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Abstract A 2Dmixed element is proposed for the modified
couple stress theory. The C1 continuity for the displace-
ment field is required because of the second derivatives
of displacement in the energy form of the theory. The C1

continuity is satisfied in a weak sense with the Lagrange
multiplier method. A supplementary rotation is introduced as
an independent variable and the kinematic relation between
the physical rotation and the supplementary rotation is con-
strained with Lagrange multipliers. Convergence criteria and
a stability condition are derived, and the number and the posi-
tions of nodes for each independent variable are determined.
Internal degrees of freedomare condensed out, so the element
has only 21 degrees of freedom.The proposed element passes
the C0−1 patch test. Numerical results show that the princi-
ple of limitation is applied to the element and the element is
robust to mesh distortion. Furthermore, the size effects are
captured well with the element.

1 Introduction

Size effects are observed on the micro-nano scale where
material properties are size dependent. Numerous experi-
ments demonstrate these phenomena including copper wire
torsion tests by Fleck et al. [12], micro-bending tests by
Stolken et al. [31], and micro-indentation tests by Stel-
mashenko et al. [30] and Nix et al. [23]. Poole et al. [27]
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examined size effects in plasticity. Lam et al. [16] andMcFar-
land et al. [19] showed the variation in the bending rigidity
of a micro epoxy beam and a micro polypropylene beam,
respectively. Cuenot et al. [6] and Li et al. [17] found that the
Young’s modulus became larger as the size of a solid body
is reduced.

Since classical continuum theory cannot capture the size
effect, the higher order theories have been used to explain
it. Many higher order theories have been developed since
the pioneering work by Cosserat brothers [5]. Eringen et al.
proposed a nonlocal elasticity theory [9] and a micromor-
phic theory [10]. Mindlin developed a microstructure theory
[20] which has 18 material constants (two Lam’e constants
and 16 additional constants) for isotropic materials, assum-
ing that the deformation energy depends on the strain, the
micro deformation gradient, and the relative deformation.
The microstructure theory was then reduced to a first-strain
gradient theory [21] by removing the relative deformation,
resulting in only five additional material constants. Fleck et
al. [11] reformulated the first-strain gradient theory, naming
it the strain gradient theory, and extended it to a plastic strain
gradient theory. A couple stress theory, which was developed
by Mindlin et al. [22], Toupin [32] and Koiter [15], con-
tains two additional constants by eliminating the difference
between micro-rotation and macro-rotation in the Cosserat
theory. Mindlin et al. [21] showed that the couple stress the-
ory is a special case of the strain gradient theory.

Various efforts to reduce the number of additional con-
stants have been carried out for practical applications. On
the basis of the nonlocal theory, Aifantis [1] proposed a gra-
dient elasticity theory that contains one additional constant,
and Altan et al. [2] demonstrated that this theory is a special
case of the strain gradient theory. Yang et al. [33] derived
higher order equilibrium equations by considering the equi-
librium of moments of couples, and then concluded that the
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components contributing to the deformation energy are only
the symmetric part of the rotation gradient, while both the
symmetric and antisymmetric parts contribute in the classi-
cal couple stress theory. This theory, the so called modified
couple stress theory [33], has one additional constant as a
result. Lam et al. [16] proposed a modified strain gradient
theory by reducing the five additional constants in the strain
gradient theory to three and verified the theory though micro
epoxy beam experiments. The modified couple stress theory
is a special case of the modified strain gradient theory. Both
theories have been widely used in recent years because of
their practicality and verifiability.

The finite element formulation for the higher order theo-
ries has a significant difficulty, in that the displacement field
should satisfy at least the C1 continuity because of the sec-
ond derivatives of displacement in the energy forms of those
theories. It is, however, complex to construct strict C1 ele-
ments for various reasons; e.g. the nodal degrees of freedom
(DOF) should include the second derivatives of displacement
at least. Zervos et al. [35] and Papanicolopulos et al. [24]
developed strict C1 elements for the strain gradient theory,
but too many DOF and the drawback that the elements can
only be used in restricted cases make these elements almost
impractical.

