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Abstract An explicit time integration scheme based on
quartic B-splines is presented for solving linear structural
dynamics problems. The scheme is of a one-parameter fam-
ily of schemes where free algorithmic parameter controls
stability, accuracy and numerical dispersion. The proposed
scheme possesses at least second-order accuracy and at most
third-order accuracy. A 2D wave problem is analyzed to
demonstrate the effectiveness of the proposed scheme in
reducing high-frequencymodes and retaining low-frequency
modes. Except for general structural dynamics, the proposed
scheme can be used effectively for wave propagation prob-
lems in which numerical dissipation is needed to reduce
spurious oscillations.
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1 Introduction

Numerical methods are employed these days for solving
structural dynamics problems, as these methods are increas-
ingly powerful in calculation. For these problems, the spatial
discretization models are commonly obtained by the Finite
Element Methods (FEM). Many time integration schemes
have been presented in the literature to describe the history of
structures’ transient responses. These schemes can be catego-
rized on the basis of the following characteristics: (i) energy
conservation or dissipation; (ii) momentum conservation or
dissipation; (iii) implicit or explicit.

When time integration schemes are employed to describe
hyperbolical problems, especially for wave propagation
problems, numerical spurious oscillation often happens, and
thus, numerical dissipation/dispersion property is of great
significance for time integration schemes. By use of disper-
sive implicit or explicit time integration schemes, spurious
oscillation can be effectively reduced. There are a large
amount of researches on the implicit damping schemes [1–6].
As for explicit schemes, few dispersive schemes are available
[7–13]. Another technique to obtain damping schemes is to
add a viscous pressure term to the dynamic equilibrium equa-
tion [14,15].

Recently, a new family of time integration schemes involv-
ing explicit and implicit schemes have been proposed by use
of uniform B-spline functions in terms of the outstanding
ability of B-spline functions in interpolation and approxima-
tion [16–18]. To improve accuracy and numerical dispersion
characteristics, an explicit scheme with controllable numer-
ical dispersion is proposed here utilizing uniform quartic
B-spline functions. In following section, uniform quartic
B-spline is introduced and applied to solve the discretized
dynamic equilibrium equations. In Sects. 3 and 4, the sta-
bility and accuracy properties are deliberately analyzed and
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compared with other two representative damping schemes
proposed by Noh and Bathe [11] and Tchamwa and Wiel-
gosz [10,12]. In Sect. 5, numerical dispersion characteristics
of the proposed scheme are demonstrated by theoretically
considering a two-dimensional wave propagation problem
with a uniform 4-node finite element adopted to obtain spa-
tial discretization equations, where wave velocity errors of
various schemes are compared to verify the acceptable dis-
persion property of the proposed quartic B-spline scheme.
In Sect. 6, several numerical simulations are considered to
verify the effectiveness of the proposed scheme. In Sect. 7,
conclusions are made based on the theoretical and numerical
results.

2 The proposed scheme

2.1 Initial approximations based on quartic B-spline
interpolation

B-spline functions have been employed by Wen et al. in two
research papers [16,17] to develop time integration schemes
for structural dynamics.While, quarticB-spline functions are
first used to develop non-dispersive time integration scheme
by Rostami et al. [18]. However, in this paper, an explicit
time integration scheme with controllable dissipation is pro-
posed by applying uniform quartic B-spline interpolation in
time integration field. To implement the proposed scheme for
linear structural dynamic analysis, the following well-known
equation is considered

Mü + Du̇ + Ku = f (1)

where u, u̇ and ü are the nodal physical variables vector
and its first and second derivative vectors with respect to

time variable t . M, D and K are the mass, damping and
stiffness matrices, respectively. For nonlinear case, D and
K can be, respectively, obtained by D = ∂f d

∂u̇ and K = ∂f s
∂u ,

where f d and f s are the nodal damping force and the elastic

force vectors corresponding to the element internal stresses,
respectively.

Let the considered time domain [a, b] be divided into
subintervals [ti , ti+1] by a set of equidistant knots ti =
a + i�t , i = 0, 1, 2, 3, · · · , n − 1, where �t = b−a

n . Let N
be the number of degree of freedom of vector u.

For the proposed scheme, the following initial conditions
are required

u (t0) = u0 (2a)

u̇ (t0) = v0 (2b)

ü (t0) = M−1(f (t0) − Du̇ (t0) − Ku (t0)) (2c)
...
u
(
t+0
) = M−1(ḟ

(
t+0
)− Dü (t0) − Ku̇ (t0)) (2d)

where the superscript ‘+’ in this paper is employed to define
the right derivative, and thus

...
u
(
t+0
)
denotes the third right

derivative of u at time t = t0. The first right derivative value
ḟ
(
t+0
)
in Eq. (2d) is approximated as

ḟ
(
t+0
) = −11f (t0) + 18f

(
t1/3
)− 9f

(
t2/3
)+ 2f (t1)

2�t
(3)

where the approximation of ḟ
(
t+0
)
is obtained by conducting

some mathematical calculations based on the Taylor series
expansion of f

(
t1/3
)
, f
(
t2/3
)
and f (t1) at time t=t0. Actu-

ally, when f (t0), f
(
t1/3
)
, f
(
t2/3
)
and f (t1) are accurate

enough, the proposed approximation is of second-order accu-
racy. For clarity, deliberate mathematical deduction is not
presented here.

