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Abstract In this paper layered composite shells subjected
to static loading are considered. The theory is based on a
multi-field functional, where the associated Euler–Lagrange
equations include besides the global shell equations formu-
lated in stress resultants, the local in-plane equilibrium in
terms of stresses and a constraint which enforces the correct
shape of warping through the thickness. Within representa-
tive volume elementswarping displacements are interpolated
with layerwise cubic functions in thickness direction and con-
stant shape throughout the reference surface. Elimination
of warping and Lagrange parameters by static condensa-
tion leads to a material matrix for the stress resultants and
to shear correction factors for layered plates and shells.
For linear elasticity the computation can be done once in
advance. The condensed material matrix is used in dis-
placement based elements along with the enhanced strain
method or in mixed hybrid elements with the usual 5 or
6 nodal degrees of freedom. This allows standard geomet-
rical boundary conditions and the elements are applicable
also to shell intersection problems. The interlaminar shear
stresses are evaluated via the constitutive law by back
substitution of the eliminated parameters. The computed
transverse shear stresses are automatically continuous at the
layer boundaries and zero at the outer surfaces. Further-
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more, the integrals of the shear stresses coincide exactly
with the shear forces without introduction of further con-
straints.

Keywords Layered composite plates and shells · Con-
strained optimization problem · Continuous interlaminar
shear stresses · Shear correction factors

1 Introduction

A survey on models to compute the complicated three-
dimensional stress state in laminated plates and shells is given
e.g., in [1,2]. In the following only a few papers out of a large
number are discussed.

Shell elements which account for the layer sequence
of a laminated structure are able to predict the deforma-
tion behaviour of the reference surface sufficiently accurate.
This holds also for the layerwise linear shape of the in-
plane stresses through the thickness, if the shell is not
too thick. In contrast to that only averaged transverse
shear strains through the thickness are obtained within
the Reissner–Mindlin theory. As a consequence only the
average of the transverse shear stresses is accurate. Nei-
ther the shape of the stresses is correct nor the boundary
conditions at the outer surfaces are fulfilled. Within the
Kirchhoff theory the transverse shear strains are set to zero.
For this approach C1-continuous shape functions are nec-
essary, whereas Reissner–Mindlin elements require only
C0-continuity.On the other hand arrangements to avoid shear
locking are necessary.

In several papers the equilibrium equations are exploited
within a post-processing procedure to obtain the interlam-
inar stresses, e.g., [3,4] for the transverse shear stresses.
The essential restriction of the approach is the fact that
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these stresses are not embedded in the variational formula-
tion and an immediate extension to geometrical and physical
nonlinearity is not possible. Furthermore first and second
derivatives of the in-plane stresses require bi-quadratic or
bi-cubic shape functions.

In [5] a proper generalized decomposition and layer-wise
approach for the modelling of composite plate structures is
proposed. The authors in [6–8] present linear plate elements
based on mixed-enhanced approaches. On basis of the first-
order shear deformation theory resultant shear stresses and
enhanced incompatible modes are used as primary variables.

In [9] refined theories with seven unknown kinematic
quantities have been presented. The standard displacement
field is enhanced by layer-wise (zig-zag) functions through
the thickness, see also [10].

Higher order plate and shell formulations and layerwise
approaches represent a wide class of advanced models, e.g.,
[11–16]. In [17] recommendations for an optimal choice
for the thickness interpolation are given. For geometrical
nonlinear formulations we refer to e.g., [18–21]. These
theories are associated with global layerwise degrees of
freedom which makes the general handling complicated for
practical problems, e.g., when structures with intersections
occur.

The use of brick elements or so-called solid shell ele-
ments, e.g., [22,23] represents a computationally expensive
approach. For a sufficient accurate evaluation of the inter-
laminar stresses each layer must be discretized with several
elements (≈4–10) in thickness direction. Especially for non-
linear practical problems with a multiplicity of load steps
and several iterations in each load step this is not a feasible
approach.

The notion of a shear correction factor was first introduced
by Timoshenko [24]. For inhomogeneous plates and shells
shear factors have been computed e.g., in [6,25–34], and
references therein. The factors are especially important for a
frequency analysis of vibrating plates and shells.

Based on above discussionwe propose a shell formulation
which is characterized by the following features and new
developments.

(i) The underlying shell theory is based on the Reissner–
Mindlin kinematics with inextensible director field.
This leads in the basic version to averaged transverse
shear strains through the thickness when exploiting
the Green–Lagrangian strain tensor. The displacements
of the Reissner–Mindlin kinematics are enriched by
warping displacements which are interpolated with
layerwise cubic functions through the thickness. We
propose a multi–field functional, where the associated
Euler–Lagrange equations include besides the usual
shell equations in terms of stress resultants the in-plane
equilibrium in terms of stresses and a constraint which

enforces the correct shape of warping through the thick-
ness. Based on a previous paper [35] we present the
following enhancements and improvements.

(ii) The global shell equations are extended to geometrical
nonlinearity. In [35] quasi linear dependent columns are
added to avoid singular matrices. This approximation
is overcome by a reformulation of the shape functions
for the independent quantities. As an add-on the nec-
essary pivot change formulated in [35] is automatically
obtained.

(iii) Thematerial matrix for the stress resultants is computed
in representative volume elements (RVE). Elimina-
tion of warping parameters and Lagrange parameters
is achieved by static condensation. For linear elas-
ticity the computation can be done once as a pre-
processing, which reduces the computing time signif-
icantly. The condensation affects only the transverse
shear stiffness. In this context shear correction fac-
tors for layered plates and shells are defined. The
resulting material matrix is used to compute the stiff-
ness matrix of displacement based elements combined
with the enhanced strain method or of mixed hybrid
elements with the usual 5 or 6 nodal degrees of
freedom. This is an essential feature since standard
geometrical boundary conditions can be applied and
the element is applicable also to shell intersection
problems.

(iv) The interlaminar shear stresses are computed via the
constitutive law by back substitution of the condensed
parameters using the stored matrices of the elimination
procedure. One obtains a shape which is automat-
ically continuous at the layer boundaries and zero
at the outer surfaces. Furthermore, the integrals of
the shear stresses coincide identically with the shear
forces computed with the material law for the stress
resultants.

