
Comput Mech (2017) 59:693–715
DOI 10.1007/s00466-016-1368-x

ORIGINAL PAPER

A parameter-free variational coupling approach for trimmed
isogeometric thin shells

Yujie Guo1 · Martin Ruess2 · Dominik Schillinger3

Received: 24 July 2016 / Accepted: 16 December 2016 / Published online: 29 December 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract The non-symmetric variant of Nitsche’s method
was recently applied successfully for variationally enforc-
ing boundary and interface conditions in non-boundary-fitted
discretizations. In contrast to its symmetric variant, it does
not require stabilization terms and therefore does not depend
on the appropriate estimation of stabilization parameters. In
this paper, we further consolidate the non-symmetric Nitsche
approach by establishing its application in isogeometric thin
shell analysis, where variational coupling techniques are of
particular interest for enforcing interface conditions along
trimming curves. To this end,we extend its variational formu-
lation within Kirchhoff–Love shell theory, combine it with
the finite cell method, and apply the resulting framework to
a range of representative shell problems based on trimmed
NURBS surfaces. We demonstrate that the non-symmetric
variant applied in this context is stable and can lead to the
same accuracy in terms of displacements and stresses as its
symmetric counterpart. Based on our numerical evidence,
the non-symmetric Nitsche method is a viable parameter-
free alternative to the symmetric variant in elastostatic shell
analysis.
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1 Introduction

The boundary representation paradigm (B-rep) [1,2] con-
stitutes the backbone of current computer-aided geometric
design (CAD) tools. InB-rep, geometric shapes are described
by boundary information and topological relations. Bound-
aries are represented in terms of two-parameter polynomial
functions, such as non-uniform rational B-splines (NURBS)
[3,4]. The success of the B-rep concept in CAD is closely
connected to the trimming paradigm, which significantly
increases the flexibility of the method to represent complex
arbitrary shapes in 3D [2]. A trimmed NURBS surface is
defined by a set of trimming curves described in the parame-
ter space of the NURBS surface. The trimming curves form
outer and inner loops that define the topology of the trimmed
surface based on their orientation. The parts of the surface
that are “trimmed away” are not visualized by the CAD tool.
The trimming concept is illustrated in Fig. 1 for a simple
perforated surface.

More complex B-rep objects can be easily constructed
by joining several trimmed NURBS surfaces along com-
mon trimming curves. It is important to note that trimming
curves typically are only approximations of exact intersec-
tion curves, depending on a given tolerance. This leads to
small gaps and overlaps between the space curves of two
neighboring trimmed surfaces, so that NURBS-based B-Rep
models are classified as not water-tight. For more details, we
refer to the excellent summary and further references given
in [5].
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Fig. 1 The concept of a trimmed NURBS surface. a NURBS surface
r(ξ1, ξ2) with trimming curve C(θ). b Surface and trimming curve in
the parameter space (ξ1, ξ2)

Integrated design-through-analysis workflows for thin
shell structures described by trimmed NURBS surfaces can
be based on the combination of concepts from isogeometric
analysis and embedded domain methods. In this context, we
identify four key components [5–9]:

1. ability to query geometric information related to trimmed
surfaces from CAD data structures,

2. efficient and accurate isogeometric shell technology,
3. quadrature methods for the integration of stiffness and

residual forms in trimmed elements,
4. methods to enforce boundary and coupling conditions at

non-matching trimming curves.

We note that there also exist methods for the isogeometric
analysis of volumetric geometries defined by B-rep surfaces,
e.g., based on embedded domain methods [10,11] or bound-
ary element methods [12,13]. From a technology viewpoint,
the latter three components of the above list profit from sig-

nificant progress in both isogeometric analysis and embedded
domain methods in recent years. On the isogeometric side,
a variety of advanced formulations for isogeometric shell
analysis on spline surfaces have been developed, e.g., based
on solid shell theories [14,15], Kirchhoff–Love [16] and
Reissner–Mindlin theories [17–19], and hierarchic combina-
tions thereof [20]. Isogeometric shells have been successfully
applied for large-deformation analysis [21], in conjunction
with various nonlinear material models [22,23], and in con-
tact and fluid-structure interaction problems [24–27]. On
the embedded domain side, the importance of geometrically
faithful quadrature of trimmed elements and corresponding
techniques have been discussed in a series of recent papers
[27–35]. For the weak enforcement of boundary and inter-
face conditions at trimming curves and surfaces, variational
methods such as Lagrange multiplier [36–38] or Nitsche
techniques [39–44] have been successfully developed.

Focusing on the latter component, this paper explores the
use of the non-symmetric Nitsche method for the parameter-
free weak enforcement of boundary and interface conditions
in the context of isogeometric shell analysis of trimmed
NURBS surfaces. Symmetric variants of Nitsche methods
are accurate and robust, but their performance crucially
depends on appropriate estimates of the stabilization param-
eters involved [40,44,45]. If estimates are too large, the
method degrades to a penalty method, which adversely influ-
ences consistency, accuracy and robustness. If they are too
small, stability is lost. Moreover, accurate estimation tech-
niques are often delicate from an algorithmic viewpoint
[43,44,46]. Therefore, there has been an increasing interest in
methods that can enforce boundary and interface conditions
without mesh dependent stabilization parameters [38,47–
49].

Originally introduced in the context of discontinuous
Galerkin methods by Baumann, Oden and coworkers [50–
53], the non-symmetric form of Nitsche’s method is based
on variationally consistent numerical flux conditions that
are introduced in such a way that the criterion for stabil-
ity is (weakly) satisfied. Therefore, it does not require the
introduction of additional stabilization terms with associ-
ated parameters and, in contrast to the symmetric form of
Nitsche’s method, its performance does not depend on the
accuracy of the variational estimate or the reliability and
robustness of associated numerical algorithms. On the other
hand, the non-symmetric Nitsche method leads to unsym-
metric systemmatrices and its numerical analysis framework
does not cover optimal convergence rates of the L2 error [54–
58].

This paper extends recent work [59–61] that demon-
strated the potential of the non-symmetricNitschemethod for
parameter-free analysis in the context of non-matching and
non-boundary-fitted discretizations. We provide numerical
evidence that the non-symmetric Nitsche method is a viable
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alternative to symmetric variants of Nitsche’s method for
elastostatic shell analysis, where the accuracy of derivative
quantities such as bending moment resultants are of pri-
mary importance. The non-symmetric Nitsche method thus
enables isogeometric shell analysis of trimmed NURBS sur-
faces without the burden of estimating appropriate element-
wise stabilization parameters.

Our paper is structured as follows: Sect. 2 reviews the basic
formulation of the symmetric and non-symmetric Nitsche
methods for aLaplacemodel problem, including the element-
wise estimation of stabilization parameters for the former.
Section 3 provides a concise summary of the isogeometric
Kirchhoff–Love shell formulation. In Sect. 4, we formulate
the non-symmetric Nitsche method for weakly enforcing
boundary and coupling conditions in thin Kirchhoff–Love
shells. We also briefly review the finite cell method [62]
as a tool for integrating trimmed shell elements. Section 5
presents a series of numerical experiments that corroborate
the competitive performance of the parameter-free non-
symmetric Nitsche method in comparison to the stabilized
symmetric variant. We illustrate the effect of the missing
symmetry on the (now complex) eigenvalue spectrum and
the potential of increasing robustness by re-introducingmod-
erate stabilization. Section 5 puts the numerical results into
perspective and motivates future work.

