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Abstract Predicting progressive damage in composite
materials is essential for the design of most lightweight
constructions.When laminated composite structures are con-
sidered, both intralaminar and interlaminar (delamination)
damage evolution need to be addressed. Typically, these dif-
ferent damage modes are treated separately. On the contrary,
in this paper, a continuum damage model is presented which
is capable of modeling orthotropic damage progression
within layers as well as delamination. The model is formu-
lated in a thermodynamically consistent manner. Moreover,
the results are mesh independent due to a fracture energy
based regularization scheme.

Keywords Orthotropic damage model · Thermodynami-
cally consistent · Damage interaction · Layered composites ·
Delamination · Regularization

1 Introduction

In numerous engineering applications such as aerospace,
automotive, and maritime industry, the use of fiber rein-
forced composites (FRCs) is gaining importance. Especially
in lightweight constructions these materials have become
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very popular due to their relatively high stiffness and low
weight. Modeling the mechanical behavior of such materials
can be challenging because of the complexities introduced
by their microstructure. In order to set up models which
can be applied on the structural level (macro-scale) with
an acceptable computational effort—which in most cases
means with acceptable running times of the computations—
and still account for effects resulting from the underly-
ing microstructure (micro-scale), computational multiscale
methods are needed. Among these, the synergistic homoge-
nization schemes, such as the FE2 method [30,32,33,92] or
the so-called Generalized Method of cells (GMC) [2,3,14],
have been used extensively. These methods rely on the hand-
shake between the macro-scale, which is computed with the
finite element method, and the micro-scale, which is called
in any integration point at any step of the computation. The
advantage of this approach is the fact that relatively simple
material models can be used for the single constituents. On
the other hand, although such methods have proven to be
applicable in a broad range of applications, they can easily
become computationally heavy.

Phenomenological models offer an alternative, which is
muchmore efficient.Here, thewhole composite is considered
only on the structural level as one effective, homogenized
material. For this, more complex material models have to be
developed, which are capable of accounting for the complex
anisotropic material behavior.

Predicting the damage onset and progression of compos-
ite structures is an important task. If the material is described
by a phenomenological model, this can be done conveniently
by using the continuum damagemechanics (CDM) approach
introduced by Kachanov, see e.g. [29,41]. Recent applica-
tions of the CDM to modeling progressive damage can be
found e.g. in [43,58,75] for concrete, in [57,60] for masonry,
in [79] for self-healing shape polymers, [10,24,47,61,72,74]
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for polymer matrix composites (PMCs), in [14,48,64] for
ceramic matrix composites (CMCs), in [2] for metal matrix
composites (MMCs), and in [44] for a steel wire reinforced
cement beam, to name only a few.

In most applications, CDMmodels are formulated for the
isotropic case with one single damage variable. Even so,
anisotropic damage evolution can also be described within
this concept by usingmore than one damage variables. In par-
ticular, two damage variables have been used to differentiate
between tension and compression (see e.g. [19,57]), between
tension and shear [84], or between the fiber and the matrix
part in transversely isotropic composites [74]. Further, three
damage variables can be applied to describe deviatoric, vol-
umetric, and tangential parts [37], to differentiate between
fiber (longitudinal), matrix (transverse) and shear compo-
nents [46,50,81], or as the principal directions of damage
progression (see e.g. [17,21,24,44,89]). In few applications,
even four damage variables have been introduced describing
the principal directions together with a separate hydrostatic
part [2] or referring to longitudinal and two transverse direc-
tions as well as shear [51]. In the majority of anisotropic
damage models, however, a general second order damage
tensor is introduced. Noteworthy, almost all of the above
mentioned models are or can be incorporated into this more
general approach. While on the one hand it is always desir-
able to reduce the number of state variables to a minimum,
this enforces on the other hand the formulationof themodel in
the principal directions of damage, which might even change
during the computation. As an alternative, in the current
paper, six damage variables are introduced to describe the
orthotropic behavior without any coordinate transformation,
see Sect. 2.1.

One well-known drawback of the CDM models is their
pathological mesh dependence, which results from localiza-
tion of failure, leading to an ill-posed setting of the problem
(loss of ellipticity). Remedies can be achieved by introduc-
ing non-local integral operators (see e.g. [19,21,23,63]), by
gradient-enhancement (see e.g. [37,56,80,85]), or by reg-
ularization schemes. The latter can be based on viscous
[59] or viscoplastic [52,54,70,82] regularization, on ther-
mal diffusion [45], or on kinematic enhancement [53]. As
an alternative, the regularization can be based on the fracture
energy, that is dissipated during crack opening, as introduced
by Bažant and Oh [7] in the so-called crack band model.
This approach has been applied frequently by several groups,
e.g. [27,31,87]. Moreover, extensions to multiscale applica-
tions can be found in [43,44,60,75], whereas a probabilistic
approach is proposed in [38], and an investigation of the
dependence on the applied strain measure is given in [88].

Structural collapse in fiber composite structures is caused
by the evolution of either intralaminar failure, such as matrix
transverse cracking and fiber fracture, or interlaminar delam-
ination. Typically, delamination is treated separately from

the intralaminar damage mechanisms. A common approach
is the use of two-dimen- sional interface elements with
zero thickness, the cohesive zone elements [4,18,20,36,86].
These require the definition of an appropriate criterion for the
onset of delamination as well as for its growth after an ini-
tial crack has evolved. While the onset is often simply given
by stress-resistance relations, see e.g. [15,26,68,73,76,90],
the damage progression is described by traction-separation
constitutive laws. Although cohesive zone elements are very
efficient in delamination modeling, their use is restricted
because of the two-dimensional formulation, which does
not allow considering cohesive zones of real thickness.
One attempt to overcome this restriction is using solid-
shell elements instead of zero-thickness interface elements
[62,67,83].

The primary goal of this manuscript is to present a phe-
nomenological progressive damage model that possesses the
following features:

1. The damage model is based on the effective stress con-
cept and the energy equivalence hypothesis within the
thermodynamically consistent framework, such that the
predicted damage states are physically admissible.

2. The model enables description of anisotropic damage
evolution, which is particularly important when intralam-
inar failure of composite materials is considered. The
damage state is described by six internal variables, which
can interact with each other, such that even uniaxial
loading can induce damage in directions other than the
loading direction.

3. Mesh dependency is cured by rescaling of the damage
constitutive laws. Thereby, the dissipated energy dur-
ing crack opening is guaranteed to represent the fracture
energy.

4. The same model can also be used for the prediction of
delamination, where different modes can be accounted
for. Hence, it is suited for predicting intralaminar as well
as interlaminar failure of laminated composites.

2 Consistent framework for continuum damage
models

In this Section, the framework is briefly reviewed, within
which the continuum damage model can be formulated in a
thermodynamically consistent manner. For further details on
the general framework, particularly concerning Sect. 2.2 and
2.3, the interested reader is referred to [6].

