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Abstract Crystal plasticity finite element (CPFE) models
that accounts for discrete micro-twin nucleation-propagation
have been recently developed for studying complex defor-
mation behavior of hexagonal close-packed (HCP) materials
(Cheng and Ghosh in Int J Plast 67:148–170, 2015, J
Mech Phys Solids 99:512–538, 2016). A major difficulty
with conducting high fidelity, image-based CPFE simula-
tions of polycrystalline microstructures with explicit twin
formation is the prohibitively high demands on computing
time. High strain localization within fast propagating twin
bands requires very fine simulation time steps and leads
to enormous computational cost. To mitigate this short-
coming and improve the simulation efficiency, this paper
proposes a multi-time-domain subcycling algorithm. It is
based on adaptive partitioning of the evolving computa-
tional domain into twinned and untwinned domains. Based
on the local deformation-rate, the algorithmaccelerates simu-
lations by adopting different time steps for each sub-domain.
The sub-domains are coupled back after coarse time incre-
ments using a predictor-corrector algorithm at the interface.
The subcycling-augmented CPFEM is validated with a com-
prehensive set of numerical tests. Significant speed-up is
observed with this novel algorithm without any loss of
accuracy that is advantageous for predicting twinning in
polycrystalline microstructures.
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1 Introduction

Crystal plasticity finite element (CPFE) models of poly-
crystalline materials e.g. metals and alloys, are extensively
used for simulating deformation under conditions of creep,
fatigue, and high stain-rate loading [3–12]. Crystal plastic-
ity models account for dislocation glide on crystallographic
planes and associated hardening due to evolving disloca-
tion structures in the crystalline microstructure. Deformation
twinning is also a critical deformation mechanism in the
microstructure, which causes change in lattice orientations
with localized deformation inside thin twin bands. In hexag-
onal close-packed (HCP) crystals e.g. magnesium alloys
with large differences in the slip system resistances, lim-
ited crystallographic slip in certain slip systems triggers the
formation of microtwins, which can lead to room tempera-
ture brittle-like failure. Sharp changes in the crystallographic
texture of polycrystalline microstructures due to twin forma-
tion are typically associated with crack nucleation at grain
boundary-twin band intersections [13]. Twinning can induce
characteristic features in the material response like plastic
anisotropy, tension-compression asymmetry, local material
softening, etc.

Despite its high relevance, deformation twinning has not
been adequately addressed in CPFE modeling until recent
developments e.g. in [2,14–17]. A method, which allows the
use of a wide range of strain rate sensitivity without sac-
rificing the computational efficiency, has been proposed in
[17]. In general, conventional crystal plasticity twin mod-
els have adopted the implicit twin volume fraction-based
approach that treats twin propagation in the same way as slip
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[18–23]. These approaches ignore deformation heterogene-
ity within the discrete twins in the microstructure. Hence,
they are mostly incapable of predicting the onset of mate-
rial failure triggered by heterogeneous micro-twins. Explicit
twin formation models within CPFE framework have been
proposed based on phenomenological twin formation cri-
teria and adaptive mesh-regeneration methods [14,15,17].
Such explicit CPFE twin formation models show promise of
accurately predicting twinning induced material failure if the
physics of twin nucleation, propagation and interactions are
correctly taken into account [1,2].

A major difficulty with conducting high fidelity, image-
based CPFE simulations of polycrystalline microstructures
with explicit twin formation is the prohibitively highdemands
on computing time and resources. This stems from the mis-
match in deformation-rates between the rapidly evolving
twins and the low rate of deformation in the surrounding crys-
talline matrix. The localized deformation with high-rates of
twin evolution in the twin bands cause numerical instability
with the stiff non-linear crystal plasticity constitutive equa-
tions, which can only be overcome by adopting very fine
simulation time steps. This requirement should be however
met only within a small fraction of the overall polycrys-
talline domain. In the absence of a time integration scheme
that can differentiate the twinned regions from the untwinned
regions, a very high temporal resolution is required for the
entire domain. The high resolution mesh of the polycrys-
talline microstructure, in combination with very fine time
steps, cause the CPFE simulation of statistically-equivalent
representative volume elements (SERVEs), to be computa-
tionally exorbitant.

Numerical methods have been proposed to alleviate lack
of convergence with the time-integration algorithms for crys-
tal plasticity constitutive models. Methods of improving
convergence have been suggested through the choice of an
initial predictor to start iterations in an implicit scheme
[24] or by adding a line search technique to the Newton–
Raphson iteration scheme [25]. Numerical algorithms using
the forward Euler explicit time integration schemes for crys-
tal plasticity models have been proposed in [26]. The Taylor
series expansion has been introduced in the integration algo-
rithm in [27] to linearize the crystal plasticity equations
that is solved by the Gauss elimination method in a two-
level solving sequence. The adaptive sub-stepping method
in [28,29] integrates the crystal plasticity models by split-
ting the deformation increment into sub-steps. A local error
estimator for the crystal plasticity constitutive models with
the Runge−Kutta method has been proposed in [30].

While thesemethods accelerate the slip-based crystal plas-
ticitymodels, they are inappropriate for non-localmicro-twin
models as they use one single time step for the entire spa-
tial domain. Subcycling time integration algorithms have
been proposed for differentiated time integration in [31–35],

where elements or nodes are separated into groups, each asso-
ciated with a different time-step. This method has been used
for improved efficiency in structural FE analysis, where the
time step of each subdomain is chosen according to the local
stability criteria.

The concept of sub-cycling is adopted in this paper for
developing an efficient crystal plasticity FE model of poly-
crystalline materials with evolving micro-twins. It proposes
a multi-time step, subcycling algorithm that is based on the
adaptive partitioning of the evolving computational domain
into twinned and untwinned domains. The time-integration
scheme treats the region of deforming and propagating twins
with amuch finer time step in comparisonwith the remaining
crystalline matrix region. This paper is organized as fol-
lows. The finite deformation crystal plasticity finite element
(CPFE) formulation with explicit micro-twin nucleation and
evolution criteria are summarized in Sect. 2. The numerical
implementation in CPFEM with twin nucleation and prop-
agation is discussed in Sect. 3. Convergence issues with
integrating crystal plasticity and twin evolution relations
are evaluated in Sect. 4. In Sect. 5, an adaptive subcy-
cling algorithm is developed for accelerating CPFE simula-
tions. Numerical examples with the subcycling-augmented
CPFEM are executed for validation in Sect. 6 and the paper
is concluded in Sect. 7.

2 Finite deformation crystal plasticity finite
element formulation

The finite element weak form of equilibrium equations for
a microstructural representative volume element undergoing
finite deformation is obtained by taking the product of the
governing equations with a weighting function and integrat-
ing over the volume in the current or reference configuration.
In an incremental formulation and solution process, where
a typical time step transcends discrete temporal points t to
t+�t , the principle of virtual work for a quasi-static process
at time t + �t occupying the domain Ω ⊂ R3 is expressed
as [36]:

∫
Ω t+�t

(∇δut+�t ) : σ dΩ t+�t

=
∫

Ω t+�t
δut+�t · b dΩ t+�t

+
∫

Γ
t+�t
σ

δut+�t · t̄ dΓ t+�t
σ ∀δut+�t ∈ U (1)

where σ is the Cauchy stress, b is the body force per unit vol-
ume, t̄ is the applied traction. Γ is the surface on which trac-

tion is applied.U =
{
δut+�t

i ei ∈H1(Ω), δut+�t =0 on Γu

}
is the space of virtual displacement. Using an updated
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Lagrangian formulation [37], Eq. (1) may be written in an
incremental form as:

∫
Ω t

δ�E : �SdΩ t +
∫

Ω t
δη : σ t d Ω t

= Rext t+�t −
∫

Ω t
δe : σ t d Ω t (2)

In the above equation, �S = St+�t
t − σ t is the increment

of second Piola–Kirchhoff stress, �E = Et+�t
t − Et

t is the
increment of Green–Lagrange strain. The entire right-hand
side of Eq (1) is the external virtual work and is expressed

as Rext t+�t
. Furthermore, e = 1

2

[(
∂�u
∂xt

)T + ∂�u
∂xt

]
and

η = 1
2

(
∂�u
∂xt

)T
∂�u
∂xt are respectively the linear and non-linear

parts of�E. The non-linear Eq. (2) is solved using aNewton–
Raphson iterative method. In the i-th iteration step of the
update scheme from time t to t + �t , the linearized Eq. (2)
to be solved are written as:

Kt+�t,i�u = fextt+�t,i − f intt+�t,i (3)

where Kt+�t,i is the global tangent stiffness matrix in the
i-th iterative step, and fextt+�t,i and f intt+�t,i are respectively
the prescribed applied external force vector and the internal
force vector. For the i-th iteration step, the force vectors are
written as:

Kt+�t,i =
∫

Ω t+�t,i
BT

C
t+�t,iBdΩ t+�t,i

+
∫

Ω t+�t,i
GT σ∼

t+�t,iGdΩ t+�t,i (4a)

f intt+�t,i =
∫

Ω t+�t,i
BT σ t+�t,i dΩ t+�t,i (4b)

fextt+�t,i =
∫

Ω t+�t,i
NTbt+�t dΩ t+�t,i

+
∫

Γ t+�t,i
NT t̄t+�t dΓ t+�t,i (4c)

Here Ct+�t,i is the elasto-plastic tangent stiffness matrix in
the i-th iteration step, B is the strain-displacement matrix,G
is the gradient operator matrix , and N is the shape function
matrix. The matrix σ∼

t+�t,i is explicitly written as:

σ∼
t+�t,i =

⎡
⎣σ t+�t,i 0 0

0 σ t+�t,i 0
0 0 σ t+�t,i

⎤
⎦ (5)

where σ t+�t,i is the 3× 3 Cauchy stress matrix, 0 is a 3× 3
matrix of zeros. If the maximum value in the residual array
fextt+�t,i − f intt+�t,i is larger than a small tolerance, the displace-

ment for the next iterate i + 1 is updated to the following
value:

ut+�t,i+1 = ut+�t,i + �u (6)

Equations (3)–(5) are evaluated again in the updated config-
uration.

2.1 Summary of crystal plasticity-deformation twin
constitutive models

A twin nucleation-evolutionmodel has been proposed in con-
junction with a crystal plasticity (CP) model in [2] for Mag-
nesium alloys undergoing deformation induced twinning in
polycrystalline microstructures. The crystal plasticity-twin
model considers total 12 slip systems and 6 twinning sys-
tems, consisting of 3 〈a〉-basal, 3 〈a〉-prismatic, 6 second
order 〈c + a〉-pyramidal slip systems and 6

{
101̄2

}
exten-

sion twin systems. The CP-twin model adopts different flow
rules for the twinned region Ωtwin and the untwinned matrix
region Ωmatri x , which are respectively expressed as:

Lp = ḞpFp−1

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ntwin∑
β=1

γ̇
β
tws

β
0,tw +

Nslip∑
α=1

˙̃γ α s̃α0,sli p if x ∈ Ωtwin

Nslip∑
α=1

γ̇ αsα0,sli p if x ∈ Ωmatri x

(7)

whereLp is the plastic velocity gradient, γ̇ α is the slip rate on
a slip systemα and sα0,sli p is its Schmid tensor in the reference

configuration. γ̇ β
tw is the shearing rate due to twin propagation

on twinning systemβ, and sβ0,tw is the Schmid tensor for twin-
ning. After a material point has twinned, the crystallographic
slip plane and direction are reorientated symmetrically by
reflection across a mirror or twin plane in the reference con-
figuration denoted by the Schmid tensor s̃α0,sli p [38]. The
corresponding slip rate on the new crystallographic planes
is denoted by ˙̃γ α

. The dislocation slip-rates γ̇ α and ˙̃γ α
can

be described using a power lawmodel for magnesium, which
is written as (˜ dropped for convenience):

γ̇ α = γ̇ α
0

∣∣∣∣τ
α − sα

a

sα∗

∣∣∣∣
1
m

sign(τα − sα
a ) (8)

Here γ̇ α
0 is a reference slip rate for the slip system α and m

is the power law exponent representing strain-rate sensitiv-
ity. The resolved shear stress on slip system α is expressed
as τα = FeTFeS : sα0 . s

α
a is the athermal shear resistance

due to stress-field between parallel dislocation lines and sα∗
is the thermal shear resistance due to local repelling forest
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dislocations. A hyper-elastic relation in the intermediate con-
figuration relates the second Piola–Kirchhoff stress with the
Green–Lagrange strain Ee

(= 1
2

(
FeTFe − I

))
as:

S = C
e : 1

2

(
FeTFe − I

)
with Fe = FFp−1 (9)

where Ce is the transversely isotropic elasticity tensor. Fe is
the elastic component of the deformation gradient obtained
from the multiplicative decomposition of the total deforma-
tion gradient F. The slip system resistance evolves as a result
of mobile dislocations interactions with sessile dislocations,
twins and grain boundaries. The details of the hardening
model for slip system resistance is given in the Appendix
A.

2.1.1 Micro-twin nucleation model

A detailed twin nucleation model along with its numerical
implementation into CPFE framework has been established
in [1,2]. The model considers generation of a twin nucleus
from the non-planar dissociation process of a sessile pyra-
midal 〈c + a〉 dislocation. The sessile pyramidal 〈c + a〉
dislocation dissociates into amulti-layer twin nucleus, which
propagates with applied resolved shear stress and leaves
behind a residual stair-rod dislocation to conserve the Burg-
ers vector. The elastic theory of dislocations [39] is adopted
to analyze the change of energy during the dissociation pro-
cess, which suggests that a stable twin nucleus will form if
the following three energy-based criteria are satisfied simul-
taneously.

Dissociation condition : Eini ≥ Etw(d = 0, L0) + Er

(10a)

Irreversibility condition : Eini > E f (ds, L0, τtw) (10b)

Reliability condition : ds > 2r0 (10c)

The initial energy of the system Eini is given by the self-
energy of the sessile 〈c + a〉 dislocation before dissociation
and L0 is the length of sessile 〈c + a〉 dislocation. After the
occurrence of dissociation, Etw is the self-energy of the twin-
ning dislocation loop, Er is the self-energy of the stair-rod
dislocation, and d is the separation distance between the front
segment of twinning dislocation loop and the stair-rod dis-
location. E f is the total post-dissociation dislocation energy
of the system. It includes Etw, E f , the stacking fault energy,
the interaction energy between twin and stair rod partial dis-
locations, and the external work. The first criterion states
that the dissociation process spontaneously occurs only if the
initial energy exceeds the energy of the two partials before
any further separation. The second criterion suggests that the
equilibrium condition for separation is energetically favor-
able and the process is irreversible if the final energy is less

than the initial energy at a stable separation distance ds . The
third criteria requires that ds must exceed a threshold sepa-
ration distance so that the elastic dislocation theory is valid.
Here ds minimizes the total energy E f after dissociation, i.e.
∂E f inal

∂d = 0,
∂2E f inal

∂d2
≥ 0. Critical twin nucleation param-

eters in Eq. (10) have been calibrated from experiments in
[1].

2.1.2 Micro-twin propagation model

After a stable micro-twin has nucleated, it propagates by two
types of mechanisms, viz. (i) elongation of the twin by rapid
gliding of twin partial dislocations on twin planes, and (ii)
thickening or growth of the twin by migrating twin bound-
aries from one twin plane to adjacent

{
101̄2

}
twin planes

[40]. Gliding of twin partial dislocations occurs by a mixed
shear-shuffle process as discussed in [41]. The shear process
requires all atoms in the twin partial dislocation core to move
by a Burgers vector btw distance in same direction. However,
unlike slip, the shear motion does not preserve the lattice
structure. The configuration after shearing corresponds to
a high energy stage. Corrective non-unidirectional atomic
shuffling is required at the same time as shearing to place
atoms into low-energy symmetric positions, which reduces
the energy barrier and allows the further gliding of the twin
partial dislocations. Due to the non-unidirectional character
of shuffling, the propagation of twins is deemed as a thermal
activation process. Modeled in [2] the elongation and growth
velocities of twin band are respectively expressed as:

vglide = f λshear exp

(
−�F − τ APbtw

KBT

)
(11a)

vgrow = dtw
�ttw

= dtwPpromoterρtot ltwvglide (11b)