2 The non-symmetric variant of Nitsche’s method
for unfitted discretizations

To introduce the non-symmetric Nitsche method, we review
its derivation for a Laplace problem in the context of unfitted
meshes based on the presentation in [61], adopting the ter-
minology of its original Discontinuous Galerkin formulation
[50,51]. We also compare the resulting parameter-free for-
mulation with a symmetric form that is based on stabilization
parameters [40,44].

2.1 A Laplace model problem

We consider the following Laplace model problem

−Δu = 0 on Ω (1)

u = g on ΓD (2)

In addition to theDirichlet boundaryΓD , we assume an inter-
face Γ � that divides the domain Ω into two subdomains Ki ,
i = {1, 2} (see Fig. 2 for an illustration). We assume that
the boundary ∂Ki of each subdomain can be partitioned into
sections with sufficient regularity. We define u+ and n+ as
the value of the primary variable and the outward unit normal
on ∂Ki , and u− and n− as the value of the primary variable

Fig. 2 Domain Ω divided into two subdomains and discretized by
unfitted meshes. The plus/minus signs on the normals refer to the left
subdomain in green. (Color figure online)

and the outward unit normal of the neighboring subdomain,
if the boundary point belongs to Γ �. We can then formulate
for each subdomainKi the following boundary and interface
conditions

u+ − g = 0 on ∂Ki ⊂ ΓD (3)

u+ − u− = 0 on ∂Ki ⊂ Γ � (4)

∇u+ · n+ + ∇u− · n− = 0 on ∂Ki ⊂ Γ � (5)

Focusing an a specific example, we consider a square domain
Ω ∈ [0, 1]2, where we impose nonzero boundary conditions
u(x, 0) = sin(πx) and u = 0 on all other boundaries. We
obtain the analytical solution [40]

uex (x, y) = [cosh(πy) − coth(π) sinh(πy)] sin(πx) (6)

2.2 Variational formulation

Following the unified framework in [55], we start the deriva-
tion of the variational form of Nitsche-type methods by
rewriting the problem (1) as a first-order system

σ = ∇u, −∇ · σ = 0 (7)

Multiplying the first and second equations by suitable test
functions τ and v, respectively, and performing integration
by parts on each subdomain K, we find

∫
Ki

σ · τ dΩ = −
∫
Ki

u ∇ · τ dΩ +
∫

∂Ki

u n+ · τ dΓ

(8)∫
Ki

σ · ∇v dΩ =
∫

∂Ki

σ · n+ v dΓ (9)

The solution space for u and σ associated with each sub-
domain Ki is S = L2(Ki ), where L2 is the space of square
integrable functions. The test function space for v and τ asso-
ciated with each subdomain Ki is V = H1(Ki ), where H1
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is the space of square integrable functions with square inte-
grable first derivatives.

We then discretize (8) and (9) such that uh ∈ Sh ⊂ S and
σh ∈ Sh ⊂ S, arriving at the flux formulation [55,63]: Find
uh and σh such that for all K we have

∫
Ki

σh · τ dΩ = −
∫
Ki

uh ∇ · τ dΩ +
∫

∂Ki

û n+ · τ dΓ

(10)∫
Ki

σh · ∇v dΩ =
∫

∂Ki

σ̂ · n+ v dΓ (11)

where the numerical fluxes σ̂ and û are approximations to
σ = ∇u and to u, respectively, on the boundary ∂Ki . Focus-
ing on coupling conditions, we assume that definitions (10)
and (11) are applied on meshes with finite elements that are
conforming to the Dirichlet boundary ΓD , but can be arbi-
trarily intersected by the embedded interface Γ �.

In the next step, we design expressions in terms of σh and
uh for the numerical fluxes. To arrive at the non-symmetric
Nitsche method, we choose

û = 3

2
u+
h − 1

2
u−
h (12)

σ̂ = 1

2

(∇u+
h + ∇u−

h

)
(13)

for boundaries ∂Ki ⊂ Γ � on the interior interface.
The final formof the non-symmetricNitschemethod is the

primal formulation of (10) and (11), which can be obtained
by relating σh and τ to uh and v. To this end, we first consider
integration by parts

−
∫
Ki

uh ∇ · τ dΩ

=
∫
Ki

∇uh = ·τ dΩ −
∫

∂Ki

uh n+ · τ dΓ (14)

where we restrict uh ∈ Vh ⊂ H1(Ki ). Inserting (14) and the
flux approximation (12) into (10), and identifying τ = ∇v

yields the following expression

∫
Ki

σh · ∇v dΩ =
∫
Ki

∇uh · ∇v dΩ

+
∫

∂Ki ⊂Γ �

1

2

(
u+
h − u−

h

)
n+ · ∇v dΓ (15)

Inserting the flux approximation (13) into (11), relating the
result to the left-hand side of (15) and summing over the
two subdomainsKi yields the following primal formulation:

Fig. 3 Laplace model problem: unfitted meshes with embedded inter-
face (red line) and solution field for p = 2. (Color figure online)

Find uh such that B(uh, v) = l(v), with

B(uh, v) =
∑
i

∫
Ki

∇uh · ∇v dΩ

+
∫

Γ �

�uh�{∇v}dΓ −
∫

Γ �

{∇uh}�v� dΓ (16)

where l(v) = 0 in our example. For a compact notation, we
use the jump operator for scalar quantities as

�uh� = u+
h n

+ + u−
h n

− (17)

and the average operator for vector quantities as

{∇uh} = 1

2
(∇u+

h + ∇u−
h ) (18)

We discretize the domain Ω with two overlapping Carte-
sianmeshes of different size.We use a straight line rotated by
π/8 about the center point to trim away overlapping portions
of the two meshes, creating an embedded interface. Figure 3
illustrates the trimmed mesh and the trimming curve. We
use the recursive quadrature approach applied in the finite
cell method [62] to evaluate the integrals in (16) over inter-
sected elements. To ensure accuracy, we employ eight levels
of quadrature sub-cells.More details on the finite cell method
will be given in the context of trimmed shell elements in
Sect. 4. To integrate over the immersed boundary, we divide
the straight line into 1D sub-elements irrespective of the
underlying Cartesian mesh. The corresponding solution field
obtained with the non-symmetric Nitsche method (16) and
quadratic B-splines is plotted in Fig. 3.
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2.3 Comparison with the symmetric Nitsche method

We compare the non-symmetric Nitsche method given in
(16) with a symmetric variant of Nitsche’s method recently
introduced by Annavarapu et al. [42,44,46], designed for
superior performance in interface problems. The method is
based on a weighting of the consistency terms at embedded
interfaces, which has been shown to improve the accuracy
and robustness with respect to the classical Nitsche approach
in the presence of cut elements. Its variational form reads as
follows: Find uh such that B(uh, v) = l(v), with