The mixed formulation can be an alternative that satis-
fies theC1 continuity in a weak sense. For the strain gradient
theory, Shu et al. [28] developed plane elements by constrain-
ing the relation between displacement and its derivativeswith
Lagrange multipliers and Zybell et al. [38] extended one of
these elements into 3D continuum. Zervos [34] imposed the
constraint between displacement and the micro deformation
by considering the material parameter related to the rela-
tive deformation, which is in the microstructure theory, as
a penalty parameter. Imatani et al. [14] constructed a mixed
element based on theHu-Washizu principle. In the case of the
gradient elasticity theory, Amanatidou et al. [3] used a mixed
form and Zhao et al. [36] combined the thin plate element
with the nonconforming element.

For a couple stress theory suggested in [39], Ma et al.
[18] established a plane element where weak C1 continuity
is satisfied by introducing displacement derivatives as nodal
DOF. This resulted in 24 DOF for the element, which is a
comparatively large number of DOF. For the modified cou-
ple stress theory, Garg et al. [13] added rotations to nodes
as independent DOF and constrained the kinematic relation
between the rotations and displacements using the penalty
method. The proper penalty parameter for obtaining a reli-
able solution, however, depends on the size of the model, the
number of elements, the scale of material properties, etc.

In this study, we propose a mixed element that can avoid
the problems mentioned above with the Lagrange multiplier
method for the modified couple stress theory. In Sect. 2 the
modified couple stress theory is summarized. In Sect. 3 a total

potential energy and a weak form with Lagrange multiplier
for plane problems are introduced, and an element satisfying
proper requirements is proposed. The element is assessed by
a patch test and numerical examples with related discussions
in Sect. 4 and conclusions are given in Sect. 5.

The sub(or super)-script index used in this paper follows
the tensor notation.

2 Modified couple stress theory

In the classical couple stress theory [15,22,32], strain and
rotation gradient contribute to the deformation energy with
two additional constants; material length scale parameters.
In the modified couple stress theory [33], the equilibrium
of moments of couples is considered, and hence the couple
stress tensor would be symmetric. As a result, strain and only
the symmetric part of the rotation gradient tensor contribute
to the energy, and then the number of material length scale
parameters is reduced to one. Moreover, the modified couple
stress theory was verified experimentally [16] and numeri-
cally [7], andmany researchers have adopted this theory. The
theory is summarized in the following for the completeness
of the present paper.

The strain tensor εi j and the rotation vector ωk are related
to the displacement vector ui

εi j = 1

2

(
ui, j + u j,i

)
and ωk = 1

2
eki j u j,i (1)

The symmetric curvature tensor χi j is defined using the sym-
metric part of rotation gradient as follows:

χi j = 1

2

(
ωi, j + ω j,i

)
(2)

And the deformation energy densityw for isotropicmaterials
is given by [33]

w = 1

2
σi jεi j + 1

2
mi jχi j (3)

where σi j and mi j are the Cauchy stress tensor and the devi-
atoric part of the couple stress tensor, which are the work
conjugate of εi j and χi j , respectively.

The constitutive equations for the theory are written as

σi j = ∂w

∂εi j
= Di jklεkl and mi j = ∂w

∂χi j
= 2 µl2χi j (4)

where Di jkl is the elasticity tensor, µ is the shear modulus,
and l is the material length scale parameter. The above equa-
tions yield symmetric mi j , and the physical meaning of mi j

is given schematically in Fig. 1.
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Fig. 1 Physical meaning of couple stress tensor mi j

