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Abstract This work presents a simple finite element imple-
mentation of a geometrically exact and fully nonlinear
Kirchhoff–Love shell model. Thus, the kinematics are based
on a deformation gradient written in terms of the first- and
second-order derivatives of the displacements. The resulting
finite element formulation provides C1-continuity using a
penalty approach, which penalizes the kinking at the edges of
neighboring elements. This approach enables the application
ofwell-knownC0-continuous interpolations for the displace-
ments, which leads to a simple finite element formulation,
where the only unknowns are the nodal displacements. On
the basis of polyconvex strain energy functions, the numeri-
cal framework for the simulation of isotropic and anisotropic
thin shells is presented. A consistent plane stress condition
is incorporated at the constitutive level of the model. A tri-
angular finite element, with a quadratic interpolation for the
displacements and a one-point integration for the enforce-
ment of the C1-continuity at the element interfaces leads
to a robust shell element. Due to the simple nature of the
element, even complex geometries can be meshed easily,
which include folded and branched shells. The reliability
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and flexibility of the element formulation is shown in a cou-
ple of numerical examples, including also time dependent
boundary value problems. A plane reference configuration is
assumed for the shell mid-surface, but initially curved shells
can be accomplished if one regards the initial configuration
as a stress-free deformed state from the plane position, as
done in previous works.

Keywords Geometrically exact analysis · Thin shells ·
Triangular finite element · Polyconvexity · Anisotropy

1 Introduction

Shear deformable finite element shell models have been
developed and discussed in the last decades extensively, see,
e.g., [40,53,55,56] among many others. Their main bene-
fit, compared to shear-rigid deformable approaches, is that
these models merely require C0-continuity for the unknown
fields. However, shear deformable formulations have certain
theoretical and implementational drawbacks. In order to cir-
cumvent these inconveniences, several advanced techniques
have been developed, like reduced and selective integra-
tion [33], assumed natural strain [9,24] and the enhanced
assumed strain [10,54]. An elegant approach seems to be
the use of non-conforming triangular elements, as done in
[15]. Despite these special techniques, shear deformable
shell models, still may generate poor results for the case of
very thin structures, as they appear for example in case of
membranes. An alternating approach, with rising popular-
ity, is to follow the rotation-free deformable Kirchhoff–Love
model for thin shells. Here, the basic kinematic quantities
are expressed in terms of the first- and second-order deriva-
tives of the displacements, which leads to the requirement of
a C1-continuous functional space for the numerical imple-
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mentation. In the last years several Kirchhoff–Love models
have been developed and successfully implemented using
for example moving least-squares [43], a maximum entropy
scheme [35,36], subdivision surfaces [19,20], isogeometric
analysis [25,28,29], generalizedmoving least-squareswithin
a meshless method [26] and C1 TUBA finite elements [27].
The main drawback of those approaches are the high com-
plexity of the shape functions and the associated difficulty of
numerical implementation.

In statics, shear deformable shell model results (also
known asReissner–Mindlinmodels) should be, in the limit of
vanishing thickness, equivalent to those obtainedwith a shear
rigid shell model (Kirchhoff–Love). This can be controver-
sial in presence of singularities, like corners or concentrated
loads. Approximate results obtained with the aid of finite
elements for the former can present some undesirable stiff-
ening effects known as locking phenomena. This is especially
true for simple quadrilateral elements. The Kirchhoff–Love
model, in other hand, can be a solution for this problems, but
requires C1-continuity, what can be very difficult to achieve
by finite elements. In dynamics, both models can differ sub-
stantially, particularly for high frequencies, and a deeper
investigation is still a demanding task. Our approach com-
bines the simplicity of a quadratic Lagrangian element with
a discontinuous enforcing of the C1-continuity, leading to an
astonishingly simple, but robust, shell finite element.

The scope of the proposed work is to present a novel
approach for the application of the Kirchhoff–Love kine-
matics, based on the work of [42]. This novel approach
enables the use of well known and convenientC0-continuous
approximations of the displacements, enforcing the required
C1-continuity by a penalty formulation. In this sense, our
approach can be regarded as a discontinuous Galerkin
method. Following the ideas of [5,6,23,51] we apply poly-
convex anisotropic elastic strain energiesψ for the modeling
of anisotropic shells. The concept of polyconvexity, intro-
duced by [2,3] guarantees that the variational functional∫

ψdV to be minimized is sequentially weakly lower semi-
continuous (s.w.l.s). In large strain elasticity the existence of
minimizers is guaranteed if

∫
ψdV is s.w.l.s. and coercive, in

this context see, e.g., [17,21,34]. An extension of isotropic
polyconvex functions to anisotropic polyconvex free ener-
gies was firstly proposed by [47,48], in this context we also
refer to [4,46,50].

The resulting finite element exhibits great flexibility,
which is shown in a couple of numerical examples. A wide
range of highly nonlinear applications are covered, using
isotropic as well as anisotropic polyconvex strain ener-
gies for the calculation of static and dynamic boundary
value problems. Due to the triangular structure of the ele-
ment, powerful mesh generation tools can be easily used, in
order to construct unstructured meshes, even for complicate
geometries.

Remark on the notation Greek indices range from 1 to 2,
while Latin indices range from 1 to 3.

