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Abstract This paper presents a quadrilateral shell ele-
ment incorporating thickness–stretch, and demonstrates its
performance in small and large deformation analyses for
hyperelastic material and elastoplastic models. In terms of
geometry, the proposed shell element is based on the formu-
lation of the MITC4 shell element, with additional degrees
of freedom to represent thickness–stretch. To consider the
change in thickness, we introduce a displacement varia-
tion to the MITC4 shell element, in the thickness direction.
After the thickness direction is expressed in terms of the
director vectors that are defined at each midsurface node,
additional nodes are placed along the thickness direction
from the bottom surface to the top surface. The thickness–
stretch is described by the movement of these additional
nodes. The additional degrees of freedom are used to com-
pute the transverse normal strain without assuming the plane
stress condition. Hence, the three dimensional constitutive
equation can be employed in the proposed formulation with-
out any modification. By virtue of not imposing the plane
stress condition, the surface traction is evaluated at the sur-
face where the traction is applied, whereas it is assessed
at the midsurface for conventional shell elements. Several
numerical examples are presented to examine the fundamen-
tal performance of the proposed shell element. In particular,
the proposed approach is capable of evaluating the change
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in thickness and the stress distribution when the effect of the
surface traction is included. The behavior of the proposed
shell element is compared with that of solid elements.

Keywords Shell element · Thickness–stretch · Sheet
forming · Large strains · Elastoplasticity · Volumetric
locking

1 Introduction

Numerical simulations for sheet forming using the finite ele-
ment method can be classified by two types of elements. One
is a solid (or continuum) element, and the other is a structural
element. Continuum elements are widely used, because they
are capable of modeling the complex behaviors of the sheet
forming process. However, they require huge computational
costs, which include pre-processing for mesh generation and
solving a linear systemof equations.On the other hand, struc-
tural elements are more efficient than continuum elements
regarding computational costs. Structural elements can only
be employed to predict simple bending behavior accurately
if the thickness of the simulation model is small, because the
plane stress condition is assumed. However, conventional
shell elements are not sufficient for simulating some sit-
uations involved in sheet forming, such as the change in
thickness of the sheet and the contact force applied at the
sheet-die interface. For the purpose of obtaining more accu-
rate results from shell elements in sheet forming simulations,
it is necessary to develop a shell element in which thickness–
stretch can be considered.

The development of shell elements for general shell struc-
tures that are based on either the degenerated solid approach
[1] or the stress resultant shell theory [2] has represented an
attractive research field for several decades. The kinematic
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assumptions are essentially the same for both formulations.
However, the procedure of evaluating the resultant stress is
carried out numerically in the former and analytically in the
latter. The common kinematic assumptions of inextensibil-
ity in the transverse direction and the zero transverse normal
stress condition apply in both formulations. The shell ele-
ment based on the degenerated solid approach, which was
originally presented by Ahmad, Irons, and Zienkiewicz (A–
I–Z), has been the basis of the finite element analysis of shell
structures for many years. The A–I–Z shell element is an
isoparametric element, for which translations and rotations
are interpolated independently with common shape func-
tions that have only C0 continuity. The A–I–Z shell element
has also been extended to nonlinear analysis by Hughes and
Liu [3,4], Hughes and Carnoy [5], Liu et al. [6], and others.
In nonlinear analysis, the formulations are constrained by the
requirement of infinitesimal strains, owing to the assumption
of a constant thickness during the deformation. Furthermore,
the A–I–Z element suffers from the locking phenomena,
and much research effort has been dedicated to the devel-
opment of shell elements based on the A–I–Z formulation
that circumvent this problem. Dvorkin and Bathe presented
the MITC4 shell element [7] to avoid the locking phenom-
ena of the A–I–Z shell element. The MITC4 shell element
is one of the most popular elements in engineering applica-
tions. However, the formulation of the MITC4 shell element
is also constrained by the limitation of infinitesimal strains. In
developing shell elements for modeling large strain ranges,
changes in thickness must be introduced to formulate the
geometry and kinematics.

Shell elements that are developed for application to finite
strain problems can roughly be classified into three groups.
One is a class of elements that assume the plane stress state
in the transverse direction, such as the degenerated shell ele-
ment and theMITC4 shell element. TheMITC4 shell element
has been extended to large strain problems in the studies [8–
13]. These elements are capable of dealing with large strains,
but thickness–stretch is based on the plane stress assump-
tion, which is only valid for thin structures. In contrast, the
second group is a class of elements that assume the dis-
tribution of the transverse strains. Parisch [14] presented a
shell formulation with seven degrees of freedom per midsur-
face node, called a seven-parameter shell element. However,
the seven-parameter shell element does not have the capa-
bility of representing a state of pure bending, owing to the
constant transverse normal strain. This feature is called thick-
ness locking [15,16]. El-Abbasi and Meguid [17] proposed
a seven-parameter shell element in which a quadratic dis-
placement function is employed to avoid thickness locking.
Pimenta et al. [18] also applied a quadratic displacement
function in the transverse direction to a triangular shell ele-
ment. Büchter et al. [19] developed an alternative formulation
that considers a linear variation of strains through the thick-

ness. In this formulation, they introduced a thickness variable
and a linear strain term based on the enhanced assumed
strain (EAS) formulation, which was originally introduced
by Simo and Rifai [20] to improve the in-plane behavior
of displacement-based elements; see also Andelfinger and
Ramm [21]. Betsch and Stein [22] and Betsch et al. [23] also
presented a similar shell formulation, andHuttel andMatzen-
miller [24] extended the element developed by Betsch and
Stein [22]. In cases where the EAS formulation is employed,
numerical schemes exhibit severe instabilities in large strain
ranges; see [25]. These instabilities encountered with the
EAS formulation can be suppressed by introducing artifi-
cial numerical parameters that can change the deformation
response of the simulation model. In fact, the use of these
numerical parameters is quite undesirable, because the solu-
tions canbeunreliable and inaccurate. Thefinal groupof shell
elements for finite strain problems is a class of elements that
represent the displacement field, similarly to the hexahedral
solid elements. In the solid-shell concept [26], the kinematic
description consists of only displacement degrees of freedom
at the top and bottom surfaces of the shell. That is, the nodes
of the solid-shell element are placed on the top and bottom
surfaces instead of the rotational degrees of freedom. Thus,
a low order solid-shell element suffers from the locking phe-
nomena, similarly to solid elements. In order to avoid the
transverse shear and membrane locking phenomena, either
the assumed strain technique [7] or the EAS formulation
[20] is employed for most solid-shell elements. In addition,
thickness locking is avoided by introducing a quadratic dis-
placement field [27], assuming the plane stress condition
in the transverse direction [26,28], or imposing the EAS
formulation [29–34]. Because solid-shell elements that do
not assume the plane stress state exhibit volumetric locking,
either the EAS formulation or the selective reduced integra-
tion technique is adopted [35,36]. Solid-shell elements that
employ the EAS formulation have the same disadvantage as
mentioned above. In contrast, Reese [37] devised a formu-
lation of solid-shell element based on a reduced integration
technique with hourglass stabilization. In this approach, arti-
ficial numerical parameters must be included in a numerical
simulation.

As a basis for the concept of solid elements, multilay-
ered shell elements have been developed in the research
field of composites and laminates. Elements based on the
multilayered model are constructed by introducing indepen-
dent degrees of freedom for each shell layer. Formulations
have been devised by Epstein and Huttelmaier [38] and Hut-
telmaier and Epstein [39]. These formulations have been
extended with multi-director fields by Pinsky and Kim [40],
and have been applied to anisotropic laminated plates by
Owen and Li [41], sandwich shells by Vu-Quoc et al. [42]
and Vu-Quoc and Ebcioğlu [43], and multilayered plates
by Chinosi et al. [44]. Braun et al. [45] and El-Abbasi and
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Meguid [46] devised multilayered shell elements by employ-
ing the concept of the seven-parameter shell element. Tan
and Vu-Quoc [47] and Rah et al. [48] proposed solid-shell
elements using the multilayered concepts. In the general
formulation of multilayered shell elements, the number of
degrees of freedom at one side in an element increases in
response to the number of layers in the element. As the num-
ber of degrees of freedom of a multilayered shell element
increases, the solutions are improved. However, the numeri-
cal costs increase dramatically in such situations.