Here f is the shear-shuffle frequency, λshear is the shear

distance and the term exp
(
−�F−τ APbtw

KBT

)
is the probability

of continuous gliding in the presence of an internal energy
barrier �F . Ap is the shearing area during the plastic defor-
mation, ρtot is the total dislocation density, Ppromoter is the
fraction of a special type of sessile dislocations that pene-
trate multiple twin planes and act as promoters to help twin
partial dislocations move to adjacent planes, and ltw is the
length of twin partial dislocations. By substituting Eq. (11)
into the Orowan equation, the shear-rate on twin systems has
been derived in [2] as:

γ̇tw = γ̇0

∣∣∣∣τ(T )

stw

∣∣∣∣
�F
KBT

sign (τ (T )) (12)

where γ̇0 = ρtwbtw fshu f f leλshu f f le is a reference shear
rate, and stw is twin system shear resistance. The evolution
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Fig. 1 Illustration of the scheme of implementing twin nucleation and propagation models into CPFEM

of stw is the result of interaction between mobile disloca-
tions and twin boundaries, which is detailed in Appendix B.
In addition, deformation twinning can only provide shear
in one-direction, which leads to mirror symmetric lattice
configurations. Thus, the shear associated with deformation
twinning should satisfy the constraint:

0 ≤ γtw ≤ γmax
tw (13)

where γmax
tw is the maximum shear associated with a specific

twin variant in an integration volume. γmax
tw varies for differ-

ent HCP material. For Mg and Mg alloys, γmax
tw = 0.1289

for
{
101̄2

}
extension twins.

3 Numerical implementation in CPFEM with twin
nucleation and propagation

The micro-twin nucleation and propagation is explicitly
implemented into the crystal plasticity finite element model,
for simulating discrete twin evolution. The multi-stage
implementation scheme is illustrated in Fig. 1. In stage 1, all
element integration points are examined for twin nucleation
using the criteria in Eq. (10). Once the nucleation criteria is
satisfied at an element integration point, it is designated as a
twin nucleation site. For the four-noded tetrahedral elements
with one integration point, this implies that the element is a
nucleation site. In the subsequent time steps corresponding
to stage 2, all integration points belonging to a grain that con-
tains the twin nucleated element will be examined to check
if twin boundary propagates to this point using an explicit
criteria. For a twin to propagate to a neighboring point X in
Fig. 2, the criteria requires:

vprop ≥ lglide
�ttwin

and vgrowth ≥ lgrowth

�ttwin
(14)

As illustrated in Fig. 2 lglide is the distance between the
nucleation site and a point X projected onto the twin plane,
lgrowth is the distance of the projected normal to the twin
plane and �ttwin is the time interval from the time of twin

Fig. 2 Illustration of a twin partial dislocation propagation and growth
(thickening) to a neighboring point X by gliding on the twin plane and
growing normal to it

nucleation to current time. SubstitutingEq. (11) intoEq. (14),
a non-local criterion is established to determine twin propa-
gation to neighboring integration points, given as:

τcri t ≥
ln
(

lgrowth
�ttwin fshu f f leλshear

)
KBT + �F

Apbtw
(15a)

τcri t ≥
ln
(

lglide
�ttwin fshu f f leλshear dtwPpromoterρtot ltw

)
KBT + �F

Apbtw
(15b)

The twoEqs. (15) provide quantitativemeasures of propagat-
ing a twin to a neighboring material point in longitudinal and
transverse (through-thickness) directions respectively. In the
CPFE implementation with the incremental time-marching
process, this step is executed explicitly at the end of each
time increment.

3.1 Time integration algorithm for the constitutive
relation

Time integration of crystal plasticity-twin evolution consti-
tutive model in Sect. 2.1 requires evaluation of the non-local
variables related to GND and twins from neighboring ele-
ments. The non-locality is accounted for using a staggered
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integration algorithm, which proceeds in three steps as fol-
lows:

– Step I: With known values of deformation variables at
time t , and an incremented deformation gradient F(t +
�t) at time t+�t , update the stressS, plastic deformation
gradient Fp and all internal state variables at each Gauss
quadrature point, keeping the non-local GNDdensity and
twin variables fixed. This step assumes that the primary
unknown variable is the second Piola–Kirchhoff stress S,
and seeks its solution froma set of six nonlinear equations
by a Newton–Raphson type iterative solver. For the i-th
iteration, the residual G(Si ) is defined as:

G(Si (t + �t)) = Si (t + �t) − Str +
∑
α=1

�γ αBα (16a)

where Str = C : 1
2

(A(t + �t) − I) (16b)

�γ α = �t γ̇ α
0

∣∣∣∣∣
τ i,α − sαa

sα∗

∣∣∣∣∣
1
m

sign(τ i,α − sαa ) (16c)

Bα = C :
[
1

2

(
A(t + �t)sα0 + sα0A(t + �t)

)]
(16d)

A(t + �t) = Fp−T
(t)FT (t + �t)F(t + �t)Fp−1

(t) (16e)

The i-th iteration update to S is evaluated as:

Si+1(t + �t) = Si (t + �t) − ∂G
∂S

∣∣∣∣
−1

i
G(Si (t + �t))

(17)

Upon achieving convergence to within a tolerance,
update the SSD-related slip system resistances sα

a,SSD
and sα∗,SSD using Eqs. (28) and (29). Repeat the Newton–
Raphson calculation of second Piola–Kirchhoff stress S
till sα

a,SSD and sα∗,SSD converge. Finally, update the plastic
deformation gradientFp, Cauchy stress and elasto-plastic
tangent stiffness C = ∂σ

∂ε
before proceeding to step

II.
– Step II: Evaluate the nodal values of Fp from the Gauss
quadrature points by using the super-convergent patch
recovery (SPR) method [1,42]. Interpolate ∇X × FpT

at quadrature points with finite element shape functions
and update theGNDdensities and their rates of hardening
from Eqs. (30) to (34).

– Step III: Evolve the twinned domain by checking for
new twin nucleation in this step, by: (a) using criteria
in Eq. (10) at each Gauss quadrature point, as well as (b)
checking criteria in Eq. (15) for propagation and growth
of already nucleated twins in the neighboring elements
of the twin nucleation site.

It has been observed that such an staggered update of
twinning can lead to convergence difficulties, as well as inac-
curacies in the computation of deformation variables in the
twinned domain. A subcycling algorithm to overcome these
obstacles are developed in the subsequent sections.

4 Convergence issues with integrating crystal
plasticity and deformation twinning constitutive
relations

Time integration of rate-dependent crystal plasticity equa-
tions incorporating twin evolution suffers from numerical
instabilities and lack of convergence, ensuing from the highly
localized plastic flow in narrow twin bands. Experimental
studies in compression tests have reported the formation of
thin

{
101̄2

}
twin bands as early as at 0.4% overall strain

[43]. In contrast, the local shear strain within twin bands
is found to be ∼12.89%. The significant increase of strains
from the matrix domains to those in the twin bands lead to
largely discrepant critical time steps needed for convergence
of the iterative time-integration scheme over the computa-
tional domain.

The rate-dependent power-law type crystal plasticity con-
stitutive models are quite stiff [24,25,29,44]. The low
strain-rate sensitivity of many metals at room temperature
results in a very small value of the rate-sensitivity parameter
m in the flow rule Eq. (8). For example, m ≈ 0.02 for Mg
at room temperature. Small variations in the resolved shear
stress causes large changes in the slip-rates. In Eq. (8), the
slip-rate γ̇ quickly reaches very high values for τα

e f f /s
α∗ > 1.