2 Shear-rigid shell kinematics

Themiddle plane of the shell body in the reference configura-
tion is constrained to be plane and is denoted with �r ⊂ R2

parametrized in ζ , with its boundary �r = ∂�r . In the cur-
rent configuration the middle surface of the shell body is
denoted with �r ⊂ R3 parametrized in z. Furthermore, the
reference volume Vr and thickness Hr = [−hrb, h

r
t ] are

introduced, such that the total shell thickness is hr = hrb+hrt .
The superscripts b and t denote the bottom and the top
external surfaces. The orthonormal right-handed coordinate
system eri placed on�r is defined. Thus, an arbitrarymaterial
point in the reference configuration can be described by

ξ = ζ + ar , (1)

where ζ = ξαerα, ξα ∈ �r describes the middle plane and
ar = ξ3er3, ξ3 ∈ Hr , is the director, normal to�r . In contrast
to that, an arbitrarymaterial point in the current configuration
is given by

x = z + a, (2)

where a = Qar is the current director and z = ζ + u cor-
responds to the middle surface in the current configuration.
The first and second spatial derivatives of z follow by

zα = erα + uα and zαβ = uαβ, with (•)α = ∂(•)

∂ξα

.

(3)

The rotation tensor Q canbedefined, due to theKirchhoff–
Love assumption, which states that the director a remains
orthogonal to the middle surface of the shell, by

Q = ei ⊗ eri . (4)

The local orthogonal system in the current configuration
is introduced as

e1 = ||z1| |−1z1,

e2 = e3 × e1,

e3 = ||z1 × z2| |−1 (z1 × z2) . (5)

It can be noted, that eα are tangent to the shell middle
surface in the current configuration, while e3 is orthogonal
to the shell middle surface. Note also that only e1 and e3 are
material, i.e., permanently tangent to same material fibers,
while e2 is not. The nonlinear deformation map ϕt : ξ → x

123



Comput Mech (2017) 59:281–297 283

ζ ar

er
1

er
2

ξ er
3

a

e1

e2

e3

z

x

0

Fig. 1 Description of the basic kinematical quantities for a typical
finite element in the reference and the actual configuration

maps material points at time t ∈ R+ from the reference to
the current placement. The basic kinematical quantity, the
deformation gradient F = Gradϕt (ξ) is given by

F = ∂x
∂ξ

= ∂(z + Qar )
∂ξα

⊗ erα

+ ∂(z + Qar )
∂ξ3

⊗ er3 = f α ⊗ erα + f 3 ⊗ er3, (6)

where the vectors f i are introduced for the spatial derivatives
as (Fig. 1)

f α = zα + Qαa
r and f 3 = Qer3 = e3. (7)

The curvature tensors and its corresponding axial curva-
ture vectors are defined as

Kα = Qα Q
T and κα = axial (Kα) , (8)

which hold Kαν = κα × ν, ∀ ν. The axial curvature vector
can be rewritten as

κα = �βuβα, (9)

where �α are introduced by

�1 = (e1 · z1)−1 [Skew (e1)

− (e1 · z2) (e2 · z2)−1 (e1 ⊗ e3)
]
,

�2 = (e2 · z2)−1 (e1 ⊗ e3) , (10)

with the Skew operator defined for an arbitrary vector θ as

Skew(θ) =
⎛

⎝
0 −θ3 θ2
θ3 0 −θ1

−θ2 θ1 0

⎞

⎠ . (11)

Thus, we are able to reformulate Eq. (7)1 as

f α = zα + κα × a. (12)

The Jacobian, which maps a infinitesimal volume ele-
ment from the reference to the current configuration, can
be denoted as

J = det F = f 1 · ( f 2 × f 3
)
. (13)

Another basic kinematic quantity is the cofactor of F. If
the inverse of the deformation gradient exists it can be given
as

Cof F = J F−T = gi ⊗ ei , (14)

where we use

g1 = f 2 × f 3, g2 = f 3 × f 1 and g3 = f 1 × f 2,

(15)

note that

gi = 1

2
εi jk f j × f k with εi jk = ei · e j × ek . (16)

It is worthwhile to introduce here also the back-rotated
deformation gradient as

Fr = QT F
= I + γ r

α ⊗ erα,
(17)

with the back rotated strains

γ r
α = ηrα + κr

α × ar . (18)

Here the cross-sectional generalized back rotated strains
are introduced as

ηrα = QT zα − erα and κr
α = axial

(
QT Qα

)
, (19)

where ηα constitute the membrane strains.

3 Anisotropic hyperelasticity in a polyconvex
framework

In the following we restrict ourselves to hyperelasticity and
postulate the existence of a so-called Helmholtz free energy
functionψ = ψ(F), here defined per unit reference volume.
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We consider perfect elastic materials, which means that the
internal dissipation is zero for every admissible process, i.e.,
P : Ḟ − ψ̇ = (P − ∂Fψ): Ḟ ≥ 0, where P denotes the first
Piola–Kirchhoff stress tensor and Ḟ denotes thematerial time
derivative of the deformation gradient. Thus, we conclude

P = ∂ψ

∂F
=: ∂Fψ. (20)

In the following it is helpful to express the first Piola–
Kirchhoff stress tensor by a decomposition on Cartesian axes
with the nominal stress vectors τ i acting on the planes,whose
normal unitary vector are eri , as

P = τ i ⊗ eri with τ i = ∂ψ

∂ f i
. (21)

For the constitutivemodelingwe concentrate on the notion
of polyconvexity introduced by [2,3].

3.1 Definition of polyconvexity

F �→ ψ(F) is polyconvex if and only if there exists a func-
tion P:R3×3 × R3×3 × R �→ R (in general non-unique)
such that

ψ(F) = P(F, Cof F, det F), (22)

and the function (F, Cof F, det F) ∈ R19

�→ P(F, Cof F, det F) ∈ R is convex for all points
X ∈ R3. (For simplicity we dropped the X-dependency of
the individual functions.)

