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Abstract A simple and unified finite element formulation
is presented for superconvergent eigenvalue computation of
wave equations ranging from 1D to 3D. In this framework, a
general method based upon the so called α mass matrix for-
mulation is first proposed to effectively construct 1D higher
order mass matrices for arbitrary order elements. The finite
elements discussed herein refer to the Lagrangian type of
Lobatto elements that take the Lobatto points as nodes. Sub-
sequently a set of quadrature rules that exactly integrate
the 1D higher order mass matrices are rationally derived,
which are termed as the superconvergent quadrature rules.
More importantly, in 2D and 3D cases, it is found that the
employment of these quadrature rules via tensor product
simultaneously for the mass and stiffness matrix integra-
tions of Lobatto elements produces a unified superconvergent
formulation for the eigenvalue or frequency computation
without wave propagation direction dependence, which usu-
ally is a critical issue for the multidimensional higher
order mass matrix formulation. Consequently the proposed
approach is capable of computing arbitrary frequencies in a
superconvergent fashion. Meanwhile, numerical implemen-
tation of the proposedmethod formultidimensional problems
is trivial. The effectiveness of the proposed methodology is
systematically demonstrated by a series of numerical exam-
ples.Numerical results revealed that a superconvergencewith
2(p + 1)th order of frequency accuracy is achieved by the
present unified formulation for the pth order Lobatto ele-
ment.
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1 Introduction

The eigenvalue problems arising from wave equations repre-
sent a large class of important engineering problems, such as
free vibrations of rod, string, membrane and acoustic prob-
lems, etc. Within the context of the finite element method,
based upon the weak formulation, the eigenvalue problems
are converted into their discrete counterparts characterized
by the mass and stiffness matrices [1,2]. Quite often the
stiffness matrix is formulated by standard Gauss quadrature,
while there are several candidates for the mass matrix. The
widely used consistent mass matrix [3] is directly derived
from the weak form. On the other hand, the ad hoc lumped
mass matrix with diagonal terms only is preferred due to
its efficiency and suitability for explicit transient analysis.
The row summethod [1], nodal quadrature method [1,4] and
the HRZ diagonal scaling method [5] are commonly used
to generate a lumped mass matrix. These mentioned mass
lumping techniques yield identical lumped mass matrices
for the tensor product based Lagrangian elements. For the
one dimensional (1D) cubic element, the nodal quadrature
method is not applicable for the Lagrangian element with
equally spaced nodes, and Fried and Malkus [4] pointed out
that when the interior nodes are placed at ±√

5/5, the nodal
quadrature rule yields a lumped mass matrix with 6th order
of frequency accuracy that is the same as its consistent coun-
terpart. This type of element essentially belongs to the family
of Lobatto elements [6,7] whose shape functions interpolate
the Lobatto points [8], which are frequently used in the spec-
tral methods [9–11]. In [12], the error in the eigenvalue or
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frequency of wave equations has been discussed in detail.
Excellent summaries and reviews on the mass matrices can
be found in [13–15], among others.

Nonetheless, it has been shown that both consistent and
lumped mass matrices may not be optimal for eigenvalue
computation, e.g., an average for the consistent and lumped
mass matrices for 1D linear element gives a superconver-
gent result, which is called a higher order mass matrix with
excellent dispersion property [16–22]. Thus the construc-
tion of higher order mass matrices is of great interest for
finite element eigenvalue computation. Meanwhile, in order
to improve the accuracy of eigenvalue or frequency analy-
sis, various methods have also been developed. For example,
Gurtin [23] and Stavrinidis et al. [13] proposed the veloc-
ity shape functions to construct the mass matrix. Hansson
and Sandberg [24] presented a method for mass matrix con-
struction through minimizing the modal error. An inverse
method was given by Ahmadian et al. [25] and Ahmadian
and Farughi [26] to minimize the discretization error in mass
and stiffness matrices. The method of selective mass scaling
has been investigated by Olovsson et al. [27], Tkachuk and
Bischoff [28], and Cocchetti et al. [29], etc. Felippa [30–32]
proposed a template method to customize the construction
of mass-stiffness pairs. This approach is very general with
broad applicability, while it may involve the optimization
of many parameters, which could be very challenging even
for two dimensional (2D) problems, let alone three dimen-
sional (3D) problems. This point is also illustrated by the
recent review article by Felippa et al. [15]. Moreover, Fried
and Chavez [21] further showed the consistent, lumped and
higher order mass matrices can be put into a linear func-
tion of two mass matrices with an adjustable parameter. This
parameter can be tuned to achieve a higher order mass matrix
with frequency superconvergence, which is demonstrated for
1D linear, quadratic, 2D linear triangle and four-node bilin-
ear square membrane elements, respectively. Later Fried and
Leong [33] also presented amethod of Rayleigh quotient cor-
rection for the higher order massmatrix formulation. Despite
of these significant advances on the higher order mass matrix
formulation, most existing results are obtained on a case-by-
case basis and it seems that there is still a lack of simple
and unified ways to develop superconvergent formulations
for arbitrary order elements, especially for multidimensional
problems. Furthermore, numerical experiments also show
that the multidimensional higher order mass matrix formu-
lation exhibits a strong dependence on wave propagation
directions, and provides superconvergence only for certain
frequencies.