In the proposed scheme, quartic B-spline is employed to
form the numerical expressions of physical variables. With
an explicit recursive definition of B-spline [16,19], the i th
and q-degree B-spline function in terms of variable t , briefly
denoted by Bi,q(t), is expressed as

Bi,0(t) =
{
1, ti ≤ t < ti+1

0, otherwise
, for q = 0. (4a)

Bi,q(t) =
{(

t−ti
ti+p−ti

)
Bi,q−1(t) +

(
ti+q+1−t

ti+q+1−ti+1

)
Bi+1,q−1(t), ti ≤ t < ti+1

0 otherwise
, for q > 0. (4b)

In Eq.(4b),
{· · · , ti , ti+1, · · · , tn+q , tn+q+1,

}
are a set of

increasing time instants, and we adopt the convention
0
/
0 = 0.
With Eq.(4), uniform quartic B-spline function Bi,4(t),

can be expressed in a piecewise form as [19,20]
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Fig. 1 A family of quartic B-splines curves in a piecewise form

Bi,4(t)= 1

4!(�t)4

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(t − ti )4 t ∈ [ti , ti+1]
(t − ti )4 − 5 (t − ti+1)

4 t ∈ [ti+1, ti+2]
(t − ti )4 − 5 (t − ti+1)

4 + 10 (t − ti+2)
4 t ∈ [ti+2, ti+3]

(ti+5 − t)4 − 5 (ti − t)4 t ∈ [ti+3, ti+4]
(ti+5 − t)4 t ∈ [ti+4, ti+5]

(5)

where the uniform time interval�t = ti+1−ti . Eq.(5) reveals
that Bj,4(t) is the shifted instance of Bi,4(t), that is, Bj,4(t) =
Bi,4 (t − ( j − i)�t). In Fig. 1, a family of quartic B-splines
are illustrated in a piecewise form.

Then, by implementation of uniform quartic B-spline
interpolation within any time subinterval Ii ≡ [ti , ti+1], we
have [21]

u(l)(t) =
∑0

k=−4
B(l)
i+k,4(t)C

i
k, t ∈ Ii (6)

Here, for the convenience of definition, l in this paper is the
order of derivative, Ci

k(k = −4,−3,−2,−1, 0) is the kth
unknown B-spline coefficients vector corresponding to any
time subinterval Ii . In Fig. 2, the usable piecewise B-spline
functions for quartic B-spline interpolation within any time
interval Ii are displayed.

By substituting t = ti intoEq.(6),u(l) (ti ) (l = 0, 1, , 2, 3)
(i.e., u (ti ), u̇ (ti ), ü (ti ) and

...
u
(
t+i
)
), can be expressed as

⎡

⎢⎢
⎣

u (ti )
(�t) · u̇ (ti )
(�t)(2) · ü (ti )
(�t)(3) · ...u (t+i

)

⎤

⎥⎥
⎦ = Q ⊗ I·

⎡

⎢⎢
⎣

Ci−4
Ci−3
Ci−2
Ci−1

⎤

⎥⎥
⎦ (7)
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Fig. 2 Piecewise quartic B-spline functions within any interpolation
interval t ∈ [ti , ti+1]

where
...
u
(
t+i
)
is the third right derivative of u at t = t i . Ci−4,

Ci−3, C
i−2 and Ci−1 are the unknown B-spline coefficients

vector of size N × 1, I is the identity matrix of size N × N .
The constant matrix Q is expressed as

Q =

⎡

⎢⎢⎢⎢⎢
⎣

1
24

11
24

11
24

1
24

− 1
6 − 1

2
1
2

1
6

1
2 − 1

2 − 1
2

1
2

−1 3 −3 1

⎤

⎥⎥⎥⎥⎥
⎦

(8)

In Eq.(7), the right derivative
...
u
(
t+i
)
is determined by

...
u
(
t+i
) = M−1(f (1) (t+i

)− Dü (ti ) − Ku̇ (ti )) (9)

Similar to Eq.(3), ḟ
(
t+i
)
is approximated as

ḟ
(
t+i
) = −11f (ti ) + 18f

(
ti+1/3

)− 9f
(
ti+2/3

)+ 2f (ti+1)

2�t
(10)
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With Eq. (7), Ci−4, C
i−3, C

i−2 and C
i−1 can be obtained by

⎡

⎢
⎢
⎣

Ci−4
Ci−3
Ci−2
Ci−1

⎤

⎥
⎥
⎦ = Q−1 ⊗ I·

⎡

⎢
⎢
⎣

u (ti )
(�t) · u̇ (ti )
(�t)(2) · ü (ti )
(�t)(3) · ...u (t+i

)

⎤

⎥
⎥
⎦ (11)

Then, substitution of t = ti+1 in Eq. (6) leads to
the B-spline approximations of u (ti+1), u̇ (ti+1), ü (ti+1)

and
...
u (ti+1) which are denoted with the subscript ‘b’ and

expressed in a matrix form as

⎡

⎢⎢
⎣

ub (ti+1)

(�t) · u̇b (ti+1)

(�t)(2) · üb (ti+1)

(�t)(3) · ...ub (ti+1)