The total potential energy can be expressed as

� =
∫

�

1

2
σi jεi j d� +

∫

�

1

2
mi jχi j d�

−
∫

�

fi ui d� −
∫ yiωi d

�

�

−
∫

	t
ti ui d	 −

∫

	q
qiωi d	 (5)

where fi , yi , ti , andqi are the body force vector, the body cou-
ple vector, the traction vector, and the surface couple vector,
respectively. By using the variational principle δ� = 0, the
equilibrium equation and boundary conditions are derived as
follows [26]:

σ j i, j + 1

2
e jki
(
ml j,lk + yk, j

)+ fi = 0 in � (6a)

n jσ j i + 1

2
ei jkn j

(
mlk,l − (mpqn pnq

)
,k + yk

)

= t̄i − 1

2
ei jkn j (q̄lnl),k or ui = ūi , (6b)

mi jn j − mpqn pnqni = q̄i − q̄lnlni or ωi = ω̄i on 	

where t̄i , q̄i , ūi , and ω̄i are prescribed boundary values.

3 A mixed finite element based on the Lagrange
multiplier method

It is very difficult to satisfy the strict C1 continuity as men-
tioned above, and therefore a great deal of effort has been
devoted to developing weak C1 finite elements. The mixed
finite element method, where two or more independent vari-
ables are used for formulation and the relations between them
are constrained with weaker conditions, has been considered
a good approach to the present problem [3,14,28,34,38].
Garg et al. [13] constructed mixed finite elements by intro-
ducing a supplementary rotation vector φk as an independent

variable and giving a kinematic constraint between the sup-
plementary rotation vectorφk and the physical rotation vector
ωk with the penalty method. The element, however, requires
an appropriate penalty parameter, which depends on the size
of the model, material parameter values, and the number of
elements, so the element is not very useful. This can be over-
come by introducing Lagrange multipliers.

3.1 Weak form for plane problems

The kinematic constraint between the supplementary rotation
vector φk and the physical rotation vector ωk is as follows:

φi − ωi = 0 (7)

The total potential energy form satisfying the kinematic con-
straint in a weak sense (or integral sense) with Lagrange
multipliers in two dimensional problems can be derived by
adding the constraint term to Eq.(5).

�L (ui , φi , λi ) =
∫

�

1

2
σi jεi j d� +

∫

�

1

2
mi jχi j d�

+
∫

�

λi (φi − ωi )d�

−
∫

�

fi ui d� −
∫

�

yiφi d�

−
∫

	t
ti ui d	 −

∫

	q
qiφi d	 (8)

where λi is a Lagrange multiplier vector.
The constraint termon the surface,

∫
	

λi (φi − ωi )d	, can
be reduced to zero by mesh refinement, as analyzed in [13],
so that the term is eliminated in the above equation.

The variational principle gives

δ�L =
∫

�

σi jδεi j d� +
∫

�

mi jδχi j d�

+
∫

�

(φi − ωi ) δλi d�

+
∫

�

λiδφi d� −
∫

�

λiδωi d�

−
∫

�

fiδuid� −
∫

�

yiδφi d�

−
∫

	t
tiδuid	 −

∫

	q
qiδφi d	

= 0. (9)

The vector or matrix forms of Eqs. (1, 2, 4) can be expressed
for 2D isotropic problems as

σ = Dε or

⎧
⎨

⎩

σ11
σ22
τ12

⎫
⎬

⎭
= D

⎧
⎨

⎩

ε11
ε22
2ε12

⎫
⎬

⎭
(10a)
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m =
(
2 µl2

)
χ or

{
m13

m23

}
=
(
2 µl2

){
χ13

χ23

}
(10b)

ε = Su or

⎧
⎨

⎩

ε11
ε22
2ε12

⎫
⎬

⎭
=
⎡

⎢
⎣

∂
∂x1

0
0 ∂

∂x2
∂

∂x2
∂

∂x1

⎤

⎥
⎦
{
u1
u2

}
(10c)

χ = Pφ or

{
χ13

χ23

}
= 1

2

[
∂

∂x1
∂

∂x2

]

