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Abstract The present paper takes from the original output-
only identification approach named Full Dynamic Com-
pound Inverse Method (FDCIM), recently published on this
journal by the authors, and proposes an innovative, much
enhanced version, in the description of more general forms
of structural damping, including for classically adopted
Rayleigh damping. This has led to an extended FDCIM
formulation, which offers superior performance, on all the
targeted identification parameters, namely: modal proper-
ties, Rayleigh damping coefficients, structural features at
the element-level and input seismic excitation time history.
Synthetic earthquake-induced structural response signals are
adopted as input channels for the FDCIM approach, towards
comparison and validation. The identification algorithm is
run first on a benchmark 3-storey shear-type frame, and then
on a realistic 10-storey frame, also by considering noise
added to the response signals. Consistency of the identifi-
cation results is demonstrated, with definite superiority of
this latter FDCIM proposal.

Keywords Full Dynamic Compound Inverse Method
(FDCIM) · Iterative optimization algorithm · Structural
and modal dynamic identification · Element-level system
identification · Estimated unknown seismic input

1 Introduction

This paper constitutes a refined extension of work [15],
leading to superior performance in terms of output-only
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identification of structural dynamic properties in the seismic
engineering range, namely:modal parameters, structural fea-
tures at the element-level and input seismic excitation time
history.

The renewed formulation starts from a more general
description of structural damping, including both a general
tridiagonal structure, with a higher number of damping coef-
ficients to be identified, “General damping”, and the special
case of “Rayleigh damping”, and arrives at an identification
procedure leading to superior performance, also for the basic
damping case previously analysed in [15], thus achieving a
more effective and general validity.

For the present investigation on the Full Dynamic Com-
pound Inverse Method (FDCIM) approach and the descrip-
tion of its framing in the pertinent literature, and for the main
technical steps of the algorithm, this paper highly relies on
what extensively presented in [15], and references quoted and
discussed therein. Due credit to the specific original contri-
butions on the FDCIM approach is instead reported below,
for the sake of consistency and self-containedness.

In the branch of Operational Modal Analysis (OMA)met-
hods, the use of earthquake input with specifically developed
algorithms has been attempted by only a few works, either
in the Time Domain (e.g. [4,16,18]) or in the Frequency
Domain (e.g. [10–14]). In such Earthquake Engineering
research context, the FDCIM approach goes ahead, towards
the Time Domain OMA identification of modal parameters,
element-level structural features and seismic base excitation.
Focusing on the element-level identification and input esti-
mation techniques, the fundamental works that have inspired
the present FDCIM technique are briefly recalled below.

The first work that shall be delineated as an ancestor
of Dynamic Compound methods came in 1994 from Wang
and Haldar [20], which proposed an iterative Time Domain
method founded on Finite Elements, for the stiffness and
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damping matrices element-level estimation and input force
identification. In 1997, Haldar et al. [5] improved that pre-
vious algorithm, to work with limited observations, i.e. with
structures where only a few DoFs are monitored.

In 2000, Li and Chen [7] proposed a method for identify-
ing the structural parameters and inverse input time history,
by introducing some computational improvements on their
earlier work, Li and Chen [6]. Further refinements were
implemented also in 2002, Chen et al. [1], where they used
a combination of iterative Least-Squares and of a Statisti-
cal Average technique. They named the method as Dynamic
Compound Inverse Method (DCIM), a main landmark in
the present context. In 2003, Li and Chen [8] published in
Computational Mechanics an improved Statistical Average
technique, while in 2004 Chen and Li [2], again inComputa-
tional Mechanics, proposed another DCIM implementation,
which adopted Rayleigh damping C = αM + βK, instead
of generic viscous damping used until then. They developed
a two-stage iterative method to bypass the difficulties added
by the Rayleigh damping assumption in solving the result-
ing non-linear identification problem, due to the coupling
between the unknown α and β damping coefficients and the
K stiffness matrix parameters (mass matrixM was assumed
to be known).

In 2004, Ling andHaldar [9] developed a further approach
which was also able to deal with Rayleigh damping, based
on amodified IterativeLeast-Squaresmethod,which adopted
Taylor series approximations to transform the non-linear set
of Rayleigh-damped identification equations into a set of lin-
ear equations. Differently from the previous works, in Li and
Chen [8] and Ling and Haldar [9] no earthquake excitations
were considered.

Among the seminal DCIM methods above, a common
critical point was that of assuming the knowledge of the
mass matrix, in its structure and its single parameters. In
this respect, the innovative Full Dynamic Compound Inverse
Method (FDCIM) [15] was proposed by the authors, in con-
tinuity on Computational Mechanics, in order to alleviate
the severe hypotheses of the earlier techniques, as that of the
mandatory knowledge of the full mass matrix, and also by
systematically operating with earthquake-induced structural
response signals linked to unknown seismic excitation. That
with the purpose of providing an effective identification tool
of modal parameters, element-level structural properties and
seismic input. So, the present FDCIM approach works with
the required knowledge of seismic structural response signals
only, i.e. accelerations, velocities and displacements.

The original FDCIM [15] is based on a two-stage iter-
ative algorithm, working jointly with a Statistical Average
technique, a modification process and a parameter pro-
jection strategy, which are adopted at each identification
iteration to achieve a faster and more reliable convergence.
Initial hypotheses affect only the supposed behaviour of the

structural matrices, i.e. diagonal mass matrix and tridiag-
onal symmetric damping and stiffness matrices, where the
structural coefficients are coupled to each other. Damping
behaviour is treated as viscous, where the damping para-
meters are considered as lumped between two consecutive
floors, in terms of n damping coefficients ci , where n is the
number of floors, as it is for stiffness coefficients ki .

By relying on the previous FDCIM approach [15], the
present work proposes a new implementation that widens
and generalizes the earlier FDCIM algorithm, by adopting a
more general damping behaviour (in the presentation, asso-
ciated results will be labelled as FDCIM-2). In this way, each
single damping parameter ci j is uncoupled from the remain-
ing ones, by allowing for the analysis and identification of
structures characterized by unknown “General damping”.
Further, as a particular case, it becomes possible to effec-
tively identify “Rayleigh damping” (C = αM + βK), as it
was considered by the earlier DCIM attempts quoted above.
This actually constitutes a much challenging case, since it
leads to non-linear identification equations in terms of the
unknown structural parameters (see [2,9] and Sect. 3 in the
paper). Then, starting from the formulation onGeneral damp-
ing, the main focus of the present work moves then to the
treatment of Rayleigh damping.