⎤

⎥⎥
⎦ = Q ⊗ I·

⎡

⎢⎢
⎣

Ci−3
Ci−2
Ci−1
Ci
0

⎤

⎥⎥
⎦ (12)

With Taylor series expansion, we first define the initial
approximations (briefly denoted with subscript ‘ini’) as

uini (ti+1) = u (ti ) + �t · u̇ (ti )

+ 1

2
(�t)2 · ü (ti ) + 1

6
(�t)3 · ...u (t+i

)
(13)

�t · u̇ini (ti+1) = �t · u̇ (ti ) + (�t)2 · ü (ti )

+ 1

2
(�t)3 · ...u (t+i

)
(14)

Substituting Eq. (7) into Eq. (13) and Eq. (14) gives

uini (ti+1) = − 1

24
Ci−4 + 5

24
Ci−3 + 5

24
Ci−2 + 5

8
Ci−1

(15)

�t · u̇ini (ti+1) = −1

6
Ci−4 + 1

2
Ci−3 − 3

2
Ci−2 + 7

6
Ci−1

(16)

To obtain explicit scheme, the following discretized
dynamic equations are used

Müb (ti+1) + Du̇ini (ti+1) + Kuini (ti+1) = f (ti+1),

i = 0, 1, 2, 3, · · · , n − 1. (17)

Substituting Eqs. (12), (15) and (16) into Eq. (17) renders

MCi
0 = 2(�t)2 · f (ti+1) − α1 · Ci−1

−α2 · Ci−2 − α3 · Ci−3 − α4 · Ci−4 (18)

where

α1 = 5

4
(�t)2 · K + 7

3
�t · D − M (19)

α2 = 5

12
(�t)2 · K − 3�t · D − M (20)

α3 = 5

12
(�t)2 · K + �t · D + M (21)

α4 = − 1

12
(�t)2 · K − 1

3
�t · D (22)

Clearly, with the solved coefficients vectors Ci−4, C
i−3,

Ci−2 and Ci−1 in Eq. (11), Ci
0 in Eq. (18) can be explicitly

solved.

2.2 Final approximations

In this Section, the obtained third derivatives,
...
u
(
t+i
)
(in

Eq.(9)) and
...
ub (ti+1) (in Eq.(12)) are employed to improve

the accuracy of variable ü (ti+1). Then, final ü (ti+1) is
formed as

u̇ (ti+1) = u̇ (ti ) + �t · ü (ti ) + 1

2
(�t)2 · (p · ...u (t+i

)

+ (1 − p) · ...ub (ti+1)) (23)

where the free algorithmic parameter p is adopted to con-
trol algorithmic accuracy. Eq.(23) shows that, when p = 2

3 ,
the obtained u̇ is theoretically of highest accuracy, which is
also illustrated in Sect. 4. However, parameter p also shows
capability in controlling stability and dissipation properties
which are, respectively, elucidated in Sects. 3 and 5.

The final u (ti+1) and ü (ti+1) are obtained by

u (ti+1) = uini (ti+1) (24)

ü (ti+1) = üb (ti+1) (25)

To improve algorithmic accuracy, the final
...
u
(
t+i+1

)
(i.e.,

...
u (ti+1) ) is modified as

...
u
(
t+i+1

) = M−1(ḟ
(
t+i+1

)− Düb (ti+1) − Ku̇b (ti+1)) (26)

The calculation process in Sects. 2.1 and 2.2 illustrates
that the explicit nature of the proposed scheme.

2.3 Calculation procedure for MDOF systems

In Table 1, the calculation procedure for Sects. 2.1 and 2.2 is
listed from the perspective of computer programming. Com-
paredwith the quartic B-spline scheme byRostami et.al [18],
the proposed scheme only requires triangular factorization of
massmatrix, and thus, inherits the advantages of explicit time
integration method. For the computation time cost, it can be
noted in the table that more time cost than the explicit Bathe
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Table 1 Calculation procedure of the proposed scheme for MDOF
systems

A. Initial calculation

A.1. Formulate stiffness matrix K, mass matrixM, and damping
matrix D of the systems.

A.2. Select appropriate algorithmic parameter p and time increment
�t (�t ≤ �tcritical).

A.3. Ascertain time interval [a, b], Specify f
(
ti+k/3

)
(k = 0, 1, 2, 3;

i = 0, 1, 2, · · · , n − 1.), then calculate ḟ
(
t+i
)
by

ḟ
(
t+i
) = −11f (ti )+18f(ti+1/3)−9f(ti+2/3)+2f (ti+1)

2�t

A.4. Conduct triangular factorization:

M = L0U0

Where L0 and U0 are the lower and upper triangular matrices,
respectively.