The paper is organized as follows. In Sect. 2 the vari-
ational formulation is presented. The kinematics and the
constitutive equations for the stress resultants are specified.
Furthermore, thickness integration of the in–plane equilib-
rium and the derivation of a constraint are carried out. A
constrained optimization problem is formulated and varia-
tion and associated Euler–Lagrange equations are derived.
The material matrix for the stress resultants is computed in
a RVE in Sect. 3. In Sect. 4 several linear test examples with
different layer sequences and a stiffened cylindrical shell as
nonlinear example are investigated. For various laminates
shear correction factors are computed and compared, if pos-
sible, with results from the literature. The influence of the
factors on eigenfrequencies of vibrating plates is investi-
gated.
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2 Variational formulation

2.1 Kinematics

Let B be the three-dimensional Euclidean space occupied by
a shell with thickness h. With ξ i we denote a convected coor-
dinate system of the body, where for the thickness coordinate
holds h− ≤ ξ3 ≤ h+. The reference surface � of the shell
is defined with ξ3 = 0 and the coordinate on the boundary
� = �u

⋃
�σ is denoted by s. In the following the sum-

mation convention is used for repeated indices, where Latin
indices range from 1 to 3 and Greek indices range from 1 to
2. Commas denote partial differentiation with respect to the
coordinates ξ i .
The position vector of the reference surface is denoted
by X(ξ1, ξ2). Furthermore, the vector field D̄(ξ1, ξ2) with
|D̄(ξ1, ξ2)| = 1 which is perpendicular to � is intro-
duced. The director field of the current configuration with
position vector x(ξ1, ξ2) follows from d(ξ1, ξ2) = R D̄,
where R(ϕ) denotes a rotation tensor. With d · x,α �= 0
the Reissner–Mindlin theory accounts for averaged trans-
verse shear strains. Within the vector v := [u,ϕ]T the
displacements u(ξ1, ξ2) = x − X and the rotational
parameters ϕ(ξ1, ξ2) of the reference surface are summa-
rized.

Based on the introduced kinematic assumptions one can
derive the shell strains evaluating the Green–Lagrangian
strain tensor. The membrane strains εαβ , curvatures καβ and
transverse shear strains γα

εαβ = 1

2

(
x,α ·x,β −X,α ·X,β

)

καβ = 1

2

(
x,α ·d,β +x,β ·d,α −X,α ·D̄,β −X,β ·D̄,α

)
(1)

γα = x,α ·d − X,α ·D̄

are organized in the vector

ε(v) = [ε11, ε22, 2ε12, κ11, κ22, 2κ12, γ1, γ2]T . (2)

So-calledwarpingdisplacements ũ = [ũ1, ũ2]T are super-
posedon the linear shapeof theReissner–Mindlin theory.The
shape of ũ through the thickness is chosen as

ũ(ξ3) = �(ξ3)α . (3)

The vector α is constant throughout the representative vol-
ume element as is defined in Sect. 3.1 and contains alternating
the discrete warping ordinates in 1- and 2-direction of the
nodes in thickness direction. For N layers this leads to
M = 6 · N +2 components in α, see Fig. 1. The interpolation
matrix contains cubic hierarchic functions

1

N

i h i h

φ φ φ φ

ζ

Fig. 1 Laminate with N layers

�(ξ3) = [φ1 12 φ2 12 φ3 12 φ4 12] ai

φ1 = 1

2
(1 − ζ ) φ2 = 1 − ζ 2 φ3 = 8

3
ζ (1 − ζ 2)

φ4 = 1

2
(1 + ζ ) , (4)

where −1 ≤ ζ ≤ 1 is a normalized thickness coordinate of
layer i . Furthermore,

ai = [
08×6·(i−1) | 18 | 08×6·(N−i)

]
8×M (5)

is an assemblymatrix, which relates the 8 degrees of freedom
of layer i to the M components of α and 1n denotes a unit
matrix of order n.

2.2 Constitutive equations for the stress resultants

Assuming orthotropic material behaviour the constitutive
equations are introduced in an orthonormal coordinate sys-
tem and S33 = 0 in the following standard manner

⎡

⎢
⎢
⎢
⎢
⎣

S11

S22

S12

S13

S23

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

C11 C12 C13 0 0
C21 C22 C23 0 0
C31 C32 C33 0 0
0 0 0 C44 C45

0 0 0 C54 C55

⎤

⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

E11

E22

2E12

2E13

2E23

⎤

⎥
⎥
⎥
⎥
⎦

S = C E .

(6)

Due to the varying fibre orientation the material constants
Ci j = C ji differ for each individual layer. The layer strains
of a point in shell spacewith coordinates ξ3 are obtainedwith

E = A1 ε + A2 α (7)
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where

A1=
[

13 ξ3 13 0
0 0 12

]

A2 =
[

03×8

A2s

]

ai

A2s = 2

hi

[
φ′
112 φ′

212 φ′
312 φ′

412
]

φ′
j = dφ j

dζ
.

(8)

The first part A1 ε emanates from the Reissner–Mindlin
kinematic, whereas the second part A2 α follows from the
superposed warping displacements.

Now the relation of the stress resultants to S is defined by
thickness integration of the specific internal virtual work and
δE = A1 δε + A2 δα. This yields

h+∫

h−
δET S μ̄ dξ3 = δεT σ 1 + δαT σ 2 (9)

with

σ 1 :=
h+∫

h−
AT
1 S μ̄ dξ3 σ 2 :=

h+∫

h−
AT
2 S μ̄ dξ3 , (10)

where μ̄ denotes the determinant of the shifter tensor. The
integrals are computed in a RVEwith rectangular shape, thus
μ̄ = 1 holds, see Sect. 3.1. The components of

σ 1 =
[
n11, n22, n12, m11, m22, m12, q1, q2

]T
(11)

are membrane forces nαβ = nβα , bending moments mαβ =
mβα and shear forces qα . The components of σ 2 are higher
order stress resultants.

