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Abstract The paper is devoted to non-linear vibrations of
plates, made of the Zener viscoelastic material modelled
with the Caputo fractional derivative, and in particular to
their response to harmonic excitation. The plate geometric
non-linearity is of the von Kármán type. In the formula-
tion shear effects and rotary inertia are considered, too. The
problem is solved in the frequency domain. A one-harmonic
form of the solution for plate displacements corresponding
to the plate formulation is assumed. The amplitude equa-
tion is obtained from the time averaged principle of virtual
work. The time averaging precedes the use of the harmonic
balance method. In the space discretization the finite element
method is used involving 8-noded rectangular plate elements
with selective-reduced integration. Several numerical exam-
ples are analyzed and the response curves are found using a
path-following method. The purpose of these analyses is to
identify material features of the adopted model of viscoelas-
ticity with the fractional derivative.

Keywords Plate vibrations · Von Kármán non-linearity ·
Zener material · Caputo fractional derivative · Harmonic
balance method · Response curves

1 Introduction

In the view of continually growing requirements to reduce
excessive and undesired vibrations in engineering, a variety
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of methods serving this purpose have been devised. Mak-
ing use of special materials exhibiting damping properties
is of the key importance in many of these methods. A vari-
ety of viscoelastic models can be applied to analyze physical
behaviour of these materials. It is possible to use these mate-
rials as layers or single patches attached to some structural
elements. Alternatively, materials used as structural ones do
exhibit viscoelastic properties, too. That is why consider-
ations of dynamic behaviour of such structural elements,
i.e. beams, plates or shells, often taking into account geo-
metric non-linearity, made from or containing fragments of
viscoelastic materials became very urgent.

In the course of a non-linear analysis a large range of
dynamic phenomena can be found. They include, besides
ordinary type of resonance, internal resonance of three-to-
one type, quasi-periodic vibrations and chaotic response, see
for instance [12,13]. The author was solving the problem of
non-linear vibrations of the Kelvin–Voigt viscoelastic beams
during axial movement and with additional non-linear spring
support. The problem was further investigated in [14,15]
for the case of vibrations over a buckled state. In [16] the
vibrations of viscoelastic microbeams were analyzed, too.
Li and Cheng [27] also reported many non-linear phenom-
ena including transition to chaos in the case of viscoelastic
plates with high-order shear deformation included.

In the field of plates vibrations several further contribu-
tions can be found aswell. A hereditarymodel of viscoelastic
material to solve non-linear free vibrations of laminated
plates was used by Kim and Kim [19]. In the paper [9] a spe-
cial collocation method with radial basis functions was used
to solve equations of free vibrations of laminated plates.Non-
linear free and forced vibrations of sandwich plates with the
Green-Rivlin material viscoelastic core were considered by
Mahmoudkhani et al. [29], and the solutions were obtained
using a few different models of non-linearity. Amabili [1]
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solved the problem of non-linear vibrations of simply sup-
ported plates made from the Kelvin–Voigt material, with
inclusion of geometric imperfections. In recent years the
Golla–Hughes–McTavish (GHM) material was applied to
model viscoelastic properties for various types of plates.
Sarangi and Ray [34] as well as Kumar and Ray [21] ana-
lyzed damping of non-linear vibrations in laminated plates.
Transient non-linear vibrations of skew laminated com-
posite plates and non-linear thin panels with piezoelectric
active constrained damping patches or layers were consid-
ered in [18,37]. The papers [20,22,33] were devoted to
smart functionally graded plates including the active con-
straining in the form of piezoelectric layers. The problem
of geometrically linear vibrations of thin laminated plates
was solved with a three-dimensional fractional derivative
model for viscoelasticity by Datta and Ray [7]. The Zener
material with fractional derivative was also considered in
[10] for linear transient vibrations of viscoelastic sandwich
beams.

The use of fractional derivatives to model the hereditary
properties of viscoelastic materials dates back to the begin-
ning of twentieth century. But a physical foundation for this
approach was laid much later, in the works of Bagley and
Torvik [3,4]. They found a link between molecular theo-
ries predicting the behaviour of viscoelastic polymers and
the fractional calculus used to describe these phenomena.
Since then the idea was used to generalize classical vis-
coelastic models—Kelvin–Voigt [8], Maxwell [30], Zener
[2], which is also called standard linear solid [28], or a 3-
parameter viscoelastic model [35]. It is generally agreed,
that the introduction of fractional derivatives, where its order
can be viewed as an additional material parameter, allows to
reduce the number of classical physical parameters—thus, to
simplify the model.

The main goal of the research reported in this paper is to
show the possibility of solving, in a formof resonance curves,
the steady-state vibrations problem for viscoelastic plates
within the von Kármán geometric non-linearity. The Zener
materialwith fractional derivative is taken into account.Bear-
ing inmind the growingneed for the reduction of vibrations in
structural systems, one can conclude, that the analysis of var-
ious models of viscoelasticity is very important. The choice
of the fractional Zener material in this paper is motivated in
that, among the models capable of predicting all key prop-
erties of a viscoelastic body, it is the simplest possible one
[17,23]. It is the authors’ opinion that the presented approach
and discussion of the model properties can be viewed as an
attractive proposal to predict the dynamic behaviour of real
viscoelastic materials and structural elements made of them.
The suggested methodology of solution to the plate vibra-
tions problem can also be applied in more practical cases,
like laminated plates with viscoelastic layers used for the
reduction of vibrations.

The paper is divided into the following sections. A sum-
mary of plate kinematics with the von Kármán geometric
non-linearity is presented in Sect. 2. In Sect. 3 the formula-
tion of the fractional Zener material is given. The physical
equations for a plate with the Caputo fractional derivative
are presented. Section 4 is devoted to the form of solution
assumed in the analysis. A single-harmonic form consistent
with plate and material description is proposed. Section 5
contains the most important element of the paper, i.e. the
derivation of the amplitude equation from the virtual work.
The equations of motion are expressed in the frequency
domain in terms of amplitudes of plate displacements. A
novel aspect in this derivation is the precedence of the time
averaging with respect to the harmonic balance method and
the space integration. The latter is done using the finite
element method. Details of the adopted discretization are
discussed in Sect. 6. The most complex matrices for the
plate element resulting from the FE formulation are given
in “Appendix”. Several analyses for simple cases of vibrat-
ing plates are presented in Sect. 7 with a discussion of results.
Sect. 8 contains a summary and an outlook.

2 Geometrically non-linear plate

Let us analyze a plate of moderate thickness h with the von
Kármángeometric non-linearity included to cover themoder-
ate rotations regime. Shear deformation is taken into account
in the formulation, too. Figure 1 shows appropriate kinematic
variables, i.e. deflection at the mid-plane w0, in-plane trans-
lations at the mid-plane u0 and v0 and two cross-section
rotations ϕx and ϕxy . For an arbitrary point at the cross-
section the displacements are given by

u(x, y, z) = u0(x, y) + zϕx (x, y)

v(x, y, z) = v0(x, y) + zϕy(x, y)

w(x, y, z) = w0(x, y) (1)

Functions of von Kármán strains, which result from the
definition of displacement fields (1), are assembled into vec-
tors and expressed using the following geometric relations

εr =
⎧
⎨

⎩

ϕx,x

ϕy,y

ϕx,y + ϕy,x

⎫
⎬

⎭
(2)

εs =
{

w0
,x + ϕx

w0
,y + ϕy

}

(3)

εp = εpl + εpn =

⎧
⎪⎨

⎪⎩

u0,x

v0,y

u0,y + v0,x

⎫
⎪⎬

⎪⎭
+

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2

(
w0

,x

)2

1
2

(
w0

,y

)2

w0
,xw

0
,y

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(4)
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Fig. 1 Plate kinematics
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The in-plane strains (4) are composed from linear and non-
linear part.