Particularly for practical use polyconvexity is an impor-
tant concept, because it is relative easy to proof. It should
be noted, that the arguments (F, Cof F, det F) govern
the transformations of the infinitesimal line, vectorial area
and volume elements from the reference onto the actual
placement. Calculation rules concerning the cofactor are,
e.g., given [48], more advanced rules are given in [22],1

and a reformulation of this framework is given in [14].
Furthermore, polyconvex functions are always sequential-
weak-lower-semicontinuous (s.w.l.s.); this in combination
with the coercivity of the stored energy function

∫
B ψ(F)dV

is a sufficient condition for the existence of minimizers. In
this context of the direct methods of variations we refer to
[1,18,21,34,52]. In the context of anisotropic polyconvex
energies we refer to [48,49]. An important invariance condi-
tion is the principle of material frame indifference, which
requires the invariance of the constitutive equation under
superimposed rigid body motions onto the current config-
uration, i.e., Q̂: x ∈ Bt �→ Q̂x =: x+. In order to fulfill

1 Therein the author introduced the double-cross product: F × F =
2Cof F.

this condition a priori we use the well-known reduced con-
stitutive equations, see, e.g., [57]. Thereforewe formulate the
free energy in terms of the right Cauchy–Green tensor, which
guarantees ψ(C) = ψ(C+)withC+ := (∇X x+)T (∇X x+)

for all Q̂ ∈ SO(3). In the following we formulate the strain
energy ψ(C) = ψ i_p(C) + ψa_p(C) as an isotropic tensor
function, whereas we introduce here the abbreviations i_p

and a_p for the isotropic- and the anisotropic part. Thus, the
isotropic part of the free energy ψ i_p(C) can be expressed in
terms of the principal invariants

I1 = tr C = f i · f i ,

I2 = tr[Cof C] = gi · gi ,
I3 = det C = (

f 1 · ( f 2 × f 3
))2

. (23)

The derivatives of the isotropic invariants with respect to
f i follow as

∂ I1
∂ f i

= 2 f i ,

∂ I2
∂ f i

= 2
∂ g j

∂ f i
g j = −2εi jk f j × gk and

∂ I3
∂ f i

= 2J gi . (24)

For transverse isotropy, we introduce a preferred direc-
tion vector m of unit length. Let Q̂(α, m) characterize all
rotations about them-axis, then the associated material sym-
metry group is defined by

Gti := {±1; Q̂(α, m)|0 ≤ α < 2π}. (25)

For the formulation of anisotropic free energies in terms of
isotropic tensor functions we apply the concept of structural
tensors. This was first introduced in an attractive way with
important applications by [11,12], see also [13], although
some similar ideasmight have been touched on earlier. Struc-
tural tensors have to reflect the material symmetries, here we
introduce the rank one tensor

M = m ⊗ m with ‖m‖ = 1. (26)

The invariance group of M preserves the material sym-
metry group Gti, i.e.,

M = Q̂M Q̂
T ∀ Q̂ ∈ Gti. (27)

The strain energy ψ ti can be formulated as an isotropic
tensor function with respect to the arguments {C, M}.
Exploiting the fact, that the powers of the structural tensor
are the structural tensor itself, two mixed invariants of the
two symmetric tensors C and M can be introduced
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I4 = tr[CM] = Ai j f i · f j and

I5 = tr[Cof[C]M] = Ai j gi · g j , (28)

where

Ai j = (ei · m)
(
e j · m) = ei · Me j . (29)

The derivatives of the additional transversal isotropic
invariants follow as

∂ I4
∂ f i

= 2Ai j f j and

∂ I5
∂ f i

= 2Amn
∂ gn
∂ f i

gm = −2εi jk Ank f j × gn .
(30)

With the aid of the results above, the nominal stress vectors
may be expressed by

τ i = 2
∂ψ i_p

∂ I1
f i − 2

∂ψ i_p

∂ I2
εi jk f j × gk + 2J

∂ψ i_p

∂ I3
gi

+ 2

(
∂ψa_p

∂ I4
Ai j f j − ∂ψa_p

∂ I5
εi jk Ank f j × gn

)

.

(31)

4 Hyperelasticity for shear-rigid shell models

Due to the Kirchhoff–Love assumption we observe that

γ r
α · er3 = ηrα · er3 = 0. (32)

A consequence of Eq. (32) is

ηα · e3 = zα · e3 = 0 and f α · e3 = 0. (33)

The isotropic invariant simplify in the framework of shear
rigid shells to

I1 = f α · f α + 1,
I2 = gα · gα + J 2 = (

f α × e3
) · ( f α × e3

) + (J )2,

I3 = J 2 = (
e3 · ( f 1 × f 2

))2
.

(34)

For the anisotropic invariants we state the basic assump-
tion that in the reference configuration the preferred direc-
tions are parallel to the middle plane of the shell such that

mr · er3 = 0. (35)

This leads, due to the Kirchhoff–Love assumption, to

m · e3 = 0. (36)

Therefore the anisotropic invariants can be simplified to

I4 = Aαβ f α · f β,

I5 = Aαβ gα · gβ with Aαβ = (eα · m)
(
eβ · m)

. (37)

Due to the kinematic assumptions the derivatives of the
invariants are given by

∂ I1
f α

= 2 f α,

∂ I2
f α

= 2e3 × (
f α × e3

) + 2Jεαβ f β × e3,

∂ I3
f α

= 2Jεαβ f β × e3,

∂ I4
f α

= 2Aαβ f β,

∂ I5
f α

= 2Aγβεαβεγ δe3 × (
f δ × e3

)
.

(38)

Thus, the nominal stress vectors are then given by

τα = 2
∂ψ i_p

∂ I1
f α + 2

∂ψ i_p

∂ I2

(
e3 × (

f α × e3
)

+ Jεαβ f β × e3
) + 2J

∂ψ i_p

∂ I3
εαβ f β × e3

+ 2

(
∂ψa_p

∂ I4
Aαβ f β + ∂ψa_p

∂ I5
Aγβεαβεγ δe3 × (

f δ × e3
)
)

.

(39)

Note that τα · e3 = 0, hence the stress vectors τα are
normal to e3 what is consistent with the shell kinematics.