B(uh, v) =
∑
i

∫
Ki

∇uh · ∇v dΩ

−
∫

Γ �

�uh� · 〈∇v〉γ dΓ −
∫

Γ �

〈∇uh〉γ · �v� dΓ

+ α

∫
Γ �

�uh� · �v� dΓ (19)

and l(v) = 0 for our example. The weighting operator across
the interface is defined as

〈∇u〉γ = γ∇u+ + (1 − γ )∇u− (20)

We observe that in constrast to the non-symmetric form (16),
the symmetric variant of Nitsche’s method includes an addi-
tional parameter α, which ensure that (19) is coercive, that
is, stable. For optimal performance of the method, α needs to
be chosen as small as possible. Element-wise configuration
dependent stabilization parameters can be estimated based
on a local eigenvalue problem [7,40,43,44]. The particular
method (19) makes use of one-sided inequalities to establish
estimates of local stabilization parameters. They can be com-
puted from separate eigenvalue problems on each side of the
interface that have the following form

Ax = λBx. (21)

An eigenvalue problem (21) is defined in each element with
support at the interface. For theLaplace problem, thematrices
in (21) are defined as

[A]i j =
∫

Γ e

(∇Ni · n+) (∇N j · n+)
dΓ (22)

[B]i j =
∫

Ωe
∇Ni · ∇N j dΩ (23)

The contribution of the individual embedded mesh of each
subdomain Ki to the discrete system can be computed and
assembled separately.

Following [44], we compute the stabilization parameter α
and the weighting factor γ + at each location of the interface
as

Fig. 4 Element-wise maximum eigenvalues, computed separately on
each side of the immersed interface from the local eigenvalue problem
(21)

α = 1

1/C+ + 1/C− (24)

γ = 1/C+

1/C+ + 1/C− (25)

where C+ and C− are the element-wise maximum eigen-
values computed on the current and opposite side of the
interface, respectively. Figure 4 shows the results of the
eigenvalue computations on each side of the interface, illus-
trating that the size of the eigenvalues depends strongly on
the size of the cut element. The weighted definition (24) of
α prevents that a large eigenvalue on one side dominates the
stabilization.

We compare the performance of the non-symmetric
Nitsche method with the weighted variant of Nitsche’s
method (19). Figure 5 plots the absolute error distribution on
two trimmed Cartesian meshes of quadratic B-splines with
12×12 and 23×23 elements. The error of the solution field
itself is larger for the non-symmetric Nitsche method than
for the two symmetric variants of Nitsche’s method. This is
due to the reduced level of accuracy of the non-symmetric
Nitsche method in the L2 norm. Figure 6a, b show the con-
vergence of the L2 and H1 errors as the Cartesian mesh is
uniformly refined. We observe that for the relative error in
the L2 norm, the error of the non-symmetric Nitsche method
converges at the same optimal rate, but exhibits a larger error
constant than the symmetric method. For the relative error
in the H1 semi-norm, however, the non-symmetric Nitsche
method achieves to the same optimal accuracy as its sym-
metric counterpart.

This observation is the starting point for the present work.
In shell analysis, the accuracy of the derivatives of the pri-
mal variable, i.e. the stress, is much more important than the
accuracy of the primal variable itself, i.e. the displacement
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Fig. 5 Laplace model problem: distribution of the absolute error
(amplified in all plots for better visibility). a Non-symmetric Nitsche.
b Symmetric Nitsche with local stabilization

vector. Therefore, the optimal convergence in H1 delivered
by the non-symmetric Nitsche method is of primary impor-
tance, while its reduced L2 accuracy is acceptable. We note
that in the remainder of this work, we employ the relative
error in strain energy to measure accuracy, whose conver-
gence behavior is similar to the H1 error. Computing the
H1 for complex shell structures is difficult, as exact solution
fields are mostly unknown, while strain energy can be easily
computed, and high-fidelity reference values for the strain
energy are available in the literature for many benchmark
examples.

3 Isogeometric Kirchhoff–Love shells

In this section, we review a compact rotation-free Kirchhoff–
Love shell formulation, based on the work of Kiendl et al.
[16], whose discretization requiresC1 continuous basis func-
tions. We note that this requirement is naturally satisfied in
isogeometric analysis, where we use the same higher-order
continuous spline basis functions to describe the geometry of
CADsurfaces and the displacements of the shell formulation.

We use an upper case notation for quantities, which refer
to the undeformed reference configuration, and a lower case
notation for quantities, which refer to the current deformed
configuration. Greek indices take values {1, 2} and Latin
indices take values {1, 2, 3}.

3.1 Kirchhoff–Love shells

In the current configuration, the position x of a material point
within the shell body is described by

x(ξ1, ξ2, ξ3) = r(ξ1, ξ2) + ξ3ta3(ξ1, ξ2). (26)
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Fig. 6 Laplace model problem: convergence of the L2 and H1 errors with quadratic B-splines. a L2 norm. b H1 semi-norm
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Fig. 7 Shell geometry description in undeformed and deformed configurations

In this equation, r is the location vector of the shell mid-
surface, ξi are the curvilinear coordinates, where ξ3 ∈
[−0.5, 0.5], t is the shell thickness, and a3 is the normal
director of the mid-surface (see Fig. 7 for details).

Based on the Kirchhoff–Love assumptions [64,65], the
3D strain tensor E reduces to the in-plane strain components

E = Eαβ Gα ⊗ Gβ. (27)

The covariant components Eαβ are represented as

Eαβ = 1

2
(gαβ − Gαβ). (28)

Detailed descriptions of the covariant and contravariant basis
can be found in [66]. The strain tensor (27) is further split
into in-plane and out-of-plane contributions

Eαβ = εαβ + ξ3 t καβ, (29)

with εαβ and (ξ3 t καβ) independently representing mem-
brane and bending effects. Membrane and bending strains
are defined as

εαβ = 1

2
(aαβ − Aαβ), (30)

aαβ = aα · aβ, (31)

Aαβ = Aα · Aβ, (32)

and

καβ = Bαβ − bαβ, (33)

bαβ = aα,β · a3, (34)

Bαβ = Aα,β · A3, (35)

where καβ represents the curvature of the shell mid-surface,
aα = r,α , and aα,β = r,αβ .

The strain relations Eαβ are defined in the contravariant
basis and a transformation to the local Cartesian coordinate
system eγ follows as

Ēγ δ = Eαβ(eγ · Gα)(Gβ · eδ), (36)

containing only in-plane strain components.
The relation between stresses and strains is established with
the constitutive equations in Voigt notation

⎡
⎣S̄11

S̄22

S̄12

⎤
⎦ = Ĉ

⎡
⎣ Ē11

Ē22

2 Ē12

⎤
⎦ , (37)

where ¯Sαβ denotes the stress tensor coefficients and Ĉ is
the reduced material matrix for plane stress problems [65].
Integration of the stress components over the shell thickness
provides the force and moment stress resultants n̄ and m̄,
written in Voigt notation as

⎡
⎣n̄11

n̄22

n̄12

⎤
⎦ = t · Ĉ

⎡
⎣ ε̄11

ε̄22
2 ε̄12

⎤
⎦ , (38)

and

⎡
⎣m̄11

m̄22

m̄12

⎤
⎦ = t3

12
· Ĉ

⎡
⎣ κ̄11

κ̄22
2 κ̄12

⎤
⎦ . (39)
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3.2 Governing equations and discretization

Using the principle of virtual work, we obtain a variational
form of equilibrium as

W(u, δu) = WI (u, δu) + WE (u, δu) = 0. (40)

The internal and external work integrals are defined as

WI (u, δu) = −
∫

Ω

(n : δε + m : δκ) d A, (41)

WE (u, δu) =
∫

Ω

p · δu d A +
∫

Γt

t0 · δu dS, (42)

where d A and dS are differential elements of themid-surface
area and the boundary of the shell domain, respectively. The
quantities δu, δε and δκ are the variations of displacements
and strains. The vectors t0 and p denote the traction per unit
length along the Neumann boundary Γt and the domain load
per unit area on the mid-surface, respectively.