The displacement vectors are defined as

qr =
{

ϕx

ϕy

}

qw = {
w0

}

qt =
{
u0

v0

}
(5)

and the strains (2)–(4) can now be given as

εr = B′
rqr (6)

εs = B′
swqw + B′

srqr (7)
εpl = B′

rqt (8)

εpn =
⎧
⎨

⎩

εpn1
εpn2
εpn3

⎫
⎬

⎭
= 1

2

⎧
⎪⎨

⎪⎩

qw
T B′

w1
T B′

w1 qw

qw
T B′

w2
T B′

w2 qw

qw
T B′

w1
T B′

w2qw + qw
T B′

w2
T B′

w1qw

⎫
⎪⎬

⎪⎭

(9)

where the appropriate matrices of differential operators take
the form

B′
r =

[
∂
∂x 0 ∂

∂y

0 ∂
∂y

∂
∂x

]T

(10)

B′
sw =

[
∂
∂x

∂
∂y

]T

B′
sr =

[
1 0
0 1

] (11)

B′
w1 = [

∂
∂x

]

B′
w2 =

[
∂
∂y

] (12)

The virtual strains required in the subsequent expression of
the virtual work are

δεr = B′
rδqr (13)

δεs = B′
swδqw + B′

srδqr (14)

δεp = δεpl + δεpn (15)

where the in-plane linear and nonlinear components are given
as

δεpl = B′
r δqt (16)

δεpn =
⎧
⎨

⎩

δεpn1
δεpn2
δεpn3

⎫
⎬

⎭
=

⎧
⎪⎨

⎪⎩

δqw
T B′

w1
T B′

w1qw

δqw
T B′

w2
T B′

w2qw

δqw
T B′T

w1B′
w2qw + δqw

T B′
w2

T B′
w1qw

⎫
⎪⎬

⎪⎭

(17)

Let us also put together bending and torsional moments, two
shear forces and in-plane forces, into the respective vectors
of internal forces

M = {
Mx My Mxy

}T
(18)

Q = {
Qx Qy

}T
(19)

N = {
Nx Ny Nxy

}
(20)
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Fig. 2 Representation of Zener
material: a classical, b fractional
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3 Fractional Zener model of viscoelastic material

Viscoelasticity can be modelled using different approxi-
mations, starting with the simplest classical Maxwell and
Kelvin–Voigt ones. It is known, that none of these two mod-
els with two material constants only is capable of predicting
simultaneously all the important phenomena, as creep, relax-
ation, immediate elasticity, etc. Thus, more complex models
were proposed and it was found that the simplest possi-
ble approximation to qualitatively describe viscoelasticity
is given by Zener, e.g. [17,23]. This three-parameter model
involves two springs with stiffness E1 and E2 and a dashpot
of viscosity c, see Fig. 2a.

Attempts were also made to generalize classical Maxwell
and Kelvin–Voigt models in applications related to the
dynamic behaviour of viscoelastic dampers. They led to
inclusion of many more material parameters [5,25,31]. Con-
trary to this, it was shown, that the use of fractional derivative
models can significantly reduce the required number of addi-
tional material parameters, while preserving the same level
of accuracy in the description of real materials and that it
remains correct over a broad range of excitation frequency
[3,11].
Thus, in the present paper the fractional Zener model, shown
in Fig. 2b, is used. Instead of the classical dashpot, the Scott-
Blair fractional damping element described by the damping
coefficient c and the order of fractional derivative α is intro-
duced. With α kept in the range [0,1] the Scott-Blair element
exhibits properties intermediate between a spring (α = 0)
and a dashpot (α = 1). The stress-strain relation for the
fractional Zener model reads

σ + τDα
t σ = E0ε + τ E∞Dα

t ε (21)

where the initial and final stiffness values are given by
E0 = E1 and E∞ = E1 + E2, respectively, τ = c/E2

is the relaxation time and Dα
t denotes the fractional deriva-

tive of the order α with respect to time t . It is worth to note,
that the unit for the relaxation time in the case of fractional
derivative formulation is second to the power α(sα).

There are several possible definitions of fractional deriva-
tives, for example Grünwald-Letnikov, Caputo or Riemann–
Liouville ones. In the present formulation the Caputo defini-
tion is applied

Dα
t f (t) = 1

	 (1 − α)

t∫

a

d f (τ )

dτ

dτ

(t − τ)α
(22)

with the special function 	 present. Let us also note, that
with zero initial conditions and for a → −∞ in (22) the
result from the Caputo calculation becomes identical with
the Riemann–Liouville one.

Taking into account the introduced definitions of the
generalized stresses (18)–(20) and the generalized strains
(2)–(4), one can write down the physical relations as

M + τDα
t M = D0εr + τD∞Dα

t εr (23)

Q + τDα
t Q = Aq0εs + τAq∞Dα

t εs (24)

N + τDα
t N = A0εl + τA∞Dα

t εl (25)

with the matrices of the material stiffness introduced

Di = Eih3

12
(
1 − ν2

)

⎡

⎣
1 ν 0
ν 1 0
0 0 (1 − ν)/2

⎤

⎦ (26)

Aqi = κEih2

2 (1 + ν)

[
1 0
0 1

]

(27)

Ai = Eih

1 − ν2

⎡

⎣
1 ν 0
ν 1 0
0 0 (1 − ν)/2

⎤

⎦ (28)

where i = 0 or ∞. The Poisson’s ratio of the material
assumed as time-constant is denoted with ν, while κ stands
for the shear correction factor, which for a plate is equal to
5/6.

4 Harmonic form of steady-state solution

For the purpose of analysis of plate vibrations the excitation
is adopted in the form of loading transverse to the plate mid-
plane, as the most common and realistic one in the plate
theory. The steady-state vibrations will be considered, so for
the harmonic excitation function pw the following time form
is assumed

pw(x, y, t) = pwc(x, y) cos λt + pws(x, y) sin λt (29)
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In (29) pwc and pws are arbitrary space functions of force
amplitudes and λ is the frequency of excitation.

The resulting solution for rotation and deflection displace-
ments components reads

qw(x, y, t) =
{
w0

}
= qwc(x, y) cos λt + qws(x, y) sin λt

(30)

qr (x, y, t) =
{

ϕx

ϕy

}

= qrc(x, y) cos λt + qrs(x, y) sin λt

(31)

Due to the partly linear (in in-plane displacements) and partly
non-linear (in deflections) nature of in-plane strains (4) one
has to assume a higher order form of solution for the in-plane
displacements

qt (x, y, t) =
{
u0

v0

}

= qtc(x, y) cos
2 λt + qt0(x, y) cos λt sin λt

+ qts(x, y) sin
2 λt (32)

The accelerations resulting from (30)–(32) are given by

q̈w(x, y, t) = −λ2qwc(x, y) cos λt − λ2qws(x, y) sin λt (33)
q̈r (x, y, t) = −λ2qrc(x, y) cos λt − λ2qrs(x, y) sin λt (34)

q̈t (x, y, t) = −2λ2
{[

qtc(x, y) − qts(x, y)
]
cos2 λt

+ 2qt0(x, y) cos λt sin λt

− [
qtc(x, y) − qts(x, y)

]
sin2 λt

}
(35)

Now the expressions for inertia forces can be written down.
For the in-plane movement

bt (x, y, t) = 2λ2
{

mt
[
qtc(x, y) − qts(x, y)

]
cos2 λt+

+ 2mtqt0(x, y) cos λt sin λt

− mt
[
qtc(x, y) − qts(x, y)

]
sin2 λt

}
(36)

for the deflections

bw(x, y, t) = λ2mwqwc(x, y) cos λt + λ2mwqws(x, y) sin λt (37)

and for the rotations

br (x, y, t) = λ2mrqrc(x, y) cos λt + λ2mrqrs(x, y) sin λt

(38)

Expressions (36)–(38) include the following mass matrices

mw = [m], mt =
[
m 0
0 m

]

= mI, mr = 1

12

[
mh2 0
0 mh2

]

= mr I

where m and mr are the plate unit area mass and the rotary
inertia of the unit area mass, respectively.

Taking into account the geometric relations (6)–(9) with
the assumed form of displacements (30)–(32) allows to for-
mulate the generalized strains as

εr (x, y, t) = εrc(x, y) cos λt + εrs(x, y) sin λt (39)

εs(x, y, t) = εsc(x, y) cos λt + εss(x, y) sin λt (40)

εp(x, y, t) = εpc(x, y) cos
2 λt + εp0(x, y) cos λt sin λt

+ εps(x, y) sin
2 λt

= [
εplc(x, y) + εpnc(x, y)

]
cos2 λt

+ [
εpl0(x, y) + εpn0(x, y)

]
cos λt sin λt

+ [
εpls(x, y) + εpns(x, y)

]
sin2 λt (41)

In (41)3 the functions of amplitudes of in-plane strains are
split into linear and non-linear parts.

With the physical law for the fractional Zener material
model (23)–(25) and the strains (39)–(41) taken into account,
one can introduce the time form for the internal forces (18)–
(20) as

M(x, y, t) = Mc(x, y) cos λt + Ms(x, y) sin λt (42)

Q(x, y, t) = Qc(x, y) cos λt + Qs(x, y) sin λt (43)

N(x, y, t) = Nc(x, y) cos
2 λt

+ N0(x, y) cos λt sin λt + Ns(x, y) sin
2 λt

(44)

Note, that the non-linearity of the in-plane strain (9) requires
the higher-order harmonic expression for the in-plane forces
(44).