2.1 Concept of effective stress and choice of damage
variables

In order to describe the damage behavior of a material, the
effective stress tensor is defined by
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σ̄αβ = Mαβγ δ σγ δ (1)

where Greek letters as indices run from 1 to 3. σγ δ are the
components of the Cauchy stress tensor, andM, with compo-
nents Mαβγ δ , denotes the fourth order damage effect tensor.
This tensor is a function of the setD of internal variables that
characterize the damage state, M = M(D).

As shown e.g. by Betten [12,13], the damage vari-
ables contained in D can be scalars, tensors of second
order, or tensors of fourth order. In this work, six inde-
pendent scalar-valued damage variables are chosen, D =
{d1, d2, d3, d4, d5, d6}. These can be interpreted as the com-
ponents of either a six-dimensional damage vector d =
(d1, d2, d3, d4, d5, d6)T in Voigt-notation, a symmetric
second-order damage tensor D,

Dαβ =
⎛
⎝

D11 D12 D13

D21 D22 D23

D31 D32 D33

⎞
⎠ =

⎛
⎝
d1 d4 d5
d4 d2 d6
d5 d6 d3

⎞
⎠ (2)

or a fourth-order damage tensor D,

D =
3∑

α=1

3∑
β=1

1

2
Dαβ

(
eα ⊗ eβ ⊗ eα ⊗ eβ

+ eα ⊗ eβ ⊗ eβ ⊗ eα

)
(3)

For the following derivations, it is useful to expressD also in
terms of the contracted six-by-sixmatrix D̂ in Voigt-notation,

D̂i j =

⎡
⎢⎢⎢⎢⎢⎢⎣

D11 0 0 0 0 0
0 D22 0 0 0 0
0 0 D33 0 0 0
0 0 0 D12 0 0
0 0 0 0 D13 0
0 0 0 0 0 D23

⎤
⎥⎥⎥⎥⎥⎥⎦

(4)

2.2 Complementary energy equivalence hypothesis

The concept of effective stress can only be applied rea-
sonably, if additionally a damage equivalence hypothesis
is made. There are two possible choices: the strain equiv-
alence hypothesis, which has been used extensively by e.g.
Lemaitre and Chaboche [16,39–41], and the complementary
energy equivalence hypothesis suggested by Sidoroff [65].
In the current work, the complementary energy equivalence
hypothesis is applied, which states that the complementary
energy χ remains unchanged if damage occurs:

χ = χ(σ ,D) = χ(σ̄ , 0) (5)

The complementary energy links the engineering strain ten-
sor ε to the Cauchy stress tensor σ by

εαβ(σ ,D) = ∂χ(σ ,D)

∂σαβ

(6)

Further, the effective compliance tensor S̄, with components
S̄αβγ δ , also relates ε to σ by

εαβ = S̄αβγ δ σγ δ (7)

and thus can be expressed through the complementary
energy,

S̄αβγ δ = ∂2χ(σ ,D)

∂σαβ σγ δ

(8)

As shown e.g. in [25,91], this yields to the following relation
between the effective compliance tensor S̄ and the undam-
aged one S:

S̄αβγ δ = Mεραβ Sερηθ Mηθγ δ (9)

Again, it is useful to express this relation also in terms of the

contracted six-by-six matrices ˆ̄
S, M̂ and Ŝ in Voigt-notation,

ˆ̄Si j = M̂ki Ŝkl M̂l j (10)

where Latin letters as indices run from 1 to 6.

2.3 Thermodynamically consistent description of
damage onset and propagation

In this Subsection, the description of damage onset and
damagepropagation are given,which lead to a thermodynam-
ically consistent formulation, see e.g. Krajcinovic [34,35].
All tensors are expressed in Voigt-notation, and hence the ˆ(.)
is omitted in the following in order to simplify notations.

Starting point is the complementary energy χ(σ , d). The
thermodynamic driving forces Y(σ , d)—representing the
thermodynamically conjugated quantities to the damagevari-
ables — can then be obtained from

Yi (σ , d) = ρ
∂χ(σ , d)

∂di
, (11)

where ρ denotes the mass density. In order to define the dam-
age onset as well as the hardening or softening behavior,
respectively, the damage surface is defined as

f (Y(d), δ) = f̂ (Y(d)) − γ (δ) (12)
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Here, f̂ can be interpreted as an equivalent thermodynamic
driving force, while γ (δ) is the hardening/softening function
expressed through the hardening/softening variable δ.

Within the associative concept used here, the evolution of
damage and hardening/softening variables, respectively, are
given by

ḋi = λ̇
∂ f

∂Yi
δ̇ = λ̇

∂ f

∂γ
(13)

where the magnitude of the damage rate is represented by
the damage multiplier λ̇.

Whenever the stress is high enough to generate a ther-
modynamic driving force which yields f = 0, damage is
accumulating. On the contrary, if f < 0, for example in the
case of unloading, damage does not evolve. Moreover, heal-
ing effects are not considered, such that damage can only
grow, λ̇ ≥ 0. These conditions can be summarized through
the Kuhn–Tucker-conditions:

λ̇ ≥ 0 f ≤ 0 λ̇ f = 0 (14)

2.4 Computing the damage multiplier

To compute the damage multiplier λ̇, the consistency condi-
tion is utilized, which reads

ḟ = ∂ f

∂Yk
Ẏk + ∂ f

∂δ
δ̇ = 0 (15)

Substituting the rate of the thermodynamic driving forces

Ẏi = ∂Yi
∂σk

σ̇k + ∂Yi
∂dl

ḋl (16)

into (15) and making use of the evolution equations (13)
yields the following expression

λ̇ = −
∂ f

∂Yk

∂Yk
∂σl

σ̇l

∂ f

∂Ym

∂Ym
∂dn

∂ f

∂Yn
+ ∂ f

∂δ

∂ f

∂γ

(17)

An elastic predictor–damage corrector return mapping
algorithm is used to solve for the variables. For this, following
[5] and [78], the time discretization between two consecu-
tive iterations K − 1 and K is applied for the consistency
condition (15),

f K − f K−1 ∼=
(

∂ f

∂Ym

∂Ym
∂dn

)∣∣∣∣
K−1 (

dK
n − dK−1

n

)

+ ∂ f

∂δ

∣∣∣∣
K−1 (

δK − δK−1
)

= 0 (18)

as well as for the evolution equations (13),

dK
i − dK−1

i
∼= �λK ∂ f

∂Yi

∣∣∣∣
K−1

(19)

δK − δK−1 ∼= �λK ∂ f

∂γ

∣∣∣∣
K−1

(20)

Thereby, the first-order linearization of the consistency con-
dition reads

f K − f K−1 ∼= �λK
(

∂ f

∂Ym

∂Ym
∂dn

∂ f

∂Yn
+ ∂ f

∂δ

∂ f

∂γ

)∣∣∣∣
K−1

(21)

Since successful iterations yield f K = 0, the damage multi-
plier is thus computed from

�λK = − f K−1

(
∂ f

∂Ym

∂Ym
∂dn

∂ f

∂Yn
+ ∂ f

∂δ

∂ f

∂γ

)∣∣∣∣
K−1 (22)

3 Specific choice of model functions

In order to complete the model equations, specific choices
for the complementary energy function χ and for the damage
surface f have to be made. In the current work, an extension
of the two-dimensional model suggested by Barbero (2013)
[6] to the 3D-case has been applied, as proposed recently by
the authors [11].

