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Abstract The virtual element method has been developed
over the last decade and applied to problems in elasticity
and other areas. The successful application of the method to
linear problems leads naturally to the question of its effec-
tiveness in the nonlinear regime. This work is concernedwith
extensions of the virtual elementmethod to problems of com-
pressible and incompressible nonlinear elasticity. Low-order
formulations for problems in two dimensions, with elements
being arbitrary polygons, are considered: for these, the ansatz
functions are linear along element edges. The various formu-
lations considered are based on minimization of energy, with
a novel construction of the stabilization energy. The formula-
tions are investigated through a series of numerical examples,
which demonstrate their efficiency, convergence properties,
and for the case of nearly incompressible and incompressible
materials, locking-free behaviour.
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1 Introduction

The many different approaches to the approximate solution
of problems involving partial differential equations include
finite difference schemes, finite elements, finite volume tech-
niques, boundary elements, and particle methods. Within the
finite element method there have been various significant
developments, including for example isogeometric schemes.
Research continues to bemotivated by the goal of developing
stable, efficient and robust discretization schemes for finite
deformation applications in solid mechanics.

While the finite element method is well established as an
approach to handling problems in nonlinear solid mechanics,
(see for example the texts by Bathe [1], Belytschko et al. [3]
andWriggers [38]) it is nevertheless of interest to explore new
methods that have potential advantages such as flexibility
with regard tomesh generation and choice of element shapes.
The Discontinuous Galerkin method provides flexibility in
the sense that meshing does not have to take into account
hangingnodes: this canbe an advantage in adaptivemeshpro-
cedures (see the works by ten Eyck and Lew [37] and Noels
and Radovitzky [26] for applications to nonlinear elasticity).

There are situations in which it is advantageous not to
be restricted in the choice of element shapes, and in this
regard there have been interesting developments in the use
of polygonal or polyhedral elements. Some representative
works in this regard are those by Sukumar [34] and Sukumar
and Malsch [35]; for finite deformation problems including
contact, see Biabanaki andKhoei [5], Biabanaki et al. [6] and
Chi et al. [10].

The virtual element method (VEM), an extension of the
classicalGalerkin finite elementmethod, is a relatively recent
development. The method permits the use of polygonal
element for problems in two dimensions and polyhedral ele-
ments in three. Furthermore, there is no need for a restriction
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to convex elements, nor is it necessary to avoid degeneracies
such as element sides having an interior angle close to π

radians. Thus the method permits the direct use of Voronoi
meshers, and as another example crystals in a polycrystalline
material can be represented by single elements. Key exam-
ples of the method are the works by Beirão da Veiga et al.
[11,13] and, for problems in elasticity [12,16]. Stabilization
procedures for the virtual elementmethod that are using hour-
glass stabilization, well known from the work of Belytschko
et al. [4], are described inCangiani et al. [8] for linear Poisson
problems. The use of VEM for nonlinear problems has been
discussed recently in Beirão Da Veiga et al. [14] and Chi et
al. [9] for inelastic materials at small strains and hyperelastic
materials at finite deformations.

The structure of theVEM typically comprises a term in the
weak formulation or energy functional in which the quantity
ϕh being sought is replaced by its projection�ϕh onto a poly-
nomial space. This results in a rank-deficient structure, so that
it is necessary to add a stabilization term to the formulation.
The stabilization term is generally a function of the difference
ϕh −�ϕh between the original variable and its projection. In
order to adhere to a fundamental aspect of VEM in which all
integrations take place on element boundaries, the stabiliza-
tion term proposed, for example, in Beirão daVeiga et al. [11,
12] takes the form of a sum of a function of nodal variables.
This is the approach adopted in the recent nonlinear investi-
gation byChi et al. [9], with the scalar stabilization parameter
of the linear case being replaced by one that depends on the
fourth-order elasticity tensor (that is, the derivative of the rel-
evant stress measure with respect to the deformation). This
leads to a formulation that works very well when smaller
load-steps are applied since the stabilization parameter is
always related to the deformation of the last converged load
step. In cases of problems that can run efficiently with few or
even with only one load step, a different stabilization has to
be employed that enables a consistent linearization at every
deformation state, to yield a Newton scheme with quadratic
convergence properties independent of load steps.

Wepresent here a formulation ofVEM that uses a different
stabilization technique, first described in Nadler and Rubin
[25], generalized in Boerner et al. [7] and simplified in Krysl
[19] in the context of stabilization procedures for the mean-
strain hexahedron. The essence of the method is the addition
to the positive semidefinite mean strain energy � a positive-
definite energy �̂ which is evaluated using full quadrature,
and for consistency subtraction of a term involving �̂ as a
function of the mean strain. This approach is exploited here
in the context of a VEM for nonlinear elasticity involving
polygonal elements in two dimensions, and the use of low-
order elements for which the projected quantities are linear
polynomials. The strain energy is then the sum of �(�uh),
the original energy as a function of the projected displace-
ment, and the term �̂(�uh) to which are respectively added
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Fig. 1 Solid with boundary conditions

and subtracted a positive definite stabilization energy as a
function of the displacement and its projection. The second
feature of the formulation presented here is in the manner in
which quadrature is carried out for the term involving �̂(uh):
this is achieved by constructing amesh of triangles in the ele-
ment with nodal points those for the original element, and by
approximating the displacement as a linear function on each
triangle. The method is efficient and leads to a explicit form
for the integral.

The method presented here is developed for both com-
pressible and incompressible materials, using the neo-
Hookean strain energy as a model. For the compress-
ible case behaviour is shown to locking-free for near-
incompressibility, while for the incompressible case, which
is based on a mixed formulation involving the pressure as a
Lagrangemultiplier, locking-free behaviour is also observed.
Furthermore, both formulations perform extremely well in a
series of benchmark tests involving regular, distorted and
Voronoi meshes.

The structure of the rest of this work is as follows. The
governing equations for nonlinear elasticity are presented in
Sect. 2. Section 3 is devoted to a presentation of the VEM,
including the formulation for incompressible materials. Sec-
tion 3.3 discusses existing approaches to stabilization and
presents the new stabilization term. A number of numeri-
cal examples are presented and discussed in Sect. 4, and in
Sect. 5 some concluding remarks are presented.