The corresponding time forms of virtual displacements
and virtual strains are

δqw(x, y, t) = δqwc(x, y) cos λt + δqws(x, y) sin λt (45)

δqr (x, y, t) = δqrc(x, y) cos λt + δqrs(x, y) sin λt (46)

δqt (x, y, t) = δqtc(x, y) cos2 λt

+ δqt0(x, y) cos λt sin λt

+ δqts(x, y) sin2 λt (47)

δεs(x, y, t) = δεsc(x, y) cos λt + δεss(x, y) sin λt (48)

δεr (x, y, t) = δεrc(x, y) cos λt + δεrs(x, y) sin λt (49)

δεp(x, y, t) = δεpc(x, y) cos
2 λt

+ δεp0(x, y) cos λt sin λt + δεps(x, y) sin
2 λt

= [
δεplc(x, y) + δεpnc(x, y)

]
cos2 λt

+ [
δεpl0(x, y) + δεpn0(x, y)

]
cos λt sin λt

+ [
δεpls(x, y) + δεpns(x, y)

]
sin2 λt (50)

5 The amplitude equation

The general form of the principle of virtual work for a vibrat-
ing plate can be written as
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Le + Lm = Li (51)

where Lm , Le and Li represent the work due to inertia,
external and internal forces, respectively. The time-averaged
virtual work of external loading can be expressed by

Le = 2

T

T∫

0

∫

A

δqT
w(x, y, t)pw(x, y, t)d Adt (52)

The time-averaged form of the virtual work by three consid-
ered inertia forces is given by

Lm = 2

T

T∫

0

∫

A

δqT
t (x, y, t)bt (x, y, t)d Adt

+ 2

T

T∫

0

∫

A

δqT
w(x, y, t)bw(x, y, t)d Adt

+ 2

T

T∫

0

∫

A

δqT
r (x, y, t)br (x, y, t)d Adt (53)

And the virtual work due to internal forces takes the form

Li = 2

T

T∫

0

∫

A

δεTr (x, y, t)M(x, y, t)d Adt

+ 2

T

T∫

0

∫

A

δεTs (x, y, t)Q(x, y, t)d Adt

+ 2

T

T∫

0

∫

A

δεTp (x, y, t)N(x, y, t)d Adt (54)

In the definitions (52)–(54) T denotes the vibrations period
and A is the plate area.

Theproblem inhand is geometrically non-linear and, addi-
tionally, the adopted physical law involves time derivatives
of stress and strain (23)–(25). Thus it was decided, that the
best way in the derivation of the amplitude equation will be
to begin with the time integration. To this end, the time-form
expressions from Sect. 4 are inserted into the virtual work
(52)–(54).

In the case of the externalwork term (52), after substitution
of (29), one gets

2

T

T∫

0

∫

A

δqT
w(x, y, t)pw(x, y, t)d Adt

=
∫

A

δqT
wc(x, y)pwc(x, y)d A +

∫

A

δqT
ws(x, y)pws(x, y)d A (55)

For the in-plane inertia terms, substitution of (36) and (47)
into the first component of (53), yields

2

T

T∫

0

∫

A

δqT
t (x, y, t)bt (x, y, t)d Adt

= λ2

⎧
⎨

⎩

∫

A

δqT
tc(x, y)mt

[
qtc(x, y) − qts(x, y)

]
d A+

+
∫

A

δqT
t0(x, y)mtqt0(x, y)d A

−
∫

A

δqT
ts(x, y)mt

[
qtc(x, y) − qts(x, y)

]
d A

⎫
⎬

⎭
(56)

The influence of deflection inertia, after substitution of (37)
and (45) into the second term in (53), results in

2

T

T∫

0

∫

A

δqT
w(x, y, t)bw(x, y, t)d Adt

= λ2

⎡

⎣

∫

A

δqT
wc(x, y)mwqwc(x, y)d A

+
∫

A

δqT
ws(x, y)mwqws(x, y)d A

⎤

⎦ (57)

For the rotary inertia, substitution of (38) and (46) into the
third component of (53) leads to

2

T

T∫

0

∫

A

δqT
r (x, y, t)br (x, y, t)d Adt

=
∫

A

δqT
rc(x, y)mrqrc(x, y)d A

+
∫

A

δqT
rs(x, y)mrqrs(x, y)d A (58)

Now let us consider the virtual work due to internal forces.
Taking into account (42) and (49) in the first component of
(54) results in

2

T

T∫

0

∫

A

δεTr (x, y, t)M(x, y, t)d Adt

=
∫

A

δqT
rc(x, y)B

′T
r Mc(x, y)d A
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+
∫

A

δqT
rs(x, y)B

′T
r Ms(x, y)d A (59)

The second component of (54) after substitution of (43) and
(48) yields

2

T

T∫

0

∫

A

δεTs (x, y, t)Q(x, y, t)d Adt

=
∫

A

[
δqT

wc(x, y)B
′T
sw + δqT

rc(x, y)B
′T
sr

]
Qc(x, y)d A

+
∫

A

[
δqT

ws(x, y)B
′T
sw + δqT

rs(x, y)B
′T
sr

]
Qs(x, y)d A

(60)

From the third component of (54) with (44) and (50) taken
into account one gets

2

T

T∫

0

∫

A

δεTp (x, y, t)N(x, y, t)d Adt

= 3

4

∫

A

δεTpc(x, y)Nc(x, y)d A

+ 1

4

∫

A

δεTpc(x, y)Ns(x, y)d A + 1

4

∫

A

δεTp0(x, y)N0(x, y)d A

+ 1

4

∫

A

δεTps(x, y)Nc(x, y)d A + 3

4

∫

A

δεTps(x, y)Ns(x, y)d A

(61)

The functions of amplitudes of internal forces M, Q and N
in (59)–(61) have to be expressed in terms strains amplitudes
functions. To this end the physical relations for the fractional
Zener model (23)–(25) given in Sect. 3 are applied. In this
fragment of the paper the explicit indication of dependence of
amplitude functions on the space co-ordinates x , y is skipped
in the notation.

To express the fractional time derivatives of internal forces
and strains present in the physical law (23)–(25) one needs
the fractional time derivatives of trigonometric functions

Dα
t sin λt = λα cos λt

Dα
t cos λt = −λα sin λt (62)

Dα
t cos2 λt

= 1

2
(2λ)α

(
C cos2 λt − 2S sin λt cos λt − C sin2 λt

)

Dα
t (sin λt cos λt)

= 1

2
(2λ)α

(
S cos2 λt + 2C sin λt cos λt − S sin2 λt

)

Dα
t sin2 λt

= −1

2
(2λ)α

(
C cos2 λt − 2S sin λt cos λt − C sin2 λt

)
(63)

where:

C = cos
απ

2
, S = sin

απ

2

The relations for moments (42) and rotational strains (39) as
well as their time derivatives computed with (62) taken into
account are substituted into the physical law (23) to get the
equation

Mc
[(
1 + ταλαC

)
cos λt − ταλαS sin λt

]

+ Ms
[(
1 + ταλαC

)
sin λt + ταλαS cos λt

]

= D0 (εrc cos λt + εrs sin λt)

+ ταλαD∞ [(C cos λt − S sin λt) εrc + (S cos λt

+C sin λt) εrs] (64)

Using the harmonic balance method leads to a system of two
equations, which correspond to cosine and sine amplitudes,
respectively

Mc
(
1 + ταλαC

) + Msτ
αλαS

= (
D0 + ταλαCD∞

)
εrc + ταλαSD∞εrs

− Mcτ
αλαS + Ms

(
1 + ταλαC

)

= −ταλαSD∞εrc + (
D0 + ταλαCD∞

)
εrs (65)

The functions of amplitudes of moments resulting from the
solution of (65) take the form

Mc(x, y) = Dα1εrc(x, y) + Dα2εrs(x, y)

Ms(x, y) = −Dα2εrc(x, y) + Dα1εrs(x, y) (66)

The new physical matrices in (66) are defined as

Dα1 = dM
[(
1 + ταλαC

)
D0 + ταλα

(
C + ταλα

)
D∞

]

Dα2 = −dMταλαS [D0 − D∞] (67)

where

dM =
[(
1 + ταλαC

)2 + τ 2αλ2α
]−1

After similar operations done on the shear force law (24) the
following definitions are obtained

Qc(x, y) = Aαq1εrc(x, y) + Aαq2εrs(x, y)

Qs(x, y) = −Aαq2εrc(x, y) + Aαq1εrs(x, y) (68)

with the new physical matrices
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Aαq1 = dM
[(
1 + ταλαC