Thedisplacements of themid-surface are discretizedusing
spline basis functions Ri as

u =
∑
i

Ri Ui , (43)

where Ui corresponding unknowns that can be interpreted as
mid-surface control point displacements.

The first and second derivatives of the virtual work inte-
grals with respect to the introduced unknown displacement
components of (43) provide the residual forces and the
shell stiffness, respectively. For linear elasticity, the stiffness
matrix reads

K =
∫

Ω

(
∂n
∂Us

: ∂ε

∂Ur
+ ∂m

∂Us
: ∂κ

∂Ur

)
d A, (44)

For further details on how to compute geometric quantities
such as differential elements and partial derivatives, we refer
to [8,67].

4 A non-symmetric Nitsche formulation for
trimmed Kirchhoff–Love shells

In the following, we extend the non-symmetric variant of
Nitsche’smethod toweakly enforce constraints in the context
of the variational rotation-free Kirchhoff–Love shell formu-
lation. We first derive non-symmetric Nitsche formulations
for displacement boundary conditions and coupling condi-
tions and discuss aspects of their isogeometric discretization.
We then illustrate a paradigm for parameter-free isogeomet-
ric analysis of trimmed CAD surfaces, based on weakly

enforced coupling conditions via the non-symmetric Nitsche
method and the finite cell method.

4.1 Weakly enforced boundary conditions

Dirichlet boundary conditions of the isogeometricKirchhoff–
Love shell comprise prescribed mid-surface displacements
u0 and rotations �0 along corresponding Dirichlet bound-
aries Γu and Γθ . Following the notation introduced in
Sect. 2.1 for the Laplace problem, they are expressed as

u+ − u0 = 0 x ∈ Γu, (45)

�+ − �0 = 0 x ∈ Γθ , (46)

where �+ = a+
3 − A+

3 denotes the angle between the
deformed and the undeformed shell configuration. We note
that the following holds: Γ = Γu ∪ Γθ ∪ Γt and (Γu ∪ Γθ) ∩
Γt = ∅, where Γ is the complete domain boundary and Γt

is the Neumann boundary.
We now add a non-symmetric Nitsche extension to the

variational formulation, such that

WE (u, δu) + WI (u, δu) − WN IT (u, δu) = 0. (47)

The term WN IT (u, δu) represents the work of the Nitsche
extension. We can split this term into internal and external
work components. For the internal component, we find

WN IT
I = +

∫
Γu

δ
(
Nα + bα

γ M
γ
)

· u(α) dS

−
∫

Γu

(
Nα + bα

γ M
γ
)

· δu(α) dS

−
∫

Γu

δ
(
Q + M(d),s

) · u(3) dS

+
∫

Γu

(
Q + M(d),s

) · δu(3) dS

+
∫

Γθ

δM(t) · Φ(d) dS

−
∫

Γθ

M(t) · δΦ(d) dS, (48)

and for the external component, we find

WN IT
E =

∫
Γu

δ
(
Nα + bα

γ M
γ
)

· u0(α) dS

−
∫

Γu

δ
(
Q + M(d),s

) · u0(3) dS

+
∫

Γθ

δM(t) · Φ0(d) dS. (49)

Here, u0 = {u0(α), u0(3)} and Φ0(d) represent the prescribed
displacements and rotations along the Dirichlet boundary.
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The term (Φ(d) = Φ · d) denotes the rotation along the nor-
mal direction of the boundary. The term (Nα +bα

γ M
γ ) is the

effective membrane force, (Q + M(d),s) the effective shear
force, and (M(t)) the bending moment in direction of the
boundary normal d. For details on their definition in the con-
text of co- and contravariant bases, we refer for example to
[8,67].

4.2 Weakly enforced coupling constraints

Following the notation of Sect. 2.1 for the Laplace problem,
the displacement continuity and force compatibility condi-
tions for the shell formulation at the coupling interface Γ �

are

u+ − u− = 0 on Γ � (50)

σ+ d+ + σ− d− = 0 on Γ � (51)

where (σ d) is the traction at the coupling interface.
The governing equations of the principal of virtual work

(40) can be extended in the sense of (47) and the non-
symmetric Nitsche coupling for the Kirchhoff–Love shell
formulation follows as

WN IT = +
∫

Γ �

δ{Nα + bα
γ M

γ } · {u(α)} dS

−
∫

Γ �

{Nα + bα
γ M

γ } · δ{u(α)} dS

−
∫

Γ �

δ{Q + M(d),s} · {u(3)} dS

+
∫

Γ �

{Q + M(d),s} · δ{u(3)} dS

+
∫

Γ �

δ{M(t)} · {Φ(d)} dS

−
∫

Γ �

{M(t)} · δ{Φ(d)} dS. (52)

The terms in brackets are defined as follows:

{Nα + bα
γ M

γ } := β
(
Nα + bα

γ M
γ
)+

+ (1 − β)
(
Nα + bα

γ M
γ
)−

(53)

{Q + M(d),s} := β
(
Q + M(d),s

)+

+ (1 − β)
(
Q + M(d),s

)− (54)

{M(t)} := β M+
(t) + (1 − β) M−

(t) (55)

{u} := u+ − u− (56)

{�} := (
a+
3 − a−

3

) − (
A+
3 − A−

3

)
. (57)

In contrast to the weak formulation of boundary condi-
tions above, the external work contribution is zero. In (53) to
(55), β controls the contribution of each of the two coupled

domains, Ω(1) and Ω(2), to enforce the traction compatibil-
ity condition. In the extreme cases β = {0, 1}, the condition
is fully shifted to one of the domains, leaving the kinematic
conditions (56) and (57) untouched. In this paper we choose
β = 0.5.

Looking at (48), (49) and (52), we observe that the pairs
of the non-symmetric Nitsche terms of the Kirchhoff–Love
shell have the same structure as the pair of terms in (16) for
the Laplacemodel problem. In particular, each pair has terms
with opposite signs. This leads to the property of weak stabil-
ity [61], which enables the non-symmetric Nitsche method
to be stable without the addition of extra stabilization terms.