The slope of this non-linear equation also rapidly increases
for τα

e f f > sα∗ . When multiple heterogeneous slip/twin
systems exist, the rapid slip-rate changes cause major con-
vergence issues with the Newton–Raphson solver discussed
in Sect. 3.1 (step I). The criterion governing convergence is
given as:

γ̇ α�t ≤ �γcri t (18)

where �γcri t is a critical slip increment [45]. An alternative
criterion has been proposed in [46] as:

τα
e f f /s

α
a ≤ rcri t (19)

A value of rcri t = 2.0 has been assumed in [46]. The
above criteria establish a critical time step �tcri t for
numerical time integration of the crystal plasticity model.
Since the slip rate �γcri t and the resolved shear stress
τα
e f f are implicitly dependent on the time step �t in a
backward Euler update algorithm, �tcri t is a function of
(m, γ0,Ce, sα

a , sα∗ , τα,�γcri t , rcri t ). Thus the critical time
step evolves with the evolution of internal state variables.
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Fig. 3 a Strain rate distribution at 2% strain in a CPFE simulation of AZ31 polycrystal microstructure, b distribution of critical time steps for
integrating CP equations

Table 1 Distribution of critical
time-step sizes among elements
in the polycrystalline ensemble

�tcri t (s) 10 5 2.5 1.25 0.625 0.313 0.156 0.0781 0.0391

# of elements 672,868 15,693 7593 2171 535 183 61 23 3

When deformation twinning is included in the form of the
power-law Eq. (12), the instability criterion is more stringent
since twinning is even less strain-rate sensitive [47]. Also the
twin evolution rate can be much faster than the strain evo-
lution rate. Furthermore, lattice misorientations across grain
and twin boundaries renders the strain fields strongly hetero-
geneous. Strains localize inside twin bands, while stresses
concentrate at the intersections of grain–twin, twin–twin
and grain–grain boundaries. As a consequence, the distribu-
tion of critical time steps inside the microstructural volume
is not uniform. Figure 3a shows the strain-rate distribu-
tions at 2% overall strain in a polycrystalline microstructural
SERVE of the Mg alloy AZ31 containing 152 grains. The
results show that the strain-rates inside twin bands is in
general ∼(5–10) times higher than those in matrix. This cor-
responding heterogeneous distribution of critical time steps
according to Eq. (18) is depicted in Fig. 3b. Elements inside
the twin bands, especially those near twin boundaries and
grain boundaries, require much smaller time steps to inte-
grate the twin constitutive equations in comparison with
those in the exterior regions. A quantitative comparison of
the critical time step size is tabulated in Table 1. 97% ele-
ments can proceed with a time step of Δt = 10 s, while
only 3% of the elements located in critical regions require
a significantly smaller time step of Δt = 0.0391 s. The
reduction in time steps is by a factor of ∼ 255. This can
cause a huge loss of efficiency if all elements are changed to
this time step, especially for high resolution microstructural
models.

5 Adaptive subcycling algorithm for accelerating
CPFE simulation

An adaptive multi-time domain subcycling algorithm is pro-
posed for increasing the overall computational efficiency,
while accounting for the above-mentioned convergence
issues. It is able to avert the efficiency compromise due to
minimum critical time step requirements, while allowing the
differential temporal resolution in the computational domain.
The algorithm partitions the computational domain of the
microstructure into sub-domains that are classified as critical
(high strain-rate) and non-critical (low-strain-rate). Simula-
tions in each sub-domain can proceed with independent time
steps, as required by stability and accuracy criteria for opti-
mal efficiency. For a twinned microstructure, regions of twin
bands may be solved with fine time steps, while solving the
remaining regionswith coarse time steps. A schematic layout
of the algorithm is shown in Fig. 4. Starting from a known
state at time t , the integration algorithm for the time incre-
ment t to t +�t solves the non-critical sub-domain problem
using the coarsest possible time-increment �t and the criti-
cal sub-domain problem using fine time steps �τ � �t . To
achieve global equilibrium for the computational domain,
the different sub-domains are coupled and residuals at the
interfaces of discrepant time-steps in the assembled sub-
domains are minimized using a predictor-corrector scheme.
Displacement fields at nodal points of adjacent sub-domains
that are integrated by different time-steps, will not satisfy
compatibility in general. The subcycling algorithm evaluates
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Fig. 4 Schematic of the subcycling algorithm showing partitioning and equilibrating domains

displacement correctors through the process of equilibrating
nodal residual forces.

5.1 The subcycling algorithm: formalism and
implementation

The subcycling algorithmpartitions the computational domain
of the virtual microstructure Ω into a fine time-scale domain
ΩF and a coarse time-scale domain ΩC . The formulation is
based onEqs. (3) and (4) in Sect. 2. The nodal degrees of free-
dom �u for the partitioned domain may be categorized into
three parts, viz. �uF , �uC , and �uI depending on whether
they belong to ΩF , ΩC or their interface, ∂Ω I respectively.
The tangent stiffness matrixK and out-of-balance force vec-
tor f = fext − f int in Eq. (3) are also split into multiple parts
and the equilibrium equation is written as:

⎡
⎢⎢⎣
KF,F

ΩF KF,I
ΩF 0

KI,F
ΩF KI,I

ΩF + KI,I
ΩC KI,C

ΩC

0 KC,I
ΩC KC,C

ΩC

⎤
⎥⎥⎦
⎧⎨
⎩

�uF

�uI

�uC

⎫⎬
⎭ =

⎧⎪⎪⎨
⎪⎪⎩

fF
ΩF

f I
ΩF + f I

ΩC

fC
ΩC

⎫⎪⎪⎬
⎪⎪⎭
(20)

where
[
KΩF

] =
[
KF,F

ΩF KF,I
ΩF

KI,F
ΩF KI,I

ΩF

]
and

{
fΩF

} =
{
f F
ΩF

f I
ΩF

}
are

the tangent stiffness matrix and the out-of-balance force vec-
tor that are integrated and assembled from the fine time-scale

elements respectively. Likewise,
[
KΩC

] =
[
KI,I

ΩC KI,C
ΩC

KC,I
ΩC KC,C

ΩC

]

and
{
fΩC

} =
{
f I
ΩC

fC
ΩC

}
are the tangent stiffnessmatrix and the

force vector integrated and assembled from the coarse time-
scale elements.

The subcycling algorithm proceeds in steps that are
described below.

1. With the loading increments in a time step from t to t+�t ,
compute a predictor displacement increment �upred

t→t+�t
for the entire domain Ω using the known global stiffness
matrix Kt at time t .

2. Use the predictor displacement increment at the interface{
�uI,pred

t→t+�t

}
as the displacement boundary condition to

solve theCPFE problem for only the coarse domain in the
interval t to t+�t , with a coarse time-step increment�t .
The coarse time-scale domain problem is solved for the

incremental displacement
{
�uCt→t+�t

}
from a subset of

Eq. (20), given as:

[
KC,C

ΩC ,t

] {
�uCt→t+�t

}
=
{
fC,ext
ΩC ,t+�t

}
−
{
fC,int
ΩC ,t

}

−
[
KC,I

ΩC ,t

] {
�uI,pred

t→t+�t

}
(21)

The tangent stiffness matrix and force vector can then be
updated to time t + �t as

[
KΩC ,t+�t

]
, and

{
fΩC ,t+�t

}
.

3. Apply the predictor displacement increment at the inter-

face
{
�uI,pred

t→t+�t

}
as the displacement boundary con-

dition to solve the explicit CPFE problem for only the
fine time-scale domain from time t to t + �t , with the
time increment �t sub-divided into smaller increments
�τ � �t . The displacement boundary condition for
each sub-step τ → τ + �τ is linearly interpolated from{
�uI,pred

t→t+�t

}
as:

{
uI,pred

τ+�τ

}
=
{
uI,pred

τ

}
+ �τ

�t

{
�uI,pred

t→t+�t

}
(22)

where
{
uI,pred

τ

}
and

{
uI,pred

τ+�τ

}
are the displacements at

τ and τ +�τ , respectively. From Eq. (20), the fine time-
scale domain problem is solved in the increment τ →
τ + �τ by applying the displacement

{
�uI,pred

τ→τ+�τ

}
as:

123



Comput Mech (2018) 61:33–54 41

[
KF,F

ΩF ,τ

] {
�uF

τ→τ+�τ

}
=
{
f F,ext
ΩF ,τ+�τ

}
−
{
f F,int
ΩF ,τ

}

−
[
KF,I

ΩF ,τ

] {
�uI,pred

τ→τ+�τ

}

(23)

The following variables are obtained at the completion
of step 3:

– Fine time-scale domain displacement increments

from t to t + �t :
{
�ũF

t→t+�t

}
– Tangent stiffness matrix of fine time-scale elements
at time t + �t :

[
K̃ΩF ,t+�t

]
– Force vector of fine time-scale elements at time t +

�t :
{̃
fΩF ,t+�t

}

The symbol (̃ ) indicates that the variables are obtained by
solving a sequence of fine time-increment FE problems.