)
Aq0 + ταλα

(
C + ταλα

)
Aq∞

]

Aαq2 = −dMταλαS
[
Aq0 − Aq∞

]
(69)

Derivation of expressions for the in-plane forces ismore com-
plex due to the quadratic-trigonometric expressions (41) and
(44). They are substituted into the physical law (25) to get
the following equation

Nc cos
2 λt + N0 cos λt sin λt + Ns sin

2 λt

+ 1

2
(2τλ)α

(
C cos2 λt − 2S cos λt sin λt − C sin2 λt

)
(Nc − Ns)

+ 1

2
(2τλ)α

(
S cos2 λt+2C cos λt sin λt−S sin2 λt

)
N0

= A0εpc cos
2 λt + A0εp0 cos λt sin λt + A0εps sin

2 λt

+ 1

2
(2τλ)α

(
C cos2 λt − 2S cos λt sin λt

−C sin2 λt
)

A∞
(
εpc − εps

)

+ 1

2
(2τλ)α

(
S cos2 λt + 2C cos λt sin λt − S sin2 λt

)
A∞εp0

(70)

and the harmonic balance method applied to squared-cosine,
sine-cosine and squared-sine terms, respectively, results in
the following set of three equations

[
2 + C (2τλ)α

]
Nc + S (2τλ)α N0 − C (2τλ)α Ns

= [
2A0 + C (2τλ)α A∞

]
εpc

+ S (2τλ)α A∞εp0 − C (2τλ)α A∞εps

− S (2τλ)α Nc + [
1 + C (2τλ)α

]
N0 + S (2τλ)α Ns

= −S (2τλ)α A∞εpc + [
A0 + C (2τλ)α A∞

]
εp0

+ S (2τλ)α A∞εps

−C (2τλ)α Nc − S (2τλ)α N0 + [
2 + C (2τλ)α

]
Ns

= −C (2τλ)α A∞εpc − S (2τλ)α A∞εp0

+ [
2A0 + C (2τλ)α A∞

]
εps (71)

Finally, the expressions for the functions of in-plane forces
amplitudes are obtained from the solution of (71) in the form

Nc(x, y) = Aα1εpc(x, y) + Aα3εp0(x, y) + Aα4εps(x, y)

N0(x, y) = 2Aα3εpc(x, y) + Aα2εp0(x, y) − 2Aα3εps(x, y)

Ns(x, y) = Aα4εpc(x, y) + Aα3εp0(x, y) + Aα1εps(x, y) (72)

There are four new physical matrices present in (72)

Aα1 = A0 + tα1(A∞ − A0)

Aα2 = A0 + 2tα1(A∞ − A0)

Aα3 = −tα2(A∞ − A0)

Aα4 = −tα1(A∞ − A0) (73)

where

tα1 = dN (2τλ)α
[
(2τλ)α + C

]

tα2 = dN (2τλ)α S

dN =
[
2 + 4 (2τλ)α C + 2 (2τλ)2α

]−1

In the further derivations also a component-wise format of
the physical matrices (73) will be useful. Making use of the
structure of the basic matrices A0 and A∞ in (28) one can
write down,

Aαi =
⎡

⎣
aαi11 aαi12 0
aαi12 aαi22 0
0 0 aαi33

⎤

⎦ , i = 1 − 4 (74)

It is worth to note, that setting α = 1.0 turns the frac-
tional integral (22) into the classical one. Indeed, the physical
relations (66), (68) and (72) for the fractional Zener mate-
rial, which involve the physical matrices (67), (69) and (73),
include, as a particular case for α = 1.0, the classical Zener
material with the classical integer integral of the order one.

6 Finite element discretization

Plates considered in this paper are discretized using 8-noded
rectangular elements with selective reduced integration for
the shear terms. These elements were effectively used in [34]
and some other papers to analyze the laminated plates with
the GHM viscoelastic material.

An element with the dimensions 2a and 2b and with the
introduced numbering of nodes is depicted in Fig. 3. The
vectors of nodal displacements amplitudes coinciding with
the displacement field in (5) are introduced:

– the in-plane translations amplitudes in three 16-compon-
ent vectors qtec, qte0, qtes

ξ, x

η, y

1

23

4

5

6

7

8

a a

b

b

Fig. 3 8-noded rectangular plate element

123



Comput Mech (2017) 60:333–354 341

qtek = {
u0k1 v0k1 u0k2 v0k2 . . . u0k8 v0k8

}T
, k = c, 0 or s

(75)

– the deflections amplitudes in two 8-component vectors
qwec, qwes

qwek =
{

w0
j1 w0

j2 . . . w0
j8

}T
, j = c or s (76)

– the rotations amplitudes in two 16-component vectors
qrec, qres

qrek = {
ϕx j1 ϕy j1 ϕx j2 ϕy j2 . . . ϕx j8 ϕy j8

}T
, j = c or s

(77)

The dimensionless local co-ordinates

ξ = x

a

η = y

b

are introduced and the following bi-quadratic shape functions
of the isoparametric element are used

N1 = − 1
4 (1 + ξ) (1 + η) (1 − ξ − η) N5 = 1

2 (1 + ξ) (1 − η) (1 + η)

N2 = − 1
4 (1 + ξ) (1 − η) (1 − ξ + η) N6 = 1

2 (1 − ξ) (1 − η) (1 + ξ)

N3 = − 1
4 (1 − ξ) (1 − η) (1 + ξ + η) N7 = 1

2 (1 − ξ) (1 + η) (1 − η)

N4 = − 1
4 (1 − ξ) (1 + η) (1 − ξ + η) N8 = 1

2 (1 + ξ) (1 + η) (1 − ξ)

(78)

to form the matrices

Nw = [
N1 N2 N3 N4 N5 N6 N7 N8

]

Nt = Nr = [
N1 N2 N3 N4 N5 N6 N7 N8

]
(79)

where

N j =
[
N j 0
0 N j

]

j = 1−8 (80)

With (75)–(77) and (79) in hand, the element displace-
ments amplitudes are

qtc(x, y) = Nt (x, y)qtec

qt0(x, y) = Nt (x, y)qte0

qts(x, y) = Nt (x, y)qtes (81)

qwc(x, y) = Nw(x, y)qwec

qws(x, y) = Nw(x, y)qwes (82)

qrc(x, y) = Nr (x, y)qrec

qrs(x, y) = Nr (x, y)qres (83)

The matrices of shape functions derivatives can be used to
express the strain amplitudes (39)–(41). The rotational strains
are

εrc(x, y) = Br (x, y)qrec

εrs(x, y) = Br (x, y)qres (84)

and with (6) the matrix Br is

Br = B′
rNr = [

Br1 Br2 . . . Br8
]

(85)

where

Bri =
⎡

⎢
⎣

∂Ni
∂x 0
0 ∂Ni

∂y
∂Ni
∂y

∂Ni
∂x

⎤

⎥
⎦ , i = 1 − 8 (86)

A row-wise layout of the matrix (85) will be useful, too:

Br =
⎡

⎣
Br x

Br y

Br xy

⎤

⎦ =
⎡

⎢
⎣

∂N1
∂x 0 ∂N2

∂x 0 . . . ∂N8
∂x 0

0 ∂N1
∂y 0 ∂N2

∂y . . . 0 ∂N8
∂y

∂N1
∂y

∂N1
∂x

∂N2
∂y

∂N2
∂x . . . ∂N8

∂y
∂N8
∂x

⎤

⎥
⎦ (87)

The shear strains can be given as

εsc(x, y) = Bsw(x, y)qwec + Bsr (x, y)qrec

εss(x, y) = Bsw(x, y)qwes + Bsr (x, y)qres (88)

where

Bsw = Bsw
′Nw = [

Bsw1 Bsw2 . . . Bsw8
]

Bsr = Bsr
′Nr = [

Bsr1 Bsr2 . . . Bsr8
]

(89)

Bswi =
[ ∂Ni

∂x
∂Ni
∂y

]

, i = 1 − 8

Bsri =
[
Ni 0
0 Ni

]

(90)

The discretization of the linear in-plane strains compo-
nents leads to

εplc(x, y) = Br (x, y)qtec

εpl0(x, y) = Br (x, y)qte0

εpls(x, y) = Br (x, y)qtes (91)

with the same matrix Br as in (85).
Let us now consider the particular elements of the non-

linear in-plane strains components

εpnc(x, y) = {
εpnc1(x, y) εpnc2(x, y) εpnc3(x, y)

}T

εpn0(x, y) = {
εpn01(x, y) εpn02(x, y) εpn03(x, y)