A.5. Obtain initial values by

u (t0) = u0, u̇ (t0) = v0
L0U0ü (t0) = f (t0) − Du̇ (t0) − Ku (t0)

L0U0
...
u
(
t+0
) = ḟ

(
t+0
)− Dü (t0) − Ku̇ (t0)

A.6. Form constant symmetric matrices α1, α2, α3 and α4 as

α1 = 5
4 (�t)2 ·K+ 7

3�t ·D−M, α2 = 5
12 (�t)2 ·K−3�t ·D−M

α3 = 5
12 (�t)2 ·K+�t ·D+M, α4 = − 1

12 (�t)2 ·K− 1
3�t ·D

B. For each time step (i = 0, 1, 2, · · · , n − 1)

B.1 Calculate unknown coefficients matrices Ci−4, C
i−3, C

i−2, C
i−1

and Ci
0 by⎡

⎢
⎢
⎣

Ci−4
Ci−3
Ci−2
Ci−1

⎤

⎥
⎥
⎦=Q−1 ⊗ I ·

⎡

⎢
⎢
⎣

u (ti )
(�t) · u̇ (ti )

(�t)(2) · ü (ti )
(�t)(3) · ...u (t+i

)

⎤

⎥
⎥
⎦

L0U0Ci
0 =

2(�t)2 · f (ti+1) − α1 ·Ci−1 − α2 ·Ci−2 − α3 ·Ci−3 − α4 ·Ci−4

Where the expression of Q is given in Eq. (8).

B.2 Obtain B-spline approximations,
⎡

⎢
⎢
⎣

ub (ti+1)

(�t) · u̇b (ti+1)

(�t)(2) · üb (ti+1)

(�t)(3) · ...ub (ti+1)

⎤

⎥
⎥
⎦ = Q ⊗ I·

⎡

⎢
⎢
⎣

Ci−3
Ci−2
Ci−1
Ci
0

⎤

⎥
⎥
⎦

B.3. Obtain modified (final) approximations by

u (ti+1) = − 1
24C

i−4 + 5
24C

i−3 + 5
24C

i−2 + 5
8C

i−1

u̇ (ti+1) =
u̇ (ti )+�t · ü (ti )+ 1

2 (�t)2 · (p · ...u (t+i
)+ (1− p) · ...ub (ti+1))

ü (ti+1) = üb (ti+1)

L0U0
...
u
(
t+i+1

) = (ḟ
(
t+i+1

)− Düb (ti+1) − Ku̇b (ti+1))

scheme is needed to calculate ḟ
(
t+i
)
in the initial calcula-

tion; as for the recurrence calculation process, the proposed
scheme costs roughly same magnitude of time for triangu-
lar factorization of mass matrix M and the solving of linear
equations [11], but consumes more time effort for B-spline
approximations(i.e., Eq.(11) and Eq.(12)) which, however,
are far less than the time effort for linear equations. In general,
computation efficiency of the proposed scheme is desirable.

3 Stability analysis

For the proposed scheme as illustrated in Sect. 2, consider a
SDOF system as

ü(t) + 2ξωu̇(t) + ω2u(t) = f (t) (27)

where ξ , ω and f (t) are the damping ratio, the undamped
angular frequency of the system, and the forcing excitation,
respectively.

After temporal discretization, the recurrence formula of
the SDOF system can be represented by

⎧
⎪⎪⎨

⎪⎪⎩

u (ti+1)

(�t) · u̇ (ti+1)

(�t)(2) · ü (ti+1)

(�t)(3) · ...u (ti+1)

⎫
⎪⎪⎬

⎪⎪⎭
= A

⎧
⎪⎪⎨

⎪⎪⎩

u (ti+1)

(�t) · u̇ (ti )
(�t)(2) · ü (ti )
(�t)(3) · ...u (ti )

⎫
⎪⎪⎬

⎪⎪⎭

+L1 f (ti+1) + L2 f
(1) (t+i+1

)

(28)

where the amplification matrix A and the load operators L1

and L2 are given in Appendix A.
Assigning ξ = 0 in A gives following characteristic poly-

nomial

p̃ (γ ) = γ 4 + A1γ
3 + A2γ

2 + A3γ + A4 (29)

where

A1 = p − 1

6
(ω�t)4+(ω�t)2−2,

A2 = 4p − 3

12
(ω�t)4+1, A3 = 0, A4 = 0 (30)

Conducting the Routh-Hurwitz stability criteria on Eq. (29),
we obtain three conditions as

p ≥ g0 (ω�t) = (ω�t)4 + 12 (ω�t)2 − 48

2 (ω�t)4
(31a)

p ≤ g1 (ω�t) = 5 (ω�t)4 − 12 (ω�t)2 + 48

6 (ω�t)4
(31b)

p ≤ g2 (ω�t) = 3

4
(31c)

where conditions Eqs. (31a)–(31c) are displayed in Fig. 3
where the proposed scheme can attain conditional stability
for 0 ≤ p ≤ 3

4 . With some arithmetic, the stable region may
be expressed as
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Fig. 3 The stability property of the proposed scheme with variation of
parameter p

0 < ω�t ≤
√
2
√
21 − 24p − 6

1 − 2p
, 0 ≤ p ≤ 1

2
(32a)

0 < ω�t ≤ 2, p = 1

2
(32b)

0 < ω�t ≤
√
6 − 2

√
21 − 24p

2p − 1
and

ω�t ≥
√
6 + 2

√
21 − 24p

2p − 1
,

1

2
≤ p ≤ 3

4
(32c)

As shown in Fig. 3, when p = 3
4 , largest stable region

can be obtained. By solving p̃ (γ ) = 0, four eigenvalues γi
(i = 1, 2, 3, 4) can be obtained as

γ1,2 = 0, γ3,4 =
(

−A1 ±
√
A2
1 − 4A2)