On the other hand, in the context of isogeometric analy-
sis that provides a seamless integration of computer aided
geometry design and the finite element analysis [34–36],
1D, 2D and 3D isogeometric higher order mass matrices
have been developed to achieve superconvergent frequency

computation [37–39]. The isogeometric analysis employs
the smoothing and convex B-spline or non-uniformed ratio-
nal B-spline basis functions, thus the consistent mass matrix
has non-negative entries with sound frequency spectra, but
the desired accuracy is lost when a lumped mass matrix is
used [35,36]. In order to construct an isogeometric higher
order mass matrix, a new reduced bandwidth matrix that
has an equal order of accuracy as its consistent counterpart
was introduced in [37]. Subsequently an optimal combina-
tion of the reduced bandwidth and consistent mass matrices
results in a higher order mass matrix. In addition, to remove
the wave propagation direction dependence issue, the mass
combination parameter is optimized as a function of the
wave propagation angles [38,39]. This approach ensures a
superconvergent computation of arbitrary frequencies. How-
ever, the mass combination parameter has to be adjusted for
the frequencies corresponding to different wave propagation
directions, which is not preferable from the numerical imple-
mentation point of view.

This work aims to develop a simple and unified finite ele-
ment formulation that enables a superconvergent frequency
computation of wave equations for arbitrary order elements
without the issue of wave propagation direction dependence.
The present formulation is based upon the Lagrangian type
of Lobatto elements, which are simply called Lobatto ele-
ments for convenience in the subsequent development. As
the first step, an α mass matrix is proposed to formulate
1D higher order mass matrices for arbitrary order elements.
Theoretical proofs are presented for linear and quadratic
elements that their higher order mass matrices with super-
convergence can be obtained by lettingα be the optimal value
of αopt = p + 1, where p is the order of the given element.
This result is then used to develop the higher order mass
matrices for cubic and quartic elements, whose supercon-
vergence are validated by numerical examples. Thereafter,
for 2D bilinear elements, it is shown that the desired super-
convergencewithoutwave propagation direction dependence
can be achieved if the same quadrature rule is employed
for both mass and stiffness matrices. More importantly, this
quadrature rule turns out to be the exact integration rule for
1D higher order mass matrix of linear element. This observa-
tion is further proved for 3D trilinear element. Subsequently a
generalization of this methodology to higher order elements
is presented, in particular, the superconvergent quadrature
rules for quadratic, cubic and quartic elements are given
in detail. Consequently, a unified quadrature-based super-
convergent formulation is established for multidimensional
problems. Due to its quadrature nature, numerical imple-
mentation of this formulation is trivial. The efficacy of the
proposed superconvergent formulation is systematically ver-
ified through numerical examples.

An outline of the remainder of this paper is as follows.
Section 2 briefly summarizes the model problem considered
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herein and its finite element discretization. The motivation
and objective of this work is described in Sect. 3. Sub-
sequently, in Sect. 4, a unified formulation is developed
to construct 1D higher order mass matrices based upon
Lobatto elements. The multidimensional unified quadrature-
based superconvergent formulation is presented in Sect. 5.
The superconvergent performance of the proposed method is
assessed in Sect. 6 by a set of 2D and 3Dnumerical examples.
Finally conclusions are drawn in Sect. 7.

2 Model problem and basic finite element
equations

2.1 Model problem

In this work, we consider the following classical wave equa-
tion:

ü(x, t) = c2∇2u(x, t), ∇2 =
nsd∑

i=1

∂2

∂x2i
(1)

where u(x, t) is the field variable that can be the longitudinal
displacement for 1D rod vibration, the transverse displace-
ment for 2D membrane vibration, or the acoustic pressure
for 3D acoustic problem. x = {x, y, z}T , t denotes the time
and c is the wave speed. The superposed dot and the sub-
script comma represent temporal and spatial differentiations,
respectively. ∇2 stands for the Laplace operator and nsd is
the spatial dimension.

According to the standard harmonic assumption, the field
variable u(x, t) can be expressed as:

u(x, t) = û exp [ι(k · x − ωt)] , ι = √−1 (2)

where û denotes thewave amplitude,k = {kx , ky, kz}T , kx , ky
and kz represent the wave numbers in x , y and z directions,
respectively. ω is the continuum angular frequency. Substi-
tuting Eqs. (2) into (1) yields:

ω = ‖k‖ c, ‖k‖ =
√
k2x + k2y + k2z (3)

The finite element analysis is based upon the weak form
of Eq. (1):

∫

�

δuüd� +
∫

�

c2(∇δu) · (∇u)d� = 0 (4)

in which � denotes the problem spatial domain, ∇ is the
gradient operator.

2.2 Basic finite element equations

In finite element analysis, the problem domain � is par-
titioned into an assembly of individual elements �e, i.e.,
� = ⋃nel

e=1 �e, nel denotes the total number of elements. In
each element, the approximation of the field variable u(x, t),
denoted by uh(x, t), takes the following form:

uh(x, t) =
nen∑

a=1

Na(ξ)da(t) (5)

where Na(ξ) is the shape function associated with the node
xa , which is often defined on the natural coordinate ξ . nen
denotes the number of nodes per element and da(t) is the
nodal degree of freedom. The lowercase subscripts represent
the local node numberings in the element level, while the
uppercase subscripts used later on denote the global node
numberings.

Introducing Eqs. (5) into (4) within the Bubnov-Galerkin
finite element formulation gives the following standard dis-
crete equation:

Md̈ + Kd = 0 (6)

whereM andK are the globalmass and stiffnessmatrices,d is
the vector consisting of the global nodal degrees of freedom,
which can be assembled by their element counterparts:

M = nel
A

e=1
[Me], K = nel

A
e=1

[Ke], d = nel
A

e=1
[de] (7)

in which A is the local-global assembly operator [1]. The
element mass matrix Me and stiffness matrix Ke have the
following expressions:

Me
ab =

∫

�e
NaNbd� (8)

Ke
ab = c2

∫

�e
(∇Na) · (∇Nb)d� (9)

Explicit forms ofMe and Ke will be discussed later when we
investigate specific elements. Further invoking the harmonic
form of d(t) = φ exp(ιωht) in Eq. (6) yields the following
typical eigenvalue problem:

Kφ = (ωh)2Mφ (10)

where ωh is the semi-discrete frequency and φ is the corre-
sponding mode.