φ3 (10d)

ω = Lu orω3 = 1

2

[
− ∂

∂x2
∂

∂x1

] {u1
u2

}
(10e)

where

D =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

E
1−ν2

⎡

⎣
1 ν 0
ν 1 0
0 0 (1 − ν) /2

⎤

⎦ for plane stress

E
(1+ν)(1−2ν)

⎡

⎣
(1 − ν) ν 0

ν (1 − ν) 0
0 0 (1 − 2ν) /2

⎤

⎦ for plane strain

while E is the Young’s modulus and ν is the Poisson’s ratio.
Equation (9) then can be rewritten as

∫

�

(S (δu))T D (Su)d� −
∫

�

(L (δu))T λd�

=
∫

�

(δu)T f d� +
∫

	t
(δu)T t d	,

∫

�

(
2 µl2

)
(P (δφ))T (Pφ)d� +

∫

�

(δφ)T λd�

=
∫

�

(δφ)T y d� +
∫

	q
(δφ)T q d	,

∫

�

(δλ)T (φ − Lu) d� = 0. (11)

The Lagrange multiplier vector is another independent vari-
able and the physical meaning of the Lagrange multiplier
vector can be given as the couple moment vector from Eq.
(11).

3.2 Finite element formulation

Each field of the independent variables can be discretized as
follows:

⎧
⎨

⎩

u = Nu ũ
φ = Nφφ̃

λ = Nλλ̃

(12)

where Nu, Nφ and Nλ are shape function matrices for nodal
DOF vectors ũ, φ̃, and λ̃, respectively.

Equation (11) then can be written in matrix form as

⎡

⎣
KA 0 KB

0 KD KC

KT
B KT

C 0

⎤

⎦

⎧
⎨

⎩

ũ
φ̃

λ̃

⎫
⎬

⎭
=
⎧
⎨

⎩

f1
f2
0

⎫
⎬

⎭
(13)

where

KA =
∫

�

(SNu)
T D (SNu) d�,

KB =
∫

�

− (LNu)
T Nλd�,

KC =
∫

�

NT
φNλd�,

KD =
∫

�

2 µl2
(
PNφ

)T (PNφ

)
d�,

f1 =
∫

�

NT
u f d� +

∫

	t
NT
u t d	,

f2 =
∫

�

NT
φ y d� +

∫

	q
NT

φ q d	.

3.2.1 Criteria for convergence

Both continuity and completeness conditions should be satis-
fied for convergence [4]. The continuity condition have been
satisfied weakly with the Lagrange multipliers as mentioned
above. In the classical theory, the completeness condition
means that an element must represent rigid body modes and
constant strain modes. In the modified couple stress theory,
however, the curvature term is included in the variational
form, Eq. (9), and thereby constant curvature states must
also be represented in the element. Therefore, constant cur-
vature modes should be added to the completeness condition
for the modified couple stress theory. The minimum field of
the supplementary rotation vector for constant curvature is
linear. To represent the constant curvature exactly, the field of
the supplementary rotation vector must be exactly the same
as that of the physical rotation vector, which is derived from
the displacement vector, and this means that the constraint
Eq. (7) are satisfied not in the weak but in the strong sense
(i.e., the Lagrange multiplier vector is zero). Therefore, the
derivatives of displacement must be able to represent a linear
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field at least. The Q8 element (8 node serendipity element)
and theQ9 element (9 node Lagrangian element) have a com-
plete linear field of the derivatives of displacement in natural
coordinates. However, only the Q9 element has a complete
linear field of the derivatives of displacement in physical
coordinates when the element shape is general [36]. There-
fore, the number of displacement nodes should be 9 at least.

3.2.2 Static condensation

When the 9 nodes are chosen for the displacement field, the
internal DOF can be condensed out.