The use of General and Rayleigh damping becomes pos-
sible by introducing several dedicated modifications and
improvements into the original FDCIM formulation, in terms
of different iteration matrices and dimensions, modified
vectors of unknown variables, innovative parameter pro-
jection technique, novel procedure for Rayleigh damping
coefficients estimation, and so on (Sect. 2). Despite the
added complexity, the current FDCIM approach still dis-
plays all the good properties of the previous one, e.g. the
completely deterministic State-Space formulation, the non-
required transformation from continuous to discrete time,
the non-dependence on the initial conditions adopted for
the iteration vectors of the unknowns and the possibility of
integration or support to different output-only State-Space
parametric Time Domain methods.

Presentation of the paper is organised as follows. Sect. 2
outlines the mathematical model, the governing equations
and the theoretical framework of the present FDCIM
approach, by focusing on the salient differences from previ-
ousFDCIMformulation [15]. Theparticular case ofRayleigh
damping is investigated thoroughly. Section 3 presents a
detailed comparison between the present and the earlier
FDCIM implementation, with synthetic response data from
a benchmark 3-storey frame. Results for estimated modal
parameters, element-level features and input earthquake
excitation are derived, as a function of the adopted number
of signal points. Section 4, by adopting the same benchmark
structure, derives comprehensive results on the application
of the new FDCIM implementation with noise addition to
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the response signals; various levels of added noise have been
considered, ranging from 0.5% to the very high level of 20%.
In Sect. 5, further analyses with a realistic 10-storey frame
from the literature are produced, again as a function of the
adopted number of signal points and of the level of added
signal noise. Finally, main conclusions of the whole work
are gathered in Sect. 6.

2 Full Dynamic Compound Inverse Method with
General and Rayleigh damping

The present implementation follows from [15], where the
Full Dynamic Compound Inverse Method (FDCIM) was
introduced. There, the model and the algorithm were devel-
oped in order to deal with a specific form of viscous damping,
as modelled by a peculiar tridiagonal symmetric structure,
where damping coefficients ci j were coupled to each other,
in terms of n independent inter-floor damping coefficients ci
(see Eq. (2) in [15]).When the dampingmodelling comes out
from this specific definition, the algorithm may encounter
increasing problems in achieving reliable estimates, espe-
cially as concerning to the identification of the damping
matrix and of the modal damping ratios, as it is going to
be revealed by the analysis in Sect. 3.

Then, the present original implementation deals with dif-
ferent damping modellings. Specifically, it focuses on a
General damping behaviour based on coefficients ci j and,
as a particular case, on well-known Rayleigh damping C =
αM + βK (damping matrix made by a linear combination
of mass and stiffness matrices). General damping means that
the structure of the damping matrix still continues to be tridi-
agonal and symmetric, but its each single coefficient ci j is
uncoupled from the remaining ones. Then, the particular case
of Rayleigh damping relies on unknown coefficients α and β,
which are coupled to the unknown mass and stiffness para-
meters of matrices M and K, respectively. This brings to
a set of non-linear identification equations, in terms of the
unknown structural parameters. So, the present algorithm is
reformulated and reimplemented in order to achieve effective
element-level identification and input estimation with struc-
tures characterized by such General and Rayleigh damping
modellings. The following subsections explain the theoret-
ical framework and the functioning of the present extended
FDCIM procedure, by referring just to the differences from
the previous implementation [15].

2.1 Basic mathematical model with General and
Rayleigh damping

For a linear MDoF shear-type frame under seismic excita-
tion, the motion of the n building’s floors is controlled by a
classical systemof n second-order time differential equations

(Eq. (1) in [15]), i.e. Mü(t) + Cu̇(t) + Ku(t) = −Müg(t).
Terms M, C and K ∈ Rn×n are the mass, damping and
stiffness matrices, respectively, u ∈ Rn×1 is the displace-
ment response vector (in terms of absolute, i.e. relative to the
ground, displacements of each floor), while u̇ and ü are the
corresponding velocities and accelerations; the input exci-
tation vector is described by the product between the mass
matrixM and the ground acceleration vector üg(t).

Mass and stiffness matrices M and K take here the clas-
sical definitions for shear-type frames (see Eq. (2) in [15]),
with a diagonal mass matrix M (with masses mi , associ-
ated to each floor i = 1, . . . , n) and a tridiagonal symmetric
stiffness matrix K (with lateral column stiffness ki , between
floor i and (i − 1)).

With viscous damping, as treated in [15], damping
matrix C shares the same tridiagonal symmetric structure
as for matrix K, with n damping coefficients ci , leading to
a matrix where damping coefficients ci j are coupled to each
other. This damping matrix definition is not able to describe
more General damping, where the damping characteristics
are spread all over the structure, and do not depend only on
the lateral column dissipative coefficients between floor i
and (i −1). In the present FDCIM algorithm the first expedi-
ent to bypass the coupling of the damping coefficients ci j
comes from a different writing of damping matrix C for
General damping, with an augmented number of damping
coefficients:

C =

⎡
⎢⎢⎢⎢⎢⎣

c1 + c2 −c2 0 . . . 0
−c2 c2 + c3 −c3 . . . 0
0 −c3 c3 + c4 . . . 0
...

...
...

. . .
...

0 0 0 . . . cn

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
n parameters ci

[Ns/m]

⇒ C =

⎡
⎢⎢⎢⎢⎢⎣

c11 c12 0 . . . 0
c21 c22 c23 . . . 0
0 c32 c33 . . . 0
...

...
...

. . .
...

0 0 0 . . . cnn

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
2n−1 parameters ci j=c ji

[Ns/m] (1)

In this way, the tridiagonal symmetric structure of
matrix C with n coefficients ci (i = 1, . . . , n), which is
in common with stiffness matrix K, may be neglected, on
behalf of a more general (still symmetric) tridiagonal struc-
ture, where 2n + 1 coefficients ci j (i, j = 1, . . . , n) are
generic damping parameters, decoupled from each other and
thanks to the symmetry of matrix C, decrease to 2n − 1 dif-
ferent coefficients. Thus, this is the first step when dealing
with General or Rayleigh damping (or when hypotheses on
damping behaviour cannot be made).
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The adoption of Rayleigh damping, as a particular case
of General damping, is very interesting from the inverse
analysis point of view, since it brings to a set of non-linear
identification equations in terms of the unknown stiffness
and mass parameters. Below, it is brought to light how the C
matrix formulation of Eq. (1) can be the adopted to address
such an identification issue for Rayleigh damping.