)/
2 (33)

When p = 3
4 , the absolute eigenvalues

∥∥γ3,4
∥∥ is equal to

unity (i.e., ρ (A) = 1) in the stable region.
In Eq. (32), γ3,4 are the functions in terms of ω�t and

algorithmic parameter p. To obtain numerical dissipation
characteristics, the eigenvalues γ3,4 should be in the complex
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Fig. 4 Stability variation in terms of algorithmic parameter p

plane. The bifurcations are the points where the eigenvalues
alter between complex values and real values. Thus, γ3,4 at
the bifurcations can be obtained by prescribing A2

1 − 4A2 =
0. Then, with some mathematical operations and numerical
calculation, ρ (A) value at the bifurcation, briefly denoted by
ρb (A), as a function of algorithmic parameter p, is plotted
in Fig. 2 where ω�t at the bifurcation (briefly denoted by
(ω�t)b) is also delineated. For clarity, (ω�t)b and ρb (A)

for various p values are listed in Table 2 where the corre-
sponding stable regions in terms of ω�t , briefly denoted by
Sp, are also attached.

In Fig. 3 and Table 2, it is noteworthy that, when p =
0.604, (ω�t)b is equal to 2 which is the same as the Central
Difference scheme. Actually, for wave propagation problems
in which numerical dispersion is needed, the p = 0.604
case is desirable in terms of its convenience in selecting time
increment �t .

Further, the spectral radii curves of different p value cases
are illustrated in Fig. 5 where the bifurcation points are in
good agreement with the results shown in Table 2 and Fig. 4.
Meanwhile, Fig. 5 shows that, with free parameter p, the
proposed scheme is flexible in controlling numerical dissi-
pation/dispersion. In Fig. 6, the spectral radii of the proposed
scheme are compared with that of the Noh–Bathe scheme,
HC and TW schemes [9,11,12].

Table 2 (ω�t)b, ρmin (A) for various p values

Parameter p 0.2 0.25 0.375 0.4 0.5 0.604 2/3 0.75

(ω�t)b 1.511 1.555 1.682 1.711 1.838 2.0 2.106 2.251

ρmin (A) 0.21 0.16 0.038 0.048 0.22 0.47 0.67 1

Sp [0, 1.848] [0, 1.868] [0, 1.926] [0, 1.940] [0, 2] [0, 2.079] [0, 2.140] [0, 2.252]

[7.305, +∞] [5.605, +∞] [4.350, +∞]
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Fig. 5 The spectral radii of the
proposed scheme versus ω�t
for various p value

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ωΔt

ρ(A)=1

p =0.2
p=0.25
p=1/3
p=0.4
p=0.5
p=0.604
p=2/3
p=0.75

Sp
ec

tra
l r

ad
iu

s ρ
(A

)

Fig. 6 The spectral radii versus
ω�t for the proposed scheme
and other schemes
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Fig. 7 Percentage amplitude decay versus �t
/
T for the proposed

scheme and other schemes

4 Accuracy analysis

For step-by-step schemes, to evaluate accuracy of the pro-
posed scheme, two error norms, that is, amplitude decay (AD)
and period elongation (PE) are employed [22,23]. In Figs. 7
and 8, percentage AD and PE in terms of �t

/
T are respec-

tively plotted, where T = 2π
/
ω. In the figures, TW and
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Fig. 8 Percentage period elongation versus �t
/
T for the proposed

scheme and other schemes

Noh–Bathe schemes (with excellent dispersion) [11,12] are
employed for comparison. In Fig. 7, for the proposed scheme,
all AD results are larger than that of the Noh–Bathe scheme,
and the p = 2

3 case shows smallest AD. As for PE, only the
p = 0.604 and p = 2

3 cases show same magnitude of PE as
theNoh–Bathe scheme. Especially, the p = 2

3 case illustrates
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small PE in the low-frequency band, which is in good agree-
ment with accuracy remark in Sect. 2.2. In Fig. 7, the p = 3

4
case displays no dispersion as the CD scheme. In Fig. 8, it is
noteworthy that the p = 0.604 case shows smallPE and large
AD in relatively high frequency band. Thus, theoretically, the
p = 0.604 case possesses desirable numerical dispersion
properties.

5 A demonstrative dispersion analysis

Toquantify the dispersion properties of the proposed scheme,
a dispersion analysis for 2D wave propagation is conducted
here. As well known, the governing equation for the scalar
wave propagation can be represented by

∂2u

∂t2
− c20∇2u = 0 (34)

where u is field variable and c0 is the wave velocity. Here we
focus on the dispersion associated with the propagations of
disturbances due to initial conditions, and thus homogeneous
boundary conditions and no body force are considered. The
initial conditions are given as

u (x, 0) = u0(x),
∂u

∂t
(x, 0) = v0(x) (35)

where u0 and v0 are the initial displacement and velocity,
respectively. x is the coordinate vector.

The corresponding discretized finite element formulation
of Eq. (33) is given as

Mü + c20Ku = 0 (36)

where u and ü are the discretized nodal field variable vector
and its second derivative, respectively. HereM is the lumped
mass matrix.