In recent years, new types of shell elements have been
developed for the numerical simulation of shell structures
in large strain states. Kim and Bathe [49] devised an MITC4
shell element with some variables for considering thickness–
stretch, for which the plane stress condition is not imposed.
Sussman and Bathe [50] proposed conventional shell ele-
ments with two extensible vectors introduced at each node.
These elements have the capability to model the stress
distribution through the thickness flexibly. However, these
formulations are more complicated than those of the shell
elements developed by other researchers, because the addi-
tional degrees of freedom have special properties compared
with those of other shell elements. Furthermore, there have
been some approaches proposed that are specialized to sheet
forming. To predict the springback of the sheet, Yoon et
al. [51] presented a three dimensional hybridmembrane/shell
method, and Iwata et al. [52] proposed a shell element cou-
pled with numerical results obtained using solid elements
or experimental results. In these approaches, the numerical
solutions are obtained with the shell element and an addi-
tional scheme. That is, the simulation models are not solved
by using the shell element only.

Our proposed shell element incorporates three features
for the purpose of applying it to sheet forming simulations.
One is the use of the three dimensional constitutive equation
without any additional assumptions. Thus, a plane stress state
in the transverse direction is not assumed in this study. The
second is to exhibit no numerical instabilities in the formu-
lation and not to include any artificial numerical parameters.
Hence, neither the EAS formulation nor reduced integration
technique is employed. The final feature is to avoid extreme
increases in the degrees of freedom at an element, as far as
possible. As a key technique of this study, additional degrees
of freedom are introduced to theMITC4 shell element for the
evaluation of thickness–stretch. The thickness–stretch can be
discretized at each element, and hence the additional degrees
of freedom are independent of each element. Thus, discon-
tinuities of the thickness between elements are allowed in
the proposed formulation. Furthermore, by virtue of this dis-
cretization of thickness–stretch, static condensation can be
employed to construct the element stiffness matrix. Hence,
the number of unknowns in the resulting linear system of
equations is same as for conventional shell elements. Mesh

generation in this approach is the same procedure as that for
conventional four node shell elements. Additional work is
only input of the number of additional nodes, which express
the change in thickness. This task is similar to prescribe the
number of layers through the thickness for conventional shell
elements.

Because the proposed shell element exhibits the locking
phenomena when a full integration technique is employed
for numerical integration, some techniques are proposed to
avoid the locking phenomena. Transverse shear strains are
interpolated using the same technique as for theMITC4 shell
element, in order to circumvent transverse shear locking. In
addition, volumetric locking may occur for (nearly) incom-
pressiblematerial, because the additional degrees of freedom
are displacement variations. As a basis for the selective
reduced integration technique [53], we propose a technique
to alleviate volumetric locking.

Some representative numerical examples are presented to
verify the capabilities of the proposed shell element in elas-
tic and elastoplastic deformation problems. We also focus
on the eigenvalues of a single element, in order to gain fur-
ther insight into the case of incompressibility. In small and
large deformation ranges, the behavior of the proposed shell
element is compared with that of solid elements.

2 Kinematics

This section describes the formulation of the proposed shell
element, in terms of geometry and kinematics. After assum-
ing a constant thickness in each element for the formulation
of the conventional four-node shell element, we introduce
a displacement variation in the thickness direction to eval-
uate the change in thickness. Considering the definition of
the displacement field with thickness–stretch, a constraint
condition for the displacement variation must be imposed
in this formulation. An important feature in the discretized
equation is illustrated by expressing the external virtual work
applied in terms of the surface traction for an element.
Because the equilibrium equation in the transverse direction
is defined explicitly, the stiffness equation for an element can
be expanded in response to the additional degrees of freedom.
By virtue of the proposed formultion, static condensation can
be employed to construct the element stiffness matrix.

2.1 Kinematic description

In the conventional four-node quadrilateral shell element,
the geometry and kinematics are described in a Cartesian
coordinate system. The element is mapped to the local coor-
dinates ξ , η, and ζ . As shown in Fig. 1, (ξ, η) are the in-plane
coordinates corresponding to the tangential directions to the
midsurface, while ζ denotes the thickness coordinate. The
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Transverse nodes
Midsurface nodes

Fig. 1 Four-node shell element with five transverse nodes

position of a point inside an element in the initial configura-
tion is described by the interpolation equation

X(ξ, η, ζ ) =
4∑

a=1

Na(ξ, η)Xa +
4∑

a=1

Za(ζ )Na(ξ, η)Va, (1)

where Xa and Va are the initial coordinates and director vec-
tor at themidsurface node a, respectively, and Na is the shape
function described in the local coordinates. The initial thick-
ness function Za at the midsurface node a is defined in terms
of the nodal thickness ha and the thickness coordinate ζ by

Za(ζ ) = ζ
ha
2

. (2)

In this study, we assume a constant shell thickness for
each element, hence discontinuities of the thickness between
elements are allowed in this formulation. Thus, the initial
geometry is defined by

X(ξ, η, ζ ) =
4∑

a=1

Na(ξ, η)Xa + Z(ζ )

4∑

a=1

Na(ξ, η)Va, (3)

where the initial thickness function Z can be expressed in
terms of the initial thickness of the element he and the thick-
ness coordinate ζ as

Z(ζ ) = ζ
he
2

. (4)

In the same way, the position of a point inside an element in
the deformed configuration is descrived as

x(ξ, η, ζ ) =
4∑

a=1

Na(ξ, η)xa + z(ζ )

4∑

a=1

Na(ξ, η)va, (5)

where xa and va are the deformed coordinates and director
vector at the midsurface node a, respectively. The deformed
thickness function z in (5) is not always equal to the ini-
tial thickness function Z . A key technique of this work

Fig. 2 Degrees of freedom of midsurface nodes

involves introducing a thickness variation for the evaluation
of thickness–stretch. The deformed thickness function z in
(5) can be expressed in terms of the initial thickness function
Z and the thickness variation w as

z(ζ ) = Z(ζ ) + w(ζ ), (6)

where the thickness variation is also assumed to be constant
on the ξ − η plane in each element.

As shown in Fig. 1, additional nodes are introduced to
the conventional four-node shell element. These additional
nodes are designated as transverse nodes, while the midsur-
face nodes construct a general shell element (see Fig. 2). The
thickness variationw is described by the movement of trans-
verse nodes and evaluated at (ξ, η) = (0, 0). The degree of
freedom for each transverse node is a translation in the thick-
ness direction, which is defined using the director vectors at
the midsurface nodes and C0 shape functions [54] as

vtd =
∑4

a=1
Na(0, 0)va

∣∣∣∣
∑4

a=1
Na(0, 0)va

∣∣∣∣
. (7)

The transverse nodes are introduced to the degenerated shell
element along the vector vtd (see Fig. 3). The thickness–
stretch is simply expressed by the movement of a successive
series of transverse nodes (for example, the five nodes in
Fig. 3) in the thickness direction. Thus, the movement of
transverse nodes is independent of that of midsurface nodes.
Substituting (6) and the thickness variation along the trans-
verse vector (7) into (5), the deformed geometry is described
as

x(ξ, η, ζ ) =
4∑

a=1

Na(ξ, η)xa + Z(ζ )

4∑

a=1

Na(ξ, η)va

+ w(ζ )vtd. (8)

For the purpose of the discretization of displacement vari-
ations, we set M nodes in the transverse direction, and the
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Fig. 3 Introduction of transverse nodes

layer

Fig. 4 Displacement variation of transverse nodes for layer i

shell element is devided into (M − 1) layers in thickness
by transverse nodes. In the thickness coordinate ζ , ζi and
ζi+1 represent the positions of the bottom and top surfaces
of the layer i , respectively, as shown in Fig. 4. At the layer
i (ζi ≤ ζ ≤ ζi+1), the thickness variation w(ζ ) is linearly
interpolated using C0 shape functions with the translations
of the transverse nodes wi and wi+1, as

w(ζ ) = ζi+1 − ζ

ζi+1 − ζi
w(ζi ) + ζ − ζi

ζi+1 − ζi
w(ζi+1)

= ζi+1 − ζ

ζi+1 − ζi
wi + ζ − ζi

ζi+1 − ζi
wi+1. (9)

From above definitions, the displacement of the shell ele-
ment undergoing a large deformation can be expressed as

u(ξ, η, ζ ) = x(ξ, η, ζ ) − X(ξ, η, ζ )

=
4∑

a=1

Na(ξ, η)ua

+ Z(ζ )

4∑

a=1

Na(ξ, η) (va − Va)

+ w(ζ )vtd, (10)

where ua = xa − Xa denotes the nodal displacements at the
midsurface node a. The first and second terms on the top
right hand side of (10) correspond to the formulation of the
degenerated shell elements, whose shell thickness is constant
and defined at each element. Thus, these terms are described

using the degrees of freedom for midsurface nodes. On the
other hand, the third term on the top right hand side of (10)
describes the thickness–stretch, using the degrees of free-
dom for transverse nodes. From the displacement field (10),
the proposed shell element has a multiple layers in an ele-
ment. As a similar manner to express the displacement field,
multilayered shell elements have been developed. In themul-
tilayered shell elements [15,16,55–57], additional degrees
of freedom for expressing thickness–stretch are introduced
along the director vectors at midsurface nodes. Thus, the
number of degrees of freedom of multilayered shell elements
increases four times in an element depending on the number
of layers. On the other hand, additional degrees of freedom
are translations along the thickness direction (7) for trans-
verse nodes in the proposed approach.