4. Check for satisfaction of global equilibrium, i.e.:

∥∥∥∥
{
f̃ F
ΩF ,t+�t , f̃ I

ΩF ,t+�t + f I
ΩC ,t+�t , fC

ΩC ,t+�t

}T ∥∥∥∥ ≤ Rcrit

(24)

where Rcrit is a scalar convergence tolerance.

– if yes, exit iteration.
{
�ũF

t→t+�t ,�uI,pred
t→t+�t ,

�uCt→t+�t

}T
is the solution to Eq. (3).

– if no, calculate the corrector to the displacement
increment vector as:

�ucorrt→t+�t =

⎧⎪⎪⎨
⎪⎪⎩

�ũF
t→t+�t

�uI,pred
t→t+�t

�uCt→t+�t

⎫⎪⎪⎬
⎪⎪⎭

+
⎧⎨
⎩

�ûF

�ûI

�ûC

⎫⎬
⎭

⎧⎪⎪⎨
⎪⎪⎩

�ûF

�ûI

�ûC

⎫⎪⎪⎬
⎪⎪⎭

=

⎡
⎢⎢⎢⎣
K̃F,F

ΩF K̃F,I
ΩF 0

K̃I,F
ΩF K̃I,I

ΩF + KI,I
ΩC KI,C

ΩC

0 KC,I
ΩC KC,C

ΩC

⎤
⎥⎥⎥⎦

−1

t+�t

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f̃ F
ΩF

f̃ I
ΩF + f I

ΩC

fC
ΩC

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

t+�t

(25a)

Replace the predictor displacement increment vector
with �ucorrt→t+�t and repeat steps 2-4.

5.2 Method of identifying fine time-scale elements and
corresponding time-steps

The decomposition of the computational micro-domain into
coarse (ΩC ) and fine (ΩF ) time-scale sub-domains necessi-

tates the evaluation of the critical time steps at all integration
points. Since an explicit expression �tcri t = �tcri t (m, γ0,

Ce, sα
a , sα∗ , τα,�γcri t , rcri t ) is difficult to obtain, an empir-

ical method is developed. For known state-variables at time
t , the method estimates the critical time increments in all
elements using the following steps:

– Step I: Starting with a large time increment �t , evaluate
a trial nodal displacement increment �utr ialt→t+�t as:

�utr ialt→t+�t = K−1
t

{
fextt+�t − f intt

}
(26)

where Kt and f intt are the tangent stiffness matrix and
internal force vector at time t , respectively. fextt+�t is the
external load vector due to applied boundary conditions.

– Step II: With the incremented nodal displacements ut +
�utr ialt→t+�t for each element, integrate the constitutive
model using the time-integration algorithm in Sect. 3.1.
If the time integration converges, the critical time step
associated with this element is �tc ≥ �t . If the time
integration fails to converge, continue to step III.

– Step III: Reduce the time increment to a�t , where
the factor a ∈ (0, 1). In this work a is chosen to be
a = 0.5. Obtain a new trial nodal displacement incre-
ment �utr ialt→t+a�t from:

�utr ialt→t+a�t =
∥∥∥fextt+a�t − f intt

∥∥∥∥∥∥fextt+�t − f intt

∥∥∥
�utr ialt→t+�t (27)

– Step IV: For all elements that failed to converge in step II,
integrate the constitutive model with the nodal displace-
ments ut +�utr ialt→t+a�t . If the time integration converges,
the critical time step associated with this element is a�t .
If the time integration fails to converge, reduce the time
increment further to an�t, (n = 2, 3, . . .) and repeat step
III-IV until all elements converge.

The fine time-scale elements are identified by the above
process and then assigned the same smallest time step for sub-
cycling calculation. An additional constraint is imposed in
the selection of the finer time-scale sub-domains. The volume
fraction of fine-scale sub-domain to the total computational
domain is constrained to be less than 10% from the consid-
eration of optimal acceleration as analyzed in Sect. 5.3.1.

5.3 Numerical implementation of subcycling algorithm
for twin model

A straightforward way for evolving twins is through a stag-
gered algorithm, discussed inSect. 3.1,where the equilibrium
problem is first solved for deformation and state variables
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Fig. 5 Illustration of the need for a critical time step associated with explicit staggered twin update algorithm

assuming a fixed twin configuration. This is followed by
updating the twin domain by nucleating new twins and prop-
agating existing twins. However, such an algorithm will
introduce an instability when the time step is too large, as
demonstrated with Fig. 5.

Figure 5a shows a single crystal deformation in a time
period from t1 to t2 with a micro-twin nucleating at an inter-
mediate time t3. The deformation is characterized by two
stages, viz. homogeneous deformation before twin nucle-
ation, and heterogeneous deformation in the twin band and
matrix after twin nucleation. For sufficiently small simulation
time step, as demonstrated in Fig. 5b, the CPFE simulation
using explicit staggered algorithmconverges and captures the
twin nucleation correctly.However, if the time step increment
is large, e.g., �t = t2−t1

2 as shown in Fig. 5c, the simulation
fails to capture the nucleation of the twin at t3. It predicts
nucleation at an incorrect time t4 = t1+�t instead. Hence,

the inhomogeneity in deformation is missed in the interval
t3 − t4. The resulting error that accumulates in the history-
dependent CPFE simulations eventually leads to divergence
in the simulation. The iterations alone do not solve the issue
in Fig. 5c as it will predicts the twin nucleation at t1, which
will also interpolate the deformation incorrectly.

A subcycling method, incorporating a novel implicit twin
update algorithm, is proposed to overcome the above issues
and provide a reliable way for modeling twinning induced
heterogeneous deformation. The algorithm is schematically
illustrated in Fig. 6. With known deformation variables at
time t1, the steps in this algorithm for integrating from time
t1 to t2 are delineated below.

1. At time t1, assign elements in existing twin bands that
are undergoing high strain-rates to the fine time-scale
domain. Use the subcycling algorithm to solve for the
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Fig. 6 Subcycling steps incorporating an implicit twin update algorithm

displacement increments�upred and stress σ pred at time
t2. Update the state and internal variables at t2, keeping
the twin structure fixed.

2. Substituting the stress σ pred in the twin nucleation crite-
ria of Eq. (10) and twin propagation criteria of Eqs. (15),
check for the nucleation of new twins and propagation of
existing twins.

3. Update the twinned configuration and add the newly
twinned elements to the fine time-scale domain. Trans-
fer the fully twinned elements from the fine time-scale
domain to coarse time-scale domain.

4. Return back to time t1. Use the known state and inter-
nal variables at time t1 and the updated fine time-scale
domain to solve for displacements at the time incre-
ment t → t + �t again. This step ensures that the twin
nucleation, propagation, and their induced deformation
heterogeneities are captured adequately by using smaller
time steps. Without this step, deformation in the new
twins will not be captured adequately and the staggered
twin-update scheme can introduce significant errors.

At this point, it is necessary to summarized the entire algo-
rithmic structure with discrete twin evolution and subcycling
enhancement. This is illustrated in Fig. 7, while the one with-
out subcycling enhancement is shown in Fig. 8.

5.3.1 Estimated speed-up with subcycling

The speed-up is estimated by comparing the number of
operations (NPs) for CPFEM simulations with and without
subcycling. Two factors are responsible for speed-up with
the subcycling method. In an incremental CPFEM analysis
from t to t + �t , they are:
(1) the ratio of degrees of freedom (DOF) in fine time-scale

sub-domain to the DOF of entire domain, i.e. NF

Ntotal ;
(2) the ratio of fine time step �τ to coarse time step �t , i.e.
�τ
�t .
In each increment of analysiswithout subcycling using the

fine time-step �τ , a total of m Newton–Raphson iterations
are required. In each iteration, a linear system equations is

Fig. 7 Flowchart showing the entire algorithmic structurewith discrete
twin evolution and subcycling enhancement

solved by a LU decomposition-based direct solver requir-

ing the total NPs to be O
((

Ntotal
)3 �t

�τ
m
)
. When the

subcycling method is used in a time increment from t to
t + �t , only the fine time-scale domain is solved using fine
increments �τ , while the coarse domain is solved with a
coarse time increment �t . If msc iterations are required for
global equilibrium, the total NPs in subcycling method is

O
((

NF
)3 �t

�τ
msc + (

Ntotal − NF
)3
msc + (

Ntotal
)3

msc
)
.