2 Governing equations for finite elasticity

Consider an elastic body that occupies the bounded domain
� ⊂ R

2. The body�has a boundary�which comprises non-
overlapping sections �D and �N such that �D ∪ �N = �

(Fig. 1).
The position x of a material point initially at X is given

by the motion
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x = ϕ(X, t)

= X + u(X, t) (1)

where u is the displacement. We also define the deformation
gradient F by

F = Gradϕ, (2)

the gradient being evaluated with respect to X .
The body satisfy, on � the equation of equilibrium

− Div P = f , (3)

with the body force f and the first Piola–Kirchhoff stress P .
The Dirichlet and Neumann boundary conditions are respec-
tively

u = ū on �D, (4)

PN = t̄ on �N . (5)

with N the outward unit normal vector, ū the prescribed
displacement, and t̄ the surface traction on �N .

By introducing a strain energy function Ψ (ϕ) for elastic
problems the first Piola–Kirchhoff stresses follow from

P(ϕ) = ∂Ψ (ϕ)

∂F
. (6)

For a homogeneous compressible isotropic hyperelastic
material we adopt the neo-Hookean strain energy function
for the two-dimensional case

Ψ (u)=λ

4
(J (u)2−1−2 ln J (u))+μ

2
(trC(u)−2−2 ln J (u))

(7)

in which λ and μ are the Lamé constants. This strain energy
is known as Neo-Hookean model. The right Cauchy-Green
tensor C(u) is defined as C = FTF and the Jacobian J (u)

of the deformation is given as J = det F.
For incompressible materials the strain energy can be

based on the split of C into an isochoric part C̄ , defined
by

C̄ = det C− 1
2 C (8)

and a part related to the incompressibility constraint. The
strain energy (7) then reduces to

Ψ i (u) = μ

2
(tr C̄(u) − 2). (9)

The development of a hyperelastic virtual element can
start from the potential energy function directly instead of

using the weak form. In that case the potential energy can be
written with (7) as

U (u) =
∫

�

[
Ψ (u)− f · u ] d� −

∫

�N

t · u d� (10)

For incompressible deformation the potential energy is given
by

Ui (u) =
∫

�

[
Ψ i (u)− f · u

]
d�

+
∫

�

p [ J (u) − 1 ] −
∫

�N

t · u d� (11)

where the incompressibility constraint is added via a Lagr-
angian parameter p which is interpreted as the pressure.

3 Formulation of the virtual element method

The main idea of the virtual element method (VEM) is a
Galerkin projection of the deformation onto a specific ansatz
space. The domain � is partitioned into non-overlapping
polygonal elements which need not be convex.

Here a low-order approach is adopted, using linear ansatz
functions. Hence element nodes are placed only at the ver-
tices of the polygonal elements. The discrete space of test
functions on � is denoted by Vh , and for a conforming
approachwe require that Vh ⊂ V . This requirement ismet by
defining the shape or basis functions in Vh to comprise con-
tinuous functionswhose restriction to an element�e includes
(but is larger than) linear functions. Furthermore, the restric-
tion of the element shape functions to the element boundaries
are linear functions (Fig. 2).

3.1 VEM ansatz functions

Generally the virtual element method relies on the split of
the ansatz space into a linear part �uh and a remainder

uh = �uh + (uh − �uh) (12)

The projection � is defined at element level by

�uh = Ha =
[
1 0 x 0 y 0
0 1 0 x 0 y

]
⎧⎪⎪⎨
⎪⎪⎩

a1
a2
. . .

a6

⎫⎪⎪⎬
⎪⎪⎭

(13)

The linear ansatz for the deformation along the element edge
is given for a boundary segment k of the virtual element,
defined by the local nodes (1)–(2) by, see right side of Fig. 3,
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Fig. 2 Comparison of the ansatz functions for FEM and VEM formulations. a Finite element ansatz, b polynomial basis function for the virtual
element ansatz with vertices xI
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Fig. 3 Virtual element with nV nodes and local boundary segment of
the element

(uh)k = (1 − ξk)u1 + ξk u2 = Mk 1 u1 + Mk 2 u2 with

ξk = xk
Lk

(14)

where, for example, Mk 1 is the ansatz function along a seg-
ment k related to node (1), ξk is the local dimensionless
coordinate and u1 is the nodal value at that node, see Fig. 3.

The projection� is defined such that it satisfies, seeBeirão
Da Veiga et al. [14],

∇�uh |e != 1

�e

∫
�e

Grad uh d� = 1

�e

∫
�e

uh ⊗ N d�

(15)

where N is the normal at the boundary �e of the domain �e.
From (13), the gradient of the projection is thus given by

∇�uh |e =
[
a3 a5
a4 a6

]
(16)

which is constant at element level.

The right hand side of (15) yields with (14)

1

�e

∫

�e

uh ⊗ N d�

= 1

�e

nV∑
k=1

∫

�k

[
ux (xk)Nx ux (xk)Ny

uy(xk)Nx uy(xk)Ny

]
Lk d� (17)

where we have used N = { Nx , Ny }T and u = { ux , uy }T,
and nV are the number of segments of the element. Note that
the normal vector N changes from segment to segment. In
the 2D case it can be computed for a segment k as

Nk = 1

Lk

{
Nx

Ny

}
k

= 1

Lk

{−(Y2 − Y1)
X2 − X1

}
k

(18)

All quantities are related to the undeformed or initial config-
uration. Furthermore we have used a form of Nk that is not
normalized since the length Lk cancels out when the integral
in (17) is evaluated over the edges.

The integral in (17) can be evaluated for the ansatz func-
tions (14) exactly by using the trapezoidal or Gauss–Lobatto
rule. By selecting the vertices as the Gauss–Lobatto points it
is sufficient to know the values û at the nV vertices V (see
Beirão da Veiga et al. [13]). Since the ansatz function in (14)
fullfills the property MI (xJ ) = δI J the actual form of the
function N does not enter the evaluation of the boundary
integrals.