Equation (13) can be partitioned as

,11 ,12

,12 ,22 ,2 2

2

,1 ,2

0

0

A A B
T
A A B

D C
T T T
B B C

φ
1,2

1,1

K K K u

K K K λ
(14)

where ũ1 are the displacement DOF of the nodes correspond-
ing to the Q8 element, ũ2 are those of the internal node, f1,1
is the part of f1 corresponding to ũ1, and f1,2 is that corre-
sponding to ũ2.

Equation (14) can be rewritten as

KA,11ũ1 + KA,12ũ2 + KB,1λ̃ = f1,1, (15a)

KT
A,12ũ1 + KA,22ũ2 + KB,2λ̃ = f1,2, (15b)

KDφ̃ + KC λ̃ = f2, (15c)

KT
B,1ũ1 + KT

B,2ũ2 + KT
C φ̃ = 0. (15d)

After rearranging Eq. (15b) in terms of ũ2 as

ũ2 = −K−1
A,22

(
KT

A,12ũ1 + KB,2λ̃ − f1,2
)

, (16)

substituting Eq. (16) into Eqs. (15a, 15d) then gives

(
KA,11 − KA,12K

−1
A,22K

T
A,12

)
ũ1

+
(
KB,1 − KA,12K

−1
A,22KB,2

)
λ̃ = f∗1 , (17a)

KDφ̃ + KC λ̃ = f2, (17b)
(
KT

B,1 − KT
B,2K

−1
A,22K

T
A,12

)
ũ1

+KT
C φ̃ −

(
KT

B,2K
−1
A,22KB,2

)
λ̃ = 0. (17c)

where

f∗1 = f1,1 − KA,12K
−1
A,22f1,2.

Equation (17) can be expressed in matrix form as follows:

1
,11 ,12 ,22 ,12

1
,1 ,2 ,22 ,12

1
,1 ,12 ,22 ,2 1

2
1

,2 ,22 ,2

0
0

0

T
A A A A

D
T T T T
B B A A C

B A A B

C
T
B A B

φφ

−

−

−

−

−

−

−
=

−

K K K K
K

K K K K K

K K K K u f
K f

K K K λ

*
(18)

The computational advantage of the static condensation can
be found in [40].

3.3 Stability condition

Solvability requirements for the element should be deter-
mined to avoid spurious zero energy modes (or locking).

In Eq. (13), adding the third row multiplied by γKB and
γKC , with an arbitrary constant γ , to the first row and the
second row respectively leads to

⎡

⎢
⎣

KA + γKBKT
B γKBKT

C KB

γKCKT
B KD + γKCKT

C KC

KT
B KT

C 0

⎤

⎥
⎦

⎧
⎪⎪⎨

⎪⎪⎩

ũ

φ̃

λ̃

⎫
⎪⎪⎬

⎪⎪⎭
=

⎧
⎪⎨

⎪⎩

f1
f2
0

⎫
⎪⎬

⎪⎭
.

(19)

The following condition should be satisfied to avoid singu-
larity of the above matrix according to the explanation on
pages 360–373 in [37].

nu + nφ ≥ nλ (20)

where

nu = the number ofDOF of ũ

− the number of rigid bodymodes for displacement,

nφ = the number ofDOF of φ̃

− the number of rigid bodymodes for rotation,

nλ = the number ofDOF of λ̃.

3.4 Element design

The number and the positions of the nodes for each indepen-
dent variable can be determined as in Fig. 2 according to the
requirements described in Sects. 3.2 and 3.3.

The requirements in Sect. 3.2 lead to 9 nodes approxi-
mation for displacement DOF. The supplementary rotation
vector must satisfy theC0 continuity at least because the first
derivatives of the rotation vector appear in the functional�L .
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Fig. 2 Element form

Furthermore, the minimal field of the supplementary rota-
tion vector should be linear, as described in Sect. 3.2, and a 4
nodes bilinear field is chosen for the rotational DOF. A func-
tion in the Lebesgue space L2 (�) is enough for the Lagrange
multiplier since no derivatives of the variable are in the func-
tional, and a constant field is adopted at the center node of
the element. This design also satisfy the stablilty condition.