4.3 Discretization aspects

When the complete variational formulation (47) is discretized
(see Sect. 3.2), the internal work integrals (48) and (52) and
the external work integral (49) lead to an algebraic system of
the form

(
K I NT
rs + K N IT

rs − K N IT
sr

)
ur = f E XT

r + f N I T
r . (58)

The terms (K I NT
rs ur ) and f E XT

r denote the internal elas-
tic and external forces of the standard shell problem. The
matrix K N IT

rs , its transpose K N IT
sr and the vector f N I T

r refer
to corresponding contributions of the non-symmetricNitsche
method, which maintain the total number of equations of the
shell discretization, but perturb the symmetry properties of
the stiffness matrix.

The matrix and vector coefficients of the discrete equa-
tions follow from the partial derivatives of Eqs. (48) and
(49) with respect to the displacement degrees of freedom in
analogy to (44). In particular, the discretized form K N IT

rs is
computed as

K N IT
rs =

∫
Γu

∂
(
Nα + bα

γ M
γ
)

∂Ur
· ∂u(α)

∂Us
dS

−
∫

Γu

∂
(
Q + M(d),s

)
∂Ur

· ∂u(3)

∂Us
dS

+
∫

Γθ

∂M(t)

∂Ur
· ∂Φ(d)

∂Us
dS. (59)

The force vector contribution f N I T
r is computed as

f N I T
r =

∫
Γu

∂
(
Nα + bα

γ M
γ
)

∂Ur
· u0(α) dS

−
∫

Γu

∂
(
Q + M(d),s

)
∂Ur

· u0(3) dS

+
∫

Γθ

∂M(t)

∂Ur
· Φ0(d) dS, (60)
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where the partial derivatives with respect to Ur follow from
linearization at u = 0:

∂
(
Nα + bα

γ M
γ
)

∂Ur

∣∣∣∣
u=0

=
(
nβα

,r + 2bα
γm

βγ
,r

)
dβ (61)

∂M(d),s

∂Ur

∣∣∣∣
u=0

=
( (

mαβ |γ
)
,r dα tβ

+mαβ
,r dα|γ tβ

+mαβ
,r dα tβ|γ

)
tγ (62)

∂Q

∂Ur

∣∣∣∣
u=0

=
(
(mαβ

,α ),r + Γ α
λαm

λβ
,r

+Γ
β
λαm

αλ
,r

)
dβ (63)

∂M(t)

∂Ur

∣∣∣∣
u=0

= mαβ
,r dαdβ (64)

The second term K N IT
sr is simply the transpose of (59).

For details on taking derivatives and covariant derivatives
of stress resultants nαβ and bending moments mαβ , we refer,
e.g., to [8,67].

4.4 Derivatives of normals and tangents along trimming
curves

In general, the trimming curves C(θ) and the trimmed surface
x(ξ1, ξ2)have independent parameterizations (θ) and (ξ1, ξ2)

for which, in general, no simple analytical relation can be
found. As a consequence, special attention must be given
to the derivatives of the normal dα and tangent tα along an
interface or domain boundary.

The covariant derivatives of dα|γ and tβ|γ used in (62) can
be expressed as

dα|γ = dα,γ − Γ λ
αγ dλ, (65)

tβ|γ = tβ,γ − Γ λ
βγ tλ, (66)

wheredλ and tλ canbe computed basedon the trimming curve
C(θ) and the base vectors of the underlying shell surface
x(ξ, η). The derivatives dα,γ and tβ,γ are

dα,γ = (d · Aα),γ = d,γ · Aα + d · Aα,γ , (67)

tβ,γ = (t · Aβ),γ = t,γ · Aβ + t · Aβ,γ , (68)

with

t̂ =
(

∂C
∂θ

)
(69)

t̂,γ =
(

∂C
∂θ

)
,γ

= ∂2C
∂θ2

∂θ

∂γ
(70)

and

∂θ

∂γ
= 1

t̂ · Aγ
. (71)

The hat symbol indicates that the tangent and normal vectors
used in (69)–(73) are no longer of unit length and require
normalization to be used in (67) and (68). The normal vector
along the trimmed boundary can be constructed as

d̂ = t̂ × A3 = A1(t̂ · A2) − A2(t̂ · A1), (72)

with the derivative

d̂,γ = A1,γ

(
t̂ · A2

)
− A2,γ

(
t̂ · A1

)

+A1

(
t̂,γ · A2 + t̂ · A2,γ

)

−A2

(
t̂,γ · A1 + t̂ · A1,γ

)
. (73)

4.5 Integration in trimmed shell elements

The integrals of the Kirchhoff–Love shell formulation (41)
and (42) aswell as the integrals of the non-symmetricNitsche
extension (48), (49) and (52) are defined over the physical
shell domain and corresponding boundaries and interfaces,
which are parametrized in terms of trimmed surfaces and
trimming curves (seeFig. 1). The evaluation of these integrals
therefore requires numerical quadrature over trimmed shell
elements and along trimming curves, for which we employ
the finite cell method [62].

In the finite cell approach, the part of the geometric
parametrization, which is trimmed away, is interpreted as
a fictitious domain. In the fictitious domain, stresses and
forces are penalized such that their contribution to the total
strain energy becomes insignificant. This enables a smooth
extension of the solution into the fictitious domain, so that
the approximation of the solution in the physical domain is
higher-order accurate and its gradients remain unaffected up
to the geometric boundary [68]. The penalization approach
is based on an indicator function α(x) = {0, 1}, which is one
in the physical domain and zero in the fictitious domain. We
note that maintaining a small factor α � 1 in the fictitious
domain can improve the conditioning of the discrete system,
while not affecting the error at practical engineering accuracy
levels.

The integral of an arbitrary function f (x) over a trimmed
element domain can then be evaluated as

∫
Ωcell

f (x) dΩ =
∫

Ω f ict

ε f (x) dΩ

+
∑
sc

( ∫
Ωphyssc

(α − ε) f (x) dΩ
)

(74)
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Ωphys

Ωfict

C(θ)

α = 1 ∀x ∈ Ωphys

α 1 ∀x ∈ Ωcell

Ωcell = Ωphys ∪ Ωfict

Fig. 8 The finite cell method for a trimmed shell element: sub-cells
aggregate quadrature points along the trimming curve in the parameter
space

L = 12.0 mm

W = 6.0 mm

t = 0.1 mm

E = 3.e + 06 N/mm2

ν = 0.3
p̄ = 1.0 N/mm

Fig. 9 Simply supported plate model

where ε denotes the value of α � 1 in the fictitious domain
for improving conditioning. To resolve the discontinuity in
the indicator function along the trimming curve, the finite
cell method employs a quad-tree based sub-cell integration
scheme, which aggregates quadrature points around the trim-
ming curve. Sub-cells and quadrature points for a trimmed
shell element in the parameter space are illustrated in Fig. 8.
Details on algorithms and data structures can be found for
instance in [41].