Quite often the relative error between the semi-discrete
frequency ωh and the continuum frequency ω is used as
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an accuracy measure of finite element method. This error,
denoted by e f can be written as:

e f = ωh

ω
− 1 (11)

According to [1,12], the error in frequency for the conven-
tional finite element formulation is:

e f ≈ O(h2p) (12)

where p is the completeness order of the finite element
shape functions. Here we would like to develop a unified
finite element approach that is capable of computing the
frequencieswith an error of O(h2(p+1)) for both 1D andmul-
tidimensional problems, i.e., the frequency convergence rate
increases from2p of the conventional finite element formula-
tion to 2(p+1) for the proposed formulation. In other words,
a superconvergence is achieved for the frequency computa-
tion.

3 Motivation and objective

In this section we illustrate the motivation of our subsequent
development. In the finite element setting, it has been shown
that higher order mass matrix can be used to compute the
frequencies with superconvergence, in comparison with the
consistent and lumpedmass formulations. Take 1D rod vibra-
tion as an example, for a typical two node linear element
[xe1, xe2] with length h, the higher order mass (HOM) matrix
Meh can be established as an average of the consistent mass
(CM) matrix Mec and the lumped mass (LM) matrix Mel

[1,16,21]:

Meh = 1

2
Mec + 1

2
Mel

= 1

2
× h

6

[
2 1
1 2

]
+ 1

2
× h

2

[
1 0
0 1

]

= h

12

[
5 1
1 5

]
(13)

where without loss of generality, the material density and
cross section area are all assumed to be unity. When the
standard stiffness matrix is employed, it turns out that
the frequency accuracy for HOM is O(h4), while only
O(h2) is observed for both CM and LM [12]. Similarly, a
quadratic higher order mass matrix with 6th order of accu-
racy can also be expressed as an optimal linear combination
of the corresponding consistent and lumped mass matrices
[21]:

Meh = 1

3
Mec + 2

3
Mel

= 1

3
× h

30

⎡

⎣
4 2 −1
2 16 2

−1 2 4

⎤

⎦+ 2

3
× h

6

⎡

⎣
1 0 0
0 4 0
0 0 1

⎤

⎦

= h

90

⎡

⎣
14 2 −1
2 56 2

−1 2 14

⎤

⎦ (14)

By contrast, the quadratic CM and LM are 4th order
accurate. This again demonstrates a superconvergence for
HOM.

Obviously, HOM is of great importance for the frequency
computation. However, it is yet unclear that the combination
of consistent and lumpedmassmatriceswould always be able
to produce a higher order mass matrix. Actually, in [37–39]
it is pointed that two matrices with equal order of accuracy
are necessary to yield a higher order mass matrix through
optimal linear combination. At the same time, a straight-
forward computational experiment shows that the standard
1D cubic and quartic Lagrangian elements with equal nodal
spacing do not give the same order of accuracy for CM and
LM. This is illustrated in Fig. 1, where the convergence of
the fundamental frequency for the fixed-fixed rod problem
using the standard cubic and quartic Lagrangian elements is
plotted. It is evident that the accuracy of LM is two orders
lower than that of CM. In these cases, a linear combination
of CM and LM won’t be able to produce the desired HOM.
Consequently, there still lacks simple, general and straight-
forwardways for the construction ofHOMfor arbitrary order
elements, even in the 1D case.

As for multidimensional cases, the construction of HOM
becomes much more involved and most existing works focus
on 2D lower order elements. A typical example is the HOM
for the square bilinear element with length h, which takes the
following form [21]:

Meh = 3

4
Mec + 1

4
Mel

= 3

4
× h2

36

⎡

⎢⎢⎣

4 2 1 2
2 4 2 1
1 2 4 2
2 1 2 4

⎤

⎥⎥⎦

+ 1

4
× h2

4

⎡

⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥⎥⎦

= h2

48

⎡

⎢⎢⎣

7 2 1 2
2 7 2 1
1 2 7 2
2 1 2 7

⎤

⎥⎥⎦ (15)
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Fig. 1 Comparison of the fundamental frequency convergence for the fixed-fixed rod problemusing standard cubic and quartic Lagrangian elements

Fig. 2 Convergence comparison of the first four frequencies for the square membrane problem using HOM in Eq. (15)

With the HOM of Eq. (15), the convergence of the first
four frequencies for a square membrane with fixed bound-
ary condition are depicted in Fig. 2, where CM and LM are
also included for comparison purposes. It can be seen that
this HOM only elevates the convergence rates for certain
frequencies, i.e.,ωh

11 andωh
22 in this example. Thus the super-

convergence of this HOM shows an undesirable strong wave
propagation direction dependence. One remedy for this issue
is to introduce a wave propagation direction dependent opti-
mal mass combination parameter [38,39], which however
needs to be worked out on a case-by-case basis and is not
computationally efficient.