The general solution of Eq. (34), for a plane wave trav-
eling in the Cartesian coordinate (x, y), can be given by
u = Aei(k0xcos(θ)+k0 ysin(θ)−ω0t) and its numerical solution
is u(x, y, t) = Aei(kxcos(θ)+kysin(θ)−ωt), where ω0 is the
frequency of the wave mode and k0 = ω0

/
c0 is the wave

number, ω and k = ω
/
c are the corresponding numeri-

cal ones, θ is the wave propagation angle from the x axis.
Then, for finite element analysis with equidistantly distrib-
uted nodes along the x and y axes, that is, �x = �y = h,
the numerical finite element solution at location x = nxh,
y = nyh and time t = nt�t is

u (x, y, t) = u
(
nxh, nyh, nt�t

)

= Ake
i(knx hcos(θ)+knyhsin(θ)−ωnt�t)

= Ake
ikh
(
nx cos(θ)+nysin(θ)−nt (CFL)(c

/
c0)
)

(37)

where CFL = c0�t
h .

With Eq. (28), a linear multistep form of the proposed
scheme is obtained as

u (t + �t) +
(

−2 + (ω�t)2 + p − 1

6
(ω�t)4

)
u(t)

+
(
1 + 4p − 3

12
(ω�t)4

)
u (t − �t) = 0 (38)

For the considered wave propagation system (i.e., Eq. (36)),
the corresponding multistep form is

u (t + �t) +
(

−2 + (�t)2 Λ + p − 1

6
(�t)4 Λ2

)
u(t)

+
(
1 + 4p − 3

12
(�t)4 Λ2

)
u (t − �t) = 0 (39)

where Λ is the diagonal matrix which satisfies c20Kφ =
MφΛ, where φ is the corresponding eigenvectors.

Eq. (39) can be further rewritten as

u (t + �t) +
(

−2I + (CFL)2 K + p − 1

6
(CFL)4 K2

)
u(t)

+
(
1 + 4p − 3

12
(CFL)4 K2

)
u (t − �t) = 0 (40)

where I is the identity matrix.
For uniform 4-node finite element [11,22], the effective

terms of the matrix Ku(t) for the middle node at (x, y) are

1

3
(8u (x, y, t) − (u (x ± h, y, t) + u (x, y ± h, t)

+ u (x ± h, y ± h, t))) (41)

and the corresponding terms from matrix K2u(t) are [11]

1

9
{72u (x, y, t) −14u (x ± h, y ± h, t)

+ u (x ± 2h, y ± 2h, t)}
+ u (x ± h, y ± 2h, t) − 12 (u (x ± h, y, t)

+ u (x, y ± h, t))

+ 3 (u (x ± 2h, y, t) + u (x, y ± 2h, t))

+ 2 (u (x ± 2h, y ± h, t))} (42)

With Eqs. (36) and (40)–(42), we obtain for the proposed
scheme a relation between CFL , (c − c0)

/
c0 and kh. This

relation can be represented by

R

(
CFL , kh,

c−c0
c0

)
= 0 (43)
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Fig. 9 Relativewave velocity errors of various schemes, and the dotted
lines define the discarded wave modes

Here instead of obtain the explicit expression of (c − c0)
/
c0,

we take the Maclaurin series expansion with respect to
(c − c0)

/
c0 and obtain a simplified expression of R as

R

(
CFL , kh,

c−c0
c0

)
= R (CFL , kh, 0)

+
⎛

⎝ ∂R

∂
(
c−c0
c0

)

⎞

⎠

c−c0
c0

=0

·
(
c−c0
c0

)
+

· · · + 1

l!

⎛

⎜
⎝

∂ l R

∂
(
c−c0
c0

)l

⎞

⎟
⎠

c−c0
c0

=0

·
(
c − c0
c0

)l
+ o

(
c − c0
c0

)l+1

= 0

(44)

With givenCFL and kh, (c − c0)
/
c0 can be solved using

some convergent iteration algorithm. By omitting the high-

order infinitesimal term in Eq. (44), a convergent iteration
equation is represented as

(
c − c0
c0

)

J+1
= R̃

((
c − c0
c0

)

J

)
,

(
c − c0
c0

)

0
= 0

(45)

where J is the iteration number, and is determined by the
iteration error ε as

∥∥∥
∥

(
c − c0
c0

)

J+1
−
(
c − c0
c0

)

J

∥∥∥
∥
2

< ε (46)

After solving Eq.(45), the real part of c−c0
c0

denotes the rel-
ativewave velocity error and is plotted in Fig. 9 in terms of the
wavelength λ and the element size used. In Fig. 9, for the pro-
posed scheme (p = 0.604), three demonstrativeCFL values
are considered for dispersion errors. It can be noted that the
CFL = 1.0 one gives desirable wave velocity when com-
paredwith other twoCFL ones, whichmatcheswell with the
numerical dispersion remarks in Sects. 3 and 4. In the figure,
error curves of the TW scheme (ϕ = 1.033, CFL = 0.9)
[12] and the Noh–Bathe scheme (p = 0.54, CFL = 1.85)
[11] are also plotted with the suggested optimal CFL values
considered. Further, in Fig. 10a, the relative wave velocity
errors of the proposed scheme along different wave propa-
gating angles are illustrated. For various angles, the proposed
scheme shows minimal variations in wave velocity errors,
and thus, is desirable for wave propagation problems. Also
for comparison, error curves of the Noh–Bathe scheme are
displayed in Fig. 10b.
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Fig. 11 Accuracy and
convergence rate for the
proposed scheme and other
schemes, when standard system
6.1 considered. a Displacement.
b Velocity. c Acceleration
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6 Numerical simulations

In this section, several numerical examples are tested to
demonstrate the validity of the proposed scheme. In the
simulations, TW scheme and Noh–Bathe scheme (with
excellent dispersion) are used for comparison. For the pro-
posed scheme, three representative cases including the p = 2

3
case (with highest accuracy), the p = 0.604 case (with desir-
able dispersion properties) and the p = 3

4 case (with no
dispersion) are selected for simulations.