Hence by comparing (16) and (17) the unknows a3 to a6
are obtained by inspection where all contributions related to
the segments have to be added

a3 = 1

2�e

[
Nx 1(ux 1+ux 2)+· · · + Nx V−1(ux nV−1+ux nV )

+ Nx V (ux nV + ux 1)
]

a4 = 1

2�e

[
Nx 1(uy 1+uy 2)+· · ·+Nx V−1(uy nV−1+uy nV )
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+ Nx V (uy nV + uy 1)
]

a5 = 1

2�e

[
Ny 1(ux 1+ux 2)+· · ·+Ny V−1(ux nV−1+ux nV )

+ Ny V (ux nV + ux 1)
]

a6 = 1

2�e

[
Ny 1(uy 1+uy 2)+· · ·+Ny V−1(uy nV−1+uy nV )

+ Ny V (uy nV + uy 1)
]

(19)

This projection determines the ansatz �uh in (13) within
an element only up to a constant strain field and has to be
supplemented by a further condition to ensure uniqueness.
For this purpose we adopt the condition (see for example
Beirão Da Veiga et al. [12]) that the sum of the nodal values
of uh and of its projection �uh are equal. This yields for
each element �e

1

nV

nV∑
I=1

�uh(xI ) = 1

nV

nV∑
I=1

uh(xI ), (20)

where xI are the coordinates of the nodal point I and the sum
iincludes all boundary nodes.

From (13) and (14) we have, substituting in (20)

1

nV

nV∑
I

H(xI )

︸ ︷︷ ︸
HT

a = 1

nV

nV∑
I

N(xI )uI

= 1

nV

[
1 0 · · · 1 0
0 1 · · · 0 1

]

︸ ︷︷ ︸
NT

⎧⎪⎪⎨
⎪⎪⎩

u1
u2
. . .

unV

⎫⎪⎪⎬
⎪⎪⎭

(21)

These two equations can now be used to determine the two
unknowns a1 and a2. Using the already computed unknowns
ai , see (19) we obtain

a1 =
nV∑
I=1

[ ux I − a3 xI − a5 yI ] / nV

a2 =
nV∑
I=1

[ uy I − a4 xI − a6 yI ] / nV (22)

With this result the ansatz function�uh of the virtual element
is completely defined.

Note that the constant gradient ∇�uh |e can be computed
directly using (16) and (17). Thus for the computation of the
strain energy it is not necessary to evaluate Eq. (20).

3.2 Construction of the virtual element

Within the virtual element method the gradient of the dis-
placement field is approximated by a constant part that stems

from the projection that has been discussed in the last section.
A construction of a virtual element which is based only on
this projection would lead to a rank deficient element once
the number of vertices is greater than 3. Thus the formulation
has to be stabilized, as in the case of the classical one-point
integrated elements developed by Flanagan and Belytschko
[15], Belytschko and Bindeman [2], Reese et al. [29], Reese
and Wriggers [30], Reese [28], Mueller-Hoeppe et al. [24],
Korelc et al. [17], Krysl [20], to mention some key contribu-
tions.

In the following we will first discuss the formulation of
the element part that stems from the projection, see last
section, for the compressible and incompressible cases. Fur-
thermore, different possibilities for stabilizing the virtual
element method will be considered.

3.2.1 Constant part due to projection

The simplest possible formulation for a finite deformation
virtual element is a split into a constant part of the defor-
mation gradient and an associated stabilization term. This
was performed for the linear case in Beirão Da Veiga et al.
[12] and also in Wriggers et al. [39] where the focus was on
contact mechanics. The same approach can be found in the
work of Beirão Da Veiga et al. [14] and Chi et al. [9] for the
nonlinear case.
Compressible case Here we employ the same approach,
however not by starting from the weak form but from the
hyperelastic potential function (10). Thus we have, by sum-
ming up all element contributions for the ne virtual elements,

U (u) =
ne

A
e=1

[
Uc(�uh |e) +Ustab(uh |e − �uh |e)

]
. (23)

The first part in this equation can be computed by using
the results obtained in the last section. This yields

Uc(�uh |e) =
∫

�e

[
Ψ (�uh |e) − f · �uh |e

]
d�

−
∫

�σ
e

t · �uh |e d�. (24)

It is clear from the expression

Ψ (�uh |e) = λ

4
(J (�uh |e)2 − 1 − 2 ln J (�uh |e))

+ μ

2
(trC(�uh |e) − 2 − 2 ln J (�uh |e)) (25)

that for the compressible case the strain energy depends on
functions that are constant in each element�e since the defor-
mation gradient, see (16) and (19), is constant:
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Fe = 1 + ∇�uh |e . (26)

Thus
∫

�e

[
Ψ (�uh |e)

]
d� = Ψ (�uh |e)�e (27)

where �e is the area of the virtual element. Note, however,
that the strain energy Ψ (�uh |e) is still a nonlinear function
with respect to the displacement nodal degrees of freedom.

Now the strain energy function in (24) can be evaluated
using the approximation at element level of the deformation
gradient Fe, see (16), which depends on the nodal degrees
of freedom, see (19). Likewise, the Jacobian Je = det Fe

and the right Cauchy–Green tensor Ce = FT
e Fe can be eval-

uated simply. All derivations leading to the residual vector
Rc
e and the tangent matrix K c

T e were performed with the
symbolic tool AceGen, see Korelc and Wriggers [18]. This
yields for (24)

Rc
e = ∂Uc(�uh |e)

∂ue
and K c

T e = ∂Rc
e(ue)

∂ue
(28)

where ue are the nodal displacements of the virtual element
�e.
Incompressible case The same procedure can be used for
the case of incompressible materials. The first part in Eq.
(23) can be computed by using the results obtained in the
last section and the functional (11). This yields

Ui
c(�uh

∣∣
e) =

∫

�e

[
Ψ i (�uh

∣∣
e) − f · �uh

∣∣
e

]
d�

+
∫

�e

p [J (ue) − 1 ] d� −
∫

�σ
e

t · �uh
∣∣
e d�.

