a symmetric positive definite
3×3 matrix with determinant 1. Before coming to the gist of
argument, notice the identity

∫ ∞

0
r2e− a

2 r
2
dr = 1

a
3
2

√
2π

2
, (A.2)

which is an immediate consequence of integrating the iden-
tity

d

dr

(
re− a

2 r
2
)

= e− a
2 r

2 − ar2e− a
2 r

2
.

Thederivation of (A.1) is basedupon the successive rewriting

1

4π

∫
S2

W (p)(pT B−1 p)−
3
2 dS(p)

= 1

(2π)
3
2

∫
S2

W (p)
1

(pT B−1 p)
3
2

√
2π

2
dS(p)

= 1

(2π)
3
2

∫
S2

W (p)
∫ ∞

0
r2e− r2

2 pT B−1 p dr dS(p)

= 1

(2π)
3
2

∫
R3

W

(
x

‖x‖
)
e− 1

2 x
T B−1x dx,

where we made use of (A.2) with a = pT B−1 p. Thus, the
left hand side of (A.1) can be expressed by a free space

integral involving aGaussian.Changingvariables x = B− 1
2 y

in this integral yields

1

(2π)
3
2

∫
R3

W

(
B− 1

2 y

‖B− 1
2 y‖

)
e− 1

2 ‖y‖2 dy

= 1

(2π)
3
2

∫
S2

W

(
B− 1

2 p

‖B− 1
2 p‖

)

∫ ∞

0
r2e

− r2
2

pT B−1 p
‖B−1/2 p‖2 dr dS(p)

= 1

(2π)
3
2

∫
S2

W (t (p))

√
2π

2

[
pT B−1 p

‖B− 1
2 p‖2

]− 3
2

dS(p)

= 1

4π

∫
S2

W (t (p)) dS(p),

which shows the identity (A.1).
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