6.1 A standard undamped system

To test the calculation accuracy of the proposed scheme, free
vibration of a standard undamped SDOF system is consid-
ered. This system is presented as

ü(t) + ω2u(t) = 0; u (0) = 1, u̇ (0) = 0 (47)

where ω = π , that is, T = 2.
A time duration of t = 2s is considered and calculated

for accuracy and efficiency tests, and a global error norms
El(l = 0, 1, 2) are employed and defined as

El =
√
∑n−1

i=0

(
u(l)
i − ũ(l)

i

)2 /∑n−1

i=0

(
ũ(l)
i

)2×100%

(48)

In which l is the order of derivative. u(l)
i (i.e., ui , u̇i and üi )

are numerical results at time ti , and ũ
(l)
i are the corresponding

exact ones.
In Fig. 11, global errors of various schemes are plotted in

a log form. It can be noted that the p = 2
3 case gives higher
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Fig. 12 Accuracy of the
proposed scheme and other
scheme for simulation example
6.2. a Displacement. b Velocity.
c Acceleration
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accuracy than other cases and other schemes, which is in
good agreement with thePE results in Fig. 8. However, Noh–
Bathe scheme displays higher accuracy than other cases, and
the TW scheme shows lowest accuracy.

6.2 A damped system

Here to verify the validity of the proposed scheme for damped
system, consider following numerical example,

ü(t) + 4u̇(t) + 5u(t) = sin(2t); u (0) = 57

65
, u̇ (0) = 2

65
.

(49)

The exact solution is u(t) = e−2t (cos t + 2 sin t)−
1
65 (8 cos 2t − sin 2t).

In Fig. 12, same time increment �t = 2 × 10−2s is
adopted for calculation, and the relative error norms are
defined by

εl =
∣∣u(l) − ũ(l)

∣∣
∣∣ũ(l)

∣∣ × 100%, l = 0, 1, 2. (50)

where u(l)(i.e., u, u̇ and ü) and ũ(l) are the numerical results
and the exact results at discrete times, respectively. In the
figures, among all schemes, the p = 2

3 case of the proposed
scheme displays highest accuracy, which matches well with
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Fig. 13 Pre-stress membrane wave propagation problem, wave speed
c0 = 1, the initial displacement and velocity are zero

the accuracy remarks in Sect. 2.2. The p = 0.604 and p =
3
4 cases also show desirable accuracy when compared with
other schemes.

6.3 2D scalar wave propagation

To test the numerical dispersion properties of the proposed
scheme,wave propagation problem of a pre-stressmembrane
(see., Fig. 13) is considered. This problem is governed by
[11,24]

∂2u

∂x2
+ ∂2u

∂y2
+ f (0, 0, t) = 1

c20

∂2u

∂t2
(51)

where the impulse load is given by

f (0, 0, t) =
{
4
(
1 − (2t − 1)2

)
, 0 < t < 1

0, t ≥ 1
(52)

The analytical solution can be obtained by

u (x, y, t) =
∫ t

0
f (t)G(x, y, t − t̄)dt̄ (53)

Fig. 14 Displacement
variations of two schemes along
x- direction at around 6.0s, for
120 × 120 finite elements
considered
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Fig. 15 Velocity variations of
two schemes along x-direction
at around 6.0s, when 120 × 120
finite elements considered
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Fig. 16 Snapshots of displacement at around 6.0s for two schemes, when different elements considered

where the Green’s function G is given by

G (x, y, t) = H(c0t −√x2 + y2)

2πc0
√
c20t

2 − x2 − y2
(54)

where H is the Heaviside step function.
In Figs. 14 and 15, displacement and velocity curves along

the x-direction at around time 6.0s are plotted, respectively.
In the figures, the suggested optimal CFL value 1.85 for the
Noh–Bathe scheme (p = 0.54) and the suggested desirable
CFL value 1.0 for the proposed scheme (p = 0.604) are
employed for calculation. In Figs. 14 and 15, for wave prop-

agating angles θ = 0 and θ = π
4 , displacement curves of

both two considered schemes are desirable when 120 × 120
finite element number considered. For both displacement and
velocity, the numerical results of θ = π

4 are less accurate than
that of θ = 0. However, the proposed scheme begets larger
errors than the Noh–Bathe scheme.