Now, inserting (6) with (7) into (10) yields the constitutive
law for the stress resultants
[

σ 1

σ 2

]

=
[

D11 D12

D21 D22

] [
ε

α

]

(12)

with

Dαβ =
h+∫

h−
AT

α C Aβ μ̄ dξ3 = DT
βα . (13)

At first, D11 reads

D11 =
h+∫

h−
AT
1 C A1 μ̄ dξ3 =

⎡

⎣
Dm Dmb 0
DT

mb Db 0
0 0 Ds

⎤

⎦

(8×8)

(14)

The submatrices for membrane, bending and shear are
obtained by summation over N layers and analytical integra-
tion in each layer leading to well–known expressions. For

symmetric layer sequences the coupling matrix Dmb van-
ishes. In Ds shear correction factors are not introduced.

Inserting (6–8) into (13) the matrices D22 and D21 can
now be assembled with the contributions of the layers

D22 =
N∑

i=1

aiT Di
22 ai D21 =

N∑

i=1

aiT Di
21 (15)

where

Di
22 =

+1∫

−1

AT
2s Cs A2s μ̄

hi

2
dζ Cs =

[
C44 C45

C54 C55

]

Di
21 =

+1∫

−1

AT
2s Cs A1s μ̄

hi

2
dζ A1s = [

02×6 12
]

.

(16)

With μ̄ = 1 only powers of ζ occur in (16) and analytical
integration is possible. A numerical integration with three
Gauss integration points also leads to exact results. Due to
the interpolation functions with local layerwise support it
follows that D22 is banded and thus is sparse. In D21 only the
last two columns are populated.

2.3 Equilibrium equations and a constraint

Neglecting body forces the equilibrium equations for the in–
plane directions read

[
S11,1 +S12,2 +S13,3

S12,1 +S22,2 +S23,3

]

= f = 0 . (17)

In (17) the in-plane stresses Sαβ as well as transverse shear
stresses Sα3 enter. The coordinate system, as is introduced
in Sect. 3.1, is orthogonal and constant. This allows partial
derivatives instead of covariant derivatives.

For the in-plane stresses holds with (6–8)

⎡

⎣
S11

S22

S12

⎤

⎦ =
⎡

⎣
C11 C12 C13

C21 C22 C23

C31 C32 C33

⎤

⎦

⎡

⎣
ε11 + ξ3 κ11
ε22 + ξ3 κ22
2ε12 + ξ3 2κ12

⎤

⎦

.

(18)

Introducing

C̄23 =
[

C11 C12 C13 C31 C32 C33

C31 C32 C33 C21 C22 C23

]

λε =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε11,1
ε22,1

2ε12,1
ε11,2
ε22,2

2ε12,2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

λκ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

κ11,1
κ22,1

2κ12,1
κ11,2
κ22,2

2κ12,2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(19)
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the derivatives of the in-plane stresses yield
[

S11,1 +S12,2

S12,1 +S22,2

]

= [
C̄23 ξ3 C̄23

]
[

λε

λκ

]

f1 = C23 λ .

(20)

Furthermore we introduce

σ 2 = −
h+∫

h−
�T

[
S13,3
S23,3

]

μ̄ dξ3 D23 := −
h+∫

h−
�T C23 μ̄ dξ3 ,

(21)

where the reformulation of (10)2 with μ̄ = 1 to (21)1 is
obtained with integration by parts and consideration of stress
boundary conditions Sα3(h−) = Sα3(h+) = 0.

The evaluation of D23 is performed by summation over
layers considering (4)

D23 = −
N∑

i=1

aiT Di
23 (22)

and

Di
23 =

+1∫

−1

φiT C23 μ̄
hi

2
dζ

φi = [
φ1 12 φ2 12 φ3 12 φ4 12

]
. (23)

Again the integral (23)1 can be computed by analytical inte-
gration or numerical Gauss integration with three integration
points.

Now the integral form of f = 0 according to (17) is formu-
lated with δũ = � δα. Considering (20) and (21) it follows

h+∫

h−
δũT f μ̄ dξ3 = −δαT (σ 2 + D23 λ) = 0 (24)

and with δα �= 0 one obtains

σ 2 + D23 λ = 0 , (25)

which describes equilibrium of higher order stress resultants.
Thewarping displacements have to fulfill an orthogonality

condition. To specify this constraint we introduce the equi-
librium of virtual in-plane stresses considering (20)

[
δS11,1 +δS12,2

δS12,1 +δS22,2

]

= C23 δλ = δf1 = 0 . (26)

The integral form of δf1 = 0 yields with ũ = �α

h+∫

h−
δfT

1 ũ μ̄ dξ3 = δλT

h+∫

h−
CT
23� μ̄ dξ3 α = 0 . (27)

With

D32 = −
h+∫

h−
CT
23 � μ̄ dξ3 = DT

23 (28)

Eq. (27) reads −δλT D32 α = 0 and with δλ �= 0 one obtains
the constraint

g(α) = D32 α = 0 . (29)

This orthogonality condition enforces the correct shape of
ũ through the thickness. It has the descriptive meaning that
the superposed warping displacements must not lead to addi-
tional membrane forces and bending moments.

2.4 Functional and Euler–Lagrange equations

We introduce the constrained optimization problem

�(θ) =
∫

�

[W (ε,α) + λT g(α)] dA + �ext (u) → stat.

(30)

with independent quantities θ := [v,α,λ]T . The strain
energy density W (ε,α) per area element is obtained with
thickness integration of

W (E) = 1

2

h+∫

h−
ET C E μ̄ dξ3 (31)

and leads with E = A1 ε + A2 α and (13) to the quadratic
form

W (ε,α) = 1

2

[
ε

α

]T [
D11 D12

D21 D22

] [
ε

α

]

.

(32)

The Lagrange term λT g is formulated with the vector of
Lagrange multipliers λ to account for the constraint g(α) =
0. The shell is loaded statically by surface loads p̄ in� and by
boundary forces t̄ on the boundary �σ . Hence, the potential
of the external loads reads

�ext (u) = −
∫

�

uT p̄ dA −
∫

�σ

uT t̄ ds . (33)

Furthermore, the area element of the reference surface is
given with dA = j dξ1 dξ2 where j = |X,1 ×X,2 |.
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With admissible variations δθ = [δv, δα, δλ]T and δv :=
[δu, δϕ]T the stationary condition for functional (30) yields

δ�(θ , δθ) =
∫

�

⎡

⎣
δε

δα

δλ

⎤

⎦

T ⎡

⎣
D11 D12 0
D21 D22 D23

0 D32 0

⎤

⎦

⎡

⎣
ε

α

λ

⎤

⎦ dA

+ δ�ext = 0

δ�ext = −
∫

�

δuT p̄ dA −
∫

�σ

δuT t̄ ds , (34)

where the virtual shell strains
δε = [δε11, δε22, 2δε12, δκ11, δκ22, 2δκ12, δγ1, δγ2]T read

δεαβ = 1

2
(δx,α ·x,β +δx,β ·x,α )

δκαβ = 1

2
(δx,α ·d,β+δx,β ·d,α +δd,α ·x,β +δd,β ·x,α )

δγα = δx,α · d + δd · x,α .