(29)

From the expression

Ψ i (�uh |e) = μ

2
[tr C̄(�uh |e) − 2] (30)

the strain energy depends on a quantity that is constant in
each element. Thus we have
∫

�e

[
Ψ i (�uh |e)

]
d� = Ψ i (�uh |e) |�e|. (31)

HoweverΨ i (�uh |e) is still a nonlinear function with respect
to the nodal degrees of freedom uI .

The incompressibility constraint is discretized by constant
terms; however, the Jacobian Je within an element is not
computed as Je = det Fe but rather as was done in Chi et

al. [9], in a different context. For a constant approximation it
follows for the two-dimensional case that J = ωe /�e where
ωe is the area of the element in the deformed configuration
and�e the areawith respect to the undeformed configuration.
In the spirit of the virtual element method the deformed and
undeformed areas are computed using an integral over the
boundary:

�e = 1

2

∫

�e

Xe · Ne d�, ωe = 1

2

∫

γe

xe · ne dγ. (32)

Here�e denotes the undeformed element edgewhile γe is the
deformed edge of the virtual element. The normal vector Ne

is computed using (18) for an edge of the virtual element. In
the same way the deformed normal ne can be computed by
inserting in (18) the deformed configuration xe = Xe + ue
where Xe is the vector to the boundary in the undeformed
configuration. For the virtual element depicted in Fig. 3 one
can directly evaluate the first term in (32) as

�e = 1

2

[
Ny 1(X1 + X2) + · · · + Ny V−1(XnV−1 + XnV )

+ Ny V (XnV + X1)
]

− 1

2

[
Nx 1(Y1 + Y2) + · · · + Nx V−1(YnV−1 + YnV )

+ Nx V (YnV + Y1)
]

. (33)

The evaluation of the second term in (32) is similar, with the
normal vector components and coordinates being replaced
by their values in the deformed configuration.

As a result, the incompressibility constraint (29) can be
written

∫

�e

p [J (ue) − 1 ] d� = pe (ωe − �e) (34)

when the pressure p is approximated as constant on each ele-
ment. This element fulfills incompressibility at element level.
It will be identified by VEM-T1-I in the example section.

If nearly incompressiblematerials are considered the clas-
sicalQ1-P0 formulation can be employed. In this formulation
an additional unknown θ is introduced and the incompress-
ibility constraint (29) is relaxed, leading to a Hu–Washizu
formulation (see Simo et al. [33])

∫

�e

(
p [J (ue) − θ ] + K

2
(θ − 1)2

)
d� (35)

where the penalty parameter K can be identified as modulus
of compression. By choosing a constant ansatz θe for θ the
integrals can be evaluated as before leading to
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∫

�e

(
p [J (ue) − θ ] + K

2
(θ − 1)2

)
d�

= pe (ωe − θe�e) + K

2
(θe − 1)2 �e. (36)

This formulation allows an elimination of the variables pe
and θe at element level and thus does not introduce further
unknowns. It will be denoted in the following by VEM-T1-
P0.

All derivationswith respect to the unknown displacements
leading to the residual vector Rc

e and the tangent matrix K c
T e

were performed with the symbolic tool AceGen, see Korelc
and Wriggers [18]. This yields for (24)

Rc
e = ∂Ui

c(�uh |e)
∂ue

and K c
T e = ∂Rc

e(ue)
∂ue

(37)

where ue are the nodal displacements of the virtual element
�e. The residual and tangent for the incompressible case are
evaluated similarly.

3.3 Stabilization techniques for nonlinear virtual
elements

Several approaches to stabilization can be followed, among
them hour-glass stabilization technniques, enhanced and
assumed strain methods, and other mixed technologies. In
the literature on virtual element technologies so far stabiliza-
tion techniques were discussed that work well for classical
solid mechanics problems, see e.g. Beirão da Veiga et al.
[11], Beirão Da Veiga et al. [14] and Chi et al. [9], but these
stabilization methods eventually exhibit deficiencies once
bending dominated response is present (like a simple beam
bending problem where the trace or norm of the constitutive
tensor is not related to the bending energy), or if they cannot
be easily linearized in a consistent manner since it is almost
impossible to linearize the norm or trace of the constitutive
tensor consistently which depends in a complex manner on
the displacement field.

A classical stabilization technique that is based on amixed
formulation is the enhanced assumed strain approach, see e.g.
Simo and Rifai [32] and Simo and Armero [31]. However,
as it was shown in Reddy and Simo [27] it is not possi-
ble to enhance displacement triangular elements since the
enhanced modes are orthogonal to the deformation modes.
This is also true for the virtual element formulations since
the ansatz function in (13) does not differ from the ansatz
function for triangular elements. Thus a different stabiliza-
tion technique has to be designed on the basis that it should
be independent of the problem to be solved and be able to
yield a quadratically converging solution algorithm. Here it
should be noted, that there exist possibilities to enhance tri-

angular elements when different functionals are introduced,
see e.g. Taylor [36] and Lovadina and Auricchio [23].

3.3.1 Stabilization by a discrete bi-linear form

One way to formulate the stabilization part Ustab is to use
the split in Eq. (12), see Beirão da Veiga et al. [11]. The
stabilization term is then constructed as a sum over all nodes
of a positive-definite function involving the difference: that
is,

Ustab = γ

2

nV∑
I=1

[
uI − H̄(xI )a

] · [uI − H̄(xI )a
]

(38)

where γ is a stabilization parameter. Here H̄ is an alternative
way of writing H in (13) and is given by

H̄ =

⎡
⎢⎢⎢⎣

1 0
0 1︸︷︷︸

translation

rotations︷ ︸︸ ︷
−y∗
x∗

x∗
−y∗
︸ ︷︷ ︸

axial strain

shear strain︷︸︸︷
y∗
x∗

x∗
y∗
︸︷︷︸

volumetric strain

⎤
⎥⎥⎥⎦ .

(39)

This takes care of the different deformation modes within the
element, see Gain et al. [16] and Wriggers et al. [39]. Since
a is known, see (19) and (22), all terms are now given as
functions of the unknown nodal displacements and thus the
element residual and tangent stiffness can be derived.