In Figs. 16 and 17, the snapshot of displacements and
velocities at around time 6.0s are plotted to demonstrate
wave propagation morphology of two considered schemes
along all propagating angles, respectively. In the figures,
two element numbers, 60 × 60 and 120 × 120, are consid-
ered to test the convergence rate of the two schemes. For
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Fig. 17 Snapshots of velocity at around 6.0s for two schemes, when different elements considered

60 × 60 mesh, �t = 0.4625s for the Noh–Bathe scheme
and �t = 0.25s for the proposed scheme are adopted;
for 120 × 120 mesh, the corresponding time intervals are
�t = 0.23125s and �t = 0.125s. From Figs. 14–17, it can
be noted that the proposed scheme gives reasonable wave
propagation morphology, and less accurate results than the
Noh–Bathe scheme. However, the proposed scheme is still
desirable due to its convenience in selecting time interval

�t
(
for various meshes, the suggested time interval�tcan

be selected as�t = h
c0

)
.

In Fig. 18, time consumption of three schemes for this
wave propagation simulation are compared to demonstrate
the computation efficiency of the proposed scheme. In the
figure, the proposed scheme costs slightly more time than
the Bathe scheme, and needs about 20% more time effort
than the CD scheme. The time cost results agree with the
time cost remarks in Sect. 2. Conclusively, the proposed
scheme is desirable due to its acceptable time cost and high
accuracy.
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Fig. 18 Time cost comparison of various schemes, when 60×60mesh
for example 6.3 considered

7 Concluding remarks

A quartic B-spline based explicit integration scheme of B-
spline family schemes is presented for structural dynamics.
With one algorithmic parameter, the proposed scheme can
possess at least second-order accuracy and atmost third-order
accuracy, meanwhile, stability analysis shows that desirable
numerical dispersion can be obtained by adjusting parame-
ter value. Theoretical analysis shows that the PE and AD
results of the proposed scheme are desirable when appropri-
ate parameter value is selected, which is also confirmed by
comparing with other representative explicit schemes when
a standard undamped system and a damped system consid-
ered. The desirable dispersion characteristics of the proposed
scheme is demonstrated by considering a 2D scalar wave
propagation problem analytically and numerically. In con-
clusion, the proposed scheme is desirable for linear structural
dynamics due to its high accuracy and desirable numerical
dissipation, and thus, is very applicable for wave propagation
problems. Given the general explicit form, theoretically, the
proposed scheme can be extended for nonlinear problems.
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Appendix A

A =

⎡

⎢⎢
⎣

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

⎤

⎥⎥
⎦ (55)

where

A11 = 1, A12 = 1, A13 = 1

2
, A14 = 1

6
(56)

A21 = (p − 1) (ω�t)2 ,

A22 = (p − 1) (ω�t)2 + 2 (p−1) ξω�t + 1 (57)

A23 = 1

2
(p − 1) (ω�t)2 +2 (p−1) ξω�t + 1 (58)

A24 = 1

6
(p − 1) (ω�t)2 + (p−1) ξω�t + p − 1

2
(59)

A31 = − (ω�t)2 , A32 = − (ω�t)2 − 2ξω�t (60)

A33 = −1

2
(ω�t)2 − 2ξω�t,

A34 = −1

6
(ω�t)2 − ξω�t (61)

A41 = (1−p) (ω�t)4 + 2ξ (ω�t)3 (62)

A42 = (1−p) (ω�t)4 + (4 − 2p) ξ (ω�t)3

+ (4ξ2 − 1) (ω�t)
2

(63)

A43 = 1

2
(1−p) (ω�t)4 + (3 − 2p) ξ (ω�t)3

+ (4ξ2 − p) (ω�t)
2

(64)

A44 = 1

6
(1−p) (ω�t)4 +

(
4

3
− p

)
ξ (ω�t)3

+
(
2ξ2 − p + 1

2

)
(ω�t)

2

(65)

L1 =

⎧
⎪⎪⎨

⎪⎪⎩

0
1 − p
1
(p − 1) (ω�t)2 − 2ξω�t

⎫
⎪⎪⎬

⎪⎪⎭
, L2 =

⎧
⎪⎪⎨

⎪⎪⎩

0
0
0
1

⎫
⎪⎪⎬

⎪⎪⎭
.

(66)
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20. Korkmaz A, Dağ I (2016) Quartic and quintic B-spline methods for
advection-diffusion equation. Appl Math Comput 274:208–219

21. Piegl L, Tiller W (1996) The NURBS Book, 2nd edn. Springer,
London

22. Bathe KJ (1996) Finite element procedures. Prentice Hall, New
York

23. Hilber HM,Hughes TJR (1978) Collocation, dissipation and [over-
shoot] for time integration schemes in structural dynamics. Earthq
Eng Struct Dyn 6(1):99–117

24. YueB, GuddatiMN (2005) Dispersion-reducing finite elements for
transient acoustics. J Acoust Soc Am 118(4):2132–2141

123


	A quartic B-spline based explicit time integration scheme  for structural dynamics with controllable numerical  dissipation
	Abstract
	1 Introduction
	2 The proposed scheme
	2.1 Initial approximations based on quartic B-spline interpolation
	2.2 Final approximations
	2.3 Calculation procedure for MDOF systems

	3 Stability analysis
	4 Accuracy analysis
	5 A demonstrative dispersion analysis
	6 Numerical simulations
	6.1 A standard undamped system
	6.2 A damped system
	6.3 2D scalar wave propagation

	7 Concluding remarks
	Acknowledgements
	Appendix A
	References