2.2 Constraint condition on the transverse displacement
variation

Because additional displacement variations are defined with
transverse nodes independently of the displacement field on
the midsurface, the constraint condition must be imposed on
transverse nodes. Even if a Dirichlet boundary condition is
applied to midsurface nodes, displacement variations with
transverse nodes are not determined uniquely. Thus, the pro-
posed approach results in a lack of uniqueness in the discrete
problem. Therefore, a constraint condition must be intro-
duced to the transverse displacement variation.

The constraint condition for transverse nodes is derived
from the definition of the displacement field (10) in the
proposed formulation. The geometry, other than for the
thickness–stretch, is represented with midsurface nodes,
while the thickness–stretch is described with transverse
nodes. The displacement in the thickness direction for mid-
surface nodes Ūtd is obtained from the inner product of the
first and second terms on the top right hand side of (10) and
the transverse vector (7) as

Ūtd =
4∑

a=1

Na(ξ, η)ua · vtd

+ Z(ζ )

4∑

a=1

Na(ξ, η) (va − Va) · vtd. (11)

Similarly, the displacement in the thickness direction for
transverse nodes ûtd is expressed by the inner product of the
third term on the top right hand side of (10) and the transverse
vector (7) as

ûtd = w(ζ )vtd · vtd
= w(ζ ). (12)
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Thus, the total amount of displacement in the thickness direc-
tion is given by the inner product of displacement vector (10)
and the transverse vector (7) as

utd = u · vtd

= Ūtd + ûtd. (13)

Here, ûtd is the displacement variation in terms of transverse
nodes in (12), and hence ûtd can be defined by the variation
of utd. In (13), utd may be regarded as the sum of the average
and the variation. Thus, Ūtd can be recognized as the average
of utd. The average displacement Ūtd is also described in
terms of the total amount of displacement utd, as

Ūtd = 1

he

∫ he
2

− he
2

utddz

= 1

he

∫ he
2

− he
2

(
Ūtd + ûtd

)
dz

= Ūtd + 1

he

∫ he
2

− he
2

ûtddz. (14)

From (12) and (14), the constraint condition for the transverse
displacement variation is obtained as

∫ he
2

− he
2

ûtddz = 0, (15)

which can be applied to transverse nodes as the constraint
condition.

The constraint condition for transverse nodes is introduced
to the node that has no involvement in the Neumann bound-
ary condition. In sheet forming, a blank captures the surface
traction at a top or a bottom surface, or both. In a numerical
simulation of this situation, an external force (e.g. distributed
load, pressure, or contact force) is applied to the surfaces
of the element as a Neumann boundary condition. Thus, a
Dirichlet boundary condition (15) should be imposed on the
transverse node that is initially placed on the midsurface,
because its position is separated from the surfaces where
the external force is applied. As a result, a transverse node
must be placed on the midsurface in the initial configuration.
Therefore, the number of transverse nodes must be odd in
order to impose the constraint condition (15).

The constraint condition (15) is described by translations
of transverse nodes. Thus, the movement of the trans-
verse node that is initially placed on the midsurface can
be expressed using translations of other transverse node.
Hence, the rigid body motion of each transverse node is
prevented.

2.3 Strain field

In a total Lagrangian framework, the covariant components
of the Green–Lagrange strain can be written as

Ẽi j = 1

2

(
gi · g j − Gi · G j

)
, (16)

where gi and Gi are the respective covariant base vectors
associated with local coordinates (ξ, η, ζ ) defined by

Gi = ∂X
∂ri

, gi = ∂x
∂ri

= Gi + ∂u
∂ri

for i = 1, 2, 3, (17)

with r1 = ξ , r2 = η, and r3 = ζ .

2.4 Discretized equation

From the principle of virtual work, the linearized incremental
variational formulation at time t + Δt in the element e is
shown to be

∫

0�e

t C̃ i jklΔẽlklδ
(
Δẽli j

)
dΩ

+
∫

0�e

t S̃i jδ
(
Δη̃li j

)
dΩ

+
∫

0�e

t S̃i jδ
(
Δẽqi j

)
dΩ

= t+ΔtδW ext
e −

∫

0�e

t S̃i jδ
(
Δẽli j

)
dΩ, (18)

where t C̃ i jkl is the tangent moduli tensor at time t , t S̃i j are
the contravariant components of the second Piola–Kirchhoff
stress tensor at time t ,Δẽi j andΔη̃i j are the increments in the
linear andnonlinear components of the covariant components
for the Green–Lagrange strain tensor, respectively, andW ext

is the external work. Here, the superscripts l and q denote
linear and quadratic displacement terms, respectively, and
the subscript e indicates quantities evaluated in the element
e. Appendices “Principle of virtual work” and “Variational
formulation” provide the details regarding the derivation of
(18). Within the proposed formulation of the displacement
field (10), the virtual displacement vector in the element e is
defined by

δue = δum + δut, (19)

where δum and δut are the virtual displacement vectors
expressed with midsurface nodes and transverse nodes in
the element e, respectively. Thus, the strain tensors in (18)
are described as follows:
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Δẽli j

∣∣∣
�e

= tBl
mΔum + tBl

tΔut, (20)

δ
(
Δẽli j

)∣∣∣
�e

= tBl
mδ (Δum) + tBl

tδ (Δut) , (21)

δ
(
Δẽqi j

)∣∣∣
�e

= {δ (Δum)}t tLm Δum, (22)

δ
(
Δη̃li j

)∣∣∣
�e

= {δ (Δum)}t tLn
mm Δum

+{δ (Δut)}t tLn
tm Δum

+{δ (Δum)}t tLn
mt Δut

+{δ (Δut)}t tLn
tt Δut. (23)

Appendix “Discretization of variational formulation” can be
referred to for the details regarding the derivation of (20),
(21), (22), and (23).

The proposed approach is capable of assessing the surface
traction at the surface where the traction is subjected. For
example, the surface traction ftope is applied at the top surface
of the element e. In this situation, the external virtual work
can be expressed by using the virtual displacement δutop

e at
the top surface and the top surface area Atop

e of the element
e as

t+ΔtδW ext
e =

∫

Atop
e

t+Δt ftope · δ
(
Δutop

e

)
d A. (24)

From (19), the virtual displacement δ
(
Δutop

e

)
at the top sur-

face is defined using the virtual displacements δ (Δua) of
the midsurface node a, δ (Δw) |ζ=1 of the transverse node
initially placed on the top surface, and the transverse vector
vtd of the element e, as

δ
(
Δutop

e

)
= δ (Δue)|ζ=1

= {δ (Δum) + δ (Δut)}|ζ=1

=
4∑

a=1

Na(ξ, η)δ (Δua) + δ (Δw)|ζ=1 vtd. (25)

By substituting (25) into (24), the external virtual work is
given by

t+ΔtδW ext
e =

∫

Atop
e

t+Δt ftope · {δ (Δum) + δ (Δut)}|ζ=1 d A

=
∫

Atop
e

t+Δt ftope ·
{

4∑

a=1

Na(ξ, η)δ (Δua)

}
d A

+
∫

Atop
e

t+Δt ftope · {
δ (Δw)|ζ=1 vtd

}
d A.