On the other hand, an important observation by Hughes
and Tezduyar [40] is that the 1D HOM in Eq. (13) can be
obtained using the quadrature rule with integration points
ξ1,2 = ±√

2/3 and weights 
1 = 
2 = 1:

Meh =
∫ xe2

xe1

NTNdx =h

2

[
NT

(
−
√
2

3

)
N

(
−
√
2

3

)

+NT

(√
2

3

)
N

(√
2

3

)]
(16)
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Fig. 3 Convergence comparison of the first four frequencies for the square membrane problem using the mass matrix in Eq. (17)

where N = { N1(ξ) N2(ξ) } = { 1 − ξ 1 + ξ }/2. Conceptu-
ally, this quadrature rulewould allowa straightforward tensor
product extension to multidimensional formulations. Unfor-
tunately, this direct extension does not give a 2D HOM. A
straightforward calculation using the 2D tensor product ver-
sion of the quadrature rule in Eq. (16) gives the following
mass matrix for a square element:

M̄
eh = h2

144

⎡

⎢⎢⎣

25 5 1 5
5 25 5 1
1 5 25 5
5 1 5 25

⎤

⎥⎥⎦ (17)

Based upon this postulated higher mass matrix M̄
eh
, the

convergence of the first four frequencies for a square mem-
brane with fixed boundary is shown in Fig. 3. Clearly, this
quadrature-based generalization of 1DHOM to 2D case does
not produce the desired superconvergence with 4th order
accurate frequencies. We will come back to this point later
to investigate the reason behind this phenomena.

In summary, the previous discussions indicate the fol-
lowing typical issues associated with the higher order mass
matrix formulation: (1) Are there simple and general meth-
ods to construct 1D HOM for arbitrary order elements?
(2) Are there simple and unified superconvergent formu-
lations for multidimensional arbitrary order elements? (3)
Can the wave propagation direction dependence issue in the

superconvergent frequency computation be eliminated by a
concise formulation? In this work, we try to address these
issues through a unified quadrature-based formulation.

4 Unified formulation of 1D higher order mass
matrices

4.1 General formulation

We first present a unified formulation for 1D higher order
mass matrices. As mentioned earlier, the lumpedmass matri-
ces of Lagrangian cubic and quartic elements with equal
nodal spacing do not provide an equal accuracy order as
their consistent counterparts. Alternatively, here we employ
the Lobatto elements which take the roots of the following
equation as the elemental interpolation points [7]:

(1 − ξ2)P ′
n(ξ) = 0 (18)

with Pn(ξ) being the nth order Legendre polynomial:

Pn(ξ) = 1

2nn!
dn

dξn
[(ξ2 − 1)n], ξ ∈ [−1, 1] (19)

For convenience of presentation, the nodal locations of the
linear, quadratic, cubic and quartic Lobatto elements are
illustrated in Fig. 4. It is seen that nodal locations of linear
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Fig. 4 Nodal locations of the linear, quadratic, cubic and quartic
Lobatto elements

and quadratic Lobatto elements coincide with the standard
Lagrangian elements, while non-uniform node distributions
occur for the higher order elements such as cubic and quartic
Lobatto elements.

The shape functions of Lobatto elements are obtained
through the Lagrangian interpolation based upon the nodal
locations in Fig. 4. The shape functions of the linear and
quadratic Lobatto elements are identical to their Lagrangian

counterparts and the shape functions of cubic and quartic
elements are:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

N1(ξ) = − 5
8

(
ξ +

√
5
5

) (
ξ −

√
5
5

)
(ξ − 1)

N2(ξ) = 5
√
5

8 (ξ + 1)
(
ξ −

√
5
5

)
(ξ − 1)

N3(ξ) = − 5
√
5

8 (ξ + 1)
(
ξ +

√
5
5

)
(ξ − 1)

N4(ξ) = 5
8 (ξ + 1)

(
ξ +

√
5
5

) (
ξ −

√
5
5

)
(20)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1(ξ) = 7
8ξ

(
ξ +

√
3
7

)(
ξ −

√
3
7

)
(ξ − 1)

N2(ξ) = − 49
24ξ(ξ + 1)

(
ξ −

√
3
7

)
(ξ − 1)

N3(ξ) = 7
3 (ξ + 1)

(
ξ +

√
3
7

)(
ξ −

√
3
7

)
(ξ − 1)

N4(ξ) = − 49
24ξ(ξ + 1)

(
ξ +

√
3
7

)
(ξ − 1)

N5(ξ) = 7
8ξ(ξ + 1)

(
ξ +

√
3
7

)(
ξ −

√
3
7

)

(21)

The cubic and quartic shape functions defined in Eqs. (20)
and (21) are drawn in Fig. 5, where one unique property for
the Lobatto elements is that their shape functions arrive at the
maximum values of 1 always at the nodes, while the maxi-
mum values and nodes are different for some interior points

Fig. 5 Comparison of the shape functions of the cubic and quartic Lagrangian and Lobatto elements
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of the standard Lagrangian elements. Roughly speaking, the
shape functions of Lobatto elements are less oscillatory than
those of Lagrangian elements with equally spaced nodes.

For convenience of theoretical development, the explicit
expressions of consistent mass matrices for the cubic and
quartic Lobatto elements are given as follows:

Mec = h

84

⎡

⎢⎢⎣

6
√
5 −√

5 1√
5 30 5 −√

5
−√

5 5 30
√
5

1 −√
5

√
5 6

⎤

⎥⎥⎦ (22)

Mec = h

1620

⎡

⎢⎢⎢⎢⎣

72 21 −24 21 −9
21 392 56 −49 21

−24 56 512 56 −24
21 −49 56 392 21
−9 21 −24 21 72

⎤

⎥⎥⎥⎥⎦
(23)

Their lumped mass counterparts can be obtained simply via
the row-sum method. We will see later that both consistent
and lumped mass matrices of Lobatto elements give a fre-
quency accuracy of O(h2p) for the wave equations.

Based upon the family of Lobatto elements, we propose
the following mass template to construct 1D higher order
mass matrices:

⎧
⎪⎨

⎪⎩
Meα

aa = 1
α

(
α
∑
b
Mec

ab − ∑
b �=a

Mec
ab

)

Meα
ab = 1

α
Mec

ab a �= b

; a,b = 1, 2, . . . , nen

(24)

where α is a parameter to be optimized and here we refer
Meα as the α mass matrix. Clearly, by construction Meα

preserves the total mass of the consistent mass matrix. Next
we will show the optimal choice of α, i.e., αopt , such as the
1D higher order mass matrixMeh = Meα(αopt ).