5 Numerical examples

In the following, we demonstrate the performance of the
non-symmetric Nitsche approach with a number of exam-
ples, highlighting both advantages and aspects that we think
need further attention. We also compare the results of the
non-symmetric Nitsche method to those obtained with the
symmetric Nitsche variant.
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Fig. 10 Simply supported plate: convergence of conforming and
non-conforming patch coupling. a Symmetric Nitsche method. b Non-
symmetric Nitsche method

5.1 Simply supported plate

The first benchmark is a simply supported thin plate, which
we use to assess the quality of the bending solution for a
coupled non-matching discretization and its corresponding
error distribution. The geometry of the plate, the material
properties and the boundary conditions are shown in Fig. 9.
We analyze an untrimmed matching configuration that con-
sists of two conforming patches of 8 × 8 elements, and an
untrimmed non-matching configuration that consists of two
patches of 8 × 8 and 16 × 16 elements. In both configura-
tions, we apply the non-symmetricNitschemethod to impose
boundary conditions at the outer boundaries and coupling
conditions along a straight interface in the center of the plate
(see Fig. 9). To asses the accuracy of the non-symmetric
Nitsche method, we compare numerical solutions for a uni-
form pressure load p̄ with the analytical solution given in
[69].

Figure 10a, b shows the convergence of the strain energy
error obtained with cubic, quartic and quintic polynomial
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(8 × 8) elements

(16 × 16) elements

m11

(mexact − mnum)

Fig. 11 Simply supported plate: moment stress resultantsm11 over the
deformed geometry and corresponding error plot

basis B-spline functions and uniform refinement of both
patches, when we use the symmetric and non-symmetric
Nitsche method, respectively. We observe that the non-
symmetric Nitsche method achieves rates that are close to
optimal for p = 3 and optimal for p = 4 and 5, and error
levels that are comparable with a single patch reference solu-
tion. In comparison to the symmetric Nitsche method and
element-wise stabilization parameters, the non-symmetric
Nitsche method generally achieves equivalent levels of accu-
racy, although some plotted points indicate a slightly reduced
accuracy, in particular for p = 3. Figure 11 plots the bend-
ingmoment of the non-conforming coupledmodel computed
with the coarsest discretization and the corresponding error
distribution over the plate domain. The solution plot confirms
the high-fidelity accuracy level achieved at the coupling inter-
face, being free of any jumps or oscillations in the solution.
The error plot indicates that the error from the corner sin-
gularities of the plate problem are much more pronounced
than the errors at the interface. A ‘hinge’-effect in terms of
a kink as commonly observed for strong coupling schemes
is completely absent. This indicates that the bending and in-
plane shear-based flux are accurately transferred across the
coupling interface.

We conclude that for pure bending problems and untri-
mmed configurations, the non-symmetric Nitsche method
leads to accurate results that essentially are comparable to
single patch solutions.We emphasize that the non-symmetric
Nitsche method does not involve any stabilization terms and
hence does not require any additional stabilization parameter.

5.2 Scordelis–Lo shell

The barrel vault shown in Fig. 12 represents a thin shell with
rigid end diaphragms under self-weight loading, which has

R
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25
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m

L
=

50
m

m

t = 0.25 mm

80◦

ρ = 7850.0 kg/m3

g = 10.0 m/s2

E = 4.32e + 08 N/mm2

ν = 0.0

Fig. 12 Scordelis–Lo problem
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trimming curve
patch 3
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patch 1

Fig. 13 Scordelis–Lo problem: geometry, trimming data and mesh of
two test configurations
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Fig. 14 Scordelis–Lo shell: convergence of the vertical displacement
at point A
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m11 m12 q11 q12

Fig. 15 Scordelis–Lo shell: moment and force stress resultant m11, m12 and q11, q12, respectively

become a widely used benchmark for thin shell formulations
as part of the shell obstacle course [70]. Material properties
and boundary conditions are also given in Fig. 12.

We discretize the shell by multiple trimmed NURBS
patches with polynomial degree p = 4 that need to be cou-
pled along trimming curves. The three patches, their coarsest
discretization, and corresponding trimming curves are shown
in Fig. 13. We observe that the trimming curves lead to
arbitrary cuts in the outer patches. To weakly enforce bound-
ary and coupling conditions, we employ the symmetric and
non-symmetric variants of Nitsche’s method. For the sym-
metric Nitsche method in the current problem, we derive
element-wise stabilization parameters from a local eigen-
value problem of the form of (21) [7].

Figure 14 plots the convergence of the vertical displace-
ment under uniformmesh refinement atmid-pointAof one of
the shell rims (the location is shown in Fig. 12). We observe
that the results of the non-symmetric variant are slightlymore
accurate than the results of the symmetric method.

Figure 15 shows the moment and force stress resultants
on the deformed configuration, obtained with the non-
symmetric Nitsche method. We observe that the derivative
based solution fields for qik, i, k ∈ {1, 2} are smooth and
continuous across the coupling interfaces at the trimming
curves. Comparison with single-patch solutions with com-
parable degrees of freedom indicate that the quality of the
trimmed solution is equivalent.

Figure 16 plots the convergence in energy norm for both
symmetric and non-symmetric Nitsche variants. We com-
puted a reference strain energy1 by extrapolating results of a
uniform p-refinement [72]. It is well known that the conver-
gence behavior of the symmetric Nitsche approach for this
example is extremely sensitive to the stabilization param-
eter and requires local estimates close to the lower bound
for optimal performance [8]. We observe that both methods
achieve optimal rates of convergence. The parameter-free
non-symmetric variant achieves a level of accuracy compa-

1 Reference strain energy Π = 4826.577066016016
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Fig. 16 Scordelis–Lo shell: convergence in energy norm for the non-
symmetric and symmetric Nitsche methods

rable to the symmetric method, however, without the need
for fine-tuning stabilization parameters.

5.3 Hemispherical shell with a stiffener

The hemispherical thin shell with a volumetric stiffener [71],
originally introduced in [73] and also known as theGirkmann
problem, is a classical benchmark for the ability to couple
thin shells and solid elements. Geometric details andmaterial
properties of the structure are given in Fig. 17. The shell is
subject to gravity loading and a constant pressure acting on
the shell and the stiffener. Due to the rotational symmetry, we
consider only a quarter of the structure and apply symmetry
boundary conditions. Furthermore, vertical displacements at
the bottom face of the stiffener are constrained.

We model the geometry of the stiffener and the lower part
of the shell with two trivariate NURBS patches that trans-
fer into isogeometric solid elements. The central and upper
parts of the hemispherical shell are modeled with a bivari-
ate NURBS surface that transfers into isogeometric thin shell
elements. Figure 18 illustrates the patch structure of both vol-
umetric and surface parts. All three patches are connected in
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Fig. 17 Hemispherical shell
with stiffener [71]
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Fig. 18 Hemispherical shell:
patch structure and
discretization
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Fig. 19 Hemispherical shell: total displacement on deformed structure
(×500)

von Mises stress

Fig. 20 Hemispherical shell: vonMises stress distribution (finermesh,
p = 4)
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Fig. 21 Hemispherical shell: convergence of the total displacements
at point A and B (reference from [71])

a weak sense with the non-symmetric Nitsche method. For
coupling solid and thin shell elements, we consider all shear
components of the three-dimensional stress state to ensure
consistency in the coupling formulation. For further details,
we refer to [8].