In Beirão Da Veiga et al. [14] this parameter is replaced
by a term that depends on the norm of the constitutive tensor
‖ ∂ P

∂F (Fe)‖, and hence on the deformation of the solid. An
alternative stabilization parameter 1

4 tr[ ∂ P
∂F (Fe)], referred to

as a trace-based stabilization, was recently proposed in Chi et
al. [9]. Both stabilization parameters yield a far better approx-
imation than the constant parameter γ . However, such a term
presents a challengewhen linearizing in aNewton procedure,
even with the use of the symbolic tool AgeGen, see Korelc
andWriggers [18],which automatically provides the code for
the residual vector and tangent stiffness matrix. Thus it has
to be computed at the last converged load step, which leads
to incremental load stepping, even if the physical problem
allows the computation of the solution in one step.

3.3.2 Nonlinear stabilization

Wepresent here a novel stabilization approachwhich is based
on that proposed by Krysl [19]. The essence of the approach
is to introduce a new, positive definite strain energy �̂ and to
define the stabilization contribution to the strain energy by

Ustab(uh |e − �uh |e) = Û (uh |e) − Û (�uh |e). (40)
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Fig. 4 Internal triangular mesh

The second term on the right side ensures the consistency of
the total potential energy, which is now given by

U (uh) = U (�uh) + Û (uh) − Û (�uh), (41)

and in which for example

Û (uh) =
ne∑
e=1

∫

�e

�̂(uh |e) d�. (42)

The terms involving�uh can be integrated as (24). It remains
to devise a procedure for computing the term involving the
displacement uh |e.

The idea is now to approximate the displacement field
uh |e in (12) by an inscribed triangular finite element mesh,
see Fig. 4. It consists of nint linear three-noded triangles that
are connected to the nodes of the virtual element. This mesh
can then be used to compute the stabilization energy. This
specific choice of the mesh does not introduce extra degrees
of freedom.

Note that the subtraction of the piecewise-constant part
Û (�uh) is necessary to ensure that the stabilization energy
does not influence the converged result. Once the element
size is very small, a constant strain will occur in each virtual
element. In that case Û (uh) will approach Û (�uh) and thus
not influence the final result.

It remains to define the strain energy �̂. Following the
approach advocated in Krysl [19], we propose the stabiliza-
tion strain energy

Û (uh
∣∣
e) =

nint∑
m=1

∫

�i
m

[
λ̂

2
(Jm − 1)2

+ μ̂

2
(trCm − 2 − 2 ln Jm)

]
d�. (43)

Once an ansatz is formulated for the approximation within
each triangle �i

m of the inscribed mesh for the displacement

field, here denoted by um the deformation measures Jm and
Cm can be easily computed in the standard way, either by
using an isoparametric formulation for the three noded trian-
gle or by direct evaluation of the ansatz functions. The latter
yields with the ansatz

{
ux
uy

}
m

=
{
d1
d4

}
m

+
{
d2
d5

}
m

xm +
{
d3
d6

}
m

ym (44)

an explicit expression for the displacement gradient

Grad um =
[
d2 d3
d5 d6

]
m

. (45)

The values d2, d3, d5 and d6 depend on the nodal displace-
ments of the triangle. Their explicit form is

{
d2
d3

}
m

= 1

2�i
m

[
y2 − y3 y3 − y1 y1 − y2
x3 − x2 x1 − x3 x2 − x1

]
m

⎧⎨
⎩
ux 1
ux 2
ux 3

⎫⎬
⎭

m

= Dm ux m . (46)

Here ux m are the x-components of the displacements at the
nodal points of the interior triangles, xi and yi with i = 1, 2, 3
are the nodal coordinates and �i

m is the element area. The
expression for d5 and d6 can now be computed in a similar
way with the y-components uy m of the nodal displacements,
to yield

{
d5
d6

}
m

= Dm uy m . (47)

The gradient Grad um in (45) is constant over each
inscribed element. Hence the deformation gradient Fi

m =
1 + Grad um within each element �i

m is constant as well.
The deformation gradient is then used to compute the Jacobi
determinant J im = det Fi

m and the right Cauchy Green tensor
C i
m = (Fi

m)T Fi
m that are needed to evaluate (43). Now the

stabilization energy can be computed using (43) which is a
nonlinear function of the nodal displacements of the interior
triangular mesh. All further derivations leading to the resid-
ual vector Re and the tangent matrix K T e were performed
with the symbolic tool AceGen, see Korelc and Wriggers
[18]. This yields for (40)

Rs
e = ∂Ustab(ue)

∂ue
and K s

T e = ∂Rs
e(ue)

∂ue
. (48)

Thus the total residual and tangent matrix of the virtual ele-
ment are given by the sum of expressions (37) and (48):
Re = Rc

e + Rs
e and K T e = K c

T e + K s
T e.

The values of the Lamé parameters in the strain energy
(43) have to be selected in a proper way. Krysl [21] suggested
for hexahedra a procedure that takes into account the element
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Fig. 5 Inner and outer radius of a virtual element

distortion to compute the Lamé parameters λ̂ and μ̂. Since
this procedure is not directly applicable to arbitrary virtual
elements we suggest a simple and computationally efficient
way to compute the parameters from the basic geometric data
of the virtual element, see Fig. 5.

First the Lamé parameters, related to the problem, are con-
verted to Young’s modulus and Poisson ratio. The resulting
Young’s modulus can now be changed based on the length to
height ratio of the element. This procedure was developed in
Krysl [21] by comparing the bending energy of a rectangular
block with that of a beam in order to enhance the bending
behaviour of the element. This yields then a correction

Ê = E
β

1 + β
ν̂ = 0.3. (49)

for the Young’s modulus and the Poisson ratio of the brick
element which is the same in two- and three dimensional
formulations. Note that ν̄ is kept constants since the Pois-
son ratio does not influence the convergence behaviour of
the element and avoids locking in the stabilization term for
incompressible problems. We note that a similar procedure
was used in the work of Nadler and Rubin [25] who sta-
bilized their Cosserat brick element using 18 deformation
modes for bending and torsion and matched the stiffness of
these modes by comparisons with linear elastic solutions.
Extensions for non-rectangular elements were provided in
Loehnert et al. [22] and Boerner et al. [7]. Another strat-
egy which used a stabilization of a mean strain hexahedron
by enhanced modes was presented in Mueller-Hoeppe et al.
[24] where the enhanced strain energy was formulated as in
the geometrically linear theory like inNadler and Rubin [25].