ByadoptingRayleighdamping,C = αM+βK, then clas-
sical equations ofmotion (Eq. (1) in [15])may be rewritten as
M [ü(t) + αu̇(t)] + K [βu̇(t)+u(t)]=−Müg(t). Towards
FDCIM system identification, structural dynamic responses
u(t), u̇(t) and ü(t) are the only known quantities. Mass M,
dampingC (withRayleigh damping coefficientsα andβ) and
stiffness K matrices and seismic ground acceleration üg(t)
are the unknown variables to be identified. By following the
theoretical background of FDCIM [15], the two basic identi-
fication equations for Rayleigh damping may be written as:

(αM + βK) u̇(t) + Ku(t) = −M
(
ü(t) + üg(t)

)
(2)

M−1
[
(αM + βK) u̇(t) + Ku(t)

]
= −ü(t) − üg(t) (3)

where the unknown mass matrix M can always be inverted,
since it is taken as a diagonal, non-singular matrix. Equa-
tions (2) and (3) constitute a set of non-linear identification
equations in terms of the unknown structural parameters,
since unknown coefficients α and β are strictly coupled to
the unknown stiffness and mass terms in matrices K andM,
respectively.

The identification problem based on Eqs. (2) and (3) is
quite difficult to be handled by the FDCIM (and, in general,

by DCIM techniques). Therefore, the general formulation
below is adopted. In this way, Rayleigh damping is treated
as a special case of General damping, with Rayleigh damp-
ing coefficients that may be then estimated as outlined in
following Sect. 2.3.

The expedient to bypass the set of non-linear identifica-
tionEqs. (2)–(3) comes from the differentwriting of damping
matrix C, earlier exposed in Eq. (1). Accordingly, Eqs. (2)

and (3) may be brought back to the definitions made in
the original FDCIM algorithm (Eqs. (5) and (6) in [15]),
which constitute the basic concatenated relations on which
the recursive FDCIM method is built.

By following the treatment developed in [15], subsequent
steps may be originally adapted and modified in order to
define the equations of the two identification stages in case
of General damping or Rayleigh damping. Then, Eq. (2),
by recalling Eq. (5) in [15]—the origin of the first stage of
the FDCIM identification method—may be rewritten from
Eq. (10) in [15] as:

Hck(t) θck = Pck(t)

⇒
[
H1

ck(t) 0n×(3n−1)

0n×n H2
ck(t)

]

︸ ︷︷ ︸
2n×(4n−1)

{
θ1ck
θ2ck

}

︸ ︷︷ ︸
(4n−1)×1

=
{
P1
ck(t)

P2
ck(t)

}

︸ ︷︷ ︸
2n×1

(4)

where zero matrices take dimensions as suggested by the
related subscripts. In earlier Eq. (4), matrix Hck(t) contains
the velocity and displacement responses (knowns, input for
the FDCIM), vector θck contains all ci j damping and ki
stiffness parameters (unknowns, to be identified) and vec-
tor Pck(t) contains both velocity and acceleration responses
(knowns),mi mass terms and input groundmotion excitation
üg(t) (unknowns, to be identified). At a generic time instant
t = ti , i = 1, . . . , L , being L the length of the recorded
input signal,H1

ck(ti ), θ
1
ck ,P

1
ck(ti ) andP

2
ck(ti ) elements can be

expressed as reported by Eqs. (13) and (14c) in [15], while
H2

ck(ti ) and θ2ck take a different expression, which may be
outlined as:

H2
ck(ti ) =

⎡
⎢⎢⎢⎢⎢⎣

u̇1 u̇2 0 0 0 · · · 0 u1 u1 − u2 0 · · · 0
0 u̇1 u̇2 u̇3 0 · · · 0 0 u2 − u1 u2 − u3 · · · 0
0 0 0 u̇2 u̇3 · · · 0 0 0 u3 − u2 · · · 0
...

...
...

...
...

. . .
...

...
...

...
. . .

...

0 0 0 0 0 · · · u̇n 0 0 0 · · · un− un−1

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
n×(3n−1)

(5a)

θ2ck = { c11 c12 c22 . . . ci j . . . cnn, k1 k2 k3 . . . ki . . . kn︸ ︷︷ ︸
1×(3n−1)

}T (5b)

The definitions of terms contained in Eq. (4) may be
expressed by collecting all the sampling time instants, i.e.
as Hck θck = Pck (Eq. (11) in [15]), where full matrix
components now have dimensions Hck ∈ R(L×2n)×(4n−1),
θck ∈ R(4n−1)×1 and Pck ∈ R(L×2n)×1. Then, the Hck and
Pck matrices take the definitions in Eqs. (12a) and (12c) in
[15], while unknown vector θck ∈ R(4n−1)×1 is now defined
by n ones, 2n − 1 coefficients ci j and n coefficients ki .
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In the end, the unknown parameters of vector θck may be
estimated via Least-Squares, on the latter full matrix defini-
tions, as first outlined in [15] (see Eq. (15) there).

In a similar way, the second identification stage (Sect. 2.2)
can be deduced fromEq. (3), as outlined in [15], and allows to
estimate the second unknown parameter vector θm ∈ R2n×1,
which contains the inverse of the mi mass parameters. See
Eqs. (16)–(21) in [15] for more details.

The so-formulated identification problem is not one of a
simple solution, since the unknown parameters are contained
not only in the θck and θm vectors, but also in thePck ,Hm and
Pm matrices.Obviously, the price to be paid for the possibility
of identifying also Generally-damped and Rayleigh-damped
systems is the increase of the number of unknowns from3n to
4n−1 and 4n+1, respectively. Besides, convergence is guar-
anteed and results turn out to be very effective, as it is going to
be presented in Sects. 3–5. Then, the 4n − 1 unknown struc-
tural parameters (which becomes 4n + 1 in case of Rayleigh
damping, with the additional α and β unknown Rayleigh
damping coefficients) and the unknown input ground motion
signal may be identified by the present original modification
of the two-stage iterative algorithm of the FDCIM in [15].
This is treated next.

2.2 Two-stage identification algorithm with general and
Rayleigh damping

Through a consistent modification of the seminal two-stage
iterative Least-Squares (LS) algorithm [15], the identifica-
tion estimates may be extracted from the knowledge of
the acquired building structural responses only, i.e. accel-
erations, velocities and displacements (if only acceleration
responseswouldbeknown, velocities anddisplacementsmay
be integrated numerically, as done in Concha et al. [3]).