}T
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εpns(x, y) = {
εpns1(x, y) εpns2(x, y) εpns3(x, y)

}T
(92)

With (9) taken into account one gets

εpnk1(x, y) = 1

2
qTwekBT

w1(x, y)Bw1(x, y)qwek

εpnk2(x, y) = 1

2
qTwekBT

w2(x, y)Bw2(x, y)qwek

εpnk1(x, y) = 1

2
qTwek

[
BT

w1(x, y)Bw2(x, y)

+ BT
w2(x, y)Bw1(x, y)

]
qwek

(93)

where k stands for c, s or 0. The appropriate shape functions
matrices are

Bw1 = Bw1
′Nw = [

Bw11 Bw12 . . . Bw18
]

Bw2 = Bw2
′Nw = [

Bw21 Bw22 . . . Bw28
]

(94)

including

Bw1 j =
[

∂N j
∂x

]

Bw2 j =
[

∂N j
∂y

] , j = 1 − 8 (95)

Now the mass and stiffness matrices of the plate element can
be derived. After the discretization the three inertia terms
(57)–(59) in the virtual work result in the following matrix
expression

{δqe}T
(
−λ2

)
[Me] {qe}

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

δqtec
δqte0
δqtes
δqwec
δqwes
δqrec
δqres

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

T

(
−λ2

)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Mt 0 −Mt 0 0 0 0
0 Mt 0 0 0 0 0

−Mt 0 Mt 0 0 0 0
0 0 0 Mw 0 0 0
0 0 0 0 Mw 0 0
0 0 0 0 0 Mr 0
0 0 0 0 0 0 Mr

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

qtec
qte0
qtes
qwec
qwes
qrec
qres

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(96)

where the mass matrices are

Mt =
∫

A

mNT
t Nt d A

Mw =
∫

A

mNT
wNwd A

Mr =
∫

A

mrNT
r Nr d A (97)

The expression (96) is linear in displacements. Hence, in the
linearization of the amplitude equation the term—λ2Me will
be included directly in the tangent matrix, while—λ2Meqe

will enter the residual vector.
Let us now consider the stiffness terms. The contribution

of moments (59) to the amplitude equation after the dis-
cretization produces four stiffnessmatrices related to rotation
degrees of freedom of the element. The resulting expression
has the following form

[
δqT

rec δqT
res

]
[

Kr1 Kr2

−Kr2 Kr1

]{
qrec

qres

}

(98)

The element stiffness matrices in (98) yielding from the
moments amplitudes (66) and the discretization of rotational
strains (84) are given by

Kri =
∫

A

BT
r DiBr d A, i = 1, 2 (99)

The shear forces contribution (60) to the amplitude equa-
tion is expressed by deflection and rotation degrees of
freedom. The discretization yields

[
δqT

wec δqT
wes δqT

rec δqT
res

]

⎡

⎢
⎢
⎢
⎣

Ksw1 −Ksw2 Kswr1 Kswr2

Ksw2 Ksw1 −Kswr2 Kswr1

KT
swr1 KT

swr2 Ksr1 Ksr2

−KT
swr2 KT

swr1 −Ksr2 Ksr1

⎤

⎥
⎥
⎥
⎦

×

⎧
⎪⎪⎨

⎪⎪⎩

qwec

qwes

qrec

qres

⎫
⎪⎪⎬

⎪⎪⎭

(100)

Using the expression for shear forces amplitudes (68) and
the discretization of shear strain amplitudes (88) leads to the
following expressions for the matrices in (100)

Kswi =
∫

A

BT
swAqiBswd A, i = 1, 2 (101)

Kswri =
∫

A

BT
swAqiBsr d A, i = 1, 2 (102)

Ksri =
∫

A

BT
srAqiBsr d A, i = 1, 2 (103)

The in-plane virtual strains present in the in-plane forces
contribution to the amplitude equation (61) include linear and
non-linear expressions, resulting from (91) and (92), respec-
tively. These strains are also used to define the in-plane forces
in (72). Taking this into account it becomes evident, that the
contribution (61) to the amplitude equation results in four
groups of terms:
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(i) linear in qtec, qte0, qtes ,
(ii) mixed non-linear with products of qtec, qte0, qtes and

qwec, qwes

(iii) quadratic in qwec ,qwes ,
(iv) cubic in qwec, qwes ,

Within each group are one has to take into account each of
the five components in (61). For the linear terms (i) one gets

[
δqT

tec δqT
te0 δqT

tes

]

⎡

⎣
Kl1 Kl3 Kl4

−Kl3 Kl2 Kl3

Kl4 −Kl3 Kl1

⎤

⎦

⎧
⎨

⎩

qtec

qte0

qtes

⎫
⎬

⎭
(104)

where

Kl1 = 1

4
(3Kt1 + Kt4)

Kl2 = 1

4
Kt2

Kl3 = −1

2
Kt3

Kl4 = 1

4
(Kt1 + 3Kt4)

Kt j =
∫

A

BT
r A jBr d A, j = 1 − 4 (105)

The linear dependence of (98), (100) and (104) on nodal
displacements is evident and we can write down these three
contributions together in a short form

{δqe}T [Kel ] {qe} (106)

similarly to the inertia terms in (96). The product Kelqe con-
stitutes a part of the residual vector and the linear stiffness
matrix Kel has to be directly included in the tangent matrix
of the linearization of the amplitude equation.

The other three groups of contributions from the in-plane
forces are non-linear in displacements amplitudes. Themixed
non-linear ones (ii) yield

[
δqT

wec δqT
wes

]
[

Kwtc (qwec, qwes) Kwtc0 (qwec, qwes) Kwtcs (qwec, qwes)

Kwtsc (qwec, qwes) Kwts0 (qwec, qwes) Kwts (qwec, qwes)

]
⎧
⎨

⎩

qtec

qte0

qtes

⎫
⎬

⎭
(107)

the quadratic ones (iii)

[
δqT

tec δqT
te0 δqT

tes

]

⎡

⎣
Ktwc (qwec, qwes) Ktwcs (qwec, qwes)

Ktw0c (qwec, qwes) Ktw0s (qwec, qwes)

Ktwsc (qwec, qwes) Ktws (qwec, qwes)

⎤

⎦

×
{

qwec

qwes

}

(108)

and, finally, the cubic ones (iv)

[
δqT

wec δqT
wes

]
[

Kwc (qwec, qwes) Kwcs (qwec, qwes)

Kwsc (qwec, qwes) Kws (qwec, qwes)

]

×
{

qwec

qwes

}

(109)

The matrices appearing in (107)–(109) are defined in
“Appendix” in (122)–(124).

The products of particular stiffness matrices K and the
respective displacements vectors q in (107)–(109) are the
vectors which enter the global residual vector. To compute
tangent matrix components, necessary in the numerical solu-
tion of the derived non-linear amplitude equation, one still
requires linearization of (107)–(109). After some elementary
mathematics the following expressions are obtained

[
δqT

wec δqT
wes

]
[

Kwtc Kwtc0 Kwtcs Knlc Knlcs

Kwtsc Kwts0 Kwts Knlcs Knls

]

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�qtec

�qte0

�qtes

�qwes

�qwes

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(110)

[
δqT

tec δqT
te0 δqT

tes

]

⎡

⎣
2Ktwc 2Ktwcs

2Ktw0c 2Ktw0s

2Ktwsc 2Ktws

⎤

⎦

{
�qwec

�qwes

}

(111)

[
δqT

wec δqT
wes

]
[

(2Kwc + Knc) (2Kwcs + Kncs)

(2Kwsc + Kncs) (2Kws + Kns)

]{
qwec

qwes

}

(112)

The final form of additional matrices present in (110) and
(112) is specified in “Appendix” in (125) and (126).

To complete the discretized amplitude equation, the virtual
work of excitation forces (55) is found as

{δqe}T {Pe} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

δqtec

δqte0

δqtes

δqwec

δqwes

δqrec

δqres

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

T ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0
0
0
Pwec

Pwes

0
0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(113)

where the load amplitude vectors take the form

Pwec =
∫

A

NT
wpwcd A

Pwes =
∫

A

NT
wpwsd A (114)
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The vector of element loading Pe constitutes a part of the
residual vector.

Remark 1 Surface integrals in stiffness and mass matri-
ces derived above are evaluated using the double Gauss
quadrature. The mass matrices (97) including shape func-
tions directly are computed using its 5-point version. The
stiffness matrices, where the derivatives of shape functions
are present, (99), (105) and (122)–(126) are computed using
the 4-point version of the quadrature. Only the matrices
(101)–(103) in the shear contribution are computed using the
reduced integration with 3-point version of the Gauss inte-
gration scheme to eliminate the problem of shear locking.