3.1 Chosen form of the Complementary Energy

To define an orthotropic model, the following quadratic form
is chosen for the complementary energy:

χ(σ , d) = 1

2ρ
σi S̄i j σ j = 1

2ρ
σ̄k Skl σ̄l =

1

2ρ

[
σ 2
1

(1 − d1)2 E1
+ σ 2

2

(1 − d2)2 E2
+ σ 2

3

(1 − d3)2 E3

+ σ 2
4

(1 − d4)2 G12
+ σ 2

5

(1 − d5)2 G13
+ σ 2

6

(1 − d6)2 G23

− α12
σ1 σ2

(1 − d1) (1 − d2)
− α13

σ1 σ3

(1 − d1) (1 − d3)

− α23
σ2 σ3

(1 − d2) (1 − d3)

]
(23)

where

α12 = ν12

E1
+ ν21

E2
α13 = ν13

E1
+ ν31

E3
α23 = ν23

E2
+ ν32

E3
(24)
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and E1, E2, E3, G12, G13, G23, ν12, ν13, and ν23 are the
pristine (undamaged) Young’s moduli, shear moduli, and
Poisson’s ratios, respectively. Then, the thermodynamic driv-
ing forces defined in (11) can be written as

Y1 = σ 2
1

E1(1 − d1)3
− ν12

E1

σ1 σ2

(1 − d1)2(1 − d2)

− ν13

E1

σ1 σ3

(1 − d1)2(1 − d3)
(25a)

Y2 = σ 2
2

E2(1 − d2)3
− ν21

E2

σ1 σ2

(1 − d1)(1 − d2)2

− ν23

E2

σ2 σ2

(1 − d2)2(1 − d3)
(25b)

Y3 = σ 2
3

E3(1 − d3)3
− ν31

E3

σ1 σ3

(1 − d1)(1 − d3)2

− ν32

E3

σ2 σ3

(1 − d2)(1 − d3)2
(25c)

Y4 = σ 2
4

G12(1 − d4)3
(25d)

Y5 = σ 2
5

G13(1 − d5)3
(25e)

Y6 = σ 2
6

G23(1 − d6)3
(25f)

Furthermore, the effective compliance tensor defined in (8)
reads

S̄i j =

⎡
⎢⎢⎢⎢⎢⎢⎣

S̄11 S̄12 S̄13 0 0 0
S̄21 S̄22 S̄23 0 0 0
S̄31 S̄32 S̄33 0 0 0
0 0 0 S̄44 0 0
0 0 0 0 S̄55 0
0 0 0 0 0 S̄66

⎤
⎥⎥⎥⎥⎥⎥⎦

(26)

where

S̄11 = 1

E1(1 − d1)2
S̄22 = 1

E2(1 − d2)2
(27)

S̄33 = 1

E3(1 − d3)2
S̄44 = 1

G12(1 − d4)2
(28)

S̄55 = 1

G13(1 − d5)2
S̄66 = 1

G23(1 − d6)2
(29)

and

S̄12 = − ν12

E1(1 − d1)(1 − d2)
(30)

= − ν21

E2(1 − d1)(1 − d2)
= S̄21 (31)

S̄13 = − ν13

E1(1 − d1)(1 − d3)
(32)

= − ν31

E3(1 − d1)(1 − d3)
= S̄31 (33)

S̄23 = − ν23

E2(1 − d2)(1 − d3)
(34)

= − ν32

E3(1 − d2)(1 − d3)
= S̄32 (35)

From (26) and (10) it is obvious, that with the definition
of χ a choice for the damage effect tensor introduced in (1)
is also made implicitly, such that

Mmn = 1

(1 − dm)
δmn (no summation over m) (36)

which is the contraction of the fourth-order tensor

M = (I − D)−1 (37)

where I is the fourth-order identity tensor, andD is the fourth-
order damage tensor defined in (3). Finally, the effective
stress is thus simply given by

σ̄n = σn

(1 − dn)
(no summation over n) (38)

It is worth to mention, that in most applications this dam-
age effect tensor is defined in terms of the three principal
values of damage (see e.g. [17,21,24,44,89]). Then, the 44-,
55-, and 66-components depend also on these three damage
variables. Nevertheless, following the approach presented in
e.g. [46] (for 2D), independent damage variables are used
here to allow for higher flexibility. The interested reader is
also referred to [81].

3.2 Chosen form of the damage surface

In order to describe the damage surface f = f̂ − γ , the two
functions f̂ (Y) and γ (δ) are defined as follows:

f̂ (Y) = (Yk Hkl Yl)
1/2 (39)

γ (δ) = c1(e
δ/c2 − 1) + γ0 (40)

where Hi j ≥ 0 are material parameters responsible for
the interaction of the damage variables’ effect on the stiff-
ness reduction of the material. Noteworthy, this expression
for f̂ (Y) can also be interpreted as the second invariant YII

of the damage strain energy release rate Y proposed in [17].
Further,γ0 > 0 is the initial damage threshold, and c1 > 0
as well as c2 < 0 are model parameters.

It is worth to mention, that this choice leads to a damage
threshold γ with the dimension of a critical energy release
rate, which is always increasing irrespective of whether hard-
ening or softening occur. Therefore, the hardening/softening
variable δ is always negative and decreasing. On the contrary,
had a stress threshold been used instead, it would be either
increasing (hardening) or decreasing (softening).

123



450 Comput Mech (2017) 60:445–463

The derivatives of the damage surface read

∂ f

∂Yi
= ∂ f̂

∂Yi
= Hi j Y j

(Yk Hkl Yl)1/2
(41)

∂ f

∂γ
= −1 (42)

∂ f

∂δ
= −∂γ

∂δ
= −c1

c2
eδ/c2 (43)

Substituting these derivatives into (13) the evolution equa-
tions can be expressed as

ḋi = λ̇
∂ f

∂Yi
= λ̇

Hi j Y j

(Yk Hkl Yl)1/2
δ̇ = λ̇

∂ f

∂γ
= −λ̇ (44)

Analogously, substitution of (43) into (22) yields the dam-
age multiplier

�λK = − f K−1

(
Hmp Yp Hnq Yq

Yk Hkl Yl

∂Ym
∂dn

+ c1
c2

eδ/c2

)∣∣∣∣
K−1 (45)

where the derivative ∂Ym/∂dn can be obtained from (25).

4 Variety of describable damage effects

The proposed model can be used in a broad spectrum of
applications. One reason for that is the chosen form of
the hardening/softening function γ (δ) in Eq. (40), which
is indeed able to describe both hardening and softening
behavior. In addition, by choosing the damage interaction
parameters Hi j appropriately, several different damage sce-
narios can be accounted for as will be shown below.