4.1 Plane stress condition

The plane stress condition states, that the stresses in the nor-
mal direction of the shellmid-plane vanishes, i.e., (τ e3)·e3 =
0. For the derivation of the plane stress condition we intro-
duce the local transversal strain γ33 as an additional degree
of freedom which can be eliminated on a constitutive level
as

f 3 = (1 + γ33) e3. (40)

Now, one may write

J = f 3 · ( f 1 × f 2
) = (1 + γ33) J ,

gα = (1 + γ33) gα,

g3 = f 1 × f 2 = J e3,
(41)

where

J = e3 · ( f 1 × f 2
)

and gα = εαβ f β × e3. (42)
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Therefore the modified invariants follow as

I1 = f α · f α + (1 + γ33)
2 ,

I2 = (1 + γ33)
2 (

f α × e3
) · ( f α × e3

) + J
2
,

I3 = (1 + γ33)
2 J

2
,

I4 = Aαβ f α · f β,

I5 = (1 + γ33)
2 Aαβεαγ εβδ

(
f γ × e3

) · ( f δ × e3
)
,

(43)

and their derivatives by

∂ I1
∂ f α

= 2 f α,

∂ I1
∂γ33

= 2 (1 + γ33) ,

∂ I2
∂ f α

= 2 (1 + γ33)
2 (

f α × e3
) + 2J (1 + γ33) εαβ f β × e3,

∂ I2
∂γ33

= 2 (1 + γ33)
(
f α × e3

) · ( f α × e3
)
,

∂ I3
∂ f α

= 2 (1 + γ33)
2 Jεαβ f β × e3,

∂ I3
∂γ33

= 2 (1 + γ33) J
2
,

∂ I4
∂ f α

= 2Aαβ f β,

∂ I4
∂γ33

= 0,

∂ I5
∂ f α

= 2 (1 + γ33)
2 Aδβεδγ εβα

(
f γ × e3

)
× e3,

∂ I5
∂γ33

= 2 (1 + γ33) Aαβεαγ εβδ

(
f γ × e3

)
· ( f δ × e3

)
.

(44)

Thus, the nominal stress vectors are given by

τα = ∂ψ

∂ f α

= 2
∂ψ i_p

∂ I1
f α

+ 2 (1 + γ33)
∂ψ i_p

∂ I2

(
(1 + γ33) f α × e3 + Jεαβ f β × e3

)

+ 2 (1 + γ33)
2 J

∂ψ i_p

∂ I3
εαβ f β × e3

+ 2

(
∂ψa_p

∂ I4
Aαβ f β + ∂ψa_p

∂ I5
(1 + γ33)

2 Aδβεαγ εβα

(
f γ × e3

) × e3
)
, (45)

and

τ33 = ∂ψ

∂γ33
= 2 (1 + γ33)

(
∂ψ i_p

∂ I1
+ ∂ψ i_p

∂ I2

(
f α × e3

) · ( f α × e3
) + J

2 ∂ψ i_p

∂ I3

)

+2 (1 + γ33)
∂ψa_p

∂ I5
Aαβεαγ εβδ

(
f γ × e3

) · ( f δ × e3
)
.

(46)

Due to the physical condition γ33 > −1 we obtain with
the plane stress condition τ33 = 0 the solution as

∂ψ i_p

∂ I1
+ ∂ψ i_p

∂ I2

(
f α × e3

) · ( f α × e3
) + J

2 ∂ψ i_p

∂ I3

+ ∂ψa_p

∂ I5
Aαβεαγ εβδ

(
f γ × e3

) · ( f δ × e3
) = 0, (47)

which has to be solved in order to obtain γ33 that satisfies
τ33 = 0. Equation (47) is in general a non-linear equation in
γ33 which can be solved iteratively by the Newton method
as follows

γ k+1
33 = γ k

33 −
(

∂τ33

∂γ33

)−1

τ33

(
γ k
33

)
, k = 0, 1, 2, . . .

(48)

4.1.1 Example for analytical enforcement of the plane
stress condition

For special cases it is possible to find an analytical solution
for the enforcement of the plane stress condition, which is
exemplary depicted in this section for an anisotropic poly-
convex strain energy function. Let us regard a strain energy
function of the form

ψ (I1, I3, I4) = ψ i_p (I1, I3) + ψa_p (I4) , (49)

where

ψ i_p (I1, I3) = 1

4
λ ((I3 − 1) − ln I3) + 1

2
μ (I1 − 3 − ln I3) and

ψa_p (I4) = α1 〈I4 − 1〉α2 , where 〈α〉 := 1

2
(|α| + α).

(50)

Therefore the plane-stress condition from Eq. (47) leads
to

1

2
μ + 1

4
J
2

(

λ − λ + 2μ

(1 + γ33)2 J
2

)

= 0. (51)

Solving with respect to γ33 yields the non-trivial solution

γ33 =
√

λ + 2μ

λJ
2 + 2μ

− 1. (52)

5 Variational formulation

Themain differential equation in solid mechanics is the local
statement of the balance of linear momentum

Div P + ρ0(b − ü) = 0, (53)
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with the initial density ρ0, the body forces b and the accel-
eration ü. This leads with the help of the theorem of virtual
work to a local equilibrium of the form

δW = δWint − δWext = 0, ∀ δu, (54)

whereas δu are virtual displacements and with the internal
and external parts of the virtual work as

δWint =
∫

B
P : δFdV +

∫

B
ρ0δu · üdV,

δWext =
∫

∂B
t · δxd A +

∫

B
f · δxdV .