(26)

In this study, the displacement variation of transverse nodes
is described as the translation along the transverse vector

vtd, as denoted in (7). The thickness–stretch in an element
is homogeneous in the in-plane directions. Thus, the second
term on the top right hand side of (26) can be rewritten as

∫

Atop
e

t+Δt ftope · {
δ (Δw)|ζ=1 vtd

}
d A

= δ (Δw)|ζ=1

∫

Atop
e

t+Δt ftope · vtd d A

= t+Δt ftd Atop
e δ (Δw)|ζ=1 , (27)

where ftd is the component along the transverse vector vtd
of the surface traction ftope . From (26) and (27), the surface
traction is applied to both midsurface nodes and transverse
nodes.

The discretized equation can be described as

[
kmm kmt

ktm ktt

] {
um

ut

}
=

{
rm
rt

}
. (28)

Appendix “Element stiffness equation” can be referred to for
the details regarding the derivation of (28). Within the pro-
posed approach, the additional degrees of freedomdescribing
the displacement variations of transverse nodes are indepen-
dent of each element. In constructing the element stiffness
matrix, static condensation [58] is applied to (28). Thus, the
element stiffness equation is obtained as follows:

kum = f, (29)

where

k = kmm − kmtk
−1
tt ktm, (30)

f = rm − kmtk
−1
tt rt, (31)

which is further processed by the conventional assembly pro-
cedure. It should be noted that the element stiffness Eq. (29)
takes a similar form to that of conventional shell elements.
Thus, the number of unknowns in the resulting linear system
of equations is same as that of conventional shell elements.

3 Techniques for avoiding locking phenomena

This section describes some techniques for avoiding the lock-
ing phenomena exhibited by the proposed shell elementwhen
a full integration technique is employed in numerical integra-
tion. In addition to transverse shear locking, the proposed
shell element results in thickness locking and volumetric
locking when a plane stress state in the transverse direction
is not assumed. Transverse shear locking can be alleviated
using the same technique as for the MITC4 shell element
[7]. To circumvent thickness locking, we improve the distri-
bution of the transverse normal strain through the thickness.
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Sampling points
Midsurface nodes

Fig. 5 Sampling points for transverse shear strains

Further, volumetric locking can be avoided by employing a
selective reduced integration technique [53].

3.1 Mixed interpolation of strain field

The degenerated shell element exhibits a transverse shear
locking phenomenon. In order to avoid this locking for the
degenerated shell element, Dvorkin and Bathe [7] developed
theMITC4 shell element. In theMITC4 shell element, trans-
verse shear strains are assumed by interpolating the covariant
components of transverse shear strains evaluated at the sam-
pling points shown in Fig. 5 as follows:

Ẽ13 = 1

2
(1 + η)Ẽ13|ξ=0, η=1, ζ=0

+ 1

2
(1 − η)Ẽ13|ξ=0, η=−1, ζ=0,

Ẽ23 = 1

2
(1 + ξ)Ẽ23|ξ=1, η=0, ζ=0

+ 1

2
(1 − ξ)Ẽ23|ξ=−1, η=0, ζ=0.

(32)

The proposed shell element exhibits a transverse shear
locking phenomenon because the geometric and kinematic
descriptions involving the midsurface nodes are expressed
in a similar manner to the degenerated shell elements. Thus,
transverse shear locking can be avoided by using the inter-
polations in (32). In this study, we assume that the degrees
of freedom for additional nodes are constant on the ξ − η

plane in each element. Thus, the additional degrees of free-
dom do not affect to transverse shear strains (32). It should
be noted that the proposed shell element is suitable for
bending analyses of thin structures, even for large bending
strains.

3.2 Interpolation to alleviate thickness locking

Thickness locking may occur when the displacement in
the thickness direction is interpolated by a linear function
[15,16]. Specifically, this locking results from the assump-
tion of a constant strain in the thickness direction.Concerning

bending deformation, the transverse normal strain varies lin-
early through the thickness, owing to the coupling between
the linear in-plane strains and the normal stress in the thick-
ness direction if Poisson’s ratio is not equal to zero. In the
proposed formulation, the displacement variations are inter-
polated using the nodal values of transverse nodes that are
placed on the top and bottom surfaces in each layer, see (9),
and hence the transverse normal strain is constant at each
layer. Thus, the proposed shell element exhibits thickness
locking.

This thickness locking can be avoided by introducing
multiple layers through the thickness in the proposed for-
mulation. From the constraint condition (15) for transverse
nodes, a transverse node must be placed on the midsurface
in the initial configuration. Therefore, the proposed shell ele-
ment hasmultiple layers in an element, and the distribution of
the transverse normal strain is expressed in terms of the value
at each layer. Considering these properties, thickness locking
can be alleviated by introducing more than three transverse
nodes (the minimum number of transverse nodes for impos-
ing the constraint condition).

3.3 Extension to nearly incompressible media

For nearly incompressible material, such as metal plastic-
ity, standard displacement-based elements often suffer from
a so-called volumetric locking phenomenon. In general,
a degenerated shell element does not exhibit volumetric
locking, because of the plane stress assumption. However,
volumetric locking occurs in the proposed shell element,
in which the three dimensional constitutive equation is
employed without assuming the plane stress condition.

This volumetric locking can be alleviated by employing
the techniques developed for solid elements when the dis-
placement interpolation of the element is similar to that of
solid elements [31,36]. However, the displacement interpo-
lation of the proposed shell element is expressed in a similar
manner to the degenerated shell element, see Fig. 1. Thus,
a new technique for avoiding volumetric locking must be
developed in this study.

A selective reduced integration (SRI) technique is applied
to the volumetric part to avoid the volumetric locking
phenomenon [53]. In trilinear hexahedral elements that incor-
porate the SRI technique to alleviate volumetric locking,
isochoric strain is evaluated at 2 × 2 × 2 Gauss integration
(full integration) points, while volumetric strain is assessed
at the center of an element.

LetF be the deformation gradient, and let J ≡ det F be the
Jacobian of the deformation gradient. Then, the basic kine-
matic split of the deformation gradient [59] into volumetric
and isochoric parts, which was proposed by Simo et al. [60],
may be formulated as
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Transverse nodes

Evaluation point
Gauss integration points

Fig. 6 Evaluation point shown on proposed shell element at each layer
for avoiding volumetric locking

F = FvolFiso, (33)

where the volumetric part Fvol can be written as

Fvol = J
1
3 I, (34)

det Fvol = J, (35)

and the isochoric part Fiso can be represented as

Fiso = J− 1
3 F, (36)

det Fiso = 1. (37)

If the deformation gradient F is evaluated at Gauss integra-
tion points, volumetric locking occurs in the proposed shell
element. Therefore, the volumetric part of the deformation
gradient is evaluated at the center of a layer, see Fig. 6.

Volumetric locking can be avoided by evaluating the vol-
umetric strain at each layer in the proposed shell element.
Layer coordinates are introduced and denoted by ξl , ηl , and
ζl in each layer, as shown in Fig. 6. The evaluation point for
the volumetric part of the deformation gradient is defined

at (ξl , ηl , ζl) = (0, 0, 0). Let F̄
(i)
vol, which is computed at

(ξl , ηl , ζl) = (0, 0, 0) in layer i , be replaced as the volumet-
ric part of the deformation gradient by Fvol in (33). Thus, the

modified deformation gradient F̄
(i)

can be defined by

F̄
(i) = F̄

(i)
volF

(i)
iso, (38)

where F(i)
iso is the isochoric part of the deformation gradient,

which is assessed at the Gauss integration points in layer

i . Associated with the deformation gradient F̄
(i)
, the corre-

sponding right Cauchy-Green tensor is described by

C̄
(i) =

(
F̄

(i)
)t

F̄
(i)

, (39)

in which the superscript t denotes the transpose.

4 Constitutive equation

In this section, a hyperelastic–plastic constitutive equation,
which is developed by Simo andOrtiz [61],Moran et al. [62],
and Betsch and Stein [63], is summarized briefly. Within the
proposed formulation, the three dimensional constitutive law
is employed without any modification.

The major application supposed in this work is sheet
forming, in which blank materials are metals such as steel
modelled as elastoplasticity. Due to the property of metals,
the elastic strain is expected to be small. Thus, the St. Venant–
Kirchhoff material is adopted for elastic response.