4.1 Fitting the hardening/softening function

The material parameters c1, c2, and γ0 can be fitted easily to
the result of an uniaxial tension test. For example, assume
that the stress–strain data in 3-direction have been obtained
from a tensile test, in which the boundary conditions have
been applied such that the stress state has been approximately
uniaxial and homogeneous. Then, only one component Y3 of
the thermodynamic driving forces is non-zero. In this case,
the damage surface defined by (39) and (40) reads:

f = √
H33 Y3 − (

c1(e
δ/c2 − 1) + γ0

) = 0 (46)

If damage onset is considered, no damage has occurred
yet, di = 0 and δ = 0, leading to

γ0 = √
H33 Y3 = √

H33
(σ 0

3 )2

E3
= √

H33 (ε03)
2 E3 (47)

where σ 0
3 and ε03 denote the stress and the strain in 3-direction

at damage onset, respectively. Noteworthy, the first value of
the damage interaction parameters Hi j can be chosen arbi-
trarily. To show this, assume that c̄1, c̄2, and γ̄0 have been
determined already using a particular value H̄33. Then, the
exact same damage surface and evolution equations can be
obtained by replacing these parameters by

H∗
33 = 1 c∗

1 = c̄1√
H̄33

c∗
2 =

√
H̄33 c̄2 γ ∗

0 = γ̄0√
H̄33

(48)

Hence, the first parameter can be chosen arbitrarily, e.g.
H33 = 1, and for the interactions of damage only the ratios
of these parameters are relevant. Then, the damage threshold
is obtained as

γ0 = (σ 0
3 )2

E3
= (ε03)

2 E3 (49)

Next, the two parameters c1 and c2 are to be determined.
For this, two points (σ I

3 , ε I3) and (σ II
3 , ε II3 ) have to be cho-

sen from the part of the curve in which damage has already
occurred. These points should not be too close to each other.
For these values, using the relation σ3 = (1− d3)2E3ε3, the
damage variables are computed from

d I
3 = 1 −

√
σ I
3

E3ε
I
3

d II
3 = 1 −

√
σ II
3

E3ε
II
3

(50)

Having these damage variables d I
3 and d II

3 , the following
equation, whose derivation can be found in the Appendix,
can be solved directly for c2:

a2 (e−d I
3 /c2 − 1) − a1 (e−d II

3 /c2 − 1) = 0 (51)

where: a1 = (1 − d I
3 )E3(ε

I
3)

2 − γ0 (52)

a2 = (1 − d II
3 )E3(ε

II
3 )2 − γ0 (53)

Finally, the remaining parameter is obtained from

c1 = a1

(e−d I
3 /c2 − 1)

(54)

In some cases, the full stress–strain data is not available
but only one point (σ I

3 , ε I3) of the curve, e.g. the peak val-
ues, and the corresponding fracture energy in tension (mode
I) GIc. Then, the parameters have to be determined from
an iterative procedure. First, the damage variable d I

3 is cal-
culated as in (50) above. Then, a value for c2 is guessed
reasonably. Thereby, the parameter c1 is also set according
to (54).With these parameters, the stress–strain response can
be computed. In Fig. 1, the stress–strain plots for several dif-
ferent choices of c2 are shown, all generated through the
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σ0

σ1

ε0 ε1

c2

St
re
ss

Strain

Fig. 1 Variation of parameter c2 with constant γ0 and c1 according to
(54)

same point (σ1, ε1). As one can see, the function allows for
a broad variety of material response in hardening as well as
softening.

In order to fix the parameters, the dissipated energy GI is
evaluated based on the area under the stress–strain curve (see
Sect. 5 for more details). If this GI is larger than the fracture
energy GIc, then the parameter c2 has been chosen too large
and should be decreased. The closer the computed energy is
to the fracture energy, GI ≈ GIc, the better is the fit of the
two parameters c1 and c2.

4.2 Special choices for the damage interaction
parameters

The parameters Hi j represent the interaction of the damage
variables. To show the effect of these parameters, consider
for example a loading in 3-direction, Y3 �= 0, while all other
components of Yi are zero. Then, the evolution equation (44)
for the damage variables reads

ḋi = λ̇
Hi j Y j

(Yk Hkl Yl)1/2
= λ̇

Hi3 Y3
(Y3 H33 Y3)1/2

= λ̇
Hi3√
H33

(55)

From this relation the role of the damage interaction
parameters becomes obvious. For example, the damage evo-
lution in 2-direction ḋ2 due to the loading in 3-direction is
described by the parameter H23 = H32. In fact, as already
mentioned above, only the ratio between H23 and

√
H33 plays

a role.
For the determination of these parameters from experi-

ments, biaxial tests have to be performed. For example can
the parameter H14 be obtained from a tension-torsion exper-
iment, whereas for H23 a biaxial tension test (tensile loading
in 2-direction and 3-direction independently of each other)
is needed.

By choosing the interaction parameters Hi j appropriately,
different material behavior can be described by the presented
model, as is shown below.

4.2.1 Isotropic damage model with full interaction

The isotropic damagemodelwith only one damage variable d
is probably the most used one in literature. This model is
obtained by utilizing the following interaction parameters:

Hi j = H

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(56)

The arbitrary parameter H can be omitted here. Then, the
damage variables are the same in all directions,

ḋ := ḋ1 = ḋ2 = ḋ3 = ḋ4 = ḋ5 = ḋ6 = λ̇

∑6
i=1 Yi√
YkYk

(57)

The effective stress and the effective compliance are given
by the following well-known expressions:

σ̄i = σi

(1 − d)
S̄i j = Si j

(1 − d)2
(58)

This model can be applied to describe the evolution of
damage induced by the growth of spherical micro-voids.
Even if the applied loading is acting only in one particular
direction, the material is isotropically damaged in all direc-
tions.

4.2.2 Damage model without interaction

If one assumes, that the damage evolution in different direc-
tions is completely independent of each other, then the
corresponding interaction parameters are

Hi j =

⎡
⎢⎢⎢⎢⎢⎢⎣

H11 0 0 0 0 0
0 H22 0 0 0 0
0 0 H33 0 0 0
0 0 0 H44 0 0
0 0 0 0 H55 0
0 0 0 0 0 H66

⎤
⎥⎥⎥⎥⎥⎥⎦

(59)

In this case, the rates of the damage variables are

ḋi = λ̇
HiiYi√∑6
k=1 HkkY 2

k

(no summation) (60)
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Obviously, damage can only occur in directions of load-
ing. No matter how large the applied loading is, it can never
effect any other direction than the loading direction. It is
worth to mention, that even if the parameters are chosen to
be equal, H := H11 = H22 = H33 = H44 = H55 = H66,
this model is different from the isotropic one described in
Sect. 4.2.1. Even in this special case the damage variables
evolve differently if different loads are applied.