(55)

Here t denotes the normal surface stresses and the external
volume forces f = ρ0b. Introducing the Eqs. (17) and (21)
into the internal part of the weak form (55)1 yields

δWint =
∫

B
(
τ r

α · δηrα + (
ar × τ r

α

) · δκr
α

)
dV

+
∫

B
ρ0δu · üdV . (56)

For simplicity we use the assumption that the shell mid-
surface is the medium surface, i.e., H = [−h/2, h/2]. Thus,
the cross-sectional generalized strains and the acceleration
are constant over the shell thickness H we split the integral
and by introducing the back rotated counterparts of the true
forces nα and the true moments mα, both defined per unit
length at reference configuration and the inertia property of
the cross section M as

nrα =
∫

H
τ r

αdH,

mr
α =

∫

H

(
ar × τ r

α

)
dH and

M =
∫

H
ρ0dH, (57)

we obtain

δWint =
∫

�r

(
σ r

α · δεrα + M ü · δu
)
d�r . (58)

Here we introduced for convenience the vectors εrα =
[ηrα κr

α]T and σ r
α = [nrα mr

α]T . Following the procedure
given in [42], we introduce a vector � for the differential
operations

� =
[

I I
∂

∂ξ1
I

∂

∂ξ2
I

∂2

∂ξ21
I

∂2

∂ξ1∂ξ2
I

∂2

∂ξ22

]T

. (59)

Therefore, we may rewrite

δεrα = �T�α�δu, (60)

where the two operators � and �α are defined as follows

� =
[
Q 0
0 Q

]

,

�α =
[
0 δ1α I + Zα�1 δ2α I + Zα�2 0 0 0
0 �1,α �2,α δ1α�1 δ1α�2 + δ2α�1 δ2α�2

]

,

(61)

with δαβ as the Kronecker delta. Thus, Eq. (58) can be
rearranged as

δWint =
∫

�r
�δu · �T

α �σ r
α + δu · M üd�r . (62)

For the external part of the weak form we split the surface
traction vector into the top and bottom surface tractions t t , tb

and the tractions along the lateral surface t l .Such thatwemay
write
∫

∂B
td A =

∫

�r

(
t t + tb

)
d�r

+
∫

∂�r

∫

Hr
tldHrd∂�r . (63)

Therefore we may rewrite Eq. (55)2 as

δWext =
∫

�r

(

t t + tb +
∫

Hr
f dHr

)

· δxd�r

+
∫

∂�r

∫

H
tl · δxdHrd∂�r . (64)

Introduction of δx = δu+(�αδuα)×a and Eq. (63) yield

δWext =
∫

�r
q�r · �̃δud�r

+
∫

∂�r
q∂�r · �̃δud∂�r , (65)

where the displacements, its spatial derivatives and the gen-
eralized cross-sectional forces

n�r = t t + tb +
∫

Hr
f dHr , n∂�r =

∫

Hr
tldHr , (66)

and moments

m�r = a × t t + a × tb +
∫

Hr
a × f dHr ,

m∂�r =
∫

Hr
a × tldHr , (67)

have been gathered in the following vectors
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�̃ =
⎡

⎢
⎣

I
I ∂

∂ξ1

I ∂
∂ξ2

⎤

⎥
⎦ , q�r =

⎡

⎣
n�r

�T
1 m

�r

�T
2 m

�r

⎤

⎦ and

q∂�r =
⎡

⎣
n∂�r

�T
1 m

∂�r

�T
2 m

∂�r

⎤

⎦ . (68)

5.1 Linearization of the weak form

In order to solve a nonlinear boundary value problem with
the Newton–Raphson scheme a consistent linearization of
the weak form (55) is needed. Under the assumption of con-
servative loading the linearization follows as

�δW =
∫

�r

(
�δu ·

(
G + �T

α Dαβ�β

)
· ��u

+ δu · M · �ü
)
d�r , (69)

where the material and geometrical stiffnesses are given by

Dαβ = ∂σ r
α

∂εrα
=

⎡

⎢
⎢
⎣

∂nrα
∂ηrβ

∂nrα
∂κr

β

∂mr
α

∂ηrβ

∂mr
α

∂κr
β

⎤

⎥
⎥
⎦ and G = ∂(�T

α σ r
α)

∂�δu
.

(70)

The parts of thematerial tangentmatrices can be evaluated
similar to the procedure given in [15]. A description of the
geometric stiffness G is given in [26]. Due to a lack of space,
a detailed derivation of these parts is omitted herein and the
interested reader is referred to the specific literature.

5.2 Discretization in space and time

In this subsection the finite element equations for triangular
shell elements are specified. In general, the Kirchhoff–Love
shell theory requires C1-continuous approximations. The
novel approach adopted herein is to enforce C1-continuity
at the element boundaries by imposing preservation of the
angles between elements, as shown in Sect. 6. Therefore it
is sufficient to employ a C0 interpolation. For the approx-
imation of the triangular shaped finite elements we apply
shape functions based on baricentric parent coordinates. The
position vector of the middle surface in the current configu-
ration, the displacement vector and its spatial derivatives are
interpolated as

ζ h =
nen∑

I

N I ζ I ,

uh =
nen∑

I

N I d I ,

uhα =
nen∑

I

N I,αd I ,

uhαβ =
nen∑

I

N I,αβd I , (71)

where the superscripth indicates thefinite element discretiza-
tion, nen the number of element nodes and N I a suitable
matrix including the shape functions. Furthermore ζ I denote
the nodal coordinates and d I = [d1I , d2I , d3I ]T , ḋ I =
[ḋ1I , ḋ2I , ḋ3I ]T and d̈ I = [d̈1I , d̈2I , d̈3I ]T are the nodal degrees
of freedom for the displacements, velocities and accelera-
tions, respectively. The discretized forms of the variation and
linearization of the displacements and its first and second
spatial derivatives follow by

δuh =
nen∑

I

N I δd I ,

δuhα =
nen∑

I

N I,αδd I ,

δuhαβ =
nen∑

I

N I,αβδd I ,

�uh =
nen∑

I

N I�d I ,

�uhα =
nen∑

I

N I,α�d I ,

�uhαβ =
nen∑

I

N I,αβ�d I . (72)