The first, second and third terms correspond respectively to
the number of operations for solving fine time-scale domain,
coarse time-scale domain, and obtaining displacement cor-
rector for the entire domain respectively. The comparison

indicates that �t
�tau and Ntotal

N F are the key factors in reduc-
ing the NPs with subcycling method if msc ≈ m. Higher
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Fig. 8 Flowchart showing the algorithmic structure with discrete twin
evolution but without subcycling enhancement

acceleration rate can be achieved by subcycling method if
the deformation is localized in smaller regions, and if defor-
mation rates exhibit more heterogeneity.

The subcycling algorithm is also amenable to paral-
lelization. Operations in step 2 and 3 of the subcycling
algorithm can be distributed to multiple processors based
on domain partitioning. The FE code is parallelized with the
Open Multi-Processing programming interface OpenMPI-
1.4.3.Parallelization in the context of the subcycling algo-
rithm distributes the load evenly on all processors, with the
fewer elements in localized deformation regions being allo-
cated to a smaller number of processors.

The subcycling method requires a two-parts procedure
at the beginning of each time step, It include the identi-
fication of fine time-scale elements and partitioning into
fine and coarse sub-domains. Their time requirements are
discussed next. The identification process of the fine time-
scale elements evaluates the crystal plasticity constitutive
laws at each integration point. The computing time scales
almost linearly with the degrees of freedom for the domain.
In comparison with the time for solving the system equa-
tions which scale non-linearly with the DOF of the domain,
the identification time is small. For the polycrystalline test
problem with 520404 4-noded linear tetrahedral elements
in Sect. 6.3, the computation time spent on the identifica-
tion of the fine time-scale elements is already negligible.
The subsequent step of partitioning the domain into fine and
coarse sub-domains, requires exchanging history dependent
state variables of the fine domain elements among proces-
sors. Due to the small volume fraction of the fine time-scale
subdomain, the computation time of this part is also negligi-
ble.

6 Numerical examples with the subcycling
augmented CPFEM

The accuracy, efficiency and robustness of the subcycling
algorithm is verified through several numerical simulations
and tests. The first example is a check of its efficiency and
reliability of theCPFEmodel for a polycrystalmicrostructure
of theMg alloyAZ31 that is undergoing deformationwithout
twinning. Its effectiveness for deformation twinning in single
and polycrystalline microstructures are tested in Sects. 6.2
and 6.3 respectively.

6.1 Accuracy and efficiency evaluation for CPFEM
simulations without twinning

To verify the reliability of the subcycling algorithm, a poly-
crystal microstructure of Mg alloy AZ31 under uniaxial
loading is simulated with and without the subcycling algo-
rithm and compared to assess convergence. An image-based
microstructure of the polycrystalline alloy AZ31 is con-
structed using the DREAM.3D software [48] as shown in
Fig. 9. The RVE in Fig. 9a is of size 25 µm × 25 µm ×
25 µm containing 24 grains with an average grain size of
10µm. The RVE is discretized into 16,371 four-noded lin-
ear tetrahedral (TET4) elements with a total of 3270 nodes.
A constant strain-rate compressive loading of 0.0001/s is
imposed on the top surface. Minimum displacement bound-
ary conditions are imposed on other surfaces to remove the
rigid body modes as illustrated in Fig. 9a. The constitutive
parameters for each slip system used in the analyses are those
calibrated in [1]. Features of deformation-twinning are deac-
tivated for this example.

The simulation results of macroscopic stress-strain
responses with and without subcycling acceleration, but with
refined time-steps, are plotted in Fig. 9b. The macroscopic
mechanical stress-strain response by the two methods agree
rather well. Significantly less time increments are required
with the subcycling algorithm leading to accelerated compu-
tations. For local variables, the distribution of stresses in the
microstructure by CPFE simulations with subcycling algo-
rithm is plotted in Fig. 10a and compared with contour plots
of the stress by CPFE simulation with finer time-steps in 10b.
Additionally, the local stress component σxx at 3% strain
is plotted along a line passing through the interior of the
microstructure in Fig.10c. The two results with and without
subcycling algorithm are almost identical, attesting to the
accuracy of the subcycling algorithm.

For comparing the computational efficiencyof theCPFEM
simulations with and without subcycling, the simulations in
Sect. 6.1 are re-done on a single processor. For 10%strain, the
simulation without subcycling acceleration takes 285 time
steps and a total CPU time of 21,250 s. On the other hand,
the test with subcycling acceleration takes only 109 steps
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Fig. 9 a The image-based virtual microstructure of the 24-grain polycrystalline AZ31 alloy showing loading and boundary conditions, and
b macroscopic stress–strain response by CPFEM with and without subcycling under constant strain-rate loading

and a total CPU time of 10,182 s. Approximately, a 200%
speed-up is observed with the subcycling algorithm. The dis-
tribution of time steps lengths are shown in the histogram of
Fig. 11a. Both simulations have a small fraction of less than
1 second time steps. The simulation without subcycling has
most time-steps in the range of 2–4 s in the duration of the
simulation. Figure 11b plots the number of subcycling itera-
tions to reach global equilibrium and the number of iterations
required by the non-linear solver in CPFEM without subcy-
cling. It shows that subcycling algorithm does not require a
large number of iterations in this study. Finally the polycrys-
tal test is performed with 2, 4, and 8 processors to verify the
parallelization efficiency and the CPU times are plotted in
Fig. 12. For this small test problem, the increased efficiency
with parallelization is limited. A higher scaling is expected
for problems with larger number of elements.

6.2 Simulating deformation with twin evolution in single
crystal Mg by subcycling augmented CPFEM

The subcycling-augmented CPFEM is used to simulate
deformation and twinning in a single crystal pure Mg, as
shown in Fig. 13a. The computational domain of the sin-
gle crystal has a dimension of 20µm × 10µm × 10µm,
which is discretized into 67,418 four node linear tetrahedral
(TET4) elements with 13,021 nodes. A uniaxial, constant
strain-rate of 1×10−4 is applied on the top surface along the
x-axis, and minimum displacement boundary conditions are
applied to the bottom surface to prevent rigid body motion.
The crystal has a single orientation, designated by the Euler
angles [0◦, 5◦, 0◦] in ZXY convention as shown in Fig. 13a.
The direction of the applied straining causes the formation

of
{
101̄2

}
tension twins. The 5◦ tilt in the crystal orientation

is to make the Schmid factor of twin variant 1 to be highest
among all 6 twin variants. Thus only twin variant 1 will be
formed during simulations. Without this tilt, both the twin
variants 1 and 4 have the highest Schmid factor and the inter-
action between them must be considered. This mechanism
is currently not implemented in the twin evolution part of
CPFEM. Constitutive parameters used for CPFEM simula-
tions of pure Mg have been calibrated in [1]. To allow for the
formation of multiple twin bands, a small perturbation in the
twin nucleation source size L0 in Eq. (10) is applied.

The reference solution is established by performing six
groups of simulation using respectively time-steps of 1s,
2s, 4s, 6s, 8s and 10s in the explicit staggered twin update
scheme of Sect. 5.3. Figure 13b shows the simulation results
of the fraction of twinned elements at 1% strain as a function
of simulation time step sizes. For time increments smaller
than 2 s, the simulation gives a converged result. Hence the
explicit staggered simulation results with a time-step size of
�t = 1s can serve as the reference solution for this problem.

For validating the implicit, subcycling-accelerated twin
formation algorithm of Sect. 5.3, a simulation with a initial
coarse time-step of 10s is conducted. The number fraction
of twinned elements as a function of the applied strain is
compared with the reference solution in Fig. 14a. Results by
the implicit subcycling model with �t = 10s shows very
good agreement with the reference solution. It can also be
seen that solutions of the explicit staggered algorithms with
similar time steps �t = 10s suffer from inaccuracy.