As it concerns thefirst stage of identification, which allows
for the realization of stiffness and damping parameters, the
present FDCIMnovelty is constituted by the innovative para-
meter projection technique adopted after the estimation of the
damping and stiffness parameters at iteration 1. This step is
different from that in [15] (Step 1.9), and it becomes neces-
sary to achieve strictly-positive estimates of some selected(
1θck

)
i j parameters, without the need of solving constrained

LS problems. This because the diagonal ci j terms and all the
ki j terms need to be positive, while non-diagonal terms ci j
are free to assume their own signs and values:

(1θck
)
i j =

=

⎧⎪⎪⎨
⎪⎪⎩

sgn
[(

1θck
)
i j

]
· (

1θck
)
i j for

(
1θck

)
i j = ci j , if i = j(

1θck
)
i j for

(
1θck

)
i j = ci j , if i �= j

sgn
[(

1θck
)
i j

]
· (

1θck
)
i j for

(
1θck

)
i j = ki j , ∀i, j = 1, . . . , n

(6)

where sgn[. . .] is the sign function, i.e. the odd function
which extracts the sign of its argument.

Then, as it concerns the second stage of identification,
which allows for the realization of themass parameters, com-
putational steps do not require variations from the original
FDCIM version, including for the εθ and εg convergence
tolerances. Refer to [15] for more details.

Once convergence is reached, the final θck and θm esti-
mates return a realization of state matrix A and
output matrixC0 (Eq. (4) in [15]), together with a realization
of final mass, damping and stiffness matrices. The averaged
input vector ¯̈ug,m(t) obtained fromStep 2.5 in [15] represents
the estimated time history of the ground motion excitation.
See Steps in [15] for further deepening. Finally, Rayleigh
damping coefficients α and β may be estimated as outlined
in following Sect. 2.3.

2.3 Estimation of Rayleigh damping coefficients

After the computation of the final θck and θm vectors, i.e. of
the final mass, damping and stiffness matrices, it is possible
to estimate the Rayleigh damping coefficients via the follow-
ing original procedure. The following important comments
apply:

– Notice that the present proceduremay be applied not only
to specific Rayleigh-damped systems, as a particular case
of General damping, but also to systems characterized by
General damping itself, as discussed in Sect. 2.1.

– Thus, for the broader case of General damping, the
present procedurewill return the best possible estimate of
the α and β Rayleigh damping coefficients related to the
estimated modal and structural properties of the system
under investigation.

First, starting from the realizations of massM, dampingC
and stiffnessK matrices, it is possible to calculate the modal
properties, i.e. natural frequencies fi , mode shapes φi and
modal damping ratios ζi , as usually done in classical modal
analysis.

By knowing eigenvector matrix �, gathering all i =
1, . . . , n eigenvectors φi as columns, modal mass M =
�TM� = diag[mi ], modal damping C = �TC� = diag[ci ]
and modal stiffness K = �TK� = diag[ki ] matrices can be
classically calculated for the estimated system.

So, by starting from the definition of Rayleigh damping
coefficients α and β in modal coordinates, i.e. C = αM +
βK, the following relations may be obtained:

zi, j =
[
α i, j

β i, j

]
=

[
mi ki
m j k j

]−1

·
[
ci
c j

]
, ∀ i, j = 1, . . . , n

⇒ Z = [
z1,2 z1,3 z2,2 . . . zi, j . . . zn,n

]
(7)
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where the solutions of the previous linear system, made by
the calculated modal mass, damping and stiffness as known
terms, are the unknown Rayleigh coefficients, for every pos-
sible combination of i and j indexes. Then,matrixZ ∈ R2×r

collects each of the r zi, j , being r the number of possible
combinations without repetitions of indexes i and j , which
can be calculated as:

r = Cn,2 = n!
2!(n − 2)! (8)

Finally, the estimation of the α and β coefficients may be
evaluated as the mean value of such r collected parameters:

α = 1

r

r∑
i, j=1

αi, j , β = 1

r

r∑
i, j=1

βi, j (9)

With reference to the analysed case, this type of estimation
of theRayleigh damping coefficients demonstrated to be very
powerful, as it is going to be shown in the results produced
in forthcoming Sects. 3–5.

2.4 Element-level identification procedure

By adopting the FDCIM approach, estimates of modal para-
meters, of structural (mass, damping and stiffness) matrices
at the element-level, of Rayleigh damping coefficients and of
input ground motion excitation can be achieved. The mass,
damping and stiffnessmatrices, aswell as the identifiedState-
Space matrices, represent a realization of the system under
investigation.

Then, themodal properties of the system (natural frequen-
cies,mode shapes andmodal damping ratios) can be obtained
in a straight-forward manner from the estimated realizations
of the State-Space matrices or, equivalently, of mass, damp-
ing and stiffness matrices.

Finally, as first discussed in [15], it is possible to accurately
identify the element-level values of the structural parameters.
This can be done since from the FDCIM procedure matri-
ces M, C and K are always identified correctly, unless for
a Fixing Factor, i.e. a real positive multiplying parameter
δ = Preal/Pest , where Preal is a known (or estimated) quan-
tity from the real building and Pest is a quantity from the
estimated model. For instance, examples of Pi comparison
values may be the total mass of the building under investiga-
tion, or any other single parameter of one of three matrices
M, C and K (namely any single parameter among mi , ci j
and ki ).

Then, Fixing Factor δ allows to rescale the estimated ele-
ments, since from theFDCIMapplication theproper orders of
magnitude between each element are preserved, so different
realizations of structural matrices differ only for an unknown
proportionality factor. In Sects. 3–5, as in [15], P = mtot has

been adopted as a rescaling parameter, since it appears as a
convenient parameter thatmay be roughly judged in practical
cases.

3 First identification outcomes and comparison
with reference FDCIM

The developed Full Dynamic Compound Inverse Method
(FDCIM), that is nowable towork alsowithGeneral damping
and Rayleigh damping, is presented through first numeri-
cal examples. This in order to validate the algorithm and to
demonstrate the improvements of the present wider FDCIM
version, with respect to earlier attempt [15].