4.2 Linear element

For a two-node linear element with p = 1, following Eq.
(24), the α mass matrixMeα corresponding to the consistent
mass matrix in Eq. (13) is:

Meα = h

6α

[
3α − 1 1

1 3α − 1

]
(25)

The stiffness matrix Ke for the linear element is:

Ke = c2

h

[
1 −1

−1 1

]
(26)

Thus the stencil equation associated with a typical node xA
corresponding to Eq. (6) is:

h

6α

[
d̈A−1 + (6α − 2)d̈A + d̈A+1

]

+c2

h
(−dA−1 + 2dA − dA+1) = 0 (27)

where the uppercase subscript “A” denotes the global node
numbering.

Consider a harmonic representation of the nodal degree
of freedom dA as:

{
dA(t) = d0 exp[ι(kxA − ωht)]
d̈A(t) = −(ωh)2d0 exp[ι(kxA − ωht)] (28)

Substituting Eqs. (28) into (27) yields:

−(ωh)2[cos kh + (3α − 1)] = 6c2α

h2
(cos kh − 1) (29)

Then the semi-discrete frequency ωh is obtained as:

ωh

ω
= 1

kh

√
6α(1 − cos kh)

cos kh + (3α − 1)
(30)

where ω = kc, as shown in Eq. (3). Further invoking the
Taylor’s expansion, Eq. (30) can be rephrased as:

ωh

ω
≈
√

ϑ

ψ
≈ 1 + ϑ − ψ

2ϑ
(31)

with

{
ϑ = 6α − 1

2α(kh)2 + 1
60α(kh)4

ψ = 6α − (kh)2 + 1
12 (kh)4

(32)

By Eqs. (31), (32) reduces to:

ωh

ω
≈ 1 + 2 − α

24α
(kh)2 + O(kh)4 (33)

Obviously, choosing α = αopt = 2 = p + 1 in Eq. (33)
gives a 4th order accurate frequency, and this corresponds to
the following higher order mass matrix:

Meh = Meα(αopt ) = h

12

[
5 1
1 5

]
(34)

Thus the proposed α mass matrix with an optimal parameter
αopt = 2 = p + 1 exactly recovers the original higher order
mass matrix of Eq. (13).
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A
x h−

A
x

A
x h+

A
x

1A
x +

Fig. 6 Nodal distribution and influence domains of quadratic elements

4.3 Quadratic element

With aid of the consistent mass matrix in Eq. (14) for a
quadratic element, the α mass matrix of Eq. (24) becomes:

Meα = h

30α

⎡

⎣
5α − 1 2 −1

2 20α − 4 2
−1 2 5α − 1

⎤

⎦ (35)

In the meantime, the stiffness matrix Ke is given by:

Ke = c2

3h

⎡

⎣
7 −8 1

−8 16 −8
1 −8 7

⎤

⎦ (36)

While for the three-node quadratic element, as shown in
Fig. 6, it is noted that the shape functions and their influence
domains are different for the elemental interior node xA and
boundary node xA+1, thus the stencil equations are attached
with two neighboring nodes xA and xA+1 [18]:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

h
10α [−d̈A−2 + 2d̈A−1 + (10α − 2)d̈A + 2d̈A+1 − d̈A+2]
+ c2

h [dA−2 − 8dA−1 + 14dA − 8dA+1 + dA+2] = 0
h

10α [d̈A + (10α − 2)d̈A+1 + d̈A+2] + c2
h [−4dA

+ 8dA+1 − 4dA+2] = 0

(37)

Assuming harmonic forms for both dA and dA+1 gives:

{
dA(t) = d01 exp[ι(kxA − ωht)]
dA+1(t) = d02 exp[ι(kxA+1 − ωht)

(38)

{
d̈A(t) = −(ωh)2d01 exp[ι(kxA − ωht)]
d̈A+1(t) = −(ωh)2d02 exp[ι(kxA+1 − ωht)

(39)

where d01 and d02 are two wave amplitudes. Plugging Eqs.
(38) and (39) into (37) gives:
⎡

⎣
−(ωhh)2 cos kh

2 − 40c2α cos kh
2 −(ωhh)2(5α − 1) + 40c2α

(ωhh)2 cos kh − (ωhh)2(5α − 1)
+10c2α cos kh + 70c2α

−2(ωhh)2 cos kh
2 − 80c2α cos kh

2

⎤

⎦

×
{
d01
d02

}
= 0 (40)

Clearly Eq. (40) implies the vanishing of the determinant of
the coefficient matrix, i.e.,

g4(ω
h)4 + g2(ω

h)2 + g0 = 0 (41)

with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

g4 = −2h4 cos2( kh2 ) − 5αh4 cos(kh) + 25α2h4

+ h4 cos(kh) − 10αh4 + h4

g2 = −160c2αh2 cos2( kh2 ) − 50c2α2h2 cos(kh)

+ 50c2αh2 cos(kh)−550c2α2h2+110c2αh2

g0 = −3200c4α2 cos2( kh2 )+400c4α2 cos(kh)+2800c4α2

(42)

Then (ωh)2 can be obtained from Eq. (41) as:

(ωh)2 =
−g2 −

√
g2
2

− 4g0g4

2g4
(43)

Subsequently through the employment of Taylor’s expan-
sion, Eq. (43) becomes:

(ωh)2 ≈ c2
[
(−30α + 50α2)(kh)2 + 5α(kh)4 − 1

144 (5α2 + 42α + 9)(kh)6
]