Remark 2 Expressions (96), (106)–(109) and (113) put
together constitute the non-linear amplitude equation, which
can be written in the general form

R (q, λ) = 0 (115)

and solved to find the response curves. These solutions are
non-linear, including turning points, and can be obtained
using the Newton-Raphson method only partially. To over-
come the problems due to the complex nature of these curves,
path-following methods can be applied [24].

The idea of path following methods was first presented by
Riks [32]. Then it was successfully applied in computation
schemes (e.g. [6,36]), especially for equilibrium paths in
non-linear static and stability analyses. Lewandowski [24]
proposed to use it also in finding highly non-linear response
curves in steady-state vibration analyses. This idea is fol-
lowed in this paper and the procedure for the spherical
hyperplane constraint equation is taken after Stanić et al.
[38], where it was used to solve the equilibrium path in the
stability analysis of structural elements.

7 Numerical analyses

Results of solved numerical examples are presented in this
section with the purpose to illustrate the efficiency of the pro-
posed approach to analysis of plate steady-state vibrations.
The main goal of the presentation is to show influences of
various physical parameters on the dynamic characteristics.
Relatively simple cases are considered on purpose and focus
is mainly on the inherent features of the Zener model with
the Caputo fractional derivative applied to the geometrically
non-linear steady-state vibrations of plates.

7.1 Example 1—sensitivity to the FE mesh density

As an introduction let us check the influence of the number of
finite elements on the response curves. Harmonically forced

Pw

0.5

0.5

0.5 0.5

0.1

[m]

Fig. 4 Square plate loaded by the concentrated force at the centre

vibrations of amoderately thick square platewith immovable
simple supports on all four edges, presented in Fig. 4, are
considered. The plate dimensions are: edge length 1.0 m and
depth 0.1m. The viscoelastic material data for a fictitious
polymer are taken from [10] as: E0 = 7× 106 N/m2, E∞ =
10×106 N/m2, τ = 0.01 sα and ρ = 1250 kg/m3. The order
of the fractional derivative is taken asα = 0.8. The excitation
is assumed as a point load applied at the plate centre.

The force time form is expressed as

Pw = Pwc cos λt (116)

with the amplitude Pwc equal to 2000 N.
The plate is discretized using four different mesh sizes.

We focus our attention on the total amplitude of deflection q
at the plate centre point (where the excitation force is applied)
which is given by

q =
√

q2wc + q2ws (117)

where qwc and qws are sine and cosine amplitudes of the
deflection corresponding to (30).

Within the considered range of excitation frequency λ =
[0, 100] rad/s lies the analytical value of the first natural
frequency of linear vibrations for the analyzed plate. For the
Young’smodulus E = E0 it isω1ex = 40.8 rad/s. The results
for both component amplitudes qwc, qws and for the total
amplitude q are presented in Figs. 5, 6 and 7, respectively. It
can be noted that the response curves for the total amplitude
in Fig. 7 correspondwell to the resonance zone in the vicinity
of the exact value of ω1ex .

Results of static deflection qst of the plate, the maximum
amplitude qmax and the corresponding excitation frequency
λmax , which is called the resonance frequency, are presented
in Table 1 for four analyzed FE meshes. The relative differ-
ences between results for a given mesh and the results for
the finest analyzed mesh with 64 elements are given, too.
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Fig. 5 Example 1—response curves of cosine deflection qc for varying
FE mesh sizes
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Fig. 6 Example 1—response curves of cosine deflection qs for varying
FE mesh sizes

This comparison, combined with the graphic representation
in Figs. 5, 6 and 7 allows to conclude, that the meshes of 36
and 64 elements yield response curves with insignificant dis-
crepancy. The percentage difference is 1.7% for a relatively
small value of static deflection and not more than 0.2% for
themost interesting parameters at the response curves related
to the resonance zone. Thus, henceforth the 36-element mesh
will be applied.

7.2 Example 2—influence of fractional derivative order

In this example the harmonically forced vibrations of a plate
with the geometry and loading form as in Example 1 but with
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4 x 4 (16) elements
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Fig. 7 Example 1—response curves of total deflection q for varying
FE mesh sizes

varying order of the fractional derivative in theZenermaterial
model are analyzed. Four cases of the excitation amplitude
and the relaxation time are considered:

Case 1 excitation amplitude Pwc = 500 N, relaxation
time τ = 0.0175 sα

Case 2 excitation amplitude Pwc = 1000 N, relaxation
time τ = 0.0125 sα

Case 3 excitation amplitude Pwc = 1500 N, relaxation
time τ = 0.0100 sα

Case 4 excitation amplitude Pwc = 2000 N, relaxation
time τ = 0.00875 sα

In each of these cases the response curves are computed
for a range of fractional derivative order: α = 1.0, 0.9, 0.8
and 0.7. The total deflection amplitude (119) under the cen-
trally applied concentrated force is considered. The response
curves for all the cases are presented in Figs. 8, 9, 10 and 11.

Inspection of the presented results indicates that the
decreasing order of the fractional derivative decreases the
damping properties of the Zener fractional viscoelastic mate-
rial, as was expected, because the Scott-Blair fractional
damping element is then steadily transformed into a spring-
like elastic one. This leads to larger vibrations amplitudes,
inevitably increases the geometric non-linear effects in the
plate and is manifested in a larger inclination of response
curves sections in the vicinity of the resonance zone. Even
the Case 1 in Fig. 8, with a very small amplitude of excitation
force, exhibits an almost linear behaviour for the classical
Zener model with α = 1.0 and the decrease of the frac-
tional derivative order transforms vibrations into a non-linear
regime.
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Table 1 Results of mesh sensitivity in Example 1

Number of
elements

Static deflection
qst (m)

Relative difference
in static deflection
�(qst ) (%)

Maximum
amplitude
qmax (m)

Relative difference in
maximum amplitude
�(qmax ) (%)

Resonance
frequency
λmax (rad/s)

Relative difference in
resonance frequency
�(λmax ) (%)

2 × 2 (4) 0.02915 26.9 0.11986 12.2 77.09 0.18

4 × 4 (16) 0.03771 5.5 0.13543 0.7 77.39 0.21

6 × 6 (36) 0.03922 1.7 0.13617 0.2 77.28 0.06

8 × 8 (64) 0.03990 0 0.13644 0 77.23 0
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Fig. 8 Example 2—response curves for Case 1, Pwc = 500 N, τ =
0.0175 sα
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Fig. 9 Example 2—response curves for Case 2, Pwc = 1000 N, τ =
0.0125 sα
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Fig. 10 Example 2—response curves for Case 3, Pwc = 1500 N, τ =
0.0100 sα
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Fig. 11 Example 2—response curves for Case 4, Pwc = 2000 N, τ =
0.00875 sα
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Fig. 12 Example 3—resonance curves for: a Case 1—τ = 0.010 sα , b Case 2—τ = 0.015 sα

7.3 Example 3—effect of geometric non-linearity and
relaxation time

Here we continue with the analysis of the simply supported
square plate, of the same dimensions, excitation form and
physical properties, except for the relaxation time and the
order of fractional derivative, as in Example 1. Now two
cases of relaxation time, τ = 0.010 sα and 0.015 sα , are
considered and four different values of the excitation force
amplitude, Pwc = 500 N, 1000 N, 1500 N and 2000 N are
taken into account. The order of fractional derivative is taken
as α = 0.8.

The response curves computed for the leading amplitude
(117)—that of the deflection at the centre point, are presented
in Fig. 12a, b. The increasing effect of the geometric non-
linearity, more emphasized with the increasing value of the
excitation amplitude, is evident in the results for both cases
of relaxation time. To indicate this level of non-linearity, the
comparison of the proposed non-linear model with the geo-
metrically linear behaviour for the case with τ = 0.010 sα

and Pwc = 2000 N is presented in Fig. 13.
Inspection of the curves in Fig. 12 for two different relax-

ation times also indicates some effect of this value on the
behaviour of the plate. Seemingly, the larger relaxation time,
the more non-linear output is obtained. To investigate this
aspect in more detail let us now continue with the analysis
of the plate from Fig. 4 for four considered excitation ampli-
tudes, two orders of fractional derivative α = 1.0 and 0.8 as
well as a broader range of relaxation time values. The results
in the form of response curves are presented in Figs. 14 and
15, where for each combination of force amplitude and order
of fractional derivative, the curves for three selected different
values of relaxation time are shown.