The adopted example is a three-storey shear-type frame,
taken from the work of Chen et al. [1] and revisited here to
take into account Rayleigh damping, by setting the first two
modal damping ratios equal to ζ1 = 1% and ζ2 = 1.25%.
Then, the third modal damping ratio is taken equal to ζ3 =
2.70%, resulting into α = 0.23050 and β = 0.0004321
Rayleigh damping coefficients. Accordingly, the ci j damp-
ing coefficients are 2260.24, −136.22, 264.79, −68.108
and 108.48 × 103 kN s/m for c11, c12, c22, c23 and c33,
respectively.

Remaining structural and modal characteristics remain
unchanged, by referring to Tables 1 and 2 in [15]. The
synthetic earthquake-induced response signals, input chan-
nels for the FDCIM identification algorithm, are generated
from direct time integration of the equations of motion, via
classical Newmark’s method. The adopted earthquake input
excitation, namely the El Centro 1940 earthquake, has been
adopted also in the earlier FDCIM work [15] (see Table 3 in
[15]). The El Centro 1940 earthquake shows a duration of
40 s, with 100Hz frequency sampling, for a total number of
4000 signal points.

As previously detected in [15], also the present FDCIM
implementation is independent from the adopted initial val-
ues of iteration vectors 0θck and 0θm and from chosen Fixing
Factor δ. This since no significant differences can be found
among the obtained values, in terms of estimated values,
number of iterations and computational time. Then, they
have been selected as 0θck = {1 1 1 . . . 1}T, 0θm =
{1 1 1 . . . 1}T and δ = Preal/Pest = mtot,real/mtot,est .

For the analyses and comparisons with the previous
FDCIM implementation, different numbers of signal points
are used. By starting from the initial time instant, attempts
from a minimum of 50 points (time duration of 0.5 s), to a
maximum of 4000 points (40 s full signal) have been per-
formed. Iteration tolerance levels are set to εθ = 10−6 and
εg = 10−4.

Sample comparisons between previous and present
FDCIM are reported in Tables 1 and 2, for the 50 and
1000 signal points cases. Target values, identified values
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Table 1 Comparison between estimates from previous (FDCIM) and
present (FDCIM-2) identified natural frequencies fi and modal damp-
ing ratios ζi (calculated Modal Assurance Criterion indexes are all

unitary), three-storey frame, 50 and 1000 adopted points; mtot Fixing
Factor parameter; Rayleigh damping; El Centro earthquake

Case Target FDCIM FDCIM-2 FDCIM FDCIM-2

Estimated (50 pts.) �% Estimated (50 pts.) �% Estimated (1000 pts.) �% Estimated (1000 pts.) �%

Natural frequencies [Hz]

f1 3.448 3.446 0.0511 3.448 0.0021 3.447 0.0190 3.448 0.0002

f2 7.376 7.373 0.0410 7.376 0.0000 7.375 0.0117 7.376 0.0000

f3 19.16 19.16 0.0071 19.16 0.0006 19.16 0.0088 19.16 0.0000

Modal damping ratios [%]

ζ1 1.00% 0.66% 33.70 1.00% 0.0164 0.66% 34.19 1.00% 0.0045

ζ2 1.25% 1.45% 15.77 1.25% 0.0008 1.45% 15.64 1.25% 0.0015

ζ3 2.70% 2.61% 3.367 2.70% 0.0032 2.48% 8.005 2.70% 0.0002

Table 2 Comparison between estimates from previous (FDCIM) and
present (FDCIM-2) identified mass mi , damping ci and stiffness ki
parameters, Rayleigh damping coefficients α and β, PGA and RMS,

three-storey frame, 50 and 1000 adopted points; mtot Fixing Factor
parameter; Rayleigh damping; El Centro earthquake

Case Target FDCIM FDCIM-2 FDCIM FDCIM-2

Estimated (50 pts.) �% Estimated (50 pts.) �% Estimated (1000 pts.) �% Estimated (1000 pts.) �%

Mass parameters (×103 [kg])
m1 350.25 349.84 0.1182 350.24 0.0043 350.07 0.0514 350.25 0.0005

m2 262.29 262.52 0.0870 262.29 0.0009 262.38 0.0331 262.29 0.0001

m3 175.13 175.32 0.1061 175.14 0.0073 175.22 0.0532 175.13 0.0008

Damping parameters (×103 [kN s/m])
c11 2260.24 2170.38 3.976 2260.08 0.0070 2066.43 8.574 2260.23 0.0001

c12 −136.22 −189.40 39.04 −136.22 0.0010 −185.98 36.53 −136.21 0.0042

c22 264.79 291.86 10.22 264.79 0.0003 289.38 9.290 264.78 0.0014

c23 −68.11 −102.46 50.43 −68.12 0.0156 −103.40 51.82 −68.11 0.0001

c33 108.48 102.46 5.548 108.47 0.0027 103.40 4.679 108.47 0.0032

Stiffness parameters (×106 [kN/m])
k1 4728.40 4723.21 0.1098 4728.24 0.0034 4726.68 0.0364 4728.38 0.0004

k2 315.23 315.19 0.0135 315.23 0.0001 315.24 0.0046 315.23 0.0000

k3 157.61 157.65 0.0281 157.62 0.0041 157.65 0.0228 157.61 0.0004

Rayleigh damping coefficients ([1])
α 0.230500 0.187661 18.58 0.230464 0.0155 0.206292 10.50 0.230479 0.0091

β 0.000432 0.000485 12.22 0.000432 0.0012 0.000470 8.711 0.000432 0.0005

Estimated input ground motion - Peak Ground Acceleration/Root Mean Square ([m/s2])
PGA 0.1187/3.0627 0.1184 0.2127 0.1187 0.0037 3.0580 0.1532 3.0627 0.0003

RMS 0.0253/0.8228 0.0253 0.2280 0.0253 0.0040 0.8199 0.3527 0.8228 0.0004

Number of iterations (εθ = 10−6, εg = 10−4)

N. – 1472 – 1468 – 643 – 654 –

and absolute percentage deviations (calculated as �Par =
|Pari,id−Pari,targ|/Pari,targ ·100 for each Par parameter) are
shown for natural frequencies fi andmodal damping ratios ζi
(MAC indexes are always unitary), massmi , damping ci j and
stiffness ki element-level features, α and β Rayleigh coeffi-
cients, and PeakGroundAcceleration (PGA) and RootMean

Square (RMS) of the estimated seismic excitation. Identified
parameters significantly improve from FDCIM to FDCIM-2,
especially as concerning to the modal damping ratios, damp-
ing parameters and Rayleigh coefficients. In all the cases and
instances, ameliorations are at least of one order of magni-
tude.