50α2h2 − 30αh2 + 5αh2(kh)2 − 5
12αh2(kh)4

(44)

Note that ω = kc, we can also reach the form of Eq. (31)
with the following parameters:

{
ϑ = (50α2−30α)+5α(kh)2− 1

144 (5α
2+42α + 9)(kh)4

ψ = (50α2 − 30α) + 5α(kh)2 − 5
12α(kh)4

(45)

Thus the frequency error is finally derived as:

ωh

ω
≈ 1 + −5α2 + 18α − 9

14400α2 − 8640α
(kh)4 + O(kh)6 (46)

It is clear now that if the following relationship holds:

−5α2 + 18α − 9 = 0 ⇒ αopt = 3 = p + 1 (47)

we will have a 6th order accuracy that is associated with the
following higher order mass matrix:

Meh = Meα(αopt = 3) = h

90

⎡

⎣
14 2 −1
2 56 2

−1 2 14

⎤

⎦ (48)

Once again the proposed method produces the higher order
mass matrix of Eq. (14) if we select αopt = p + 1, where p
is the order of the shape functions.
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4.4 Cubic and quartic elements

It can be seen that the derivation of higher order mass matrix
for quadratic element is already very involved, thus it would
be extremely complicated to carry out the derivations of
higher order mass matrices for cubic and quartic elements.
However, the detailed derivations of linear and quadratic ele-
ments have demonstrated that the proposed α mass matrix in
Eq. (24) directly yields the desired higher order mass matrix
when αopt = p + 1. Consequently in this sub-section, the
higher order mass matrices for cubic and quartic elements
are established using the proposed α mass matrix, and their
effectiveness will be validated shortly by benchmark exam-
ples.

For the cubic element with p = 3, its consistent mass
matrix is given by Eq. (22) and the corresponding α mass
matrix in Eq. (24) takes the following form:

Meα = h

84α

⎡

⎢⎢⎣

7α − 1
√
5 −√

5 1√
5 35α − 5 5 −√

5
−√

5 5 35α − 5
√
5

1 −√
5

√
5 7α − 1

⎤

⎥⎥⎦

(49)

Further choosing α = αopt = p + 1 = 4 in Eq. (49) yields
the cubic higher order mass matrix:

Meh = Meα(αopt = 4) = h

336

⎡

⎢⎢⎣

27
√
5 −√

5 1√
5 135 5 −√

5
−√

5 5 135
√
5

1 −√
5

√
5 27

⎤

⎥⎥⎦

(50)

A similar argument for the quartic element with p = 4 leads
to the following α massmatrix and higher order mass matrix:

Meα = h

1620α

×

⎡

⎢⎢⎢⎢⎣

81α − 9 21 −24 21 −9
21 441α − 49 56 −49 21

−24 56 576α − 64 56 −24
21 −49 56 441α − 49 21
−9 21 −24 21 81α − 9

⎤

⎥⎥⎥⎥⎦

(51)

Meh

= Meα(αopt = 5) = h

8100

⎡

⎢⎢⎢⎢⎣

396 21 −24 21 −9
21 2156 56 −49 21

−24 56 2816 56 −24
21 −49 56 2156 21
−9 21 −24 21 396

⎤

⎥⎥⎥⎥⎦

(52)

The higher order mass matrices of cubic and quartic ele-
ments are expected to produce 8th and 10th order accurate
frequencies, respectively.

4.5 Numerical examinations

In this sub-section, we take the free vibration analysis of an
elastic rod to assess the present unified 1D higher order mass
matrix formulation. Three types of boundary conditions, i.e.,
free-free, fixed-free and fixed-fixed, are considered and the
analytical frequencies are [42]:

ωi =
{
icπ/L fixed-fixed or free-free rod
(2i − 1)cπ/(2L) fixed-free rod

(53)

where L is the rod length, c = √
E/ρ is the wave speed, E

is Young’s modulus and ρ is the material density. Without
loss of generality, unit values are set for all the geometry and
material properties.

Particular emphasis is placed on the higher order mass
matrices of cubic and quartic elements since the linear and
quadratic higher order mass matrices recover the existing
ones [21]. Figures 7 and 8 show the frequency convergence
for the elastic rod problems using various mass matrices of
the cubic and quartic Lobatto elements, respectively. The
results clearly prove that for both cubic and quartic Lobatto
elements, the proposed HOM yields an expected supercon-
vergence with 8th and 10th orders of accuracy, while 6th and
8th order accurate frequencies are obtained by CM and LM.

5 Multidimensional unified superconvergent
formulations

In this section, a unified superconvergent formulation is
presented for multidimensional problems based on certain
quadrature rules which are simultaneously employed to
integrate both the mass and stiffness matrices. The super-
convergent quadrature rules are rationally derived through
optimizing the frequency accuracy. More importantly, it is
shown that these quadrature rules happen to be the exact inte-
gration rules for the 1D higher order mass matrices presented
in Sect. 3.