(35)

Finally we derive the Euler–Lagrange equations asso-
ciated with the introduced functional. For this purpose
variational equation (34) is rewritten with (12) and (29) as

δ�(θ , δθ)

=
∫

�

[δεT σ 1 + δαT (
σ 2 + D23 λ

) + δλT g] dA + δ�ext

= 0 . (36)

Integration by parts is applied to the first term in (36)
using (11) and (35). Hence, applying standard arguments of
variational calculus yields as Euler–Lagrange equations the
equilibrium of stress resultants and stress couple resultants

1

j
( j nα),α +p̄ = 0

1

j
( j mα),α +x,α ×nα = 0 in �,

(37)

the constraint g = 0 in� (29) and with σ 2 +D23 λ = 0 in�

the equilibrium of higher order stress resultants (25). Fur-
thermore one obtains the static boundary conditions

j (nα να) − t̄ = 0 j (mα να) = 0 on �σ . (38)

Here, να are components of the outward normal vector on
�σ and

nα = nαβ x,β +qα d +mαβ d,β mα = d ×mαβ x,β . (39)

The geometric boundary conditions v = v̄ on �u have to be
fulfilled as constraints.

3 Finite element formulation

3.1 Representative volume element

The evaluation of the matrices defined in the last section is
carried out in representative volume elements (RVEs) which
are located at the integration points of the shell reference
surface�, see Fig. 2. For linear elasticity and constant thick-
ness h the computation can be done in advance for one RVE
only. An orthonormal coordinate system is introduced in the
center of the square reference surface �i with edge length
�. An investigation on a proper choice of � is performed
in Sect. 4.2.2. Normalized coordinates −1 ≤ ξ ≤ 1 and
−1 ≤ η ≤ 1 are defined with ξ = 2

�
ξ1 and η = 2

�
ξ2, which

yields a constant Jacobian matrix

J =
⎡

⎣
∂ξ1

∂ξ
∂ξ2

∂ξ

∂ξ1

∂η
∂ξ2

∂η

⎤

⎦ =
[

�
2 0

0 �
2

]

.

(40)

The approximation for θh := [εh,αh,λh]T in �i is cho-
sen as

⎡

⎢
⎣

εh

αh

λh

⎤

⎥
⎦ =

⎡

⎢
⎣

N1
ε N2

ε 0 0 N3
ε

0 0 0 Nα 0

0 N1
λ N2

λ 0 N3
λ

⎤

⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ε̂

λ̂1

λ̂2

α̂

λ̂3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

θh = Nθ θ̂ ,

(41)

where for the parameters ε̂ ∈ R
8, λ̂1 ∈ R

6, λ̂2 ∈ R
4, α̂ ∈

R
M and λ̂3 ∈ R

8 holds. The interpolation matrices N1
ε = 18,

N2
ε and N3

ε are specified in dependence on Ref. [36]

N2
ε =

⎡

⎢
⎣

Nm2
ε 0 0

0 Nb2
ε 0

0 0 Ns2
ε

⎤

⎥
⎦

8×6

Nm2
ε = Nb2

ε =
⎡

⎢
⎣

η 0

0 ξ

0 0

⎤

⎥
⎦

Ns2
ε =

[
η 0

0 ξ

]

N3
ε =

⎡

⎢
⎣

Nm3
ε 03×4

03×4 Nb3
ε

02×4 02×4

⎤

⎥
⎦

8×8

Nm3
ε =Nb3

ε =
⎡

⎢
⎣

ξ 0 0 0

0 η 0 0

0 0 ξ η

⎤

⎥
⎦

.

(42)

The coefficient matrices T0
ε, (T

0
σ )−1 and the quantities

ξ̄ , η̄, j0/j , as are used in [36], can be discarded due to the
rectangular shape of �i .

The warping displacements αh are constant in �i with
Nα = 1M . This also holds for the derivatives of membrane
strains and curvatures λh = [λh

ε ,λ
h
κ ]T with
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Fig. 2 RVE at an integration
point of a shell and reference
surface of the RVE

N1
λ =

[
N11

λ 06×2 06×2
06×2 N11

λ 06×2

]

N11
λ = 2

�

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
0 1
0 0
1 0
0 0
0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

N2
λ =

[
N21

λ 06×2
06×2 N21

λ

]

N21
λ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0
1 0
0 1
0 1
0 1
1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

N3
λ =

[
N31

λ 06×4
06×4 N31

λ

]

N31
λ = 2

�

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 1 0 0
0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(43)

The components of N11
λ and N31

λ are obtained computing
the derivatives of the membrane strains and curvatures in
(41) with respect to ξα considering (40). When multiplying
C̄23 from (19) with N21

λ , one obtains the reduced form of
C̄23 as is used in [35] as an approximation to avoid singular
matrices. Here, N2

λ λ̂2 describes an independent part of the
interpolation.

Remark: In all computed examples the parameters asso-
ciated with Ns2

ε in (42) are zero, such that this matrix and the
associated parameters could be taken out. Furthermore the
shape function matrix N1

λ in (41) has negligible influence on
the results.