The acceleration, its variation and linearization is dis-
cretized in space by

üh =
nen∑

I

N I d̈ I , δüh =
nen∑

I

N I δ d̈ I and

�üh =
nen∑

I

N I�d̈ I . (73)

In order to solve a time dependent boundary value prob-
lem, an updated description of the motion is deployed. Thus,
a time-increment notation is adopted here. An arbitrary time
step is denoted by �t = ti+1 − ti . We introduce the notation
(·)(ti ) = (·)i , (·)(ti + 1) = (·)i+1 and (·)(ti + 1) − (·)(ti ) =
�(·). Assume that all quantities of the previous time step,
at time ti , are known. The well known Newmark method
was applied for the time integration, with 0 ≤ β ≤ 0.5 and
0 ≤ γ ≤ 1 as the Newmark parameters. Thus, the accel-
eration and the velocity of the actual configuration at time
t = ti+1 are computed by
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d̈i+1 = 1

β�t2

(
di+1 − ̂̈di

)
and

ḋi+1 = γ

β�t
di+1 + ̂̇di − γ

β�t
̂̈di+1, (74)

whereas ̂̈di and ̂̇di are predictors, only depending on the
previous time step given by

̂̈di = ui + ḋi�t +
(
1

2
− β

)

d̈i and

̂̇di = ḋi + (1 − γ )d̈i�t. (75)

Variation and linearization of (74)1 leads to

δ d̈i+1 = 1

β�t2
δdi+1 and �d̈i+1 = 1

β�t2
�di+1. (76)

We obtain the system of equations for a typical finite ele-
ment e

ke�d = −re, (77)

with the typical right-hand side vector from (62) and (65) as

re =
∫

�r

(
(�N)T�T

α �σ r
α + NT MNd̈

+ (�̃N)T q�r
)
d�r +

∫

∂�r
(�̃N)T q∂�r

d∂�r , (78)

and the typical stiffness matrix from (69) as

ke =
∫

�r

(
(�N)T

(
G + �T

α Dαβ�β

)
�N

+ NT 1

β�t2
MN

)

d�r . (79)

6 Enforcement of the C1-continuity

The shell kinematics is based on theKirchhoff–Love assump-
tion, thus the deformation gradient is written in terms of
first- and second-order derivatives of the displacements.
Therefore the finite element construction has to guarantee
C1-continuity. In this work, this condition is imposed by a
penalty approach, which penalizes the kinking of the edge of
two neighboring elements. Considering two arbitrary neigh-
boring elements A and B, we define for each element a local
orthogonal system at the boundary �r in the reference con-
figuration, expressed by er� = {τ r , νr , er3}. Here ν r is the
inward unitary normal to the boundary �r and

τ r = νr × er3, (80)

is tangent to �r . Associated with er�, we introduce a local
orthogonal system at the boundary of the current configura-
tion denoted by e� = {τ , ν, e3}. The angle between er3 of
element A and element B is denoted by βr and its counter-
part in the current configuration by β, compare Fig. 2. The
C1-continuity is asymptotically satisfied (as h → ∞) if this
angle does not change during the deformation, such that the
condition β − βr = 0 holds. In order to enforce this condi-
tion, the difference of these angles is penalized which can be
expressed by a minimization problem as

�pen =
∫

�r

1

2
k
((
er3,B × er3,A

) · τ r
B

− (
e3,B × e3,A

) · τ B
)2

d�r , (81)

where k denotes the penalty parameter. The integral in Eq.
(81) is solved by a one point integration or a collocation at
the mid-point. The idea of the enforcement of the continuity
condition only at the midpoint is that it leads to a sufficient
C1-continuity withmesh refinement, as it was shown by [15],
and this formulation is equivalent to an equilibrium bending
or a constant curvature element. The same procedure can
be applied for clamped boundary conditions, as depicted in
Fig. 3a. Therefore the clamping condition is induced by the
minimization of

�pen,clamp =
∫

�r

1

2
k
((
er3,A × er3,A

) · τ r
A

− (
er3,A × e3,A

) · τ r
A

)2
d�r . (82)

In case of multiple branched elements, as exemplary
depicted for the case of three branching elements in Fig. 3b,
the penalty functional can be adopted as

�pen,mult =
∫

�r

1

2
k
((
er3,B × er3,A

) · τ r
B − (

e3,B × e3,A
) · τ B

)2
d�r

+
∫

�r

1

2
k
((
er3,C × er3,A

) · τ r
C −(

e3,C × e3,A
) · τC

)2
d�r .

(83)

This procedure is analogously expandable for systems
with multiple branching elements. In place of the penalty
method, one can also use the Lagrangian or augmented
Lagrangian method. For instance in place of Eq. (81) one
can write in case of the Lagrange method

�lag =
∫

�r
λ

((
er3,B × er3,A

)
· τ rB − (

e3,B × e3,A
) · τ B

)
d�r ,

(84)

with λ as a Lagrange multiplier, or in case of the augmented
Lagrange method
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Fig. 2 Enforcement of C1-continuity; local coordinate system in reference (a) and current (b) configuration

Fig. 3 Enforcement of
C1-continuity at mid-edge nodes
for a a clamped edge, and b
branching of multiple elements

ΩA

ΩA

ΩB

ΩC

(a) (b)

�aug-lag = �lag + �pen. (85)

The construction of the corresponding right-hand side
vectors and the stiffnessmatrices is performed using the auto-
matic differentiation capabilities of AceGen, see [30–32].

7 Numerical examples

In the this section a couple of numerical examples are dis-
cussed in order to demonstrate the reliability and flexibility of
the proposed finite element formulation. The chosen bound-
ary value problems cover isotropic as well as anisotropic
material behavior using polyconvex strain energy functions.
In addition to that a time dependent problem is analyzed and
an application of branched shells is depicted. The solution
of the boundary value problems are calculated by a classical
incremental solution scheme with Newton iterations.