The factor β depends on the height to length ratio of the
element. For a virtual element with arbitrary shape this ratio

can be computed by using the inner and outer radii, R2
i , R

2
a

respectively, see Fig. 5, to obtain

β = 2
√
2 (1 + ν)

R2
i

R2
a − R2

i

. (50)

The inner radius is computed by using the distance from the
geometrical centre to the convex hull of the virtual element
while the outer radius is defined by the maximum distance of
nodes related to the virtual element. The computation of β is
different from the scaling that was introduced in Krysl [19]
and additionally takes into account that for a square shaped
element the ratio of length to height is 1.

Now the Lamé parameters are obtained from

λ̂ = Ê ν̂

(1 + ν̂)(1 − 2ν̂)
μ̂ = Ê

2(1 + ν̂)
(51)

In the incompressible case the same stabilization is
applied, leading to

Ui
stab(uh |e − �uh |e) = Û i (uh |e) − Û i (�uh |e). (52)

with Û i being given by

Û i (uh |e) =
nint∑
i=1

∫

�i
m

μ̂

2
(trCm − 2) d�. (53)

4 Numerical examples

In this section we will compare the new virtual element for-
mulation with existing state-of-the-art finite elements. All
examples are subjected to loads that lead to finite deforma-
tion strain states.

All computations are performed by using a Newton-
Rapson algorithm with load stepping when necessary. Due
to the fact that all formulations are linearized in a consistent
manner, using AceGen, quadratic convergence is achieved.

4.1 Cook’s membrane problem

The first example is Cook’s membrane problem of a tapered
cantilever beam, clamped at the left end. The structure is
loaded at the right end by a constant distributed vertical load
q0, as depicted in Fig. 6.

The selected constitutive parameters for the Lamé con-
stants are μ = 40 and λ = 100. The distributed load is given
as q0 = 4.

The mesh used was automatically generated by the mesh-
ing tools in Mathematica. These had to be adapted to the
different ways that are used to create meshes. In general we
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Fig. 6 Initial configuration of
Cook’s membrane and internal
mesh for a regular shaped
virtual element

x

y

48

44

16

Uy

q0

N = 3 ≡ 8 × 8

use different mesh types: a regular mesh, a severely distorted
mesh and a Voronoi mesh, to show the performance of the
new element.

The regular mesh is based on an 8 noded element that has
an internal triangular mesh as depicted by the red lines in the
right part of Fig. 6. The internal mesh is an arbitrary choice,
it could have been constructed in a different way.

A selection of the different meshes can be found in Fig. 7
where three types of distorted meshes are shown. The left
mesh is a mesh that can be obtained form the standard mesh
in Fig. 6 by randomly changing the nodal placements within
the standard mesh. In the middle a mesh is depicted that
is generated by using again a random change of the nodal
placement, but here also the side nodes are included and
thus a mesh with convex and non-convex shaped elements is
obtained. Finally on the right side of Fig. 7, a Voronoi mesh
is shown that includes arbitrary number of nodes and element
sizes. In all distorted cases a special optimization procedure
provided inMathematica has been used to generate the inter-
nal mesh.

Different mesh densities were employed to compute the
solution for all generated types of meshes. The mesh refine-
ment is uniform in the sense that the finermeshes are included
in the coarser meshes for the regular and distorted mesh
types of type d1 and d2. This enables convergence stud-
ies that will depict differences of the formulations. The
number N denotes the mesh division: for example, in the
left part of Fig. 6, a mesh with division of 23 = 8 is
depicted. The sequence of N that was used in this study
is N = 1, 2, 3, 4, 5, 6, 7, 8. Note that the final mesh density
leads to roughly 4 × 105 degrees of freedom. The Voronoi
meshes are generated using randomly distributed nodes.

In order to test the robustness of the virtual element for-
mulation the load was applied in one load step. Due to the
consistent linearization of the element residual quadratic con-
vergence is achieved in this load step. The deformation state,
depicted in Fig. 8 for a mesh with subdivision N = 3, is
computed with 7 iterations for all mesh divisions. The con-
vergence rate of the Newton method is depicted in Table 1
for a Cook’s membrane problem with 32 × 32 elements.

Fig. 7 Distorted mesh d1 and d2 and Voronoi mesh

123



Comput Mech (2017) 60:253–268 263

Fig. 8 Deformed configuration of the cantilever beam for a regular, a distorted and a Voronoi mesh

Table 1 Convergence rate, load
applied in one load step

Iteration ‖R(u)‖
2 1.13 × 101

3 3.59 × 10−1

4 7, 21 × 10−2

5 9.46 × 10−4

6 3.84 × 10−7

7 1.19 × 10−12

Mesh convergence is investigated using the vertical dis-
placement of the upper node, Uy(48, 60) at the right end of
the cantilever beam.

Amesh convergence study is performed for the newvirtual
element formulation, denoted here as VEM-T1. The Lamé
parameters for the stabilization term in the strain energy func-
tionwere computed using the formulation leading to (49) and
(51), which resulted in λ̂ = 25 and μ̂ = 17 for the regular
mesh. The VEM-T1 element is compared with a standard
biquadratic Q2 element that should have superior conver-
gence rates.

To test the new VEM-T1 against a mesh that consists only
of the internal triangles, here labeled T6, this element has
been coded using the internal mesh shown in Fig. 6 and used
to compute the Cook membrane problem as well. The results
stemming from the T6 element are also presented in Fig. 9
that depicts the convergence of the vertical displacement at
point (48, 60). Clearly the VEM-T1 element is superior to
the T6 element. This is due to the fact that the stabilization
term is derived from the equivalent bending energy, see (49).
These results can also be observed in case of small strains.