We consider the original NURBS model with 8 × 8 thin
shell elements and a finer model with 8 elements along the ξ1
and 16 along ξ2 directions (see Fig. 18). We perform stress
analysis for both models, successively increasing the poly-
nomial degree from p = 3 to p = 6. Figure 19 plots the total
displacement field |u|, plotted on the deformed configura-
tion of the structure for the finer discretization at polynomial
degree p = 4. It shows a smooth transition from the solid to
the thin shell model without jumps or oscillations. Figure 20
plots the corresponding von Mises stress distribution in the
volumetric part of the structure that is discretized with solid
elements.

At the re-entrant corner, where the stress singularity is
located, we observe a small jump in the stress between the
beam-like stiffener and the lower hemispherical shell part.
The high fidelity of the solution fields at a very coarse mesh
size is further confirmed in Fig. 21, which plots the con-
vergence of the total displacements at locations A and B.
We observe rapid convergence towards the reference values
given in [71].

5.4 Intersecting tubes

To illustrate the robustness of the non-symmetric Nitsche
method for the analysis of complex trimmed structures, we
consider two intersecting tubes, which represent a generic
connector configuration, e.g., in pipe networks or large steel
trusses. Figure 22 illustrates the CAD geometry designed
in the freeform modeler Rhino 3D [74], the corresponding
NURBS patch structure, and trimming procedure. Due to the

symmetry of the structure, only one half of the structure is
modeled. The connection of the two perpendicular tubes is
designed with a NURBS curve swept along the interfaces.
Patch 1 is discretized with 62 × 40 elements, patch 2 with
38×28 elements and patch 3 with 24×16 elements, all with
a polynomial degree p = 4.

We perform stress analysis for an inner pressure loading
of 1.0MPa, where we use isogeometric thin shell elements,
the finite cell method for mitigating trimmed regions, and
the non-symmetric Nitsche method for enforcing symmetry
boundary conditions and interface coupling constraints. We
emphasize again that the non-symmetric Nitsche method is
completely parameter-free. Details on material parameters
and boundary conditions are also given in Fig. 22. The total
displacements plotted on the deformed structure and the von
Mises stresses plotted around the connector and the connect-
ing interfaces are shown in Figs. 23 and 24, respectively. We
note that we replaced the stress components missing in the
thin shell formulation with corresponding force stress resul-
tants. Both plots illustrate that the non-symmetric Nitsche
method leads to smooth solution fields without jumps or
oscillations. This indicates the high fidelity of the stress solu-
tion near the trimmed region and directly at the trimming
interface. We observe an equivalent accuracy level for the
moment stress resultants, presented in Fig. 25.

We compare the performance of the non-symmetric
Nitsche method to the standard symmetric Nitsche approach
that requires stabilization and the estimation of element-wise
parameters. To this end, Figure 26a, b plot the normal force
flux and moment flux directly at the interface that connects
patches 1 and 2. We observe that both methods lead to nearly
identical results. This confirms the excellent performance
of the parameter-free non-symmetric method for coupling
complex trimmed shell structures, despite the absence of sta-
bilization.

5.5 Spectrum analysis and complex eigenmodes

In the next step, we study the influence of the non-symmetric
Nitsche method on the eigenmode spectrum of a shell con-
figuration with trimming and weakly enforced interface
constraints. To this end, we consider the stiffened cylindrical
panel shown in Fig. 27.

The face sheet and each of the two beam-like stiffeners
are modeled with single NURBS patches that are coupled in
a weak sense with the non-symmetric Nitsche method. The
panel also features a trimmed cut-out, which is mitigated
by the finite cell method as described in Sect. 4.5. Figure 27
shows all geometric parameters, the patch structure andmate-
rial properties. The face sheet of the panel is discretized with
22 × 33 thin shell elements of polynomial degree p = 4.
The stiffeners are discretized with solid elements, which are
constructed in a tensor-product sense by 16× 2 in-plane ele-
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Fig. 22 Model description of the intersecting tubular shell structure. a Geometry, b patch-interface structure, c connector detail
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Fig. 23 Intersectiong tubes: total displacements plotted on the
deformed structure

ments of degree p = 4 and a single element of cubic degree
through the thickness.

The spectrum of the panel is computed as the solution of
a generalized algebraic eigenvalue problem [75] of the form

K φi = ω2
i M φi i = 1, . . . , N (75)

where K is the stiffness matrix (58) and M is the consis-
tent mass matrix [75]. N is the total number of degrees of
freedom, which limits the mode index i . Equation (75) can

von Mises stress

Fig. 24 Intersectiong tubes: von Mises stress distribution close to the
coupling interfaces

be interpreted as a free vibration problem, where ωi [s−1]
represents the i th eigenfrequency and φi the corresponding
eigenmode. The matrix M is in general real, symmetric and
semi-definite. The symmetric Nitsche method with stabiliza-
tion preserves these properties [55]. For the non-symmetric
method, the stiffness matrix K is real, but non-symmetric,
and therefore complex eigenvalues must be expected [76].

We compute the discrete spectrum of the panel, using
the non-symmetric Nitsche method. The resulting spectrum
reproduces exactly six zero eigenvalues, which indicates that
the non-symmetric Nitsche method leads to rank sufficient
stiffness matrices. We compare the discrete spectra com-
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Fig. 25 Intersectiong tubes: moment stress resultants in the interface region
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Fig. 26 Intersecting tubes: comparison between non-symmetric and
symmetric results for flux quantities plotted directly at the coupling
interface. a Normal force flux, b normal moment flux

puted with the symmetric and non-symmetric variants of
Nitsche’s method, with specific attention to the pattern of
complex eigenvalues in the latter. To this end, we first sort
both spectra in ascending order and discard the imaginary
part of all eigenvalues computed with the non-symmetric
method. We then compute the absolute difference between
each eigenvalue pair and normalize the result with the corre-
sponding eigenvalue of the symmetric method. Figure 28a, b
plot the normalized difference for each eigenvalue pair over
the complete spectrum and for the first 10% of the eigen-
modes, respectively. In addition, eigenvalues computed with
the non-symmetric Nitsche method that had an imaginary
part are highlighted by blue dots. Figure 29 illustrates the
size of their imaginary part by plotting the ratio with respect
to the real part for each complex eigenvalue.

We observe that the first 10% of the spectrum yields rela-
tive differences below 10% of the eigenvalue size and is free
of complex eigenvalues. The accuracy of a discretized elas-
tostatic boundary value problem predominantly depends on
the accuracy of the lowest eigenvalues, which can be shown
by a spectral representation of the solution coefficients [77].
Therefore, this observation supports the high fidelity results
and excellent numerical properties of the non-symmetric
Nitsche method that we have seen in the previous elastostatic
benchmarks. This is further confirmed by comparing corre-
sponding eigenmodes computed with the symmetric and the
non-symmetric variant of Nitsche’s method, some of which
are plotted inFig. 30.Complex eigenvalues exhibit imaginary
parts whose absolute values are several orders of magnitude
smaller than the real part, except for a few eigenvalues whose
imaginary part is of the same order than the real part. They do
not appear in the first 15% of the eigenvalues, but frequently
occur in the remainder of the spectrum.