Rewriting Eq. (17) for simplicity gives

MAũ1 + MB λ̃ = f∗1 (21a)

MDφ̃ + MC λ̃ = f2 (21b)

MT
B ũ1 + MT

C φ̃ + ME λ̃ = 0 (21c)

where

MA = KA,11 − KA,12K
−1
A,22K

T
A,12,

MB = KB,1 − KA,12K
−1
A,22KB,2,

MC = KC ,

MD = KD,

ME = −KT
B,2K

−1
A,22KB,2

Note that λ̃ DOF are internal DOF but cannot be condensed
out. The shape function corresponding to the internal dis-
placement node in natural coordinates is as follows:

N9 =
(
1 − ξ2

) (
1 − η2

)
(22)

The integration of the first derivatives of N9 in the nat-
ural domain is always zero (i.e.,

∫ 1
−1

∫ 1
−1

∂N9
∂ξ

dξdη =
∫ 1
−1

∫ 1
−1

∂N9
∂η

dξdη = 0). And the submatrix KB,2 can be

expressed as follows:

KB,2 =
∫

�

−1

2

[
− ∂N9

∂x2
∂N9
∂x1

]
T Nλd�

=
∫

�

−1

2

[
− ∂N9

∂x2
∂N9
∂x1

]
T Nλ Jdξdη (23)

Fig. 3 Patch test model

where

{
∂N9
∂x1
∂N9
∂x2

}

= J−1

{
∂N9
∂ξ

∂N9
∂η

}

, J−1 is the inverse Jacobian

matrix and J is the Jacobian.
Nλ = 1 due to the constant field approximation for the

Lagrange multiplier.
When the shape of the mesh is regular, J is constant and

J−1 can be expressed as J−1 =
[
c11 c12
c21 c22

]
, where c11, c12,

c21 and c22 are constant, and KB,2 is always zero, with the
result being that ME is also zero. Therefore, ME is singular
when the shape of the mesh is regular so that λ̃ cannot be
condensed out, and the number of total DOF for the proposed
element is 21.
Full integration (3×3 Gauss quadrature for displacement,
2×2 for rotation) is used for the calculation of each subma-
trix.

4 Numerical examples

4.1 C0−1 patch test

The convergence of the proposed element can be ascertained
through the C0−1 patch test proposed by Soh et al. [29]. The
test checks whether an element can reproduce not only linear
strain modes but also constant curvature modes correctly.

The following quadratic polynomials satisfying the equi-
librium equation in displacement form without body forces
are tested, in contrast to the case of the traditional C0 patch
test.

u1 = a1 + a2x1 + a3x2 + a4x
2
1

−2 [(1 − 2ν) b4 + 2 (1 − ν) b6] x1x2 + a6x
2
2

u2 = b1 + b2x1 + b3x2 + b4x
2
1

−2 [2 (1 − ν) a4 + (1 − 2ν) a6] x1x2 + b6x
2
2 (24)

The proposed element is tested for the patch and the coeffi-
cients in [29], which are represented in Fig. 3 and Table 1.
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Table 1 The coefficient for
patch test

a1 a2 a3 a4 a6

1 3 5 7 9

b1 b2 b3 b4 b6

2 4 6 8 10

Table 2 Results of patch test (at point(0.04,0.02))

u1 u2 φ3

Exact 1.2044 2.2728 0.1

Proposed element 1.2044 2.2728 0.1

The essential boundary conditions are specified at each of
the boundary nodes as the values calculated by Eq. (24).

As shown in Table 2, the element passes the test.