4.1 Hyperelastic response model

It is necessary to express the elastic stress–strain relationship
in the convected coordinates. For a hyperelastic material, the
appropriate constitutive relations are given by

S̃ = C̃Ẽ, (40)

where C̃ is the fourth-order contravariant tangent moduli ten-
sor in the convected coordinates and can be expressed as

C̃ = C̃i jklGi ⊗ G j ⊗ Gk ⊗ Gl . (41)

For the isotropic St. Venant–Kirchhoff material, the con-
travariant components C̃i jkl is written as

C̃i jkl = λGi jGkl + μ
(
GikG jl + GilG jk

)
, (42)

where

Gi j = Gi · G j , (43)

and λ and μ are Lamé’s constants. The second Piola–
Kirchhoff stress and Green–Lagrange strain tensors can be
described as

S̃ = S̃i jGi ⊗ G j , (44)

Ẽ = Ẽi jGi ⊗ G j , (45)

where S̃i j is the contravariant components of the second
Piola–Kirchhoff stress tensor and Ẽi j denotes the covariant
components of the Green–Lagrange strain tensor. Since the
three dimensional constitutive law is used without modifica-
tion, the constitutive Eq. (40) can be directly substituted to
other hyperelastic constitutive laws.

4.2 Modeling of plastic response

In the finite deformation range, the deformation gradient ten-
sor F is expressed by using the elastic part Fe and the plastic
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part Fp as

F = FeFp, (46)

where the plastic part Fp denotes the transformation matrix
from the initial configuration to the virtual intermediate stress
free configuration, which is obtained by unloading elastic
deformation from the current configuration [64].

In the virtual intermediate stress free configuration, the
plastic Green–Lagrange strain tensor Ẽ

p
in a covariant for-

mulation is defined by using the plastic right Cauchy-Green
tensor Cp and the covariant metric tensor G as

Ẽ
p = 1

2

(
Cp − G

)
, (47)

where

Cp = (
Fp)t Fp. (48)

Thus, the elasticGreen–Lagrange strain tensor Ẽ
e
in a covari-

ant formulation is obtained by

Ẽ
e = Ẽ − Ẽ

p
. (49)

For a plasticity model, the von Mises yield criterion with
isotropic hardening is employed. The von Mises yield func-
tion is defined by

Φ(S̃, C, σy) = 1

2

(
S̃′i j S̃′klCikC jl

)
− σ 2

y = 0, (50)

where the deviatoric part S̃
′
of the stress tensor S̃ is expressed

as

S̃
′ = S̃′i jGi ⊗ G j

=
{
S̃i j − 1

3
(S̃klCkl)(C

−1)i j
}

Gi ⊗ G j , (51)

and σy is the yield stress in shear [65]. Further, C and C−1

are the covariant and contravariant components of the right
Cauchy-Green tensors, respectively, as follows:

C = FtF, (52)

C−1 = (
FtF

)−1
, (53)

which are identified with the metric tensors of the current
configuration in the material descriptions. Note that σy is a
function of stress history. The hardening law is described as

σ̇y = h ˙̄γ, (54)

where h = h(γ̄ ) is the hardening modulus and γ̄ is the
equivalent plastic strain. In this study, for the purpose of

calculating the equivalent plastic strain rate ˙̄γ , the flow rule
associated with the von Mises yield criterion is used. In the
incremental procedure, Ep may be calculated through the
elastic predictor-return mapping scheme proposed by Simo
and Ortiz [61].

5 Numerical examples

Several numerical examples are chosen to verify the capabili-
ties of the proposed shell element in elastic and elastoplastic
deformation problems. Its performance is demonstrated in
small and large deformation ranges by comparing the behav-
ior of the proposed shell element with that of solid elements
and/or the MITC4 shell element. In the visualization of cal-
culation results, we plot shell elements as if they were solid
elements.

5.1 Investigation of eigenvalues

For the purpose of examining the element behavior con-
cerning zero energy modes and possible locking tendencies,
the eigenvalues of a single element are computed using the
proposed shell element (with a selective reduced integration
(SRI) technique and with a full integration (FI) technique)
and the MITC4 shell element. The element shape is typical
for an element contained in a regular mesh of a square plate
(see Fig. 7) with thickness to length ratios of h/ l = 1/50
and 1.

The eigenvalues of thesemodels are computed using Pois-
son’s ratios ν = 0, 0.3, and 0.499, and are displayed in
Tables 1 and 2. These results show that the proposed shell ele-
ment includes no spurious zero energy mode. In addition, the
more important conclusion is that the proposed shell element
with the SRI technique does not show a serious tendency to
lock, even if Poisson’s ratio becomes close to 0.5. On the
other hand, it is obvious that the proposed shell element with
the FI technique exhibits a volumetric locking phenomenon
for nearly incompressible material.

5.2 In-plane tensile deformation

The most simple model incorporating in-plane tensile defor-
mation is computed to evaluate thickness–stretch. A numeri-
cal investigation is conducted to verify the element behavior
of the proposed shell element concerning the three dimen-
sional effects for the in-plane tensile deformation, as shown in
Fig. 8. This model is studied using a single mesh and a hyper-
elasticmaterial, such as the St. Venant–Kirchhoffmodel. The
material has Young’s modulus E = 100 [N/mm2] and Pois-
son’s ratio ν = 0.3.

Figure 9 illustrates the position of the top surface corre-
sponding to the displacement in the x direction of the free
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Material:

Geometry:

Fig. 7 Geometry and material data for the eigenvalue analysis

Table 1 Eigenvalues of a thin square plate; h/ l = 1/50

Element Poisson’s
ratio ν

Rigid
body
motion

Eigenvalues

<0.1 <100 ∞ Max

MITC4 shell 0 1–6 7–14 15–20 – 3.30

Proposed shell
(SRI)

1–6 7–13 14–20 – 3.96

Proposed shell
(FI)

1–6 7–13 14–20 – 3.96

MITC4 shell 0.3 1–6 7–11 12–20 – 2.54

Proposed shell
(SRI)

1–6 7–11 12–20 – 3.05

Proposed shell
(FI)

1–6 7–11 12–20 – 3.05

MITC4 shell 0.499 1–6 7–11 12–20 – 2.20

Proposed shell
(SRI)

1–6 7–11 12–20 – 2.64

Proposed shell
(FI)

1–6 7–11 12–20 – 60.95

Table 2 Eigenvalues of a thick square plate; h/ l = 1

Element Poisson’s
ratio ν

Rigid
body
motion

Eigenvalues

<100 <10000 ∞ Max

MITC4 shell 0 1–6 7–15 16–20 – 166

Proposed shell
(SRI)

1–6 7–15 16–20 – 198

Proposed shell
(FI)

1–6 7–15 16–20 – 198

MITC4 shell 0.3 1–6 7–16 17–20 – 163

Proposed shell
(SRI)

1–6 7–16 17–20 – 161

Proposed shell
(FI)

1–6 7–16 17–20 – 163

MITC4 shell 0.499 1–6 7–15 16–20 – 227

Proposed shell
(SRI)

1–6 7–15 16–20 – 225

Proposed shell
(FI)

1–6 7–11 12–20 – 6349

edge. The proposed shell element is capable of evaluating
the thickness–stretch with the in-plane deformation due to
the effect of Poisson’s ratio, similarly to the hexahedral solid

Initial
configuration

Deformed
configuration

Midsurface

Fig. 8 Geometry of initial and deformed configuration of in-plane ten-
sile deformation
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Fig. 9 Movement of the top surface with in-plane deformation in elas-
tic case

element. It is also obvious that its behavior is based on the
three dimensional constitutive equation.

5.3 Transverse compressive deformation

Now, we examine a model that is compressed in the trans-
verse direction for a single element, as shown in Fig. 10. This
simple model is the most attractive example for comparing
the behavior of the proposed shell element with that of con-
ventional shell elements. It is not possible to compute this
situation using the conventional shell elements, because the
traction is cancelled out on account of the evaluation of the
traction at the midsurface. In contrast, the proposed shell ele-
ment is capable of capturing the surface traction at the surface
where the traction is imposed. Thus, a numerical solution can
be obtained for this model using the proposed shell element,
similarly to solid elements. The behavior of the material fol-
lows the St. Venant–Kirchhoff material model, and it has
Young’s modulus E = 100 [N/mm2] and Poisson’s ratio
ν = 0.499.

The position of the top surface corresponding to the sur-
face traction is depicted in Fig. 11, and the load displacement
diagram at the free edge is illustrated in Fig. 12. These results
show that the proposed shell element has the property that it
can capture the surface traction in this situation and evalu-
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Fig. 10 Geometry of initial and deformed configuration of transverse
compressive deformation
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Fig. 11 Movement of the top surface with traction in transverse com-
pressive deformation
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Fig. 12 Load displacement diagram at the free edge in transverse com-
pressive deformation

ate the thickness–stretch and in-plane deformation due to the
effect of Poisson’s ratio.