It can be observed that all formulations converge from
below in this case. Note that the displacement for the con-
vergence of the VEM-T1 element lies between the Q2 and
the T6 convergence and shows by far a superior conver-

2 4 6 8

6

7

8

9

10

Element division 2N

U
y

VEM-T1
T6
Q2

Fig. 9 Convergence study: VEM-T1, T6 and Q2 element
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Q2(5)
VEM-T1(6)
Q2(6)

Fig. 10 Sensitivity study for ameshwith N = 5 and N = 6:VEM-T1,
Q2 element

gence rate then the T6 formulation. From a mesh size with
16 × 16 (N = 4) on the VEM-T1 element performs almost
as well as the Q2-element.

A sensitivity studywith respect to the choice of the consti-
tutive parameters of the stabilization energy (43) is performed
next. This was conducted for 32 × 32 mesh (N = 5) and
64 × 64 (N = 6) meshes. The outcome is shown in Fig. 10
where the results of the VEM-T1 element are compared for
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Fig. 11 Incompressible case, convergence study: VEM-T1-I-, Q2- and
T2-P1-element

different values of α = λ̂ / λ with the solution obtained by
the Q2 element. The value of the shear modulus μ̂ is given
by μ̂ = α μ in this study. The differences are, in a range of
the parameter 0, 2 ≤ α ≤ 0.5, very small with a maximum
deviation of the solution from the Q2 element less than 0.2%.
Even for the larger range 0, 1 ≤ α ≤ 1 the deviations are
acceptable, being less than 1%. However, it should be noted
that forα < 0.1 the solution is no longer stable, showing light
hour-glass modes that become distinct at α < 0.05. Note that
the parameters λ̂ and μ̂ obtained following the suggestion of
Krysl [19], see (49), lead in this case to the smallest deviation
from the Q2 results and thus seem to be optimal.

In order to investigate whether the virtual element VEM-
T1 also works for incompressible case the formulation
discussed in Sect. 3.2.1 was applied. The constitutive param-
eters λ̂ and μ̂ for the stabilization energy were kept as before.
The results for different mesh densities were compared with
the Q2-element and a Taylor-Hood triangular element with
quadratic ansatz for the displacements and linear ansatz for
the pressure (T2-P1) which fulfils the incompressibility con-
straint exactly. The results are depicted in Fig. 11.

Here is obvious that the virtual element VEM-T1-I can
handle the incompressible case almost as well as the T2-P1
element. On the other hand it is clearly superior to the Q2 ele-
ment which however, while higher order, is not designed for
incompressible materials. It should be noted that the T2-P1
element yields thefinal result in one load stepwith 6 iterations
independent of the mesh size. Also the VEM-T1-I element
is able to compute the solution in one load step with 6 itera-
tions, and thus has the same robustness as the T2-P1 element.
It shoud be noted that the standard VEM-T1 formulation
can also handle nearly incompressible behaviour and thus
is locking free. However in comparison to the VEM-T1-P0,
discussed in more detail in the next section, the formulation
lacks robustness in the sense that more load steps are needed
to obtain the final result. For the Cook’s membrane prob-
lem this would mean that four load steps, using VEM-T1,
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10

Element division 2N
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VEM-T1
VEM-T1-d1
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VEM-T1-I-d2
VEM-T-I-VO

Fig. 12 Convergence study for distorted meshes

instead of one load step, using VEM-T1-I or VEM-T1-P0,
are needed to obtain the results presented in Fig. 11.

Next, the virtual element formulation is applied to the
Cook membrane problem with severely distorted meshes.
Examples of the distortedmeshes,whichwere randomly gen-
erated, are shown in Fig. 7 for N = 3.

The mesh (d1) on the left hand side comprises convex ele-
ments while the mesh d2 in the middle of the figure includes
non-convex elements. Finally, on the right hand side a dis-
cretization is shown that is based on a Voronoi mesh.

Again a sequence of meshes from N = 1, 2, 3, 4, 5, 6, 7
is computed for the cases of the compressible and incom-
pressible problem using the same constitutive parameters
as selected above. Fig. 12 depicts the convergence for both
cases. Here VEM-T1 denotes the compressible results while
the element VEM-T1-I is related to the incompressible case.
Even for the mesh (d2) with the non-convex shaped elements
the convergence is smooth and a good coarse mesh accuracy
can be observed in comparison with the regular grid, see Fig.
6. The Voronoi discretization leads to results that are very
close to the mesh with the element distortion (d1).

In a final step the load was increased by a factor of 4.
A Voronoi mesh was used for this application with 1017
elements. The load was applied in four steps, leading to a
total number of 24 iterations to obtain the deformed state
depicted in Fig. with a total computing time of less than 7
sec on a notebookwith a two-core Intel processor of 3.1GHz.

The final displacement at the point (40, 60) is Ux =
−13.23 and Uy = 26.94. Figure 13 shows the distribution
of the Cauchy stresses τxx and the shear stress τxy .

4.2 Punch problem

The next example is that of a punch that is driven into a solid,
as shown in Fig. 14. It undergoes severe deformations and
thus can be used to test the robustness of the virtual element
formulation. We assume the same material properties as in
the first example. One part of the upper plane is deformed
by a prescribed vertical displacement. The displacements are
set to zero along the bottom of the solid, the left and right
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Fig. 13 Deformed state and
Cauchy stresses τxx and τxy for
a total load of q0 = 16

1 1

1

q0

Fig. 14 Punch problem

sides of the solid are fixed in the x-direction, while the top is
also fixed in the x-direction.

The deformation of the solid due to the applied verti-
cal load q0 = 800 of is investigated for the compressible
and incompressible case. The constitutive parameters for the
compressible case areλ = 138.75 andμ = 92.5. The param-
eters for the stabilization energy are computed using (51).
The deformed mesh is depicted in Fig. 15 which shows the
severe deformation related to the application of the full load
(Figs. 16, 17).