123



546 Comput Mech (2017) 59:539–553

Mode of vibration
1 2 3

D
ev

ia
ti
on

s,
L
og

sc
al

e
[%

]

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102
FDCIM, Estimated fi: Δf i, N. of points

4000 points 2000 points 1000 points 500 points 200 points 100 points 50 points

Mode of vibration
1 2 3

D
ev

ia
ti
on

s,
L
og

sc
al

e
[%

]

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102
FDCIM-2, Estimated fi: Δf i, N. of points

Mode of vibration
1 2 3

D
ev

ia
ti
on

s,
L
og

sc
al

e
[%

]

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102
FDCIM, Estimated ζi: Δζ i, N. of points

4000 points 2000 points 1000 points 500 points 200 points 100 points 50 points

Mode of vibration
1 2 3

D
ev

ia
ti
on

s,
L
og

sc
al

e
[%

]

10−6

10−5

10−4

10−3

10−2

10−1

100

101

102
FDCIM-2, Estimated ζi: Δζ i, N. of points

Fig. 1 Comparison between absolute percentage deviations of esti-
mates from previous (FDCIM) and present (FDCIM-2), identified
natural frequencies fi and modal damping ratios ζi as a function of

adopted number of points, three-storey frame; mtot Fixing Factor para-
meter; Rayleigh damping; El Centro earthquake

Then, a global comparison amongall FDCIMandFDCIM-
2 analysed cases is reported in Figs. 1, 2, 3 and 4. Absolute
percentage deviations are shown in logarithmic scale, for
each considered parameter and length of the signal (50, 100,
200, 500, 1000, 2000 and 4000 points).

By going in order, estimated frequencies andmodal damp-
ing ratios showmaximumpercentage deviations of 0.058 and
35.79% for FDCIM (both 200 p.), while these become only
0.0021 and 0.0193% (50 and 100 p.) for FDCIM-2. Mode
shapes are always verywell identified, since they always lead
to unitary Modal Assurance Criterion (MAC) indexes; con-
sequently, they are not reported here.

For the estimated element-level features,maximumdevia-
tions are: 0.1800% (FDCIM, 200 p.) and 0.0043% (FDCIM-
2, 50 p.) for mi ; 53.77% (FDCIM, 100 p.) and 0.0156%
(FDCIM-2, 50 p.) for ci j ; 0.1098% (FDCIM, 50 p.) and
0.0041% (FDCIM-2, 50 p.) for ki . Maximum deviations for
the Rayleigh damping coefficients are: 22.38% (FDCIM,
200 p.) and 0.0235% (FDCIM-2, 100 p.) for α; 12.22%
(FDCIM, 50 p.) and 0.0012% (FDCIM-2, 50 p.) for β.
Finally, maximum deviations for the estimated earthquake
input excitation are: 0.2363% (FDCIM, 100 p.) and 0.0061%
(FDCIM-2, 100 p.) for PGA; 0.3527% (FDCIM, 1000 p.)
and 0.0065% (FDCIM-2, 100 p.) for RMS; seismic time
histories are practically indistinguishable from the source
input.

Then, some final remarks on the achieved estimates fol-
low. For both methods, modal damping ratios deviations are
greater than for natural frequency ones (see Fig. 1). The same

can be seen in Fig. 2, where the stiffness parameters offer
the best performance with respect to the mass and damp-
ing coefficients, in the order. In Fig. 3, Rayleigh damping
(C = αM + βK) coefficient β offers a much better perfor-
mance, as compared to coefficient α. Finally, PGA and RMS
performmore or less equally, for both methods, as confirmed
by the results in Fig. 4. In Figs. 3 and 4, results for FDCIM-2
actually appear really striking.

All the achieved estimates and results demonstrate the
wideness and goodness of the present FDCIM method and
its superiority with respect to the previous one by operating
with systems characterized by Rayleigh damping behaviour.
Estimates are always very effective, for each parameter under
target, by showing very limited percentage deviations. This
validates and corroborates the present more general FDCIM
proposal. In the following sections, further examples with
more complex structures and with signal noise addition are
proposed too, in order to further demonstrate the higher
performance achieved by the present FDCIM-2 implemen-
tation.

4 Addition of noise to the earthquake-induced
structural response signals

In order to further validate the present FDCIM algorithm
and to approach increasingly realistic conditions, several
analyseswith the addition of noise to the original earthquake-
induced synthetic response signals are now considered.
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Fig. 2 Comparison between absolute percentage deviations of esti-
mates from previous (FDCIM) and present (FDCIM-2), identified mass
mi , damping ci and stiffness ki parameters as a function of adopted

number of points, three-storey frame; mtot Fixing Factor parameter;
Rayleigh damping; El Centro earthquake
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Fig. 3 Comparison between absolute percentage deviations of esti-
mates from previous (FDCIM) and present (FDCIM-2), identified α

and β Rayleigh damping coefficients as a function of adopted number

of points, three-storey frame; mtot Fixing Factor parameter; Rayleigh
damping; El Centro earthquake

Every acquisition channel, in terms of displacements, veloc-
ities and accelerations, takes the addition of a zero-mean
Gaussian white noise as a percentage of the Root Mean
Square ratio between the noise process and the original
response recording. Starting from a level of 0.5%, the noise

has considered increasing levels of 1, 3, 5% and then the very
challenging ones of 10 and 20%.

As done in previous Sect. 3, the absolute percentage devi-
ations (in logarithmic scale) for all the analysed noise cases,
for each considered parameter, are summarized in Figs. 5, 6
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Fig. 4 Comparison between absolute percentage deviations of esti-
mates from previous (FDCIM) and present (FDCIM-2), identified input
ground motion excitation in terms of PGA and RMS as a function of

adopted number of points, three-storey frame; mtot Fixing Factor para-
meter; Rayleigh damping; El Centro earthquake
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Fig. 5 FDCIM-2; Percentage deviations of identified natural frequencies fi and modal damping ratios ζi ; three-storey frame, no-noise and noise-
corrupted cases; 4000 points; mtot Fixing Factor parameter; Rayleigh damping; El Centro earthquake
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Fig. 6 FDCIM-2; Percentage deviations of identified mass mi , damping ci and stiffness ki parameters; three-storey frame, no-noise and noise-
corrupted cases; 4000 points; mtot Fixing Factor parameter; Rayleigh damping; El Centro earthquake

and 7. By recalling the achieved results, estimated frequen-
cies and modal damping ratios show maximum percentage
deviations of 1.96% (20% noise) and 76.26% (20% noise),
respectively. This last rather high deviation shall be consid-
ered as an outlier, since the remaining estimates show much
smaller deviations. As before, mode shapes show always uni-
tary MAC indexes, for all the adopted noise cases, and are
not reported.