4.2 Cantilever beam

4.2.1 Length scale parameter

Lam et al. [16] measured the bending rigidity through the
bending experiments of amicro epoxy beam and obtained the
value of a bending parameter for the modified strain gradient
stress theory. Based on the bending parameter value, Park et
al. [25] determined the value of the length scale parameter
for the modified couple stress theory as l = 17.6 µm. The
results were verified by Dehrouyeh-Semnani et al. [8]

4.2.2 Comparison with experiments

The FE model for the epoxy beam bending problem [16] is
illustrated in Fig. 4.

The plane strain condition is assumed according to [16]
for 160 continuum elements. An arbitrary concentrated force
F is applied at point (L , 0) and the essential boundary con-
ditions are imposed as follows:

u1|x1=0 = 0, u2|x1=0,x2=0 = 0, φ3|x1=0 = 0 (25)

The material properties of the epoxy are as follows [25]:

E = 1.44GPa, ν = 0.38

Fig. 5 Bending rigidity versus beam thickness

The length scale parameter l = 17.6µm in the above section
is used for the length scale parameter.

As in [16], the bending rigidity is expressed as

D′ ≈ 1

3

FL3

w0h3
(26)

where w0 is the vertical displacement under the shear force
F , while the bending rigidity in classical theory is indepen-
dent of the beam thickness, as delineated in the following
equation: D′

0 = E
12(1−ν2)

.

Different h values of 20, 38, 75 and 115 µm and L = 10h
is considered as in the experiments. The bending rigidity
of each case is obtained through FE simulations with the
proposed element.

The results in Fig. 5 show that the bending rigidity resulted
from the FE simulation with the proposed element is in good
agreement with that of the experiments.

4.2.3 Robustness to mesh distortion

The effect of mesh distortion is checked using the FE model
in Fig. 6. The case of h = 20 µm is chosen and the boundary
conditions are the same as those in Sect. 4.2.2.

Defining a distortion ratio e as

e = a

b
, (27)

Fig. 4 Micro epoxy cantilever
beam problem
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Fig. 6 FE model for testing the robustness to mesh distortion

Fig. 7 Normalized bending rigidity versus distortion ratio

Five different e values of 0, 0.2, 0.4, 0.6, and 0.8 are
considered and the bending rigidity obtained throughFE sim-
ulations are normalized by 0.3327,which is the average value
of the experiments. The results of the proposed element are
compared with that of the 8 nodes element, which is devel-
oped by Garg et al. [13] based on the penalty method, with a
penalty parameter value of 106µl2, as in [13].

The results in Fig. 7 show that the proposed element is
more robust to the mesh distortion.

4.3 Simple shear

An analytic solution for the simple shear problemof themod-
ified couple stress theory was derived by Park et al. [26]. In
this section, the proposed element is assessed by comparing
the results with the analytic solution.

The problem domain described in Fig. 8 is modeled as
an infinite plate where L , w are much larger than h. The
plane strain condition is assumed with h = 100 µm and
L = 1000 µm. The boundary conditions for the analytic
solution are given as follows:

u1 = u2 = φ3 = 0 at x2 = 0

u1 = 1 µm, u2 = φ3 = 0 at x2 = h

The FE model and material properties are shown in Fig. 9.

Fig. 8 Simple shear problem

Figures 10 and 11 shows the displacement results with
three different length scale parameters, 17.6, 8.8 and 1.76
µ m, and the error by normalizing the displacement with the
analytic solution in the case of l = 17.6 µ m, respectively,
at the nodes along the center line depicted in Fig. 9.

The source of the error is as follows: the field of the rota-
tional DOF is chosen as bilinear (see Sect. 3.4); hence, the
maximum field of the curvature tensor, as expressed in Eq.
(10d), is constant. The analytic solution for the curvature field
is as follows:

χ13 = 0, χ23 = − 2

l2

(
C3e

2
l x2 + C4e

− 2
l x2
)

(28)

where C3 and C4 are constants (refer to [26]). The analytic
field of χ23 in the above equation is not constant, which
accounts for the error in Fig. 11. Considering this, the results
follow the analytic solutions fairly well.