7.1 Pinched cylinder with rigid ends

In the first example a common shell benchmark problem
of a thin cylinder with rigid ends is considered in a non
time-dependent setup, as depicted in Fig. 4. The isotropic
cylindrical shell has a length of L = 200, a radius R = 100
and a height h = 1. The neo-Hookean material is described
by a polyconvex strain energy as

ψ = 1

4
λ ((I3 − 1) − ln I3) + 1

2
μ (I1 − 3 − ln I3) , (86)

compare Sect. 4.1.1, whereas the material parameter are for
the Young’s modulus E = 6.825 × 107 and for the Poisson
ratio ν = 0.3. The penalty parameter is chosen as k = d0105

with the bending stiffness d0 = (Eh3)/(12(1 − ν2)). The
point loads of F = 5.4 × 104 pinches the cylinder on two
opposing sides. Due to the symmetry conditions this bound-
ary value problem can be modeled by only one octant of the
cylinder, which is done in this contribution by a 2× 30× 30
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A
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Rigid end

F

F

L

R

Rigid end

Fig. 4 Pinched cylinder; sketch of the boundary value problem

uniform mesh. The plot of the load over the vertical dis-
placements at point A and the horizontal displacements at
point B, depicted in Fig. 5, are in perfectly shape with the
results which can be found in the literature, e.g., for the shear
deformable theory [45] or [15] but also in the framework of
Kirchhoff–Love formulations in [27]. In addition to that it
can be recognized, considering the final deformed configu-
ration, that the proposed finite element formulation behaves
very robust even for large deformations including huge cur-
vatures.

7.2 Dynamic reversion of a clamped dome

In this example a clamped half sphere is pushed down by
a displacement driven boundary condition using a dynamic
analysis, as presented in [39]. The boundary value prob-
lem is sketched in Fig. 6. The edge of the half sphere is
clamped and the top point has a prescribed displacement of
u3 = −u3(t), plotted on the right in Fig. 6, with a maximal
value of umax

3 = −2r . The radius of the half sphere is given
by r = 0.05 and the thickness of the shell is h = 10−3.
The material model is equivalent to the same above, whereas
the material parameter are chosen such that it corresponds to
polyvinyl siloxane. Therefore the Young’s modulus is given
by E = 105, the Poisson’s ratio by ν = 0.499 and the
initial density by ρ = 1000. For the time integration the
implicit Newmark-beta method has been applied whereas
the Newmark parameter are set to β = 0.3025 and γ = 0.6,
which induces a slight amount of numerical damping. This
boundary value problem is very complex since during the
simulation various snap-throughs and snap-backs appear and
in addition to that very high deformations and bending occur.
Due to the high complexity we used 28,806 triangular ele-
ments in order to model the dome. The results correspond
to the reference results, which have been calculated with a
shear deformable formulation, published in [39]. We expect
to return to the issue of energy conservation and dissipation
in a future work where also the necessary damping of high

frequency vibrations will be investigated. For the proposed
formulation this dampingwas done by the choice of theNew-
mark Parameter (Fig. 7).

7.3 Hyperbolic shell subjected to locally distributed
loads

In the following example a hyperbolic shell loaded by four
pairs of locally distributed axial loads is investigated, com-
pare for example [5,7,8]. The geometry of the hyperbolic
shell is sketched, with its boundary conditions in Fig. 8a and
the reference mesh is depicted in Fig. 8b. The radius of the
system is given by the function

R = R̂(z) = RT

√

1 +
(
z − H/2

4.5

2)

. (87)

The minimal radius is RT = 3, which leads to a maximal
radius of R0 = 5. The total height is defined by H = 12
and the thickness of the shell h = 0.05, respectively. As in
[5], two sets of materials are investigated here. In the first
example an isotropic material model is chosen given by

ψ i_p = c1

(
I1

I 1/33

− 3

)

+ ε1

(

I ε2
3 + 1

I ε2
3

− 2

)

. (88)

This strain energy satisfies the polyconvexity conditions
for c1 > 0, ε1 > 0 and ε2 > 1. The material parameter are
set for the numerical example to

c1 = 100.0, ε1 = 2000.0, ε2 = 10.0. (89)

In addition to that, a transversely isotropic shell is inves-
tigated where the preferred direction m is aligned as a helix
around the hyperbolic shell with β = 45◦. The strain energy
for the anisotropic material is given by

ψ = ψ i_p + α1 〈I1 J4 − J5 − 2〉α2 , (90)

whereas the additional anisotropic part is polyconvex for
α1 > 0 and α2 > 2 and 〈(•)〉 := ((•) + ‖(•)‖)/2 denot-
ing the Macaulay bracket. The additional material parameter
are chosen as

α1 = 1000.0, α2 = 2.3. (91)

The plane stress condition is solved iteratively using a
Newton scheme, as presented in Sect. 4.1. The penalty para-
meter for the enforcement of the C1 condition is set to
k = 104. In order to compare the deformations of the
isotropic and the anisotropic model, we follow the approach
of [5], and apply a load q such that a maximal vertical
displacement of approximately u3 = 2.0 is reached. The
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Fig. 5 Pinched cylinder; plot of the load F over the displacements and the final (unscaled) deformed configuration

Fig. 6 Clamped dome; sketch
of the geometry and plot of
u3(t)

r
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Time: 0.00 Time: 1.25 Time: 2.50 Time: 3.75 Time: 5.00

Fig. 7 Clamped dome: deformed configurations at different times

final deformed configurations, which are in good agree-
ments with the reference results, are depicted in Fig. 9. The
attached transversely isotropic terms lead to a significant dif-
ferentmaterial response. The symmetricmaterial behavior of
the isotropic shell is in complete difference to the twisting
response of the transversely isotropic shell.