4.2.3 Damage model for penny-shaped micro-cracks

One common assumption for damage induced by so-called
penny-shaped micro-cracks is that only some very particular
damagemechanisms interact with each other. For example, if
the load Y3 �= 0 is applied such that damage occurs, then only
the corresponding normal component in 3-direction and the
shear components in 13-direction and 23-direction, respec-
tively, are effected.Hence, in pure normal loading the damage
variables are completely uncoupled. The damage interaction
parameters are

Hi j =

⎡
⎢⎢⎢⎢⎢⎢⎣

H11 0 0 H14 H15 0
0 H22 0 H24 0 H26

0 0 H33 0 H35 H36

H14 H24 0 H44 H45 H46

H15 0 H35 H45 H55 H56

0 H26 H36 H46 H56 H66

⎤
⎥⎥⎥⎥⎥⎥⎦

(61)

Moreover, in most applications a decoupling of the shear
components is assumed as well, H45 = H46 = H56 = 0.
If additionally isotropic behavior is considered, only three
different damage interaction parameters are remaining:

Hn := H11 = H22 = H33 (62)

Hns := H14 = H15 = H24 = H26 = H35 = H36 (63)

Hs := H44 = H55 = H66 (64)

leading to

Hi j =

⎡
⎢⎢⎢⎢⎢⎢⎣

Hn 0 0 Hns Hns 0
0 Hn 0 Hns 0 Hns

0 0 Hn 0 Hns Hns

Hns Hns 0 Hs 0 0
Hns 0 Hns 0 Hs 0
0 Hns Hns 0 0 Hs

⎤
⎥⎥⎥⎥⎥⎥⎦

(65)

4.2.4 Damage model for delamination

Delamination of layers in laminated structures can be consid-
ered as one special case of damage induced by penny-shaped
micro-cracks. When delamination between two layers is
taken into account, then only the three stress components

1

2

3

σ33 = σ3

τ13 = σ5

τ23 = σ6

Fig. 2 Stress components within the interface between two layers
which have an effect on delamination

acting at the interface have an effect on the onset and pro-
gression of damage. If, for example, an interface with the
3-direction as normal direction is considered, the only the
stress components σ33 = σ3, τ13 = σ5, and τ23 = σ6 can
lead to delamination, see Fig. 2.

Consequently, for delamination in a plane with the 3-
direction as normal direction, the damage interaction param-
eters are given as

Hi j =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 Hn 0 Hns Hns

0 0 0 0 0 0
0 0 Hns 0 Hs Hss

0 0 Hns 0 Hss Hs

⎤
⎥⎥⎥⎥⎥⎥⎦

(66)

where for most materials it is reasonable to assume that a
shear loading σ5 induces the same damage in terms of stiff-
ness reduction in 5- and 6-direction, i.e. Hs = Hss . Then,
only two independent damage variables dn and ds exist,
whose evolution equations read

ḋn = ḋ3 = λ̇
HnY3 + Hns(Y5 + Y6)

f̂ (Y3,Y5,Y6)
(67)

ḋs = ḋ5 = ḋ6 = λ̇
HnsY3 + Hs(Y5 + Y6)

f̂ (Y3,Y5,Y6)
(68)

where

f̂ (Y3, Y5, Y6) =
√
HnY 2

3 + 2HnsY3(Y5 + Y6) + Hs(Y5 + Y6)2

(69)

The remaining damage variables are zero.
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5 Regularization through rescaling of the
constitutive law

Progressive continuum damagemodels generally suffer from
a pathological mesh dependence as long as they are formu-
lated locally. There are several approaches to cure this mesh
dependence, most of them relying either on non-local theo-
ries or rescaling of damage mechanics constitutive laws. For
both methodologies, the interested reader is referred to the
book of Bažant and Planas [9]. As shown recently by Liu et
al. [44], these formulations yield the same results provided
that they are driven by the same quantity—the effective soft-
ening strain κs . Therefore, in the current work, the effective
strain κ is decomposed into an effective softening strain κs
related to the softening branch and an effective hardening
strain κh , κ = κs + κh . Then, rescaling of the constitutive
laws is performed based on the softening strain only. Further-
more, the softening strain can be defined according to Bažant
and Pijaudier-Cabot [8] as shown schematically in Fig. 3 for
the unidirectional case. The softening strain is therefore given
by

κs = κ − κh = κ − σ

σp
κp (70)

where σp and κp are the peak values of the stress-softening
strain curve.

The dissipated energy per unit volume gs is then defined as
the area under the stress-softening strain curve (see Fig. 3).
This value represents the energy, which is dissipated from
the system due to the deletion of the considered element e,
divided by its characteristic element length he := Ωe/Se,
where Ωe and Se denote the element volume and the created
free surface, respectively. For regular tetrahedral elements,
the element height can be used as characteristic element
length if the element is aligned in direction of the crack
band. However, in more complex situations, more sophis-
ticated strategies should be applied as shown in [28,55].

κ κ
κpκh

κs

σ

σ

σp

gs

Fig. 3 Definition of the softening strain κs

Fig. 4 Simple tension block test with different discretizations: 23 = 8
elements, 33 = 27 elements, 53 = 125 elements, 73 = 343 elements;
blue: undamaged; red: damaged. (Color figure online)

Noteworthy, even if the element is not actually deleted dur-
ing the computation, gs still represents the dissipated energy
at complete failure, since the element does effectively no
longer exist once the stress has decreased to zero. Therefore,
denoting the fracture energy (toughness) by Gc, it is clear
that Gc = gshe has to hold for any element size he. Since
Gc is a material constant, the mesh dependence can be cured
by rescaling the constitutive damage laws to the ratio he/hr ,
where hr is the element length of a reference mesh, which
has been used for calibration of the material model. That is,
the constitutive damage laws have to be rescaled such that for
the new he the same dissipated energy is obtained. Hence,
the parameters have to be redetermined for any new element
size, such that gs = Gc/he.

To illustrate the rescaling strategy, a simple tension block
test is performed with different discretizations (see Fig. 4),
which has been inspired by [22]. The material is assumed to
be isotropic. The block size is held constant, such that the
different discretizations lead to different element sizes. The
block is fixed in vertical direction at the bottom, whereas at
the top a tensile loading is appliedbyprescribing thedisplace-
ment in vertical direction. The model parameters c1 and c2
have been fitted initially to the reference mesh with hr = 1,
which corresponds to the mesh with only one element.

If the different meshes are computed without rescaling,
then the resulting force-displacement curves differ signifi-
cantly, as shown in Fig. 5(a). Only by rescaling the material
model, i.e. by changing the model parameters c1 and c2
such that the dissipated energy remains constant, the result
becomes mesh-independent, as can be seen in Fig. 5(b).

It should be mentioned that the proposed regularization
scheme does not guarantee to remedy potential directional
mesh bias. In the computations performed in the current
work, no influence of mesh orientation was observed. Never-
theless, for future studies the extension proposed by Slobbe
et al. [69] will be adopted.

6 Numerical results

The proposed model has been implemented into an user-
defined material constitutive subroutine (UMAT) in Abaqus
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Fig. 5 Force-displacement response of simple tension block test with
different discretizations. a Without regularization; bwith regularization

[1]. When applied to composite laminates, it is capable of
treating both, the intralaminar damage progression within
each layer and the interlaminar damagemechanisms between
layers (delamination).