5.1 Quadrature-based superconvergent formulation for
2D bilinear element

Consider a uniform discretization with rectangular bilinear
elements as shown in Fig. 9, the element has length hx and
height hy , and the Jacobian J for this element is J = hxhy/4.
If we use a two-point quadrature rule, i.e., integration points

123



Comput Mech (2017) 59:37–72 47

Fig. 7 Convergence comparison of the first two frequencies for the elastic rod problems using various mass matrices of cubic Lobatto element

±ξ̃ andweights
1 = 
2 = 1, then the discretemassmatrix
M̃

e
becomes:

M̃
e = hxhy

4

2∑

i, j=1

NT (ξ̃i , ξ̃ j )N(ξ̃i , ξ̃ j )
i
 j

= hxhy

16

⎡

⎢⎢⎣

(ξ̃2 + 1)2 (1 − ξ̃4) (1 − ξ̃2)2 (1 − ξ̃4)

(1 − ξ̃4) (ξ̃2 + 1)2 (1 − ξ̃4) (1 − ξ̃2)2

(1 − ξ̃2)2 (1 − ξ̃4) (ξ̃2 + 1)2 (1 − ξ̃4)

(1 − ξ̃4) (1 − ξ̃2)2 (1 − ξ̃4) (ξ̃2 + 1)2

⎤

⎥⎥⎦

(54)

where the row vector N contains the four standard bilinear
shape functions [1]. Similarly, the discrete stiffness matrix
K̃
e
is given by:

K̃
e = c2hxhy

4

2∑

i, j=1

BT (ξ̃i , ξ̃ j )B(ξ̃i , ξ̃ j )
i
 j

= c2hxhy

4

[
K̃
e
11 K̃

e
12

K̃
eT
12 K̃

e
22

]
(55)

where B is the gradient matrix corresponding to N. The sub-
matrices K̃

e
ab

′s are:

K̃
e
11 =

⎡

⎢⎢⎣

(
1
h2x

+ 1
h2y

)(
1 + ξ̃2

)
− 1

h2x

(
1 + ξ̃2

)
+ 1

h2y

(
1 − ξ̃2

)

− 1
h2x

(
1 + ξ̃2

)
+ 1

h2y

(
1 − ξ̃2

) (
1
h2x

+ 1
h2y

)(
1 + ξ̃2

)

⎤

⎥⎥⎦

(56)
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Fig. 8 Convergence comparison of the first two frequencies for the elastic rod problems using various mass matrices of quartic Lobatto element

K̃
e
12 =

⎡

⎣
− 1

h2x

(
1 − ξ̃2

)
− 1

h2y

(
1 − ξ̃2

)
1
h2x

(
1 − ξ̃2

)
− 1

h2y

(
1 + ξ̃2

)

1
h2x

(
1 − ξ̃2

)
− 1

h2y

(
1 + ξ̃2

)
− 1

h2x

(
1 − ξ̃2

)
− 1

h2y

(
1 − ξ̃2

)

⎤

⎦

(57)

K̃
e
22 =

⎡

⎢⎢⎣

(
1
h2x

+ 1
h2y

)(
1 + ξ̃2

)
− 1

h2x

(
1 + ξ̃2

)
+ 1

h2y

(
1 − ξ̃2

)

− 1
h2x

(
1 + ξ̃2

)
+ 1

h2y

(
1 − ξ̃2

) (
1
h2x

+ 1
h2y

)(
1 + ξ̃2

)

⎤

⎥⎥⎦

(58)

For a typical node xAB , the discrete equation of motion of
Eq. (6) reads:

H(d̈AB) + c2G(dAB) = 0 (59)

where H(d̈AB) and G(dAB) are:
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H
(
d̈AB

) = 1

16

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

(
1 − ξ̃2

)2
d̈(A−1)(B+1) + 2

(
1 − ξ̃4

)
d̈(A−1)B +

(
1 − ξ̃2

)2
d̈(A−1)(B−1)

+ 2
(
1 − ξ̃4

)
d̈A(B+1) + 4

(
ξ̃2 + 1

)2
d̈AB + 2

(
1 − ξ̃4

)
d̈A(B−1)

+
(
1 − ξ̃2

)2
d̈(A+1)(B+1) + 2

(
1 − ξ̃4

)
d̈(A+1)B

+
(
1 − ξ̃2

)2
d̈(A+1)(B−1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(60)

G(dAB) = 1

4

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
(

1
h2x

+ 1
h2y

)(
1 − ξ̃2

)
d(A−1)(B+1) −

[
2
h2x

(
1 + ξ̃2

)
− 2

h2y

(
1 − ξ̃2

)]
d(A−1)B

−
(

1
h2x

+ 1
h2y

)(
1 − ξ̃2

)
d(A−1)(B−1) +

[
2
h2x

(
1 − ξ̃2

)
− 2

h2y

(
1 + ξ̃2

)]
dA(B+1)

+
(

4
h2x

+ 4
h2y

)(
ξ̃2 + 1

)
dAB +

[
2
h2x

(
1 − ξ̃2

)
− 2

h2y

(
1 + ξ̃2

)]
dA(B−1)

−
(

1
h2x

+ 1
h2y

)(
1 − ξ̃2

)
d(A+1)(B+1) −

[
2
h2x

(
1 + ξ̃2

)
− 2

h2y

(
1 − ξ̃2

)]
d(A+1)B

+
(

− 1
h2x

− 1
h2y

)(
1 − ξ̃2

)
d(A+1)(B−1)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(61)

Following the similar procedure as 1D analysis, dAB takes
the following form:

{
dAB(t) = d0 exp[ι(kx xA + ky yB − ωht)]
d̈AB(t) = −(ωh)2d0 exp[ι(kx xA + ky yB − ωht)] (62)

For convenience of presentation, assume hy = shx = sh and
introduce the wave propagation angle θ as shown in Fig. 9:

kx = k cos θ, ky = k sin θ (63)

Then bringing Eqs. (62) into (59) gives:

−(ωh)2S + c2T = 0 (64)

Fig. 9 A finite element mesh with bilinear rectangular elements

with

S = 1

2
(1 − ξ̃2)2 cos(−kh cos θ + skh sin θ)

+ (1 − ξ̃4) cos(−kh cos θ)

+ 1

2
(1 − ξ̃2)2 cos(−kh cos θ − skh sin θ)

+(1 − ξ̃4) cos(skh sin θ)

+(ξ̃2 + 1)2 (65)

T =
[
− 2

h2
(1 − ξ̃2) − 2

s2h2
(1 − ξ̃2)