Inspectionof these graphs reveals an interestingbehaviour.
In all the analyzed cases, with the decreasing relaxation time,
no monotonic decrease of the maximum amplitude at the

0 20 40 60 80 100
λ [rad/s]

0

0.05

0.1

0.15

0.2

0.25

0.3

q
[m

]

linear

non-linear

Fig. 13 Example 3—effect of geometrical non-linearity for
τ = 0.010 sα and Pwc = 2000 N

resonance peak is observed. Evidently, there exists a critical
value of the relaxation time τ , for which the peak deflection
amplitude qmax reaches its smallest value. This character-
istic point on a resonance curve has also its corresponding
excitation frequency λmax . Viewing the structure of physical
matrices (67), (69) and (73) one should conclude, that it is
indeed a question of a critical value of the product τλmax ,
that can be of interest. This issue was further investigated.

Now the response curves were computed for more cases
of the relaxation time, force amplitude and order of fractional
derivative. Some of these results are presented in Figs. 16 and
17. The graphs in this figures show the relation between the
value of the product τλmax and the corresponding resonance
peak amplitude qmax obtained for α = 1.0 and 0.8. The dots
in the figures represent the pairs obtained from the response
curves, while the solid lines are the best spline fits for the
set of computed points. From the graphical representation
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Fig. 14 Example 3—resonance
curves for α = 1.0 and: a
Pwc = 500 N, b Pwc = 1000 N,
c Pwc = 1500 N,
d Pwc = 2000 N
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of the spline approximations, the critical pairs of τλmax and
qmax were found. These pairs are presented in Table 2 for
two cases of α = 1.0 and 0.8 depicted in Figs. 16 and 17 as
well as for α = 0.9 and 0.7.

It can be observed, that for the lowest considered value
of the excitation amplitude Pwc = 500 N and the order of
the fractional derivative α = 1.0, where the plate behaviour
can be considered as linear, the critical value of τλmax equal
to 0.983 is very close to unity. With the increasing excita-
tion and/or the decreasing order of the fractional derivative,
the geometrically non-linear effects in the plate are more
and more pronounced and the value of the critical param-
eter τλmax is decreasing, getting further and further from
unity. It is accompanied by the increase of plate deflections,
from about 40% of the plate thickness for α = 1.0 and
Pwc = 500N up to almost 150%of the plate thickness for the
force amplitudeα = 0.7 and Pwc = 2000N.Apparently, this
unusual behaviour should be attributed to the fractional Zener
model of viscoelasticity in the plate material. For the first
time such characteristics were reported in [39] for vibrating
beams. It is worth to note, that these results are of prac-
tical use if one takes into account the findings from [26],
where the authors showed that the temperature influence on

the damping properties of the Zener viscoelastic material is
mostlymanifested in the varying damping coefficient c, what
changes the relaxation time τ only.

7.4 Example 4—numerical comparison with
Kelvin–Voigt model

In this example a square simply supported plate with immov-
able edges, as analyzed in [1] is considered. The plate has
the dimensions: the edge length a = 0.3 m and the thick-
ness h = 0.001 m. In the paper [1] this plate was analyzed
with the Kelvin–Voigt model of viscoelasticity, with the
elastic modulus E = 70 × 109 N/m2 and the retardation
time τc = 0.00039 s. The material density was assumed
as ρ = 1250 kg/m3. The retardation time corresponds to
the relaxation time used here, divided by the factor 2, so
we assume τ = 0.00078 s. The modulus E is assumed to be
equal to the relaxed elasticmodulus of the Zenermaterial, i.e.
E0 = 70×109 N/m2. The two remaining parameters present
in the fractionalZenermaterialmodel are now treated as inde-
pendently varying values and their influence on the response
curves is investigated for four cases:
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Fig. 15 Example 3—resonance
curves for α = 0.8 and: a
Pwc = 500 N, b Pwc = 1000 N,
c Pwc = 1500 N, d
Pwc = 2000 N
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The plate is loaded at the mid-point by the force with the
amplitude Pws = 1.74 N and the response as the total ampli-
tude of the plate deflection qw (117) at the same point is
analyzed. The results are calculated in the dimensionless for-
mat, as they are presented in [1]—the amplitude of deflection
is divided by the plate thickness h to get the reference ampli-
tude qwr , whereas the excitation frequency is divided by the
first natural frequency of the plate ω1 to get the reference
frequency λr . The analytical result for ω1 = 333.16 rad/s.

In the present calculations the plate is divided into 64 finite
elements forming a regular mesh of 8x8 elements.

The response curves for four considered cases are shown
in Fig. 18. For the purpose of a better comparison the scale
and the axes range therein are adopted in the way identical to
the presentation in [1]. Additionally, a set of results selected
for the resonance peak and for the excitation frequency λ

equal to the natural frequencyω1 is presented in Table 3. The

results in [1] were given graphically only, thus the values in
the last row of Table 3 were assessed by interpolation.

From the presented analysis one can conclude that the
increasing non-relaxed modulus E∞ has an effect in the
increased damping in the Zener model—the peak deflec-
tion amplitudes decrease. Also, as in the previous examples,
the increasing order of the fractional derivative α leads to a
decrease in the material damping.

Also, one can observe, that it is possible to tune the param-
eters of the fractional Zener model to obtain the results
coinciding with the Kelvin–Voigt model. In the analyzed
example a good agreement is achieved for E∞ = 1.0 ×
1011 N/m2 and α = 1.0. In this case the relative difference
between the models in the excitation frequency correspond-
ing to the peak value is about 5.3% only, while the computed
deflection amplitudes agree with the discrepancy smaller
than 1%.

It isworth to point out, that the fractional Zenermodelwith
its four material parameters gives more practical possibilities
to represent a real behaviour of viscoelastic materials. This
is due to the fact, that it can be used to predict correctly the
basic rheological response of real materials, as indicated in
the literature, e.g. [17,23].
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Fig. 16 Example 3—relations
between the critical relaxation
time and extreme resonance
peak characteristics for α = 1.0
and: a Pwc = 500 N,
b Pwc = 1000 N,
c Pwc = 1500 N,
d Pwc = 2000 N
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Fig. 17 Example 3—relations
between the critical relaxation
time and extreme resonance
peak characteristics for α = 0.8
and: a Pwc = 500 N,
b Pwc = 1000 N,
c Pwc = 1500 N,
d Pwc = 2000 N
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Table 2 Values of critical parameter τλmax and the peak amplitude
qmax in Example 3

Order of
fractional
derivative α

Excitation
force amplitude
Pwc (116) (N)

Critical
parameter
τλmax
(rad/s1−α)

Peak
deflection
amplitude
(117)qmax (m)

1.0 500 0.983 0.03995

1.0 1000 0.927 0.07175

1.0 1500 0.862 0.09595

1.0 2000 0.808 0.11502

0.9 500 0.950 0.04618

0.9 1000 0.878 0.08044

0.9 1500 0.821 0.10548

0.9 2000 0.773 0.12491

0.8 500 0.900 0.05373

0.8 1000 0.824 0.09038

0.8 1500 0.776 0.11624

0.8 2000 0.727 0.13611

0.7 500 0.811 0.06267

0.7 1000 0.743 0.10151

0.7 1500 0.702 0.12812

0.7 2000 0.682 0.14853
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Fig. 18 Example 4—response curves for four considered cases of
material parameters combinations and E0 = 0.7 × 1011 N/m2, τ =
0.00078 s (the figure format identical to [1] to allow for a graphical
comparison)

8 Conclusions

A novel approach to formulate the problem of geometri-
cally non-linear vibrations of plates in frequency domain
was presented. The viscoelasticity of the plate material was
assumed as the Zener model with the Caputo fractional
derivative. To overcome the problemswith the involved phys-
ical law including fractional derivatives of stress and strain,
the approach with time averaging carried out before the
harmonic balance method and the space integration was pro-
posed. In this way a non-linear amplitude equation with plate
displacement amplitudes was obtained and solved using a
standard path-following method.

In the course of analysis of numerical results for sev-
eral simple examples of vibrating plates some expected
conclusions were drawn. They are related to the level of non-
linearity observed in response curves taking into account dif-
ferent values of excitation force magnitude or different order
of fractional derivative, which controls the transformation of
Scott-Blair element between the classical spring and the clas-
sical dashpot. Surprisingly, there are also some unexpected
findingswhich concern the influence of relaxation timeon the
damping properties of the fractional Zener viscoelastic mate-
rial and the resonance frequency in the geometrically non-
linear regime.Due to the complexity of the formulation, there
exists a certain critical value of the relaxation time, which
implies the highest level of damping. This inherent feature
of the Zenermodel can be viewed as an interesting alternative
in attempts related to numerical modeling of real viscoelastic
materials.