When intralaminar damage is to be investigated, it is
important to distinguish between layers made from com-
posites with unidirectional fibers and those with textile
reinforcement. Thus, to illustrate the modeling capabilities
of intralaminar damage progression, two examples are pre-
sented in the following: one with unidirectional fibers taken
from [72] and another one with textile reinforcement taken
from [11], respectively.

Thereafter, new results for the prediction of delamination
in layered composite structures are presented, which can also
be obtained using the proposed damage model.

6.1 Damage analysis of unidirectional fiber reinforced
composites at the micro-scale

The first example was the damage analysis of the microstruc-
ture of an unidirectional fiber reinforced composite.A sample

with 15 fibers with random locations was considered, and
periodic boundary conditionswere applied by using equation
constraints for the degrees of freedom on opposite corners,
edges, and faces of the considered volume element. The
sample was meshed with 13,202 solid elements C3D8. The
considered micro-structure was loaded displacement-driven
by transverse tension in horizontal direction.

The fibers were made from carbon, whereas the matrix
material was an epoxy resin. Hence, the fibers were assumed
transversely isotropic and linear elastic, while for the matrix
material the damagemodelwithout interaction of the damage
variableswas applied, seeSect. 4.2.2. Thedamage interaction
parameters were

Hi j =

⎡
⎢⎢⎢⎢⎢⎢⎣

Hn 0 0 0 0 0
0 Hn 0 0 0 0
0 0 Hn 0 0 0
0 0 0 Hs 0 0
0 0 0 0 Hs 0
0 0 0 0 0 Hs

⎤
⎥⎥⎥⎥⎥⎥⎦

(71)

which represented the special case of (59) for isotropic behav-
ior in normal and shear directions, respectively. The model
parameters γ0, c1, and c2 as well as the interaction parameter
in normal direction Hn were fitted tomatch experimental data
obtained from an uniaxial tension test. The material param-
eters of both fibers and matrix are reported in Table1. The
fiber volume ratio was 0.49.

The influence of the damage interaction parameter in
shear Hs was investigated numerically. The resulting major
strain distributions for different values of Hs can be seen
Fig. 6. Additionally, the corresponding global stress–strain
responses for the different Hs-values are depicted in Fig. 7.

As expected, the damage evolution induced by the shear
stresses in the matrix leaded to a stronger crack propagation
for larger values of Hs . For further investigations concerning
the influence of sample size and different loading directions,
the reader is referred to [72].

6.2 Damage analysis of textile reinforced composites at
the meso-scale

The second example was chosen to illustrate an anisotropic
case of damage behavior with interaction of damage vari-
ables. In particular, the repeating unit cell (RUC) of a plain
weave composite with periodic boundary conditions was
considered. The tows were meshed with reduced integration
solid elements (C3D8R), whereas for the matrix linear tetra-
hedral elements were used. In total, the mesh was composed
of 30,969 elements.

The matrix was epoxy resin modeled by the isotropic
damage model without interaction, as given in the previ-
ous example (71), where Hn = 0.75 and Hs = 0.55. The

123



Comput Mech (2017) 60:445–463 455

Table 1 Material parameters of fibers and matrix

Young’s modulus shear modulus Poisson’s ratio Hardening/softening parameters Damage interaction

(GPa) (GPa) (–) (MPa) (–) (MPa) (–)

Fibers E‖ = 290 G‖ = 20 ν‖⊥ = 0.20

E⊥ = 20 G⊥ = 9 ν⊥ = 0.11

Matrix E = 3.0 G ≈ 1.09 ν = 0.38 c1 = 25.7 c2 = −2.8 γ0 = 0.45 Hn = 0.75

Fig. 6 Major strain distributions in % computed with different values of Hs at an unit cell with 15 fibers subjected to longitudinal shear at an
approximate global strain of 1% (scale factor = 5) [72]

Fig. 7 Global stress–strain responses for different values of Hs at an
unit cell with 15 fibers subjected to longitudinal shear [72]

tow consisted of carbon fibers embedded in the same matrix
material with a fiber volume fraction of 0.49. The material
parameters are the ones presented in Table 1.

First, the tow behaviorwas predicted numerically by using
the Generalized Method of Cells (GMC), which is a semi-
analytical micro-scale method (see [3] for details). Then, the

anisotropic damage model was fitted to the results of this
GMC-computation. The effective material properties for the
tow behavior are given in Table2.

The resulting damage interaction parameters were

Hi j =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 3.1 0.77 0 0 0
0 0.77 3.1 0 0 0
0 0 0 1.6 0 0
0 0 0 0 3.1 0
0 0 0 0 0 3.1

⎤
⎥⎥⎥⎥⎥⎥⎦

(72)

Noteworthy, the first row of this matrix was zero, indi-
cating that no damage could occur in the 1-direction, which
was the fiber direction in this case. In addition, there was
an off-diagonal term which was non-zero, linking the two
directions of transverse tension to each other. This link can
be demonstrated in Fig. 8, in which the engineering constants
are plotted over the applied transverse tensile strain as result
of a numerical transverse tensile test.

As can be seen in Fig. 8, the applied loading in 2-direction
leaded to a drastic decrease in the Young’s modulus E2 in

Table 2 Material parameters of
the tows

Young’s modulus shear modulus Poisson’s ratio Hardening/softening parameters

(GPa) (GPa) (–) (MPa) (–) (MPa)

tow E‖ = 144 G‖ = 2.58 ν‖⊥ = 0.29 c1 = 63 c2 = −4 γ0 = 0.45

E⊥ = 7.84 G⊥ = 1.91 ν⊥ = 0.39
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Fig. 8 Evolution of engineering constants of the tow applied to trans-
verse tension loading [11]

loading direction. Additionally, the stiffness E3 in the other
transverse direction is also reduced slightly, while neither the
shear moduli nor the stiffness E1 in fiber direction (not plot-
ted) are effected. This anisotropic damage effect is reflected
by the interaction parameter H23 = 0.77 in (72).

The longitudinal shear response of the plain weave RUC
has been investigated. The global stress–strain curve pre-
dicted with the proposed model is shown in Fig. 9(a) (red
line). For comparison, a reference solution is additionally
shown (blue line), which again has been obtained by GMC.
Furthermore, local results of the fractional reduction of the
effective shear modulus G12 are illustrated for the tows
in Fig. 9(b) as a measure of the damage in this direction,
where 100%defines the undamaged state and e.g. 20%means
that the effective shear modulus has been reduced to 20% of
its initial (undamaged) value.

For further investigations, particularly with different load-
ing scenarios, the reader is referred to [11].

6.3 Analysis of mode I delamination: double cantilever
beam (DCB) Test

In order to evaluate the potential of the proposed damage
model for analysis of mode I delamination, the well-known
DCB test was considered following the ASTM D5528 stan-
dard, see Fig. 10.