We insert θh = Nθ θ̂ according to (41) and the corre-
sponding equation for the virtual quantities δθh = Nθ δθ̂ in
variational Eq. (34), which now reads

δ�(θh, δθh) =
∫

�

1

�2

∫

�i

δθhT D θh dAi dA + δ�ext = 0

D =
⎡

⎣
D11 D12 0
D21 D22 D23

0 D32 0

⎤

⎦ (44)

or

δ�(θh, δθh) =
∫

�

δθ̂
T

H θ̂ dA + δ�ext = 0

H = 1

�2

∫

�i

NT
θ D Nθ dAi (45)

with a constant and symmetric matrix DJ×J , where J =
20+ M . Since only powers of ξ and η occur, the integration
for HK×K , where K = 26+ M and dAi = �2/4 dξ dη, can
be carried out analytically. A 2 × 2 Gauss integration also
leads to correct results. It is important to note, that although
D is singular, H is regular.

The parameters β̂ := [λ̂1, λ̂2, α̂, λ̂3]T in θ̂ = [ε̂, β̂]T are
independent quantities in the RVEs, and thus are not contin-
uous in�. Furthermore δ�ext does not depend on β̂. For this
reason a static condensation of β̂ from the set of equations

[
H11 H12

H21 H22

] [
ε̂

β̂

]

=
[

σ 1

0

]

(46)

is possible. Here Hαβ are the submatrices of H, where
H11 = D11 according to Eq. (14) holds. The right hand side
of (46) contains the vector of stress resultants, since the lat-
eral surfaces of the RVEs are not stress free. The elimination
yields

β̂ = −H−1
22 H21 ε̂ (47)

123



136 Comput Mech (2017) 59:129–146

and the material law for the stress resultants

σ 1 = D̃ ε̂ D̃ := H11 − H12 H−1
22 H21 . (48)

Due to the interpolation in thickness direction with local lay-
erwise support H22 is sparse. Thus the effort for the static
condensation is even for examples with many layers com-
paratively small. The sequence of the sub-vectors in θh and
θ̂ in Eq. (41) is interchanged. This causes a pivot change in
H and only enables the static condensation.

The condensed matrix D̃8×8 possesses the same structure
as D11, see eq. (14).

D̃=
⎡

⎣
D̃m D̃mb 0
D̃T

mb D̃b 0
0 0 D̃s

⎤

⎦
D̃m = Dm

D̃b = Db

D̃mb = Dmb

D̃s =
[

D̃s11 D̃s12

D̃s12 D̃s22

]

(49)

Only the shear stiffness Ds = DT
s with components Dsαβ

is affected by the static condensation. In this context shear
correction factors are defined as

k1 = D̃s11

Ds11
k2 = D̃s22

Ds22
k12 = D̃s12

0.5 (Ds11 + Ds22)
. (50)

Since Ds12 may take the value zero, the average of the
diagonal terms is taken as reference value for k12. For a homo-
geneous laminate the well-known value k1 = k2 = 5/6, as
is derived in [37,38], is obtained with (50). Furthermore,
k12 = 0 holds for a homogeneous and isotropic laminate
and for various anisotropic laminates with certain stacking
sequences. It is pointed out that k12 = √

k1 k2, as is assumed
in several papers, does not hold here.

If the element coordinate system and the coordinate sys-
temof theRVEdonot coincide, e.g., for unstructuredmeshes,
D̃ has to be transformed to the element coordinate system.
The evaluation of the stresses is performed via constitutive
law (6) and layer strains (7). For this purpose the eliminated
parameters are obtained by back substitution using Eq. (47).
In doing so, the parameters ε̂ have to be transformed to the
coordinate system of the RVE. The transformations are stan-
dard and therefore are not displayed here.

3.2 Linearized variational equations

Identifying the parameters ε̂ in the RVEs with the finite ele-
ment approximation of the shell strains shell εh according
to (2), variational equation (45) now reads with the static
condensation (47–48)

δ�(εh, δεh) := g(εh, δεh)=
∫

�

δεhT D̃ εh dA+δ�h
ext =0 .

(51)

Eq. (51) represents the principle of virtual work as variational
basis for geometrical nonlinear shell elements based on the
displacement method. The finite element approximations for
εh and δεh are inserted in (51) and the resulting nonlinear
set of equations is iteratively solved using Newton’s method.
For this purpose linearization is applied which yields

L [g(εh, δεh),�εh] := g(εh, δεh) + Dg · �εh

=
numel∑

e=1

δvT [KT �v + (fint − fext )] .

(52)

Here, numel denotes the total number of finite shell ele-
ments to discretize the problem. Furthermore, δv and �v are
the virtual element displacement vector and the incremen-
tal element displacement vector, respectively. The vector of
internal element forces fint and the tangential element stiff-
ness matrix KT for 4–node elements, applying the assumed
strain method for the transverse shear strains [39] and the
enhanced strain method [40] for the membrane strains and
curvatures are specified e.g., in [41]. The element vector fext

of the external loads p̄ in � and t̄ on �σ corresponds to the
one of a standard displacement method. When discarding
the parameters of the enhanced strain formulation a pure dis-
placement based finite shell element is contained as special
case.

The basis for mixed hybrid shell elements is given with
θ := [v, σ , ε,α,λ]T and an extension of functional (30)

�(θ) =
∫

�

[W (ε,α) + σ T (εg(v) − ε) + λT g(α)]

dA + �ext (u) → stat. (53)

with the second term of the integrand. Here, εg and ε

denote geometrical and physical shell strains, respectively.
The variation and associated Euler–Lagrange equations are
derived in Ref. [35]. The associated finite element formu-
lation leads with static condensation of [σ h, εh,αh,λh]
on element level to Eq. (52). The tangential element stiff-
ness matrix KT and the vector of internal element forces
fint are specified in [42] and in an extended version for
laminated shells in [36]. In both papers a remarkable robust-
ness of the mixed hybrid element in nonlinear applications
is shown. In comparison to displacement based elements
much bigger load steps with less iterations are possi-
ble.