Figure 14b plots the stress-strain response by different
models up to 10% strain. Prior to 7% strain, the stress levels
and hardening rates are very low, since deformation is dom-
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Fig. 10 Contour plot of loading direction stress σxx distribution in
the 24-grain polycrystalline microstructure by CPFEM simulations: a
with subcycling acceleration algorithm, b without subcycling but with

refined time-steps, and c comparison of the stress σzz along a line
through the middle section of the microstructure by CPFEM with and
without subcycling

inated by twin nucleation and propagation induced plastic
flow. Near 7% strain, twins begin to saturate and occupy
larger volumes in the crystal. The dominant deformation
mechanism then switches from twin evolution to 〈c + a〉 dis-
location slip, causing the hardening rate to increase rapidly.
This results in the sigmoidal shape of the stress-strain
curves, as is experimentally observed for Mg. This change
in deformation mechanisms and the sigmoidal shape of the

stress-strain response curves is predicted by all simulations.
The subcycling model yields excellent results, identical to
the reference solution. However, the explicit staggered twin
update scheme with large time steps yield lower hardening
rate after twin saturation.

A comparison of the discrete twins in themicrostructure as
predicted by the differentmodels ismade inFig. 15. Figure 16
compares the distribution of the Lagrangian strain Eyy at 1%
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Fig. 11 Distribution of a time steps in CPFEM simulation with and without subcycling algorithm, and b number of iterations in non-linear solver
in conventional CPFEM and the number of subcycling iterations in subcycling-accelerated CPFEM
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Fig. 12 Computational CPU time for CPFEM simulation with and
without subcycling algorithm

strain. Solutions by the small time-step staggered model and
the subcycling model are shown in Figs. 15a and 16a respec-
tively. The [0◦, 5◦, 0◦] orientation (Euler angles) causes the(
1̄102

) [
11̄01

]
twin variant to have the highest Schmid factor

in comparison with other extension twin variants. The only
exception is that a

(
101̄2

) [
1̄011

]
twin variant (variant 4 of

the extension twin systems) occurs at the upper left corner of
the model due to the local stress-state. This is shown in Fig.
15a, c respectively. The subcycling-augmented CPFE simu-
lation predicts almost the same twinned microstructures as
the reference solution by the staggered method with a small
time-step. Results of the staggered method with a larger time
step�t = 10s in Fig. 15b however do not capture the variant
4 twin and also predict a smaller twinned volume fraction.
Deformation localization is predicted within twin bands in
the reference and subcycling model solutions. Plastic defor-

mation requires gliding on twin systems or dislocation glide
in the 〈c + a〉 slip systems to compress the crystal along the
X-axis. The localized strain distribution is caused by easy
gliding of micro-twins, in contrast to the 〈c + a〉 system dis-
location glide with high shear resistance.

Finally, Table 2 gives the nucleation time of some twins
by the three different simulation cases. The simulation with
implicit subcycling twin update algorithm predicts much
more accurate results in comparison with simulation by
explicit staggered algorithm using a coarse time step.

Significant computational efficiency is achieved with the
subcycling model. Simulation by the explicit staggered twin
update algorithmwith a fine time step of�t = 1s takes 4576
s to reach 10% strain, while the simulation using implicit
subcycling twin update algorithm takes only 1273 seconds
for the same strain. Approximately 3.6 times speed-up is
achieved with subcycling without any loss of accuracy.

6.3 Deformation and twin evolution in polycrystalline
statistically equivalent RVE (SERVE) by subcycling
augmented CPFEM

The subcycling augmentedCPFEM is used to simulate defor-
mation induced twinning in polycrystalline microstructures
of Mg alloys. Image-based SERVE of the Mg alloy AZ31
is first generated from the experimental data on microstruc-
tures, given in [49]. This data includes statistical distributions
of the grain size, crystallographic orientation and crystallo-
graphicmisorientation across grain-boundaries. This discrete
data is fitted to probability distribution functions for input
into the microstructure simulator software Dream3D [48].
For a specified number of grains in the ensemble, Dream3D
generates a SERVEwith statistical distributionsmatching the
experimental data. The resulting SERVE shown in Fig. 17a
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Fig. 13 a The Mg single crystal computational model subjected to constant strain-rate, uniaxial loading, and b fraction of twinned elements with
different simulation time-steps
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Fig. 14 Comparison of a evolution of fraction of twinned elements as a function of strain, and b stress–strain response of single crystal Mg
simulations by using the explicit staggered and implicit subcycling twin update models

Fig. 15 a Simulated twinned single crystal Mg microstructure at 1% strain, using: a explicit staggered model with a time step �t = 1s, b explicit
staggered model with a time step �t = 10s, and c implicit subcycling model with a time step �t = 10s
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Fig. 16 Lagrangian strain Eyy distribution at 1% overall strain, using: a explicit staggered model with a time step �t = 1s, b explicit staggered
model with a time step �t = 10s, and c implicit subcycling model with a time step �t = 10s

Table 2 Nucleation time of some twins in the three simulations of the single crystal test

Explicit twin ID �t = 1s nucle-
ation time (s)

Explicit twin ID �t = 10s nucle-
ation time (s)

Implicit twin ID �t = 10s nucle-
ation time (s)

1 20 1 20 1 19.69

2 20 2 20 2 19.69

3 22 3 30 3 21.56

4 23 4 30 4 22.81

5 24 5 30 5 23.43

6 26 6 30 6 25.18

7 28 7 30 7 25.18

8 28 8 30 8 27.06

9 31 9 40 9 27.06

10 37 10 40 10 36.56

contains 620 grains of average grain size of 32 µm in a box
of dimension 300 µm× 300 µm× 300 µm. The computa-
tional domain of the SERVE is discretized into 520,404 four
noded tetrahedral elements consisting of 96,849 nodes. The
texture of the SERVE is represented by the pole Fig. 17b.

A uniaxial, constant strain-rate loading of 1 × 10−3 s−1

is applied along the Y-axis, normal to transverse direc-
tion (TD) surface of the virtual microstructure in Fig. 17a.
The color contour corresponds to the angle of alignment
between the [0001] lattice axis in each grain and the normal
direction (ND). Minimum displacement boundary condi-
tions, constraining the rigid body modes is applied to the
bottom surface. As opposed to single crystal simulations,
the interactions between twins, grain boundaries, as well
as between different twin variants are accounted for in the
polycrystalline simulations. These interactions are impor-
tant mechanisms of deformation localization and affect the
stability of CPFEM simulations. The subcycling augmented
CPFEM is able to provide stable solutions for this combina-

tion of complex deformation mechanisms. The macroscopic
stress-strain response from CPFE simulations with and with-
out subcycling are compared in Fig. 17c. Almost identical
results are observed for the two simulations. The CPFE sim-
ulation without subcycling takes 172832 seconds to compute
the deformation up to 2% strain, while the CPFE simulation
with subcycling algorithm takes 29844 seconds to compute
to the same strain. This corresponds to a speed-up by a factor
of 6.

7 Summary and conclusions

This paper develops a validated multi-time-domain subcy-
cling algorithm for numerical time integration algorithm for
crystal plasticity FE models. Nucleation, propagation and
growth of explicit twins are considered in the CPFE for-
mulation. Explicit twin evolution has intrinsic issues of low
computational efficiency, since the simulation time incre-
ment size is bounded by the high deformation-rate inside
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Fig. 17 a The polycrystalline SERVE of AZ31 alloy showing misorientation across grains, and boundary conditions, b pole figures showing the
texture of the AZ31 alloy SERVE, and c stress-strain responses from simulations with and without subcycling

twin bands. The subcycling augmented CPFEM is beneficial
for predicting discrete twin formation and associated het-
erogeneous deformation in single crystal and polycrystalline
microstructures of metals and alloys.