7.4 Wrinkling of a membrane

Wrinkling effects of a thin membrane are analyzed in this
numerical example. We consider a square membrane with
truncated corners as depicted in Fig. 10, c.f. [38]. The

length and thickness are given by l1 = 0.9, l2 = 0.05 and
h = 0.001. At two opposing truncated corners the displace-
ments are fixed. A distributed load of q = 0.1 is applied
at the remainder truncated corners. The membrane is mod-
eled by a superimposed transversal isotropic material model,
whereas two cases are taken into account. In case (a), ten-
sion in warp direction, the preferred directions are given by
m1 = [1, 0, 0]T and m2 = [0, 1, 0]T , whereas in case
(b), tensions in weft direction, we choose m1 = [0, 1, 0]T
andm2 = [1, 0, 0]T , respectively. The corresponding strain
energy is additively split into an isotropic and a transversal
isotropic part ψ = ψ i_p + ψa_p. The isotropic part cor-
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Fig. 8 Hyperbolic shell; a
system with boundary
conditions, taken from [5], and
b discretized system with
16,448 elements

H

x

z

q

π
8

y

R0

RT

m

β

(a) (b)

Fig. 9 Hyperbolic shell; deformed configurations: a isotropic and b transversely isotropic shell

responds to the strain energy given in (50)1 whereas the
transversal isotropic part reads as

ψa_p =
2∑

i

α
{i}
1

〈
I {i}
4 − 1

〉α{i}
2

, (92)

with the material parameters α
{i}
1 , α

{i}
2 and the invariants

I {i}
4 = tr[A{i}

i j f i · f j ] where A{i}
i j is given by Eq. (37).

The isotropic material parameters are for the E = 200,

ν = 0.3. The transversal isotropic material parameters for
the warp direction are α

warp
1 = 4 and α

warp
2 = 2.3 whereas

for the weft direction αweft
1 = 1 and αweft

2 = 2.3. The
penalty parameter is chosen as k = (Eh3)/(12(1− ν2))105.
In order to obtain a wrinkling effect a imperfection is
applied to the reference coordinates. Therefore six distrib-
uted nodes are initially displaced by u3 = 0.001. The
deformed configuration is depicted in Fig. 11, whereas the
altering wrinkles due to the different preferred directions be
recognized.
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Fig. 10 Wrinkling of a membrane; boundary value problem for case
(a)

7.5 Plate with varying stiffeners

The proposed finite element formulation can be used without
further modifications for the simulation of boundary value
problems with branched geometries. In order to demonstrate
this ability, a simple supported square plate with diagonal
stiffeners is analyzed, c.f. [19,37,44]. The deflection of the
square plates, which are loaded by a uniformdistributed pres-
sure p, are compared for three different stiffening conditions,

compare Fig. 12. The length and the thickness are given by
l = 25.4 and h = 0.254, respectively. The length of the
flange is hs = 1.27 in case of the eccentric stiffening and
hs = 0.508 in case of the concentric stiffening. The material
model is described by the polyconvex strain energy

ψ = 1

4
λ ((I3 − 1) − ln I3) + 1

2
μ (I1 − 3 − ln I3) , (93)

compare Sect. 4.1.1. The material parameters are E =
117.25 for the Young’s modulus, ν = 0.3 for the Poisson’s
ratio and the penalty parameter is chosen as k = d0105 with
the bending stiffness d0 = (Eh3)/(12(1 − ν2)). The plate
is meshed by 8 × 8 × 2 elements, whereas the flange is dis-
cretized by 2, respectively one element over the thickness for
the eccentric and concentric stiffening. In order to demon-
strate the stiffening effects, the out of plane displacements in
the center of the plate are compared in Fig. 13. The applied
materialmodel differs to thematerialmodelwhich is recently
used for this numerical example. In the literature the common
material model is the Saint-Venant–Kirchhoff model, which
does not satisfy the polyconvexity condition. However, the
obtained results are in very close agreement compared to
the results from [19,37,44], which can be explained by the
relatively small strains, which are obtained in this example.

Fig. 11 Wrinkling of a membrane; deformed configurations of the membrane. a Tension in warp direction and b tension in weft direction

Fig. 12 Plate with varying
stiffeners; boundary value
problem and cross sections for
(a) unstiffened-, (b) eccentric
stiffened-, and (c) concentric
stiffened plate
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Fig. 13 Plate with varying stiffeners; Scaled (by factor 10) deformed configuration of the eccentric stiffened plate and load–displacement plot for
(a) unstiffened-, (b) eccentric stiffened-, and (c) concentric stiffened plate

8 Conclusion

In this work, an astonishingly simple finite element for-
mulation is presented, following the geometrically exact
Kirchhoff–Love theory as discussed in [42]. Therein we have
used a penalty formulation in order to fulfill the required
C1-continuity, which is the crucial implementational aspect
of the shear-rigid shell model. This enables the use of well
known and elementary C0 quadratic continuous shape func-
tions which also simplifies the handling of the boundary
conditions drastically. In this approach the plane stress con-
dition is satisfied on a constitutive level which leads to great
flexibility regarding thematerialmodel. Thiswork dealswith
finite elasticity using isotropic and anisotropic polyconvex
energy densities. In this framework the existence ofminimiz-
ers is guaranteed. Due to the generality of the shell model the
formulation can also be extended to inelastic materials. The
deployed time integration scheme is not energy conserving
but an extension to an exact conserving scheme, as for exam-
ple proposed in [16], is considered in detail in a next work.
Combined with powerful mesh generators the proposed tri-
angular finite element can be used to discretize and solve
boundary value problems with complex geometries. A plane
reference configuration is used in the proposed work. An
extension to initially curved shells, as done in [41], can be
regarded using an initial stress-free deformation.
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