The developed element formulation has been imple-
mented in an extended version of the general finite element
program FEAP [43].
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Fig. 3 Simply supported
layered plate
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Table 1 Shear correction
factors for different lay-ups

Layer sequence (◦) Theory k1 k2 k12 Comments

[0/90] [26] 0.8212 0.8212 – cyl. bending

Present 0.8212 0.8212 0 C12 = C33 = 0

Present 0.8596 0.8596 0

[0/90/90/0] [26] 0.5952 0.7205 – cyl. bending

Present 0.5952 0.7205 0 C12 = C33 = 0

Present 0.5936 0.7788 0

[0/90/0/90/0/90/0/90/0] [25] 0.6891 0.6112 – cyl. bending

Present 0.6891 0.6112 0 C12 = C33 = 0

Present 0.6876 0.6188 0

[30/−30] [25] 0.8592 0.8592 – cyl. bending

Present 0.8750 0.7341 0

[30/−30/−30/30] [25] 0.7549 0.6730 – cyl. bending

Present 0.6773 0.6722 −0.0376

4 Examples

4.1 Preface

Several plate examples and one shell example with car-
bon fibre reinforced polymer (CFRP) layers and laminated
wooden layers are considered in this section. The material
constants assuming transversal isotropic material behaviour
as special case of orthotropy are specified along with the
respective example. The present quadrilateral shell element
is based on variational equation (51) and can be applied to
finite deformation problems. Shear locking is avoided apply-
ing the assumed strain approach [39].

For the plate examples we use the notation depicted in
Fig. 3. All considered plates are simply supported (soft sup-
port). The origin of the x, y, z–coordinate system coincides
with the plate centre. The fibre direction 0◦ corresponds to
the x–direction.

Furthermore, 3D reference solutions are computed using
8-noded solid shell elementswith three displacement degrees
of freedom at the nodes, see Ref. [23]. Due to the applied
assumed strain interpolation for the transverse shear strains
[39] these elements possess an orientation which must coin-

cide with the thickness direction of the shell. Furthermore, 5
parameters are used for the so-called enhanced strain interpo-
lation. Each layer must be discretized with several elements
to obtain sufficient accurate results.

4.2 Evaluation of shear correction factors

4.2.1 Comparison with literature results

In this sectionwe compare shear correction factors according
to Eq. (50) with results of Whitney [25,26]. The material
constants, chosen by Withney (here in SI units), are

E1 = 172369 N/mm2 G12 = 3447 N/mm2

E2 = 6895 N/mm2 G23 = 1379 N/mm2

ν12 = 0.25 ν23 = 0.25 .

(54)

It is pointed out that due to the independent choice ofG23 and
ν23 these constants do not fulfill all conditions for transversal
isotropy. According to Table 1 five different layer sequences
with equal layer thickness within a total thickness h = 1 mm
are investigated. Only for the third example holds: each 0◦
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Fig. 4 Influence of �/h on the shear correction factors

layer has a thickness h/10 and each 90◦ layer has a thickness
of h/8.

Present factors are slightly different from the literature
results. When setting the elasticity parameters C12 = C21

andC33 in (19)1 to zero,we can verify the comparative results
for cross-ply laminates. Thereby the simplifying assump-
tion of cylindrical bending, as is used in [25,26], is taken
into account. Furthermore, the ansatz D̃s12 = k12 Ds12 with
k12 = √

k1 k2 is used in [25]. From this equation D̃s12 = 0
follows, since Ds12 = 0 holds for all examples of Table 1.
For the angle–ply laminates a transition to [25] can not be
shown. Here, we verify present results for the last example
via a frequency analysis of a vibrating plate, see Sect. 4.3.

4.2.2 Influence of the RVE-length

For the cross-ply laminate [0◦/90◦/90◦/0◦] the influence
of the RVE-length � on the shear correction factors is

investigated. The converged values according to Table 1
k1 = 0.5936 and k2 = 0.7788 are obtained as �/h exceeds
certain values, see Fig. 4. Furthermore, in this range present
factors are independent of the total thickness h. Similar
results are obtained for other stacking sequences. Based on
these investigations all further computations are performed
with the ratio �/h = 100. The factors in Table 1 are also
based on this value.

4.3 Influence of shear correction factors on
eigenfrequencies

4.3.1 Simply supported CFRP plate

Eigenfrequencies of a simply supported square plate are com-
puted in this section to verify the correctness of the computed
shear factors. The plate length and the total thickness read
L =1000mmand h = 50mm, respectively.Additional to the
material data (54) a density ρ = 1500 kg/m3 is chosen. The
last example of Table 1 with a [30◦/−30◦/−30◦/30◦] stack-
ing sequence is investigated. The shell results are obtained
using a regular 80 × 80 mesh of 4-node elements. A 3D
reference solution is computed using the 8-noded solid shell
element [23] and a regular 80×80×(4×4)mesh. The first 10
eigenfrequencies are listed in Table 2. Present results using
the factors of Table 1 show deviations of less than 0.4% in
comparison to the reference solution. In contrast to that use
of the factors [25] in a 4-node Reissner–Mindlin shell ele-
ment (R.M. shell) with assumed transverse shear strains [39]
lead with increasing frequency to increasing deviations. This
becomes even more evident when using k1 = k2 = 5/6 for
homogeneous plates. Plots of the normalized eigenvectors
computed with the present element are depicted in Fig. 5.

Table 2 Eigenfrequencies of a
layered plate

i fi (Hz) Deviations (%) Deviations (%) Deviation (%)

Solid shell [23] Present R.M. shell R.M. shell
k1 = 0.6773 k1 = 0.7459 [25] k1 = 0.8333

reference k2 = 0.6722 k2 = 0.6730 [25] k2 = 0.8333
solution k12 = −0.0376 k12 = 0

1 253.20 0.22 1.05 2.38

2 444.31 0.16 1.02 2.86

3 669.01 0.31 2.32 4.66

4 710.02 −0.03 0.76 3.06

5 861.31 0.27 2.24 5.20

6 1020.29 −0.18 0.59 3.39

7 1148.31 −0.04 1.75 5.32

8 1187.15 0.21 3.24 6.56

9 1352.16 −0.34 0.51 3.85

10 1352.36 0.13 3.04 6.82
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Fig. 5 Eigenvectors 1–5 and 6–10 using present element

4.3.2 Simply supported timber plate

The significance of the shear correction factors for a cor-
rect evaluation of eigenfrequencies is demonstrated with
this example. Now a simply supported square plate with
L/h = 4800/120 (mm) is considered. The plate consists of 8
layers of equal thickness and [45◦/−45◦/45◦/−45◦/−45◦/
45◦/−45◦/45◦] stacking sequence. The material parameters
assuming transversal isotropic behaviour and the density for
glued-laminated timber are chosen as

E1 = 11600N/mm2 G12 = 720N/mm2

E2 = 390N/mm2 G23 = 100N/mm2

(55)
ν12 = 0.03

ρ = 530 kg/m3.