5.4 Pure bending in a small deformation

Now, the situation of a square plate that is subjected to a
bending moment is investigated, as shown in Fig. 13. The
geometry and material data for the numerical simulation are
also described in Fig. 13, and this model is discretized with
a single element. We compare the angles of bending and
warpage between the initial configuration and the deformed
configuration (see Fig. 13) obtained using the proposed shell
element with analytical solutions.

Bending Warpage

Initial configuration
Deformed configuration

Loading:

Geometry:

Thickness

Material:

Fig. 13 Geometry andmaterial data of a square platewith pure bending

FI (bending)
FI (warpage)
SRI (bending)
SRI (warpage)

50

3 151311975

−50

0

Fig. 14 Relative error for Poisson’s ratio ν = 0.3 in pure bending

FI (bending)
FI (warpage)

SRI (bending)
SRI (warpage)

50

3 151311975

−50

0

Fig. 15 Relative error for Poisson’s ratio ν = 0.499 in pure bending

Figures 14 and 15 show that the differences between
numerical solutions and analytical solutions become larger as
the number of transverse nodes becomes smaller. In the case
of Poisson’s ratio ν = 0.499, the proposed shell element with
the FI technique exhibits severe locking phenomena, mainly
in the form of the volumetric locking phenomenon. These
tendencies can be explained by the transverse normal strain
distribution through the thickness, as shown in Figs. 16 and
17. Within the proposed approach, the translations of trans-
verse nodes are interpolated linearly, and hence thickness
locking occurs because the transverse normal strain is con-
stant at each layer. Figures 16 and 17 illustrate that the SRI
technique (see Sect. 3.3) also has the property of alleviating
thickness locking.
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Fig. 16 Transverse normal strain distributions for Poisson’s ratio ν =
0.3 in pure bending (eleven transverse nodes)

FI
Analytical
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Fig. 17 Transverse normal strain distributions for Poisson’s ratio ν =
0.499 in pure bending (eleven transverse nodes)

Fig. 18 Patch test mesh

5.5 Patch tests

Here, patch tests are examined using a mesh, as illustrated in
Fig. 18. The models above that are investigated in Sects. 5.2,
5.3, and 5.4 are simulated using this mesh, and the same
results are obtained as those calculated with a single element.
In addition, if the loading condition of the in-plane shear
is imposed, the same results are computed with both this
mesh and a single element. Thus, it should be noted that the
proposed shell element passes the patch tests.

5.6 Cantilever beam with line load

Next, a cantilever beam subjected to a line load is exam-
ined to verify the performance of the proposed shell element
in a large deformation range. The geometry, material data,
and boundary conditions are given in Fig. 19. This model is
discretized with 10 × 1 elements.

The numerical results obtained with the proposed shell
element (with the SRI technique) are compared with those
calculated using the MITC4 shell element, which does not
exhibit any locking phenomenon. The load displacement dia-
grams with ten equal load steps are presented in Figs. 20, 21
and 22. A comparison of the tip deflection in the deformed
configuration is illustrated in Fig. 23. The effectiveness of the
SRI technique for nearly incompressible material is proved
in Sects. 5.1 and 5.4. In this example, the good agreement
demonstrated between both elements indicates that the SRI
technique is valid for geometrically nonlinear analysis.

5.7 Inflation of a cylinder subjected to internal pressure

Here, a simulationmodel is chosen to demonstrate the predic-
tive capabilities of the proposed shell element in the analysis
of a thick-walled structure for tube hydroforming process. In
the studies of shell elements in which nodes are placed on
themidsurface [17,18], formulations of the external work are
derived using the surface traction applied at the top and bot-
tom surfaces. However, numerical results included the effect
of the surface traction were not illustrated.

The geometric andmaterial properties are given in Fig. 24.
The material behavior is described by the St. Venant–
Kirchhoff model for the elastic part with vonMises plasticity
[61], where σy is the initial yield stress and H is the linear
hardening modulus. On account of symmetry, one eighth of
the cylinder is modeled using 50,000 hexahedral elements
and 200 shell elements with 10 layers.

Figure 25 indicates the plastic zones of the cylinder in
the deformed configuration. As can be seen from this fig-
ure, the proposed shell element is capable of evaluating the
pressure that is applied to the internal surface. The com-
putational costs of this model are shown in Table 3. The
cost of elastic or plastic range is calculated as the average
per load step of the total cost of each range. In the elas-
tic range, the cost of the proposed shell element is higher
than that of the MITC4 shell element, because static con-
densation is employed for additional degrees of freedom
of transverse nodes. In the plastic range of the proposed
shell element, the cost increases for elastic predictor-return
mapping scheme in addition to the operation of static conden-
sation.On the other hand, the cost of theMITC4 shell element
increases because the plane stress condition is enforced
by the internal iterative algorithm at each quadrature point
together with the return-mapping scheme [9]. Figure 25 and
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Plane strain condition in    direction
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Fig. 19 Geometry and material data of a cantilever beam
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Fig. 20 Load displacement diagram for Poisson’s ratio ν = 0 in bend-
ing of a cantilever beam (eleven transverse nodes)
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Fig. 21 Load displacement diagram for Poisson’s ratio ν = 0.3 in
bending of a cantilever beam (eleven transverse nodes)
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Fig. 22 Load displacement diagram for Poisson’s ratio ν = 0.499 in
bending of a cantilever beam (eleven transverse nodes)

Table 3 illustrate that the proposed shell element can be
more efficient than conventional shell elements in this sit-
uation.
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Fig. 23 Relative error in bending of a cantilever beam

5.8 Square plate undergoing large elastoplastic
deformations

Here, a square plate with a uniform loading is employed to
examine the behavior of the model when subjected to sur-
face traction in a large deformation range, see Fig. 26. The
geometry and material data for the numerical simulation are
also given in Fig. 26. The material behavior is described by
the St. Venant–Kirchhoff model for the elastic part with von
Mises plasticity. At the edges of the plate, the displacements
in the tangential directions to the plate are fixed, and the dis-
placement in the vertical direction is fixed at the midsurface
in the initial configuration only. On account of symmetry,
only one quarter is modeled. In the proposed shell element,
the model is discretized with 11 transverse nodes over the
thickness and 10 × 10 elements in the tangential directions
to the plane. On the other hand, a 100 × 100 × 10 mesh of
the trilinear hexahedral solid element is used to represent a
symmetric one quarter portion.

Figure 27 shows the load-displacement curves at the cen-
ter of the square plate. The result obtained by the proposed
shell element indicates a good performance, similar to the
hexahedral solid element in this deformation range. In con-
trast, a large disparity between the MITC4 shell element and
the proposed shell element is indicated in Fig. 27. These
results reveal that the surface traction is applied and evalu-
ated at the bottom surface in the proposed shell element and
the hexahedral solid element, whereas this takes place at the
midsurface in the MITC4 shell element. It should be noted
that the proposed shell element is capable of capturing the
surface traction accurately in a large deformation range.

The thickness–stretch across the section at the center of
the square plate is illustrated in Fig. 28. To consider the dis-
placement of the node that is placed on the midsurface in the
initial configuration,we compare the the nodal displacements
in the transverse direction, which are indicated by the trans-
verse nodes of the proposed shell element or by the nodes of
the hexahedral solid element. Thus, at the midsurface (or the
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Geometry:

Material:

Fig. 24 Geometry and material data of the cylinder

0.0

: cross section

(a)

(b)

(c)

Fig. 25 Equivalent plastic strain distributions of the cylinder: a Hexa-
hedral solid; b Proposed shell; c MITC4 shell

initial position z0 = 0), the modified displacement variation
w̄ is zero. Figure 28 shows that the proposed shell element
is effective in estimating the change in thickness when the
effect of the surface traction is included, similarly to the hex-
ahedral solid element. In this example, the positions of the
top and bottom surfaces can be captured using solid-shell
elements. In addition, elements based on the multilayered

Table 3 Computational costs of the cylinder

Element Average Total

Elastic range Plastic range cost (s)

Cost per
step
(s/step)

Number of
iteration

Cost per
step
(s/step)

Number of
iteration

Hexahedral
solid

83.5 2.03 107 2.89 4614

Proposed
shell

1.44 0.70 2.31 2.08 83.5

MITC4
shell

0.95 0.43 1.92 1.25 54.9

Geometry:

Material:

Fig. 26 Geometry and material data of the square plate
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Fig. 27 Load displacement diagram at center point of the square plate
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Fig. 28 Displacement variation in the transverse direction across the
section at the center of the square plate

123



640 Comput Mech (2017) 59:625–646

−5

5

0

Hexahedral solid
Proposed shell

4000 200

Fig. 29 Stress distribution of σxx through the thickness at the center
of the square plate
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Fig. 30 Stress distribution of σzz through the thickness at the center of
the square plate
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Fig. 31 Strain distribution of Exx through the thickness at the center
of the square plate

model are capable of evaluating the deformation on the inte-
rior of the model. However, extreme increases in the degrees
of freedom are inevitable. In contrast, the proposed shell ele-
ment has the capability to assess the behavior on the interior
of the model by introducing transverse nodes only. Thus,
the proposed shell element can be more efficient than the
multilayered shell elements. It should be noted that disconti-
nuities of the thickness between elements are allowed in the
proposed approach.
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Proposed shell

0.00−0.05 0.05

Fig. 32 Strain distribution of Ezz through the thickness at the center
of the square plate

The validity of the proposed shell element is assessed to
verify the numerical results on the interior of the model. Fig-
ures 29, 30, 31 and 32 show the stress and strain distributions
through the thickness at the center of the square plate in the
deformed configuration. These results confirm that the pro-
posed shell element is capable of evaluating the stress and
strain distributions, similarly to the hexahedral solid element.
Furthermore, Figs. 33 and 34 illustrate the plastic zones in
the deformed configuration near the top and bottom surfaces.
The results for the proposed shell element are in good agree-
ment with those of the hexahedral solid element.

6 Concluding remarks

A quadrilateral shell element incorporating a degree of
freedom to represent thickness–stretch has been developed,
without assuming the plane stress state. A displacement
variation is introduced to the MITC4 shell element for
the evaluation of thickness–stretch. Because the transverse
normal strain is computed using the additional degrees of
freedom, the three dimensional constitutive equation can be
employed without any modification. Hence, the stress and
strain distributions through the thickness can be expressed
in a similar manner as for solid elements. In addition, the
constitutive equation for the proposed formulation can be
directly substituted to other material constitutive laws. One
of the most important features is that the equilibrium equa-
tion in the transverse direction is defined explicitly. For this
formulation, the surface traction can be evaluated at the sur-
face where the traction is applied. Thus, the proposed shell
element is capable of assessing the change in thickness and
the stress distribution resulting from the effect of the sur-
face traction. In the construction of the element stiffness
matrix, the additional degrees of freedom can be condensed
out at each element. Thus, the number of unknowns in the
resulting linear system of equations for the proposed shell
element is same as that for the conventional four-node shell

123



Comput Mech (2017) 59:625–646 641

0.00

0.15

(b)

(a)

Fig. 33 Zones of equivalent plastic strain at near top surface of the
square plate: a Hexahedral solid; b Proposed shell

element. It should be noted that the proposed approach is
valid when discontinuities of the thickness between ele-
ments are allowed. Furthermore, the degrees of freedom for
midsurface nodes of the proposed shell element are simi-
lar to those of conventional four node shell element. The
degrees of freedom for the proposed shell element can be
connected with those of conventional shell elements. Hence,
the proposed approach is capable of using elements prop-
erly only when discontinuities of the thickness between
elements are allowed. For example, the proposed shell ele-
ment can be employed for the part imposing the surface
traction and other parts are modeled using conventional shell
elements.

Artificial numerical parameters are not included in the pro-
posed formulation, and the proposed shell element does not
exhibit any instabilities. In the proposed formulation, trans-

0.00

0.15

(a)

(b)

Fig. 34 Zones of equivalent plastic strain at near bottom surface of the
square plate: a Hexahedral solid; b Proposed shell

verse shear locking can be avoided using the assumed strain
approach, which has previously been applied to the MITC4
shell element. In addition, thickness locking can be allevi-
ated by increasing the number of transverse nodes, and the
SRI technique is proposed to circumvent volumetric locking.
Some numerical examples were performed to indicate that
the SRI technique works effectively to reduce both thickness
locking and volumetric locking.

Representative numerical examples demonstrate the appli-
cability and validity of the proposed shell element. The
results reveal that the proposed shell element provides an
accurate analysis of problems subjected to surface traction.

In futurework,wewill apply the proposed shell element to
practical problems in sheet metal forming. In such problems,
the proposed approach should be verified in the situations
involving contact between the sheet and the die.
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Appendix: Discretization of equilibrium equation

Here, the derivation of the element stiffness matrix for
the proposed shell element is described. In the proposed
approach, the equilibriumequation in the transverse direction
is defined explicitly.

Principle of virtual work

The principle of virtual work is given as

δW ≡ δW int − δW ext = 0, (55)

whereW int andW ext denote the internal work and the exter-
nal work, respectively. The virtual internal work is expressed
in terms of the internal force vector fint and the virtual dis-
placement vector δu as

δW int =
∫

0�

fint · δu dΩ, (56)

where 0� is the physical region of the shell with boundary
0�. Similarly, the virtual external work is written as

δW ext =
∫

0�

fext · δu dΓ, (57)

where fext denotes the external force vector. The internal vir-
tual work can also be described in terms of the contravariant
components of the second Piola–Kirchhoff stress tensor and
the covariant components of the Green–Lagrange strain ten-
sor as

δW int =
∫

0�

S̃i jδ Ẽi j dΩ. (58)

Thus, the principle of virtual work at time t is defined by

∫

0�

t S̃i j tδ Ẽi j dΩ = tδW ext. (59)

Variational formulation

The total Lagrangian variational formulation at time t + Δt
can be described as
∫

0�

t+Δt S̃i j t+Δtδ Ẽi j dΩ = t+ΔtδW ext. (60)

The stress components can be written as

t+Δt S̃i j = t S̃i j + ΔS̃i j , (61)

where t S̃i j are the contravariant components of the second
Piola–Kirchhoff stress tensor at time t , andΔS̃i j is the incre-
ment in the second Piola–Kirchhoff stress tensor. Similarly,
the strain components are expressed as

t+Δt Ẽi j = t Ẽi j + ΔẼi j , (62)

where t Ẽi j are the covariant components of the Green–
Lagrange strain tensor at time t , and ΔẼi j is the increment
in the Green–Lagrange strain tensor. The incremental com-
ponentsΔẼi j can be defined by using the linear components
Δẽi j and the nonlinear components Δη̃i j as

ΔẼi j = Δẽi j + Δη̃i j . (63)

In addition, owing to the finite rotation of the displacement
field, it is necessary to further linearize the incremental strains
to account for both linear and quadratic displacement terms;
that is,

Δẽi j = Δẽli j + Δẽqi j , (64)

Δη̃i j = Δη̃li j . (65)

Here, the superscripts l and q denote linear and quadratic
displacement terms, respectively. From the incremental con-
stitutive equation,

ΔS̃i j = t C̃ i jklΔẼkl , (66)

the linearized incremental variational formulation is given as
follows:

∫

0�

t C̃ i jklΔẽlklδ
(
Δẽli j

)
dΩ +

∫

0�

t S̃i jδ
(
Δη̃li j

)
dΩ

+
∫

0�

t S̃i jδ
(
Δẽqi j

)
dΩ

= t+ΔtδW ext −
∫

0�

t S̃i jδ
(
Δẽli j

)
dΩ, (67)

where

Δẽli j = 1

2

(
Gi · ∂Δul

∂r j
+ G j · ∂Δul

∂ri

)
, (68)

δ
(
Δẽli j

)
= 1

2

(
Gi · ∂δ

(
Δul

)

∂r j
+ G j · ∂δ

(
Δul

)

∂ri

)
, (69)

δ
(
Δẽqi j

)
= 1

2

(
Gi · ∂δ (Δuq)

∂r j
+ G j · ∂δ (Δuq)

∂ri

)
, (70)

δ
(
Δη̃li j

)
= 1

2

(
∂Δul

∂ri
· ∂δ

(
Δul

)

∂r j

)
. (71)
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Discretization of variational formulation

The linearized incremental variational formulation (67) in
the element e is given by

∫

0�e

t C̃ i jklΔẽlklδ
(
Δẽli j

)
dΩ

+
∫

0�e

t S̃i jδ
(
Δη̃li j

)
dΩ

+
∫

0�e

t S̃i jδ
(
Δẽqi j

)
dΩ

= t+ΔtδW ext
e −

∫

0�e

t S̃i jδ
(
Δẽli j

)
dΩ, (72)

where the subscript e denotes quantities evaluated in the ele-
ment e.As described in the displacement field (10), the virtual
displacement vector in the element e is defined by