The subcycling method decomposes the simulation spa-
tial domain into the deformation localized critical region and
the low deformation rate non-critical regions. The algorithm
accelerates the simulation by solving the critical domains
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using fine time steps and the non-critical domains using
coarse time step. By using a predictor-corrector algorithm
for the interface displacements, the equilibrium of the entire
computational domain is satisfied. Even when the polycrys-
talline microstructure does not have any explicit twins, the
subcycling method accelerates the CPFE simulations by a
factor of ∼2 over simulations without subcycling. When the
formation of deformation twins are taken into account, a ∼3
fold speed-up is observed for pure Mg single crystals, while
a ∼6 times acceleration is seen for polycrystalline AZ31
microstructures. The level of accuracy in these simulations
with the subcycling method is found to be excellent. This
developed capability of explicit twin evolution in polycrys-
talline microstructures is needed for addressing twin related
material failure.
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Appendix A: Evolution of slip system resistance

The athermal and thermal shear resistances in Eq. (8) and
their evolutions are derived from dislocation-based mech-
anisms. Two types of dislocations are considered in the
evolution of both the athermal (sα

a ) and thermal (sα∗ ) shear
resistances. They are: (i) the statistically stored dislocations
(SSDs) and (ii) the geometrically necessary dislocations
(GNDs) [50,51]. SSDs are associated with the homoge-
neous components of plastic flow and are characterized by
a vanishing net Burgers vector in the microstructure. GNDs
correspond to stored polarized dislocation densities. They
are related to the curl of plastic deformation gradient in
the elastically unloaded configuration. GND accumulation
is necessary for accommodating crystal lattice curvatures
in single crystal bending or near grain boundaries of poly-
crystalline aggregates. The resulting athermal and thermal
hardening rates due to the evolution of SSDs are given as:

ṡα
a,SSD = hαβ

a |γ̇ βsin(n0α, t0β)| (28a)

ṡα∗,SSD = hαβ∗ |γ̇ βcos(n0α, t0β)| (28b)

where the coefficient matrices hαβ
a and hαβ∗ represent the

hardening of athermal and thermal shear resistances on the
slip system α due to activity on slip system β. These matrices
are derived to be:

hαβ
a = qαβhβ

a,re f

∣∣∣∣∣1 − sβ
a,SSD

sβ
a,sat

∣∣∣∣∣
r

sign

(
1 − sβ

a,SSD

sβ
a,sat

)
( no sum on β)

(29a)

hαβ∗ = qαβhβ
∗,re f

∣∣∣∣∣1 − sβ
∗,SSD

sβ
∗,sat

∣∣∣∣∣
r

sign

(
1 − sβ

∗,SSD

sβ
∗,sat

)
( no sum on β)

(29b)

where sα
a,sat and sα∗,sat are the athermal and thermal satu-

ration stresses for hardening caused by the SSD population.
The exponent r is a material constant. ha,re f and h∗,re f are
respectively the reference hardening rates for athermal and
thermal slip resistances and qαβ is a matrix describing latent
hardening.

The contribution of GNDs to the slip system hardening is
from two sources, viz. (i) dislocation components ρα

GND,P
parallel to the slip plane α, which causes hardening due to
the athermal shear resistance sα

a , and (ii) forest dislocation
components ρα

GND,F , which contributes to the hardening due
to thermal shear resistance sα∗ . These are given as:

sα
a,GND = c1Gb

√
ρα
P,GND (30a)

sα∗,GND = Qslip

c2c3b2

√
ρα
F,GND (30b)

whereG is the shearmodulus,Qα
sli p is the effective activation

energy for dislocation slip and c1, c2, c3 are constants repre-
senting the passing stress, jump-width, and obstacle-width,
respectively. Accumulation of GNDs leads to a closure fail-
ure of the Burgers circuit in the intermediate configuration
crystal lattice. This can be measured by the curl of the plastic
deformation gradient per unit area in the reference configu-
ration, corresponding to the Nye’s dislocation density tensor
Λ = −(∇X × FpT )T [52]. The relation between the Nye’s
tensor and GND density components on each slip system
may be expressed as [1]:

Λ =
nslip∑
α=1

ρα
GND,sb

α
0 ⊗ mα

0 + ρα
GND,etb

α
0 ⊗ tα0

+ ρα
GND,enb

α
0 ⊗ nα

0 (31)

where ρGND,s , ρGND,et and ρGND,en are the GND density
components with screw, in-slip-plane edge and normal-to-
slip-plane edge characteristics. tα is the tangent vector of
dislocation line expressed as tα0 = mα

0 × nα
0 , and bα

0 is the
Burgers vector for a slip system α in the reference config-
uration. For hcp crystals, there are more slip systems than
the number of components in Λ. The solutions of ρGND,s ,
ρGND,et and ρGND,en are obtained by solving a constrained
minimization problem of minimizing the L2 norm of the
GND densities subject to the constraint Eq. (31). The mini-
mization problem may be expressed as:
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ρGND = Arg

[
Min

{
{ρGND}T {ρGND}

+ {λ}T ([A] {ρGND} − {Λ̂})
} ]

(32)

where {ρGND} is a 36 × 1 vector column of GND compo-
nents, {λ} is a 9×1 column vector containing components of
theLagrangemultipliers, {Λ̂} is 9×1vector formof theNye’s
dislocation density tensorΛ, and [A] is a 9×36 linear opera-
tor matrix containing the basis tensors b0α ⊗m0

α , b0α ⊗ t0α

and b0α ⊗ n0α . The screw and edge GND components
ρGND,s , ρGND,et and ρGND,en on each slip system respec-
tively contribute to the parallel and forest GNDs ρα

GND,P and
ρα
GND,F according to the following relation:

ρα
GND,P =

Nslip∑
β=1

χαβ
[ ∣∣∣ρβ

GNDssin(n
α
0 ,mβ

0 )

∣∣∣+
∣∣∣ρβ

GNDet sin(n
α
0 , tβ0 )

∣∣∣

+
∣∣∣ρβ

GNDensin(n
α
0 , nβ

0 )

∣∣∣
]

(33a)

ρα
GND,F =

Nslip∑
β=1

χαβ
[ ∣∣∣ρβ

GNDscos(n
α
0 ,mβ

0 )

∣∣∣+
∣∣∣ρβ

GNDetcos(n
α
0 , tβ0 )

∣∣∣

+
∣∣∣ρβ

GNDencos(n
α
0 , nβ

0 )

∣∣∣
]

(33b)

where χαβ is a matrix of coefficients that describes the inter-
action strength between different slip systems.

The total athermal and thermal resistances are expressed
as the sum of parts related to the dislocation microstructure
and those independent of the dislocation as:

sα
a = sα

a,0 +
√

(sα
a,SSD)2 + (sα

a,GND)2 (34a)

sα∗ = sα∗,0 +
√

(sα∗,SSD)2 + (sα∗,GND)2 (34b)

where sa,0 and s∗,0 are initial resistances that do not depend
on the dislocation microstructure.

The grain-size influences the shear resistances through
two sources. First, the non-local GND model introduces a
length scale dependence into the athermal and thermal hard-
ening rates. Second, the initial yield stress at the onset of
plastic flow is sensitive to the grain size [53,54]. A Hall–
Petch type relation has been proposed in [9,53] to augment
the initial thermal shear resistance ŝα∗,0. The grain size depen-
dent initial shear resistance is thus given as:

sα∗,0 = ŝα∗,0 + K α√
Dg

(35)

where ŝα∗,0 is the initial resistance fromdefects that not related
to grain-size, e.g., Periels resistance and the impurities. Dg

is the equivalent grain diameter and the parameter K α =√
(2−ν)πτ∗Gbα

2(1−ν)
, in which τ ∗ is the barrier strength. In this

paper, it is taken as τ ∗ = 0.01G.

The twin boundaries act as barriers to glissile dislocations
and cause hardening of slip systems. Considering the

{
101̄2

}
extension twins have low energy coherent boundaries, the
twin induced hardening contributes to the thermal slip resis-
tance for the slip systems in the twinned region, expressed
as:

ṡα∗,sli p−twin =
Ntwin∑
β=1

hαβ
∣∣∣γ̇ β

tw

∣∣∣ (36)

The hardening coefficient matrix hαβ defines the hardening
on αth—the slip system due to twin system β activity. It is
expressed as:

hαβ = qαβhβ
re f

∣∣∣∣∣1− sβ

sβ
sat

∣∣∣∣∣
r

sign

(
1− sβ

sβ
sat

)
( no sum onβ)

(37)

where sβ =
√

(sβ
a )2 + (sβ∗ )2, qαβ is a matrix describing

latent hardening, and hβ
re f is the reference hardening rate

on twin system β.

Appendix B: Evolution of twin system resistance

The twin system shear resistance changes due to the inter-
action between twin boundaries and mobile dislocations,
expressed as:

ṡα
tw =

Nslip∑
β=1

hαβ
∣∣γ̇ β

∣∣ (38)

where the hardening matrix hαβ defines the hardening of α

twin system from the dislocation slip on β system, which is
written as:

hαβ = qαβhβ
re f

∣∣∣∣∣1 − sβ
a + sβ∗
sβ
sat

∣∣∣∣∣
r

sign

(
1 − sβ

a + sβ∗
sβ
sat

)
( no sum on β)

(39)
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