The dimensions of the specimen can be found in Table3.
The cantilevers were made from T300/977-2 unidirectional
laminates with material parameters provided in Table4 taken
from [42,77]. For the interface layer, material parameters of
the neat resign material were chosen, also given in Table4.
Both cantilevers and the interface layer were discretized with
eight-node solid elements C3D8R in Abaqus. In total the
mesh consisted of 161,348 elements and 210,672 nodes.
The loading was applied by prescribing the displacements

Reference (GMC)

Model prediction
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Longitudinal shear strain
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(b)

100%
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Fig. 9 Predicted global and local response of the plain weave RUC
under longitudinal shear loading [11]. a Global stress–strain response;
b fractional reduction of effective shear modulus given as ratio of dam-
aged shear modulus over the pristine one (matrix has been removed for
illustration)

of the nodes at the top and bottom edges of the cantilevers,
respectively. The computationswere performedwith two dif-
ferent maximum loading step sizes: �u+ = 0.1 mm and
�u− = 0.01 mm.

To investigate the influence of the damage harden-
ing/softening function, two different sets of according model
parameters were used (see Table5) defining two different
stress–strain relations, see Fig. 11. It should be mentioned,
that these parameters were chosen such that they yield dif-
ferent peak stresses of 63 MPa and 70 MPa, respectively, but
the same values for the fracture energy.

For comparison, the interface layer was also modeled by
finite-thickness continuum-based cohesive elements
COH3D8, where two different constitutive relations were
applied: a bilinear stress–strain curve and an exponential one,
see Fig. 11. For both of these, the peak stress was chosen to
be 63 MPa as for the UMAT 1. Noteworthy, the strain value
that corresponds to the peak stress value is slightly different
for the COH3D8 elements, although in all computations the
same elastic material constants were used. The reason for
that is the influence of Poisson’s ratio, which is accounted
for with the fully three-dimensional material model in the
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Fig. 10 DCB: System, mesh, boundary conditions, and applied loading. a Undeformed configuration; b displacement distribution in deformed
configuration

Table 3 Dimensions of DCB
(mm)

Length Width Thickness Initial crack length Interface layer thickness

150 25 4 55 0.02

Table 4 Material parameters of
cantilevers and interface

Young’s modulus Shear modulus Poisson’s ratio Fracture energies
(GPa) (GPa) (–) (J/m2)

Cantilever E‖ = 150 G‖ = 6 ν‖⊥ = 0.25

E⊥ = 11 G⊥ = 3.8 ν⊥ = 0.45

Interface E = 3.2 G ≈ 1.18 ν = 0.36 GIc = 432 GIIc = 945

Table 5 Damage parameters of
interface layer

Hardening/softening parameters Damage interaction parameters

(MPa) (–) (MPa) (–) (–) (–)

UMAT 1 c1 = 0.20 c2 =-0.15 γ0 = 0.20 Hnn = 1.0 Hns = 1.0 Hss = 0.8

UMAT 2 c1 = 0.40 c2 =-0.171 γ0 = 0.10 Hnn = 1.0 Hns = 1.0 Hss = 1.0

UMAT but not in the COH3D8. The latter are only able to
provide a spring-like one-dimensional response such that lat-
eral contraction is not captured.

The obtained results for the global load-displacement
curve are shown in Fig. 12. As one can see, the two curves for
the proposed damage model (solid blue lines) are in agree-
ment with the analytical solution taken from [49] even for
the larger maximum loading steps of �u+ = 0.1 mm. Fur-
ther, the two different sets of parameters used in UMAT 1
and UMAT 2 yield practically the same result showing that
the model parameters—including the peak stress value in

the stress–strain relation—have only little influence on the
global response as long as the fracture energy is preserved.

Additionally, results of theAbaqus elements COH3D8 are
also shown in Fig. 12. It was observed, that these were not at
all able to reach a converged solution in the post-peak regime
for the smallermaximumtime steps�u− neither for the bilin-
ear nor the exponential constitutive relation (dotted lines in
Fig. 12). Even worse, for the bilinear stress–strain constitu-
tive relation, there is a significant difference in peak values
and post-peak behavior compared to the reference solution
(red dashed line). Only for the exponential case with the
larger maximum loading step size �u+ (dashed green line)
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Fig. 11 Stress–strain constitutive response of the proposed damage
model (UMAT) and the Abaqus cohesive zone elements COH3D8 with
finite thickness
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Fig. 12 DCB: comparison of global results between the proposed dam-
age model (UMAT) and the Abaqus cohesive zone elements COH3D8
with finite thickness. Themaximumapplied loading stepswere:�u+ =
0.1mm and �u− = 0.01mm

realistic results could be obtained being close to the analytical
solution.

It should bementioned, that it was not the aim of this paper
to improve the performance of theCOH3D8elements. There-
fore, stabilizing techniques such as the arc-length method
were not adopted, norwere the time stepping control parame-
ters of Abaqus adjustedmanually, nor was amesh refinement
conducted, which might have helped to obtain better results,
as described e.g. in [71]. Hence, one might be able to solve
the given DCB-problem also with the Abaqus elements
COH3D8. However, using the samemesh as for the proposed
damage model in the UMAT within C3D8R solid elements
and applying default values for the control parameters yields
unacceptable results.

Fig. 13 DCB: predicted normal stress distribution σ33 (3-direction:
thickness direction). The crack front moved through the interface layer
with decreasing loading step from a to d

Finally, the obtained results for the local normal stress dis-
tribution in thickness direction are given in Fig. 13 showing
the crack front progressing through the interface layer.

6.4 Analysis of mode II delamination: end notched
flexure (ENF) Test

Further, the potential of the proposed damage model for
analysis of mode II delamination was investigated by consid-
ering the well-known ENF test following the DIN ENF 6034
standard, see Fig. 14. The dimensions of the specimen and
the finite element mesh were the same as for the DCB (see
Table3). The distance between the ends of the specimen and
the supports was 25 mm, such that the span and the effective
initial crack length were 100mm and 30 mm, respectively.
The material parameters were also the same (see Table4).
For the damage model parameters, the ones given in Table5
for UMAT 1 were applied. As before, the interface layer was
additionally modeled by standard Abaqus cohesive elements
COH3D8 with finite thickness, where the bilinear and expo-
nential constitutive stress–strain relations were utilized.

The obtained results for the global load-displacement
curves are shown in Fig. 15. As one can see, the curves for the
proposed damage model (solid blue lines) and the Abaqus
cohesive formulation with exponential softening (dashed
green lines) were very close to each other. However, the
COH3D8 with the bilinear constitutive response (dashed red
lines) predicted a higher peak load compared to the other two
formulations. Noticeably, all three formulations are more or
less in agreement with the analytical solution (magenta solid
line) taken from [49,66]. Further, for large displacement val-
ues, the result obtained by the proposed UMAT converges
asymptotically to the analytical solution using beam theory
with two split beams (dashedmagenta line), see also [49,66].
Since these results obtained with the larger maximum load-
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Fig. 14 ENF: system, mesh, boundary conditions, and applied loading. a Undeformed configuration; b displacement distribution in deformed
configuration
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Fig. 15 ENF: comparison of global results between the proposed dam-
age model (UMAT), the Abaqus cohesive zone elements COH3D8with
finite thickness, and the analytical solution

ing step size of �u+ = 0.1 mm were already satisfactory,
no smaller time step sizes were investigated.