δue = δum + δut, (73)

where δum and δut are the virtual displacement vectors
expressed in terms of midsurface nodes and transverse nodes
in the element e, respectively. Thus, the strain tensors in (72)
are described as follows:

Δẽli j

∣∣∣
�e

= 1

2

(
Gi · ∂Δul

e

∂r j
+ G j · ∂Δul

e

∂ri

)

= 1

2

{
Gi · ∂

(
Δul

m + Δul
t

)

∂r j

+ G j · ∂
(
Δul

m + Δul
t

)

∂ri

}

= 1

2

(
Gi · ∂Δul

m

∂r j
+ G j · ∂Δul

m

∂ri

)

+ 1

2

(
Gi · ∂Δul

t

∂r j
+ G j · ∂Δul

t

∂ri

)

= tBl
mΔum + tBl

tΔut, (74)

δ
(
Δẽli j

)∣∣∣
�e

= 1

2

(
Gi · ∂δ

(
Δul

e

)

∂r j
+ G j · ∂δ

(
Δul

e

)

∂ri

)

= 1

2

(
Gi · ∂

{
δ
(
Δul

m

) + δ
(
Δul

t

)}

∂r j

+ G j · ∂
{
δ
(
Δul

m

) + δ
(
Δul

t

)}

∂ri

)

= 1

2

{
Gi · ∂δ

(
Δul

m

)

∂r j
+ G j · ∂δ

(
Δul

m

)

∂ri

}

+ 1

2

{
Gi · ∂δ

(
Δul

t

)

∂r j
+ G j · ∂δ

(
Δul

t

)

∂ri

}

= tBl
mδ (Δum) + tBl

tδ (Δut) , (75)

δ
(
Δẽqi j

)∣∣∣
�e

= 1

2

(
Gi · ∂δ

(
Δuq

e
)

∂r j
+ G j · ∂δ

(
Δuq

e
)

∂ri

)

= 1

2

(
Gi · ∂δ

(
Δuq

m
)

∂r j
+ G j · ∂δ

(
Δuq

m
)

∂ri

)

= {δ (Δum)}t tLm Δum, (76)

δ
(
Δη̃li j

)∣∣∣
�e

= 1

2

(
∂Δul

e

∂ri
· ∂δ

(
Δul

e

)

∂r j

)

= 1

2

(
∂

{
Δul

m + Δul
t

}

∂ri

·∂
{
δ
(
Δul

m

) + δ
(
Δul

t

)}

∂r j

)

= 1

2

{
∂Δul

m

∂ri
· ∂δ

(
Δul

m

)

∂r j

+ ∂Δul
m

∂ri
· ∂δ

(
Δul

t

)

∂r j

+ ∂Δul
t

∂ri
· ∂δ

(
Δul

m

)

∂r j

+ ∂Δul
t

∂ri
· ∂δ

(
Δul

t

)

∂r j

}

= {tBn
mδ (Δum)

}t tBn
m Δum

+ {tBn
t δ (Δut)

}t tBn
m Δum

+ {tBn
mδ (Δum)

}t tBn
t Δut

+ {tBn
t δ (Δut)

}t tBn
t Δut

= {δ (Δum)}t tLn
mm Δum

+ {δ (Δut)}t tLn
tm Δum

+ {δ (Δum)}t tLn
mt Δut

+ {δ (Δut)}t tLn
tt Δut. (77)

Here, the external virtual work t+ΔtδW ext
e can be described

as

t+ΔtδW ext
e =

∫

0�e

{t+Δt fm · δ (Δum) + t+Δt ft · δ (Δut)
}
dΓ,

(78)

where fm and ft are the external force vectors for midsurface
nodes and transverse nodes, respectively.

Element stiffness equation

The strain tensors (74), (75), (76), and (77) and the external
virtual work (78) can be substituted into the linearized incre-
mental variational formulation (72), and hence the resulting
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incremental variational formulation can be expressed in
matrix form as

∫

0�e

({
tBl

mδ (Δum) + tBl
tδ (Δut)

}t

t D̃
{
tBl

mΔum + tBl
tΔut

})
dΩ

+
∫

0�e

(
{δ (Δum)}t t S̃i j tLn (ij)

mm Δum

+ {δ (Δut)}t t S̃i j tLn (ij)
tm Δum

+ {δ (Δum)}t t S̃i j tLn (ij)
mt Δut

+{δ (Δut)}t t S̃i j tLn (ij)
tt Δut

)
dΩ

+
∫

0�e

{δ (Δum)}t t S̃i j tL(i j)
m ΔumdΩ

=
∫

0�e

{t+Δt fm · δ (Δum) + t+Δt ft · δ (Δut)
}
dΓ

−
∫

0�e

({
tBl

mδ (Δum) + tBl
tδ (Δut)

}t
t S̃

v
)

dΩ,

(79)

where D̃ is the material moduli matrix constructed from the
fourth-order tensor C̃. Note that S̃

v
is a vector form of the

stress tensor S̃. The incremental variational formulation (79)
is then rewritten as

{δ (Δum)}t
∫

0�e

({(
tBl

m

)t
t D̃ tBl

m

+t S̃i j tLn (ij)
mm + t S̃i j tL(i j)

mn

}
Δum

+
{(

tBl
m

)t
t D̃ tBl

t + t S̃i j tLn (ij)
mt

}
Δut

)
dΩ

+ {δ (Δut)}t
∫

0�e

({(
tBl

t

)t
t D̃ tBl

m + t S̃i j tLn (ij)
tm

}
Δum

+
{(

tBl
t

)t
t D̃ tBl

t + t S̃i j tLn (ij)
tt

}
Δut

)
dΩ

= {δ (Δum)}t
{∫

0�e

t+Δt fm dΓ −
∫

0�e

(
tBl

m

)t
t S̃

v
dΩ

}

+ {δ (Δut)}t
{∫

0�e

t+Δt ft dΓ −
∫

0�e

(
tBl

t

)t
t S̃

v
dΩ

}
.

(80)

Thus, the two equilibrium equations are obtained as follows:

∫

0�e

({(
tBl

m

)t
t D̃ tBl

m + t S̃i j tLn (ij)
mm + t S̃i j tL(i j)

m

}
Δum

+
{(

tBl
m

)t
t D̃ tBl

t + t S̃i j tLn (ij)
mt

}
Δut

)
dΩ

=
∫

0�e

t+Δt fm dΓ −
∫

0�e

(
tBl

m

)t
t S̃

v
dΩ, (81)

∫

0�e

({(
tBl

t

)t
t D̃ tBl

m + t S̃i j tLn (ij)
tm

}
Δum

+
{(

tBl
t

)t
t D̃ tBl

t + t S̃i j tLn (ij)
tt

}
Δut

)
dΩ

=
∫

0�e

t+Δt ft dΓ −
∫

0�e

(
tBl

t

)t
t S̃

v
dΩ. (82)

From (81) and (82), the discretized equation can be described
as

[
kmm kmt

ktm ktt

] {
um

ut

}
=

{
rm
rt

}
, (83)

where

kmm =
∫

0�e

{(
tBl

m

)t
t D̃ tBl

m

+t S̃i j tLn (ij)
mm + t S̃i j tL(i j)

m

}
dΩ, (84)

kmt =
∫

0�e

{(
tBl

m

)t
t D̃ tBl

t + t S̃i j tLn (ij)
mt

}
dΩ, (85)

ktm =
∫

0�e

{(
tBl

t

)t
t D̃ tBl

m + t S̃i j tLn (ij)
tm

}
dΩ, (86)

ktm =
∫

0�e

{(
tBl

t

)t
t D̃ tBl

t + t S̃i j tLn (ij)
tt

}
dΩ, (87)

um = Δum, (88)

ut = Δut, (89)

rm =
∫

0�e

t+Δt fm dΓ −
∫

0�e

(
tBl

m

)t
t S̃

v
dΩ, (90)

rt =
∫

0�e

t+Δt ft dΓ −
∫

0�e

(
tBl

t

)t
t S̃

v
dΩ. (91)

In the above integrals, the element matrices B and L are con-
structed by employing the assumed strain approach and the
selective reduced integration techniquedescribed inSect. 3.3,
and a full integration technique is employed for numerical
integration.
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