Literature results for the shear factors are not available.Again
a 3D reference solution is computed using solid shell [23] and
a regular 80 × 80 × (8 × 4) mesh. For the shell solutions a
mesh of 80 × 80 4-node elements is used.

For this example the computed factors k1 = k2 = 0.3427
deviate considerable from k1 = k2 = 5/6 for homogeneous
plates, see Table 3. As consequence the deviations from the
reference solution grow up to approximately 8% when com-
puting the first 10 eigenfrequencies using k1 = k2 = 5/6 in
a quadrilateral Reissner–Mindlin shell element (R.M. shell).
In contrast to that the deviations are less than 0.3% when
using present factors. Plots of the normalized eigenvectors
computed with the new element are depicted in Fig. 6.

4.4 Displacement and stress evaluations in layered plates

With this example a simply supported square plate subjected
to a constant load p̄ = 0.1N/mm2 is considered. For the

Table 3 Eigenfrequencies of a layered plate

i fi (Hz) Deviations (%) Deviations (%)

Solid shell [23] Present R.M. shell
k1 = 0.3427 k1 = 0.8333

reference k2 = 0.3427 k2 = 0.8333
solution k12 = 0 k12 = 0

1 14.28 −0.15 3.22

2 31.32 −0.15 3.53

3 34.77 −0.14 4.34

4 52.23 −0.23 5.20

5 60.93 −0.18 5.23

6 63.09 −0.17 6.06

7 77.86 −0.28 6.46

8 85.82 −0.29 7.96

9 97.74 −0.26 7.41

10 98.99 −0.24 7.99

comparative computation with solid shell elements the load-
ing is also applied via the middle surface. The geometrical
data are: L = 1000 mm and h = 20 mm. The material para-
meters for carbon fiber reinforced polymers are as follows

E1 = 125000 N/mm2 G12 = 4800 N/mm2

E2 = 7400 N/mm2 G23 = 2700 N/mm2

ν12 = 0.34 .

(56)

We investigate four different layer sequences as are displayed
in Table 4. A subscript s refers to symmetry of the total lay-
up. The layer thickness is constant in each lay-up.

The output of warping displacements and of interlaminar
shear stresses is performed at the center of selected elements
with coordinates (x p, yp), see Fig. 3. These values are spec-
ified in the following Figure captions. In below depicted
diagrams present solutions and the solid shell solutions are
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Fig. 6 Eigenvectors 1-5 and 6-10 using present element

Table 4 Plate with 4 different layer sequences

Plate Layer sequence (◦)

1 [0/90/0/90/0]

2 [45/−45/45]

3 [45/−45/45/−45]s
4 [−45/45/−45/45/−45/45/−45/45/−45/0]s

Fig. 7 τxz(x p = 9/21·L , yp = 0, z) for the 5-layer cross-ply laminate

denoted by 2D and 3D, respectively. As the 3D solutions are
evaluated at the nodes using a standard smoothing technique,
a corresponding adjustment of the 3D-meshes is necessary.

Remark: With the present element formulation continu-
ity of the transverse shear stresses at the layer boundaries
is automatically obtained. We do not apply any smoothing
technique. Furthermore, at the outer surfaces the zero stress
boundary conditions are fulfilled in an exact way. The inte-

Fig. 8 τyz(x p = 0, yp = 9/21·L , z) for the 5-layer cross-ply laminate

-3.116
-2.000
-1.000
0.000
1.000
2.000
3.000
4.000
5.000
6.119

Fig. 9 τxz(x, y, z = 0) in N/mm2 for the 5-layer cross-ply laminate
using a distorted mesh
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-1.000
0.000
1.000
2.000
3.000
4.000
5.000
6.011

Fig. 10 τxz(x, y, z = 0) in N/mm2 for the 5-layer cross-ply laminate
using a regular mesh

Fig. 11 ũx (x p = 9/21 · L , yp = 0, z) for the 5-layer cross-ply lami-
nate

grals of the shear stress distributions coincide identicallywith
the stress resultants q1 and q2 computed via (48).

4.4.1 Cross–ply laminate with 5 layers

At first a 5 layer cross-ply laminatewith [0◦/90◦/0◦/90◦/0◦]
stacking sequence is investigated. The applied discretizations
for both models using regular meshes are given in Figs. 7 and
8. The influence of mesh distortion on the results has also
been investigated. We compare results for τxz(z = 0) using a
distorted mesh (1594 elements, 1675 nodes—generated with
a meshing scheme based on an advancing front technique,
Fig. 9) with a regular mesh (1600 elements, 1681 nodes,
Fig. 10) for a quarter of the plate. In the diagrams and plots
there is good agreement between the differentmodels.A typi-
cal zig-zag shape of thewarping displacements ũx is depicted

Fig. 12 τxz(x p = 9/21 · L , yp = 0, z) for the 3-layer angle-ply lami-
nate

Fig. 13 τxz(x p = 7/32 · L , yp = 9/32 · L , z) for the 3-layer angle-ply
laminate

Fig. 14 τyz(x p = 7/32 · L , yp = 9/32 · L , z) for the 3-layer angle-ply
laminate
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Fig. 15 τxz(x p = 9/21 · L , yp = 0, z) for the 8-layer angle-ply
laminate

Fig. 16 τxz(x p = 7/32 · L , yp = 9/32 · L , z) for the 8-layer angle-ply
laminate

Fig. 17 ũx (x p =7/32 · L , yp =9/32 · L , z) for the 8-layer angle-ply
laminate

Fig. 18 τxz(x p = 9/21 · L , yp = 0, z) for the 20-layer angle-ply
laminate

Fig. 19 τxz(x p = 7/32·L , yp = 9/32·L , z) for the 20-layer angle-ply
laminate

Fig. 20 ũx (x p = 7/32·L , yp = 9/32·L , z) for the 20-layer angle-ply
laminate
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Table 5 Comparison of relative
computing times

Mesh 2D 3D

20×20 1 45

30×30 1 112

40×40 1 180

50×50 1 306

60×60 1 536

in Fig. 11.One should note that thewarping ordinates are sev-
eral orders less than the maximum in-plane displacements of
the Reissner–Mindlin kinematic.