As it concerns to the estimated element-level parameters,
maximumdeviations shows to be: 2.51% (20%noise) formi ;
88.82% (10% noise) for ci j ; 6.45% (20% noise) for ki . For
the Rayleigh damping coefficients, maximum deviations are
57.61% (20% noise) and 7.34% (10% noise) for the α and

β parameters, respectively. Finally, for the estimated earth-
quake input base excitation, the maximum deviations show
to be 44.22% (20% noise) for PGA and 11.97% (20% noise)
for RMS. By looking at the figures, it is possible to appreci-
ate that the higher deviations can certainly be considered as
outliers, thanks to the noticeably smaller deviations related
to the remaining estimates. Thus, despite for the heavy added
noise level in some cases (up to 20%), FDCIM identification
keeps very much effective.

As before, by looking at Fig. 5 it is possible to see that devi-
ations are greater for the modal damping ratios than for the
natural frequencies. The same happens in Fig. 6, where the
stiffness andmass parameters show tobe comparable in terms
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Estimated üg(t): ΔPGA, ΔRMS, noise addition

ΔPGA
ΔRMS

D
ev

ia
ti
on

s
[%

]

0
5

10
15
20
25
30
35
40
45
50
55
60

0.0063%
4.6582%

0.4165%

8.4732%

43.1556%

49.7714%

57.6113%

0.0005% 1.1267% 0.1697% 2.1309%
5.9634% 7.3398%

4.7668%

N
o

no
is

e

0.
5%

no
is

e

1%
no

is
e

3%
no

is
e

5%
no

is
e

10
%

no
is

e

20
%

no
is

e

Estimated α, β: Δα, Δβ, noise addition

Coefficient α: Δα

Coefficient β: Δβ

Fig. 7 FDCIM-2; Percentage deviations of identifiedα andβ Rayleigh
damping coefficients and estimated input ground motion excitation
in terms of PGA and RMS; three-storey frame, no-noise and noise-

corrupted cases; 4000 points; mtot Fixing Factor parameter; Rayleigh
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Table 3 Structural features of the adopted ten-storey shear-type frame (adapted from Villaverde and Koyama [19])

Floor 1 2 3 4 5 6 7 8 9 10

Stiffness ki [×106(kN/m)] 62.47 59.26 56.14 53.02 49.91 46.79 43.7 40.55 37.43 34.31

Mass mi [×103(kg)] 179 170 161 152 143 134 125 116 107 98

Damping coefficient c11 c12 c22 c23 c33 c34 c44 c45 c55 c56

Damping ci j [×104(kN s/m)] 60.84 −28.94 57.68 −27.42 54.56 −25.90 51.45 −24.38 48.34 −22.85

Damping coefficient c66 c67 c77 c78 c88 c89 c99 c910 c1010

Damping ci j [×104(kN s/m)] 45.22 −21.33 42.10 −19.81 38.99 −18.28 35.87 −16.76 17.52

Rayleigh damping coefficients α = 0.077480, β = 0.004884

Table 4 Modal characteristics of the adopted ten-storey shear-type frame (adapted from Villaverde and Koyama [19])

Mode 1 2 3 4 5 6 7 8 9 10

Natural frequencies (Hz) 0.500 1.326 2.151 2.934 3.653 4.292 4.836 5.272 5.590 5.787

Modal damping ratios (%) 2.00% 2.50% 3.59% 4.71% 5.77% 6.73% 7.55% 8.21% 8.69% 8.99%

of deviations, while the damping coefficients are the less
accurate identified features. Then, in Fig. 7, Rayleigh damp-
ing (C = αM + βK) parameter β offers again a better per-
formance than for coefficient α, which is affected by higher
deviations, especially for noise cases from 5 up to 20%. In
the same figure, also PGA and RMS deviations are reported;
they performmore or less equally, except for the 10 and 20%
cases, where �RMS shows to be higher than for �PGA.

Again, as demonstrated also in Sect. 3, all the achieved
estimates prove the reliability and effectiveness of the present
FDCIM algorithm, also with noise-corrupted cases.

5 FDCIM identification of a realistic ten-storey
frame building

In this section, the present FDCIM algorithm is adopted
towards modal dynamic identification, element-level charac-

terization and input ground motion estimation of a realistic
ten-storey shear-type frame taken and adapted (for damping
modelling) from Villaverde and Koyama [19], whose char-
acteristics are summarized in Table 3.

The present ten-storey frame displays all its natural fre-
quencieswithin a 5Hz interval, i.e. very closemodes, that are
concomitant here with assumed high modal damping ratios,
in terms of identification challenge. In Table 4, these modal
parameters are summarized, while mode shapes are omitted
here for brevity.

The El Centro 1940 earthquake is taken again as base
excitation for the performed analyses (see Table 3 in [15]).
The initial values of 0θck and 0θm vectors are adopted as in
the previous analyses in Sects. 3 and 4, jointly with a Fixing
Factor δ set on mtot .

As it concerns the performed analysis, these are struc-
tured as in the previous sections. Figures 8, 9 and 10
display the absolute deviations of the achievable estimates,
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Fig. 8 FDCIM-2; Percentage deviations of identified natural frequencies fi andmodal damping ratios ζi as a function of adopted number of points;
ten-storey frame; mtot Fixing Factor parameter; Rayleigh damping; El Centro earthquake
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Fig. 9 FDCIM-2; Percentage deviations of identified mass mi , damping ci and stiffness ki parameters as a function of adopted number of points;
ten-storey frame; mtot Fixing Factor parameter; Rayleigh damping; El Centro earthquake
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Fig. 10 FDCIM-2; Percentage deviations of identified α and β

Rayleigh damping coefficients and estimated input groundmotion exci-
tation in terms of PGA and RMS as a function of adopted number of

points; ten-storey frame;mtot Fixing Factor parameter; Rayleigh damp-
ing; El Centro earthquake

in terms of natural frequencies, modal damping ratios,
element-level parameters, Rayleigh damping coefficients
and PGA and RMS of the estimated input earthquake
excitation, as a function of the adopted number of sig-
nal points. These are taken from the beginning of the
signal, and go from a minimum of 100 points (duration
of 1 s) until a maximum of 4000 points (entire signal of
40 s).