For a convergence analysis the vertical displacement at
the upper left point under the load is used. Again a mesh
sequence is analysed, see Fig. 18. The convergence of the

Fig. 15 Deformed configuration of the punch problem, compressible
case for a mesh with N = 4
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Fig. 16 Compressible deformation of the punch, convergence study:
VEM-T1-, VEM-T1-VO, Q2S—element

new VEM-T1 element (normal and Voronoi mesh) is expec-
tantly not as good as the convergence for the Q2 element for
the compressible case but the result is close to the solution
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Fig. 17 Deformed configuration of the punch problem, incompressible case
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Fig. 18 Incompressible deformation of the punch, convergence study:
VEM-T1-I, VEM-T1-P0 and T2-P1 - element

since for N ≥ 3 the result deviates by less than 0.5 % from
the converged solution. It should also be noted that the con-
vergence related to the Voronoi mesh is not smooth since the
meshes are generated randomly and thus a finer mesh does
not have the same nodes as a coarser mesh.

In the incompressible case the Lamé parameter μ = 80
was used for the incompressible VEM-T1-I element, see (29)
. The constitutive parameters for the stabilization energywere
again computed from (51).

The final configuration for a load of q0 = 800 is depicted
in Fig. 17 for twoVoronoimesheswithmesh densities related
to N = 3 and N = 5. It is noted that finer meshes do not
influence the overall convergence characteristics leading to
the same number of load steps and iterations.

Again a convergence study is performed for the incom-
pressible and nearly incompressible deformations of the
punch. Here the incompressible element VEM-T1-I and the
element related to the nearly incompressible formulation
VEM-T1-P0, see (35), were employed. Two differentmeshes
were selected for the VEM-T1-I and VEM-T1-P0 element.
These are a regular mesh with rectangular 8 node virtual
elements here denoted by VEM-T1-I and a Voronoi mesh
denoted by VEM-T1-I-VO and VEM-T1-P0 and VEM-T1-
P0-VO, respectively. The nearly incompressible solution is
based on a choice of ν = 0.49999. The results are compared
to a solution obtained with a classical mixed T2-P1 element.

It can be seen that the convergence of the virtual element
using the Voronoi mesh is not completely smooth which is

F

100

1

Fig. 19 Beam under a point load F

due to the random nature of the Voronoi mesh. However
all results of the VEM-T1-I element converge to the solu-
tion that was generated with the T2-P1 element. Even for
a coarse mesh of 16 × 8 elements (N = 4) the solution
deviates less than 2% from the converged solution for the
VEM-T1 with a regular mesh and about 2.5 % from the
solution using the Voronoi mesh. Thus the incompressible
version of the virtual element can handle incompressible
deformations while fulfilling the constraint J = 1 at ele-
ment level.

In the nearly incompressible case both meshes converge
to a solution that deviates by less than 1 % from the solu-
tion of the incompressible case which is due to the fact that
the incompressiblity constraint is not exactly fulfilled. How-
ever the results of the VEM-P0 element converge as well as
before. Also the number of load steps needed to reach the
final deformation state are the same as for the VEM-T1-I
element.
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Fig. 20 Convergence study for the beam: VEM-T1-, Q1-,
Q2S- element
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Fig. 21 Deflection of the beam for the coarse discretization

4.3 Thin beam

In a final example the behaviour of the new virtual element
will be tested in bending dominated structural response. For
this bending of a beam undergoing large deflections is con-
sidered. The beam is depicted in Fig. 19a. The beam is thin,
having a height to length ratio of H/L = 1/100. It is loaded
at the right end by a point load F and clamped at the left end.
The constitutive data are given by E = 107 for the Young’s
modulus and ν = 0.3 for the Poisson ratio. This is equivalent
to the Lamé constants λ = 5769231 and μ = 384615. The
applied load has the magnitude F = 48.

The analysis is performedwith theVEM-T1element using
a mesh with rectangular shaped elements. Here the 8-node
virtual element which has been already applied in Cook’s
membrane problem is selected. The results are compared
to the solution of a 4-node Q1 element and an 8-node Q2
serendipity element. The latter uses a quadratic interpolation
for the displacement field and thus has superior convergence
rates.Allmeshes are selectedwith elements that have a length
to height ratio larger than 10 in order to test the applicabil-
ity of the new virtual element formulation for more severe
bending situations.

Figure 20 reports a mesh convergence study which is per-
formed using a series of meshes with 10× 1, 20× 2, 40× 4,
80 × 6, 160 × 8 and 320 × 10 elements.

The graphs in Fig. 20 show that the convergence of the
linear 8-node VEM-T1 element is nearly as good as the con-
vergence behaviour of the quadratic Q2S element despite
that it only uses linear ansatz functions. Even for the coarse
mesh with only 10 elements the VEM-T1 element devi-
ates only by 3 % from the converged solution. The Q1
element depicts the classical bending locking. Only for a
very fine mesh, with 1280× 14 elements, it converges to the
solution.

For the given load the total deflection is computed within
one load step and 7 iterations in total, leading to the state
depicted on the left side of Fig. 21.

On the right side side of Fig. 21 the deflection of the beam
is shown for a load that is 10 times larger. In that case 3
load steps with total 22 iterations are needed to obtain the
final state. The vertical displacement at the end deviates for
a coarse mesh with u10×1

Y = 66.3 about 10 % from the con-
verged solution of uconv

Y = 72.17 while a solution with a
20 × 2 mesh is only 2 % away from the converged solution
(u20×2

Y = 70.66).

5 Summary and conclusions

We have presented a virtual element method for nonlinear
elasticity in which the key novel feature is a stabilization
term involving a modified positive definite strain energy,
together with a simple scheme for carrying out quadra-
ture. The formulation is simple and has been presented for
both compressible and incompressible materials. In the lat-
ter case a mixed formulation is used with the pressure as a
Lagrange multiplier to enforce the incompressibility con-
straint. Locking-free behaviour is observed in the nearly
incompressible and incompressible case and for bending
dominated problems. The performance of the method is
superior when compared with various other conventional or
virtual element schemes.

The method proposed here is amenable to extensions
of various kinds: for example to higher-order VEM for-
mulations, to problems in three dimensions, and to other
nonlinear problems such as those involving inelastic material
behaviour. First results indicate that the same stabilization
procedure can be employed in the three-dimensional case
however these topics await investigation.
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