In order to demonstrate that various ratios of mode-
dependent fracture toughness can be accomplished, the shear
damage interaction parameter was increased to Hss = 0.95
in a second case, which reduced the fracture energy to
GIIc = 514 J/m2. The corresponding stress–strain relations
are plotted in Fig. 16, whereas the global results are shown
in Fig. 17.

Concluding, the obtained results for the local shear stress
distribution in longitudinal-thickness direction are given in
Fig. 18 showing the crack front progressing through the inter-
face layer.

6.5 Mixed-mode test with proportional loading

Finally, the proposed damagedmodelwas verified for various
mixed-mode loading conditions applied to a single element

Fig. 16 ENF: stress–strain constitutive responses of the proposeddam-
age model (UMAT) with Hss = 0.8 and Hss = 0.95, respectively, and
the Abaqus cohesive zone elements COH3D8 with finite thickness with
GIIc = 945 J/m2 and GIIc = 514 J/m2, respectively

test. As shown in Fig. 19, the lower surface of the considered
block was completely fixed, while displacements u2 and u3
(u1 = 0) were prescribed on the top surface.

The displacement-controlled proportional loading was
given in terms of an angle θ ∈ [0, π/4], such that

u2 = uII sin(2θ) u3 = uI cos(2θ) (73)

where uI and uII were the displacements at complete failure
in pure mode I (θ = 0) and mode II (θ = π/4), respectively.
For the current investigation, complete failure was defined by
a maximum damage variable of 0.99. It is worth to mention,
that this limit can be set to any value. If no limit for the
damage variables is set, then a tolerance of tol = 10−8 is
applied such that di ≤ 1 − tol.

The elastic material parameters were the same as for
the interface layer in the previous examples (see Table4).
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Fig. 17 ENF: comparison of global results between the proposed dam-
age model (UMAT) and the Abaqus cohesive zone elements COH3D8
with finite thickness for two different damage interaction parameters
Hss = 0.8 (GIIc = 945 J/m2) and Hss = 0.95 (GIIc = 514 J/m2)

Fig. 18 ENF: predicted shear stress distribution τ13 (1-direction: lon-
gitudinal direction, 3-direction: thickness direction). The crack front
moves through the interface layer with decreasing loading step from a
to d

The hardening/softening parameters were adopted from the
UMAT 1 (see Table5), while the damage interaction param-
eters were set to Hnn = Hns = Hss = 1.0.

Seven different values for the angle θ were considered:
θ = n π/24 (n = 0, 1, . . . , 6). For any of these, the resulting
dissipated energies GI and GII were computed and com-
pared to the analytical solution provided by Yuan and Fish
[89]:

GI = GIc cos
2(2θ) GII = GIIc sin

2(2θ) (74)
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Fig. 19 Mixed-mode loading conditions
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Fig. 20 Dissipated energies scaled with the fracture toughness for var-
ious angles of mixed-mode loading in comparison to the analytical
solution taken from Yuan and Fish [89]

Results are presented in Fig. 20. As one can see, the sim-
ulated results coincide with the analytical ones.

7 Conclusions

A phenomenological progressive damage model has been
presented, which is formulated in a thermodynamically con-
sistent manner. The model is able to account for anisotropic
damage evolution which is induced by the underlying
microstructure of the considered composite. Moreover, the
results are mesh independent thanks to the use of a regular-
ization scheme that is based on the fracture energy dissipated
during crack opening. Thereby it is guaranteed, that the pre-
dicted damage states are reasonable and admissible from
physical point of view.

It has been shown that the presented approach can be
applied for predicting intralaminar damage propagation as
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well as delamination between layers of laminated composite
structures. While these different damage modes are typically
treated separately, they can be taken into account concur-
rently by the proposed model. The potential of the approach
has been illustrated by five numerical examples: (i) analy-
sis of isotropic damage evolution within the matrix material
of a unidirectional fiber reinforced composite sample at the
micro-scale; (ii) analysis of the anisotropic damage evolu-
tion within the tows of a plain weave composite material at
the meso-scale (textile scale); (iii) analysis of delamination
induced by tensile loading (mode I) using the DCB test; (iv)
analysis of delamination induced by shear loading (mode II)
using the ENF test; (v) analysis of the mixed-mode behavior
with proportional loading.

Noteworthy, the comparison with analytical solutions as
well as Abaqus finite-thickness cohesive elements COH3D8
has shown that the proposed model is well suited for delam-
ination analysis both in mode I and mode II. The obtained
results from the DCB as well as ENF test are satisfying.
Moreover, in some cases (particularly for the DCB) the
Abaqus elements were not able to realistically predict the
load-displacement curve for the samemeshwhich gave accu-
rate results with the proposed damage model. Furthermore,
the study of the mixed-mode test has clearly shown that prac-
tically any mode mixity—represented by the angle θ—can
be accounted for.

Concluding, the proposed model has been shown to be
suitable for damage analysis and delamination prediction of
laminated composites.
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Appendix

Consider the case of only one acting thermodynamic driving
force Y3 �= 0, such that

Y3 = (σ3)
2

(1 − d3)3E3
= (1 − d3)E3ε3 (75)

Then, according to the evolution equations (44), the rates
of the corresponding damage variable ḋ3 and the harden-
ing/softening variable δ̇ read

ḋ3 = √
H33λ̇ δ̇ = −λ̇ (76)

Hence, choosing H33 = 1, one gets δ̇ = −ḋ3. Since δ(0) = 0
as well as d3(0) = 0, this also implies δ = −d3. In this case,

the damage surface is given by

f = Y3 − c1
(
e−d3/c2 − 1

)
− γ0 = 0 (77)

Substituting Y3 from (75) yields

f = (1 − d3)E3ε3 − c1
(
e−d3/c2 − 1

)
− γ0 = 0 (78)

If two points (σ I
3 , ε I3) and (σ II

3 , ε II3 ) are given, the corre-
sponding damage variables can be computed as follows:

d I
3 = 1 −

√
σ I
3

E3ε
I
3

d II
3 = 1 −

√
σ II
3

E3ε
II
3

(79)

Evaluating the damage surface (78) at point (σ I
3 , ε I3) yields

the following equation:

(1 − d I
3 )E3ε

I
3 − c1

(
e−d I

3 /c2 − 1
)

− γ0 = 0 (80)

which can be rewritten as

a1 − c1
(
e−d I

3 /c2 − 1
)

= 0 (81)

where the following abbreviation has been introduced:

a1 = (1 − d I
3 )E3(ε

I
3)

2 − γ0 (82)

From (81), the relation between c1 and c2 is obtained as

c1 = a1

(e−d I
3 /c2 − 1)

(83)

Finally, this relation is inserted into the damage surface,
which is evaluated at the second point (σ II

3 , ε II3 ), leading
to

a2 − a1

(e−d I
3 /c2 − 1)

(
e−d II

3 /c2 − 1
)

= 0 (84)

where: a2 = (1 − d II
3 )E3(ε

II
3 )2 − γ0 (85)

which can be expressed as

a2
(
e−d I

3 /c2 − 1
)

− a1
(
e−d II

3 /c2 − 1
)

= 0 (86)
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