5.6 Robustness and additional stabilization

In the context of the non-symmetric interior penalty disconti-
nous Galerkin method [55,57], penalty-free non-symmetric
Nitsche formulations have been reported to lead to oscil-
lations near interfaces [78]. One way to effectively reduce
these oscillations is to introduce a stabilization term, that has
the same form as in the symmetric Nitsche method. For the
Kirchhoff–Love shell formulation, this leads to two stabiliza-
tion terms that are formulated in terms of displacements of
the mid surface u and the interface normal vector d

WN IT,st =
∫

Γ�

τS t δ{u} · {u} dS

+
∫

Γ�

τS
t3

12
δ{�} · {�} dS

+
∫

Γ�

τN t
(
d · δ{u})({u} · d

)
dS

+
∫

Γ�

τN
t3

12

(
d · δ{�})({�} · d

)
dS. (76)
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Fig. 28 Stiffened cylinder panel: relative difference between frequency pairs computed with the non-symmetric and symmetric Nitsche methods.
Blue dots represent complex eigenvalues of the non-symmetric method. a Complete spectrum b Lowest eigenvalues (10% of the spectrum). (Color
figure online)

All quantities are defined as in Sects. 2, 3 and 4. In partic-
ular, the average operator for vector quantities is defined in
(18), t denotes the shell thickness, and the terms in brackets
correspond to definitions (53) to (57). We note that the stabi-
lization terms of equation (76) refer to the global Cartesian
basis.

For optimal convergence, the size of the stabilization
parameters τS and τN is proportional to the material proper-
ties, here the Lamé constants λ and ν, inversely proportional
to the characteristic element width h, and dependent on con-
stants CS and CN , influenced by the polynomial degree p
[79,80]:

τS = CS(p)
ν

h
, (77)

τN = CN (p)
λ

h
. (78)

Values ofCS andCN can be estimated from the largest eigen-
value of an eigenvalue problem of the form (21).

We construct a simple example to examine the possible
impact ofmissing stabilization on the solution accuracy close
to the interface. To this end,we consider the cantileveredplate
shown in Fig. 31, with a line load at the cantilever tip. The
plate is discretized by two B-spline patches, which consists
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Fig. 29 Stiffened cylindrical panel: size of imaginary parts versus size
of real part for each complex eigenvalue

of 8× 8 and 16× 16 elements. The two patches are coupled
weakly with the non-symmetric Nitsche method, where we
add the stabilization terms (76).

Figure 32 plots the bending moment computed with the
non-symmetric Nitsche method at different values C =
CS = CN , which determines the level of stabilization via
relations (77). We observe that the parameter-free variant
leads to local oscillations at the coupling interface, which
can be mitigated by increasing the level of stabilization. At
a moderate parameter of C = 100.0, the moment solution is
completely free of oscillations.

We emphasize that for any of the more complex exam-
ples we computed, we have not encountered a degradation
in local accuracy (e.g., in the form of oscillations) when
applying the non-symmetric Nitsche method without sta-
bilization. Figure 33 plots moment resultants for different
stabilization levels along the dashed blue line shown in
Fig. 31. We observe that oscillations in the parameter-free
moment solution are small (within 10% of the absolute value

L = 12.0 mm

W = 6.0 mm

t = 0.1 mm

E = 3.e + 06 Nmm2

ν = 0.3

p̄
=

1.0
N
/m

m

Fig. 31 Cantilevered plate: geometry, material properties, boundary
conditions

at the interface) and limited to the immediate near-interface
region.

6 Summary, conclusions and outlook

In this paper, we explored the use of the non-symmetric
Nitsche method for weakly imposing boundary and interface
conditions in isogeometric shell analysis of trimmedNURBS
surfaces. In this context, the non-symmetric Nitsche method
is attractive, because it is parameter-free and does not require
the estimation of appropriate stabilization parameters.

We first introduced the non-symmetric Nitsche method
on unfitted meshes for a simple Laplace model problem
and reviewed the isogeometric Kirchhoff–Love formulation
for thin rotation-free shells. We then extended the non-
symmetric Nitsche formulation to the Kirchhoff–Love shell
setting and integrated the results into a framework for the
analysis of trimmed surfaces based on the finite cell method.

We demonstrated the excellent performance of this frame-
work for a series of numerical experiments. The examples
include the classical Scordelis–Lo shell, the hemispheri-

0.082Hz 1.428Hz 2.226Hz 2.492Hz

Fig. 30 Stiffened cylindrical panel: eigenmodes at different frequencies. The left and right part of the (anti-)symmetric modes represents the
symmetric and non-symmetric result, respectively
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Fig. 32 Cantilevered plate: bending moment computed with the non-symmetric Nitsche method and different levels of stabilization, applied in the
sense of the non-symmetric interior penalty discontinuous Galerkin method [55]
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Fig. 33 Cantilevered plate: bendingmoment plotted along dashed blue
line shown in Fig. 31. (Color figure online)

cal shell with a stiffener and a generic connector based
on intersecting tubes. Our results confirm that the non-
symmetric Nitsche method is stable, achieves good accuracy
and convergence in the strain energy error, and does not
show any spurious stress oscillations for any of the com-
plex examples examined. This is in agreement with a series
of recent studies that employed the non-symmetric Nitsche
method in different analysis scenarios [59–61,81–83]. For
example, Burman noted in [59] that he has “not man-
aged to construct an example exhibiting the suboptimal
convergence order” when enforcing boundary conditions
on fitted meshes with the non-symmetric Nitsche method.
For elastostatic shell analysis, where the accuracy of the
derivatives of the primal variable, i.e. the stress, is much
more important than the accuracy of the primal variable
itself, i.e. the displacement vector, its reduced displace-

ment accuracy is acceptable from an engineering point of
view.

On the other hand, we also illustrated the distribution of
complex eigenvalues in the spectrum. They occur due to the
missing symmetry of the stiffness matrix, which is perturbed
due to contributions of the non-symmetric Nitsche method.
Complex eigenvalues occur only in the higher modes, and
therefore do not have an impact on the accuracy and numer-
ical properties of elastostatic shell analysis. However, their
impact on explicit dynamics shell calculations, important for
crash dynamics and metal forming, is unclear at this point
and remains to be explored in the future.

In addition, we were able to find one example, a simple
cantilever plate with a manufactured interface in the cen-
ter, where the absence of stabilization parameters in the
non-symmetric Nitsche method had an effect on the solu-
tion accuracy in the direct vicinity of the interface. In line
with [78], we could remove all oscillations by re-introducing
moderate stabilization.Althoughwe did not see similar oscil-
lations in any other example we computed, the potential
of increasing robustness by moderate stabilization should
be further examined in the future. In this context, it is
of particular interest whether associated optimal stabiliza-
tion parameters are smaller than the ones required by the
symmetricNitschemethod. This could be important for unfit-
ted discretizations, where stabilization parameters are very
sensitive to cut elements, with significant impact on local
accuracy and stability. This sensitivity is alleviated by smaller
stabilization parameters, leading to better accuracy at the
interface.

In summary, we think that the parameter-free non-
symmetric Nitsche method constitutes a viable alternative
to symmetric variants of Nitsche’s method, enabling isogeo-
metric shell analysis of trimmedNURBSsurfaceswithout the
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burden of estimating appropriate element-wise stabilization
parameters. The complex eigenspectrum and the potential
loss of stress accuracy close to the trimming interface are
aspects that warrant further study.
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