For the natural frequencies and the modal damping ratios,
maximum deviations are 0.0014% (200 p.) and 0.0903%
(200 p.), respectively.Mode shapes are always very well esti-
mated, leading to unitary MAC indexes, for every adopted
case. For the estimated element-level parameters, the max-

imum deviations are: 0.0123% (100 p.) for mi , 0.0540%
(100 p.) for ci j and 0.0031% (4000 p.) for ki . The required
number of iterations is 2492, 1444, 141, 256, 315 and 300
for the 100, 200, 500, 1000, 2000 and 4000 points cases,
respectively.

Then, for the Rayleigh damping coefficients, maximum
deviations show to be 0.3827% (100 p.) and 0.0141%
(100 p.) for α and β, respectively. Finally, for the estimated
earthquake input base excitation, maximum deviations are
0.0012% (200 p.) and 0.0004% (200 p.) for PGA and RMS,
respectively. Again, present FDCIM-2 results in Fig. 10 are
specifically striking, especially for a number of signal points
over 500.
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Fig. 11 FDCIM-2; Percentage deviations of identified natural frequencies fi and modal damping ratios ζi , no-noise and noise-corrupted cases;
ten-storey frame, 4000 points; mtot Fixing Factor parameter; Rayleigh damping; El Centro earthquake

Parameter i
m1 m2 m3 m4 m5 m6 m7 m8 m9 m10

D
ev

ia
ti
on

s,
L
og

sc
al

e
[%

]

10−5

10−4

10−3

10−2

10−1

100

101
Estimated mi: Δmi, noise addition

No noise 0.5% noise 1% noise 3% noise 5% noise 10% noise 20% noise

Parameter i
c11 c12 c22 c23 c33 c34 c44 c45 c55 c56 c66 c67 c77 c78 c88 c89 c99 c910c1010

D
ev

ia
ti
on

s,
L
og

sc
al

e
[%

]

10−5

10−4

10−3

10−2

10−1

100

101
Estimated cij : Δcij , noise addition

Parameter i
k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

D
ev

ia
ti
on

s,
L
og

sc
al

e
[%

]

10−5

10−4

10−3

10−2

10−1

100

101
Estimated ki: Δki, noise addition

Fig. 12 FDCIM-2; Percentage deviations of identified stiffness ki , damping ci and mass mi parameters, no-noise and noise-corrupted cases;
ten-storey frame, 4000 points; mtot Fixing Factor parameter; Rayleigh damping; El Centro earthquake
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Fig. 13 FDCIM-2; Percentage deviations of identified α and β

Rayleigh damping coefficients and estimated input groundmotion exci-
tation in terms of PGA and RMS, no-noise and noise-corrupted cases;

ten-storey frame, 4000 points; mtot Fixing Factor parameter; Rayleigh
damping; El Centro earthquake

The achieved results confirm that, although the larger
number of parameters to be estimated and the increase of
complexity of the structure under target, the estimates are
still very effective.

5.1 Noise addition

Even here, towards validation purposes and to get closer
to realistic scenarios, further attempts with added noise
have been performed, devised as already described in
Sect. 4.

All the examined noise-corrupted outcomes are reported
in Figs. 11, 12 and 13, in terms of achieved absolute devia-
tions of the FDCIM estimates. Maximum natural frequency

and modal damping ratio deviations are 0.1714% (20%
noise) and 17.32% (10% noise), respectively. As before,
MAC indexes are always unitary, showing the goodness of
the estimated mode shapes.

For the element-level parameters, maximum deviations
are 1.4726% for mi (20% noise), 4.0662% for ci j (10%
noise) and 1.1415% for ki (20% noise). Rayleigh damping
coefficients display maximum deviations of 55.94% (20%
noise) and 2.3289% (10% noise) for the α and β parameters,
respectively. Finally, PGA and RMS maximum deviations
are 13.59% (20% noise) and 5.9047% (20% noise), respec-
tively. Results in Fig. 13 are specifically remarkable for noise
levels up to 5%. Levels of 10 and 20% disrupt more the iden-
tification results. So, although the increasing complexity of
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the structure and the use of heavy noise-corrupted cases, the
present FDCIM-2 identification keeps very effective.

6 Conclusions

This work has demonstrated the remarkable effectiveness
of the present innovative Full Dynamic Compound Inverse
Method (FDCIM), with considerable generalisation and
improvement from the original FDCIM implementation in
[15], which was conceived to deal only with a specific
form of viscous damping. The present implementation,
instead, allows for consistent modal parameter identification,
element-level structural parameter characterization, damping
coefficient determination and input ground motion time his-
tory estimation, by adopting General or Rayleigh damping
behaviours. The following main outcomes and issues may be
summarized:

– The parameter projection strategy has been totally
rescheduled, to deal with the new formulations required
by the current FDCIM approach and to achieve stronger
and faster convergence.

– The estimation of Rayleigh damping coefficients α

and β becomes now possible, through an innovative,
specifically-developed procedure, workingwith the solu-
tion of a pre-determined set of linear systems and of an
average technique, bypassing then the problem of a chal-
lenging non-linear identification as attempted in previous
DCIM works.

– A detailed comparison between the latter and the present
FDCIM approaches has been addressed for a benchmark
three-storey shear-type frame, as a function of the dif-
ferent adopted number of signal points. Present FDCIM
looks definitely superior in working with General or
Rayleigh damping behaviours, with respect to the pre-
vious implementation, with results that are from one to
three orders of magnitude better than those coming from
the former version.

– Still on the same three-storey shear-type frame, effective-
ness of the FDCIM approach has been definitely proven
also with the presence of noise, with levels up to 20% .
Maximum deviations are always very limited, by exten-
sively validating the present FDCIM method in getting
closer to real earthquake excitation scenarios.

– Then, a realistic ten-storey RC frame from the literature
has been considered for further validation. This consti-
tutes a more complex case, characterized by very close
modes and heavy damping conditions. Analyses have
been performed, as before, as a function of the adopted
number of signal points and of the level of added noise.
These analyses and the very performing identification

results have demonstrated the remarkable effectiveness
of the present wider FDCIM implementation.

Attempts with additional complex structures and earth-
quakes may be the target of further research, jointly with the
use of real earthquake-induced structural response signals.
Then, studies on the integration or support and comparison
of the FDCIM with other parametric Time and Frequency
Domain output-only methods may be addressed, too.
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