4.3.1 Principle of limitation

The principle of limitation [37], which is applied to mixed
elements in classical theory, explains that using higher
approximation for a primary variable will not improve the
performance of the elements. It is thus necessary to consider
the limitation of the element that 8 nodes are approximated
for φ3 as in Fig. 12. This element, which passes the C0−1

patch test, is compared with the proposed element for the
same FE model and the same material properties as in the
previous example.

The results in Fig. 13 reveal that no improvement is
observed by raising the order of the rotation field and the
principle of limitation appears to be valid for the proposed
element.
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Fig. 9 FE model for simple
shear problem

Fig. 10 Results of simple shear
problem

Fig. 11 Normalized displacement in the case of l = 17.6 µ m

4.3.2 Performance variation owing to mesh distortion

A FE model with 228 elements, as in Fig. 14, is constructed
with the material properties used in the previous model to
take the effect of mesh distortion into consideration.

The performance of the proposed element is also com-
pared with that of the penalty element used in Sect. 4.2.3.

The relative error norm in Table 3 is introduced to repre-
sent the error quantitatively as

∥∥uFEM − uanalytic
∥∥
2 /
∥∥uanalytic

∥∥
2 (29)

where ‖x‖2 =
(∑|xi |2

i

)1/2
.

Fig. 12 Element form with 8 nodes for φ3

As shown inFig. 15 andTable 3, the results of the proposed
element follow the analytic solutions more accurately.

4.4 Plate with a hole

In this example, an infinite plate containing a circular hole
under simple tension, as shown in Fig. 16, is considered to
check the size effect.

A quarter FE model for the problem with the material
properties is shown in Fig. 17, and symmetric boundary con-
ditions are specified and p = 1000Pa is imposed.

The stress concentration factor at point(0, r), which is
constant in classical theory, is defined as

S.F. = σθθ

p
= σ11

p
(30)
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Fig. 13 Results of the test for
principle of limitation

Fig. 14 FE model for simple
shear problem (distorted mesh)

Table 3 Relative error norm for the simple shear problem (distorted
mesh)

Proposed element Penalty element

Relative error norm 0.0122 0.0404

FE analyses with the proposed element were conducted
with 9 different ratios of length scale parameter to radius,
l/r=1/100, 1/10, 1/8, 1/6, 1/4, 1/3, 1/2, 3/4, and 1.

The size effect is simulated well, as shown in Fig. 18,
indicating that the stress concentration factor decreases as
the length scale parameter approaches r . Furthermore, one

Fig. 16 Plate with a hole problem

can observe that the stress concentration factor approaches 3,
which is the solution in the classical theory, with the decreas-
ing length scale parameter.

Fig. 15 Results of simple shear
problem (distorted mesh)
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Fig. 17 FE model for plate with a hole problem

Fig. 18 Stress concentration factor versus l/r at point (0, r)

5 Conclusions

A 2D mixed element based on the Lagrange multiplier
method for the modified couple stress theory has been pro-
posed. Weak C1continuity was satisfied by introducing a
supplementary rotation as an independent variable and con-
straining the kinematic relation between the physical rotation
and the supplementary rotation in a weak sense. The crite-
ria for convergence to represent constant curvature modes
and the stability condition for the element to contain no
zero energy modes were derived. The number and the posi-
tions of the nodes for each independent variable were chosen
according to these requirements. The internal DOF were
removed by static condensation, so the element has only 21
DOF.

The proposed element passed the C0−1 patch test. The
results of micro epoxy beam bending with this element were
in excellent agreement with the experiments. Through the
simple shear problem, it was found that the principle of lim-
itation is applied to the proposed element and the element
is robust to mesh distortion. A plate with a hole problem
showed the size effect well in that the stress concentration
factor decreases as the length scale parameter increases.
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