4.4.2 Angle-ply laminate with 3 layers

The angle-ply lay-up [45◦/ − 45◦/45◦] is considered next.
The applied discretizations using regular meshes for the two
models and the coordinates of the stress evaluation are given
in Figs. 12, 13 and 14. The shape of τyz(x p = 0, yp =
9/21 · L , z) corresponds to the distribution of τxz in Fig. 12,
and therefore is not displayed. Instead of this we present the
stress evaluation at the coordinates given in Fig. 13. It shows
the interesting effect that a drop of τxz in the middle layer
takes place. The evaluation of τyz at the same coordinates
yields a distribution as in a homogeneous plate, Fig. 14.

4.4.3 Angle-ply laminate with 8 layers

In Figs. 15 and 16 the used regularmeshes are specified for an
8 layer laminate [45◦/ − 45◦/45◦/ − 45◦]s . The coordinates
(x p, yp) for the evaluation of τxz are chosen as in the pre-
vious example. The snapback behaviour of τxz in Fig. 16 is
associatedwith the relative complicated shape of thewarping
displacements in Fig. 17.

F

R R
d

h

h

2h

x

z

ξ 1

w

x

y

z

Fig. 21 Stiffened cylindrical shell and finite element mesh

Fig. 22 Load deflection curve of the stiffened cylindrical shell

Fig. 23 Final deformed configuration of the stiffened cylindrical shell
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Fig. 24 τ13 of the middle surface in N/mm2 for the present formulation
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Fig. 25 τ13 of the middle surface in N/mm2 for the element formulation [4]

4.4.4 Angle-ply laminate with 20 layers

Finally a 20 layer laminate [−45◦/45◦/ − 45◦/45◦/ − 45◦/
45◦/ − 45◦/45◦/ − 45◦/0◦]s is investigated. The applied
shell and solid shell discretizations using regular meshes can
be seen in Figs. 18 and 19. The coordinates (x p, yp) for
the evaluation of τxz are chosen as in the previous exam-
ple. Both diagrams show good agreement for the shear
stresses of the two models. The warping displacements ũx

are depicted in Fig. 20. One can see, that with an increas-
ing number of layers the shape approaches the distribution

in a homogeneous plate. In Table 5 relative computing times
(stiffness computation and solution of the system of equa-
tions) for the 2D and 3Dmodels and different mesh densities
are displayed. The 3D meshes are generated with 4 ele-
ments in thickness direction of each layer. The fast direct
solver PARDISO [44] is used along with a Windows PC
(2 Intel Xeon E5-2620v2, 6 cores, 2.1 GHz). In each row
of the table the 3D times are normalized with respect to
the 2D times. The table shows that fully 3D computa-
tions are costly, which restricts the applicability to small
problems.
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Fig. 26 τ13(ξ
1
p, ξ

2
p, ξ3) of the stiffened cylindrical shell

4.5 Stiffened cylindrical shell

The last example represents a stiffened cylindrical shell. Fig-
ure 21 shows a cross-section of the structure and a coarse
finite element mesh of half the structure considering sym-
metry conditions. Radius and length of the cylinder are
R = 1000mm, L = 2000mm and the shell thickness is
h = 10mm. The shell is free at y = z = 0 and clamped
at y = L . A concentrated force F acts at the coordinates
(x, y, z) = (0, 0, R). The skin of the structure consists of a
[0◦/90◦/0◦] lay-up, where 0◦ refers to the tangential direc-
tion and 90◦ to the length direction of the cylinder. The
stiffeners with geometrical data d = 50mm and h = 10mm
are arranged in radial direction. The stiffener in the symmetry
axis has a thickness of 2 h. The stiffeners are homogeneous
and the fibre direction coincides with the length direction.
Again the data for CFRP–layers (56) are taken. A refer-
ence solution is obtained with the element formulation [4]
where the transverse shear stresses are computed within a
post processing procedure and thus are not embedded in
the variational formulation. For both element formulations
a 24 × 16 mesh is used for the skin and a 2 × 16 mesh for
each stiffener.

The nonlinear load deflection curves are computed using
an arc length procedure with displacement control, see
Fig. 22. The kinks are caused by buckling of the stiffeners as
can be seen in Fig. 23. The final deformed configuration is
characterized by large deformations.

For a load F = 100 kN plots of the shear stresses
τ13(ξ

1, ξ2) of themiddle surface, where ξ2 ≡ y, are depicted
in Figs. 24 and 25. The stiffeners are turned off in the
plots. Again for F = 100 kN in Fig. 26 the shape of

τ13(ξ
1
p, ξ

2
p) through the thickness at a point P with coordi-

nates ξ1p = (13/96 ·π/2) · R and ξ2p = 7/64 · L is displayed.
Here, a refined mesh with 48× 32 elements for the skin and
2×32 elements for each stiffener is used. In the diagrams and
plots one can state good agreement between the two models.

5 Conclusions

In this paper the kinematics of shells is extended as warp-
ing deformations are superposed on the linear shape of the
Reissner–Mindlin theory. The theory is based on amulti-field
functional, where the associated Euler–Lagrange equations
include besides the global shell equations formulated in stress
resultants, the local in-plane equilibrium in terms of stresses
and a constraint which enforces the correct shape of warping
through the thickness. Thematerialmatrix for the stress resul-
tants is computed in representative volumeelements applying
static condensation. For linear elasticity and constant shell
thickness this can be done once in advance. As a by product
shear correction factors for layered shear elastic shells are
obtained. Present factors are independent of the total thick-
ness of the laminate. The importance of the factors for a
correct evaluation of eigenfrequencies is shown. The inter-
laminar shear stresses are evaluated via the constitutive law
by back substitution of the condensed parameters. The com-
puted transverse shear stresses are automatically continuous
at the layer boundaries. Also the stress boundary conditions
at the outer surfaces are fulfilled and the integrals of the shear
stresses coincide exactly with the shear forces without intro-
duction of further constraints. The computed displacements
and stresses show good agreement with the results of costly
3D computations. Likewise comparisonswith a post process-
ing procedure are performed. In contrast to that approach,
here the interlaminar shear stresses are embedded in the vari-
ational formulation.
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