There are no apparent difficulties to note in a possible
future application of the presented approach to analyze the
steady-state vibrations of laminated plates with viscoelastic
layers as well as to other, more intricate models of viscoelas-
ticity.
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by the National Science Centre within the Project No. 2013/09/B/ST8/
01733. This support is gratefully acknowledged.

Table 3 Selected results of Example 4, comparison with [1]

Material model E0 = 0.7 × 1011 N/m2, τ = 0.00078 s Relative deflection ampli-
tude for λ = ω1qwr (–)

Relative peak excitation
frequency λr (–)

Relative peak deflection
amplitude qwr (–)

Zener, E∞ = 1.0 × 1011 N/m2, α = 1.0 0.614 1.51 1.076

Zener, E∞ = 1.1 × 1011 N/m2, α = 1.0 0.600 1.41 0.931

Zener, E∞ = 1.1 × 1011 N/m2, α = 0.9 0.580 1.45 0.966

Zener, E∞ = 1.1 × 1011 N/m2, α = 0.8 0.566 1.51 1.024

Kelvin–Voigt [1] 0.61 1.43 1.07
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Appendix: Matrices in non-linear components of
residual vector and tangent matrix

Let us introduce some notation to simplify the formulae:

(1) new geometric matrices using the matrices from (94)

B1 = BT
w1Bw1

B2 = BT
w2Bw2

B3 = BT
w1Bw2 + BT

w2Bw1 (118)

(2) new physical matrices using the row vectors from (87)
and physical parameters from (74)

Hi1 = ai11Br x + ai12Br y

Hi2 = ai12Br x + ai22Br y

Hi3 = ai11Br xy

, i = 1−4 (119)

(3) products of physicalmatricesH (119) and displacements

Hi jc = qwecHi j

Hi js = qwesHi j
, i = 1−4, j = 1−3 (120)

(4) products of physical matrices and displacements using
physical parameters from (74) and matrices (118)

Gi1c = qT
wec (ai11B1 + ai12B2)

Gi2c = qT
wec (ai12B1 + ai22B2)

Gi3c = ai33qT
wecB3

Gi1s = qT
wes (ai11B1 + ai12B2)

Gi2s = qT
wes (ai12B1 + ai22B2)

Gi3s = ai33qT
wesB3

, i = 1−4 (121)

Now the matrices from (107) can be defined as

Kwtc = 1

4

∫

A

[B1 (3H11c + H41c + 2H31s)

+ B2 (3H12c + H42c + 2H32s)

+ B3 (3H13c + H43c + 2H33s)] d A

Kwtc0 = 1

4

∫

A

[B1 (−2H31c + H21s) +

+ B2 (−2H32c + H22s) + B3 (−2H33c + H23s) d A]

Kwtcs = 1

4

∫

A

[B1 (3H41c + H11c − 2H31s)+

+ B2 (3H42c + H12c − 2H32s) + B3 (3H43c + H13c − 2H33s) d A]

Kwtsc = 1

4

∫

A

[B1 (3H41s + H11s + 2H31c) +

+ B2 (3H42s + H12s + 2H32c) + B3 (3H43s + H13s + 2H33c)] d A

Kwts0 = 1

4

∫

A

[B1 (2H31s + H21c)+

+ B2 (2H32s + H22c) + B3 (2H33s + H23c)] d A

Kwts = 1

4

∫

A

[B1 (3H11s + H41s − 2H31c)+

+ B2 (3H12s + H42s − 2H32c) + B3 (3H13s + H43s − 2H33c)] d A

(122)

The matrices in (108) take the form

Ktwc = 1

8

∫

A

[Br x (3G11c + G41c − 2G31s) +

+ Bry (3G12c + G42c − 2G32s) + Br xy (3G13c + G43c − 2G33s)
]
d A

Ktwcs = 1

8

∫

A

[Br x (3G41s + G11s − 2G31c) +

+ Bry (3G42s + G12s − 2G32c) + Br xy (3G43s + G13s − 2G33c)
]
d A

Ktwc0 = 1

8

∫

A

[Br x (2G31c + G21s) +

+ Bry (2G32c + G22s) + Br xy (2G33c + G23s)
]
d A

Ktws0 = 1

8

∫

A

[Br x (−2G31s + G21c) +

+ Bry (−2G32s + G22c) + Br xy − (2G33s + G23c)
]
d A

Ktwsc = 1

8

∫

A

[Br x (3G41c + G11c + 2G31s)+

+ Bry (3G42c + G12c + 2G32s) + Br xy (3G43c + G13c + 2G33s)
]
d A

Ktws = 1

8

∫

A

[Br x (3G11s + G41s + 2G31c) +

+ Bry (3G12s + G42s + 2G32c) + Br xy (3G13s

+ G43s + 2G33c)] d A (123)

The matrices in (109) are defined as

Kwc = 1

8

∫

A

{
B1

[
qwec (3G11c + G41c − 2G31s) + qwes (2G31c + G21s)

]

+ B2
[
qwec (3G12c + G42c − 2G32s) + qwes (2G32c + G22s)

]

+ B3
[
qwec (3G13c + G43c − 2G33s) + qwes (2G33c + G23s)

]}
d A

Kwcs = 1

8

∫

A

{
B1

[
qwec (3G41s + G11s − 2G31c) + qwes (−2G31s + G21c)

]

+ B2
[
qwec (3G42s + G12s − 2G32c) + qwes (−2G32s + G22c)

]

+ B3
[
qwec (3G43s + G13s − 2G33c) + qwes (−2G33s + G23c)

]}
d A

Kwsc = 1

8

∫

A

{
B1

[
qwec (2G31c + G21s) + qwes (3G41c + G11c + 2G31s)

]

+ B2
[
qwec (2G32c + G22s) + qwes (3G42c + G12c + 2G32s)

]

+ B3
[
qwec (2G33c + G23s) + qwes (3G43c + G13c + 2G33s)

]}
d A

Kws = 1

8

∫

A

{
B1

[
qwec (−2G31s + G21c) + qwes (3G11s + G41s + 2G31c)

]

+ B2
[
qwec (−2G32s + G22c) + qwes (3G12s + G42s + 2G32c)

]

+ B3
[
qwec (−2G33s + G23c) + qwes (3G13s + G43s + 2G33c)

]}
d A

(124)

Linearization of the residual vector with respect to dis-
placements leads to several additional matrices.

The matrices in (110) not defined earlier are:

Knlc = 1

4

∫

A

{
B1

[
H11 (3qtec + qtes) − 2H31qte0 + H41 (3qtes + qtec)

]
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+ B2
[
H12 (3qtec + qtes) − 2H32qte0 + H42 (3qtes + qtec)

]

+ B3
[
H13 (3qtec + qtes) − 2H33qte0 + H43 (3qtes + qtec)

]}
d A

Knlcs = 1

4

∫

A

{
B1

[
2H31 (qtec − qtes) + H21qte0

]

+ B2
[
2H32 (qtec − qtes) + H22qte0

]

+ B3
[
2H33 (qtec − qtes) + H23qte0

]}
d A

Knls = 1

4

∫

A

{
B1

[
H11 (qtec + 3qtes ) + 2H31qte0 + H41 (qtes + 3qtec)

]

+ B2
[
H12 (qtec + 3qtes) + 2H32qte0 + H42 (qtes + 3qtec)

]

+ B3
[
H13 (qtec + 3qtes) + 2H33qte0 + H43 (qtes + 3qtec)

]}
d A (125)

The matrices in (112) not defined earlier are

Knc = 1

8

∫

A

{
B1

[
(3G11c + G41c − 2G31s ) qwec + (3G41s + G11s

− 2G31c) qwes
] + B2

[
(3G12c + G42c

− 2G32s ) qwec + (3G42s + G12s − 2G32c) qwes
]

+ B3
[
(3G13c + G43c − 2G33s )qwec

+ (3G43s + G13s − 2G33c) qwes
]}

d A

Kncs = 1

8

∫

A

{
B1

[
(2G31c + G21s ) qwec + (−2G31s + G21c) qwes

]

+ B2
[
(2G32c + G22s ) qwec + (−2G32s + G22c) qwes

]

+ B3
[
(2G33c + G23s ) qwec + (−2G33s + G23c) qwes

]}
d A

Kns = 1

8

∫

A

{
B1

[
(3G41c + G11c + 2G31s ) qwec

+ (3G11s + G41s + 2G31c) qwes
]

+ B2
[
(3G42c + G12c + 2G32s ) qwec

+ (3G12s + G42s + 2G32c) qwes
]

+ B3
[
(3G43c + G13c + 2G33s ) qwec

+ (3G13s + G43s + 2G33c) qwes
]}

d A (126)
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