]

× cos [kh(− cos θ + s sin θ)]

+
[
− 4

h2
(1 + ξ̃2) + 4

s2h2
(1 − ξ̃2)

]
cos(−kh cos θ)

+
[
− 2

h2
(1 − ξ̃2) − 2

s2h2
(1 − ξ̃2)

]

× cos [kh(− cos θ − s sin θ)]

+
[
4

h2
(1 − ξ̃2) − 4

s2h2
(1 + ξ̃2)

]
cos(skh sin θ)

+
[
4 ×

(
1

h2
+ 1

s2h2

)
(1 + ξ̃2)

]
(66)

Thus we arrive at:

ωh = c

√
T
S (67)

By performing Taylor’s expansions on T and S, Eq. (67) can
be recast into the form of Eq. (31), where at this time ϑ and
ψ are given by:
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ϑ = 4 + [− 1
3 cos

4 θ − 1
3 s

2 sin4 θ + cos2 θ sin2 θ(s2ξ̃2

+ξ̃2 − s2 − 1)
]
(kh)2

+

⎡

⎢⎢⎣

1
90 cos

6 θ + 1
90α4 sin6 θ + cos2 θ sin2 θ×(

− 1
12 s

2ξ̃2 + 1
12 s

2 + 1
12 s

4 sin2 θ + 1
12 cos

2 θ

− 1
12 ξ̃2 cos2 θ − 1

12 s
4ξ̃2 sin2 θ

)

⎤

⎥⎥⎦ (kh)4 (68)

ψ = 4 +
[

(ξ̃2 − 1) cos4 θ + (ξ̃2 − 1)s2 sin4 θ

+ cos2 θ sin2 θ(s2ξ̃2 + ξ̃2 − s2 − 1)

]
(kh)2

+

⎡

⎢⎢⎢⎣

(
1
12 − 1

12 ξ̃2
)
cos6 θ + ( 1

12 s
4 − 1

12 s
4ξ̃2) sin6 θ

+ sin2 θ cos2 θ ×
(

1
12 s

4 sin2 θ − 1
12 s

4ξ̃2 sin2 θ+
1
12 cos

2 θ − 1
12 ξ̃2 cos2 θ + 1

4 s
2 + 1

4 s
2ξ̃4 − 1

2 s
2ξ̃2

)

⎤

⎥⎥⎥⎦ (kh)4

(69)

Finally, according to Eq. (31) the frequency error for the
bilinear element becomes:

ωh

ω
≈ 1 +

(
2
3 − ξ̃2

)
cos4 θ + ( 23 − ξ̃2)s2 sin4 θ

8
(kh)2

+O(kh)4 (70)

Obviously, if we take ξ̃ = ±√
2/3, namely, the quadrature

rule as:

{
ξ̃1 = −

√
2
3 , ξ̃2 =

√
2
3


1=
2=1
(71)

Equation (70) would give us a superconvergent formulation
with an accuracy order of 4. Meanwhile, this supercon-
vergent formulation completely eliminates the convergence
order dependence on the wave propagation angle θ and
the length/height ratio s. A superaccurate dispersion error
analysis [41] also leads to the quadrature rule in Eq. (71).
Nonetheless, the interesting and important fact herein is that
the integration rule in Eq. (71) is the 2D tensor product form
of the 1D quadature rule that exactly integrates the 1D higher
order mass matrix as discussed in Eqs. (13) and (16). Mean-
while, the same quadrature rule is adopted for both mass
and stiffness matrices. The present formulation distinguishes
itself from the higher order mass matrix formulation where
only the mass matrix is optimized. Thus we refer the present
formulation as the quadrature-based superconvergent formu-
lation (QSF). On the other hand, the present formulation does
reduce to the higher order mass matrix formulation in 1D
case.

5.2 Quadrature-based superconvergent formulation for
3D trilinear element

At this point, a natural question to ask is that whether a
direct generalization of the quadrature rule of Eq. (71) to
3D case also provides a superconvergent formulation for the

Fig. 10 A finite mesh with trilinear rectangular elements

frequency computation without wave propagation direction
dependence. The answer is yes and we shall prove this result
in this sub-section.

Consider a uniform discretization with 3D trilinear rec-
tangular elements as shown in Fig. 10, the length, width and
height for a generic element are denoted by hx , hy and hz ,
the Jacobian for a rectangular element is J = hxhyhz/8.
By employing the quadrature rule of Eq. (71) with a tensor
product operation, the mass matrix for a 3D trilinear element
is then computed as follows:

Table 1 Superconvergent quadrature rules for frequency computation

p ξ̃i 
i Degree of precision

1 −√
2/3 1 1√
2/3 1

2 −√
13/15 5/13 3

0 16/13√
13/15 5/13

3 −0.964335275880 0.199826014448 5

−0.429352058316 0.800173985552

0.429352058316 0.800173985552

0.964335275880 0.199826014448

4 −0.978315678013 0.121787277062 7

−0.638731398346 0.531329254103

0 0.693766937669

0.638731398346 0.531329254103

0.978315678013 0.121787277062
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Fig. 11 Meshes for the square membrane problem using bilinear elements

Fig. 12 Convergence comparison of the first four frequencies for the square membrane problem using bilinear elements

Fig. 13 Non-uniform meshes for the square membrane problem using bilinear elements
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Fig. 14 Convergence comparison of the first four frequencies for the square membrane problem using bilinear elements with non-uniform meshes

Fig. 15 Meshes for the square membrane problem using biquadratic elements

M̃
e = hx hyhz

8

2∑
i, j,k=1

NT (ξ̃i , ξ̃ j , ξ̃k)N(ξ̃i , ξ̃ j , ξ̃k)
i
 j
k

= hx hyhz
1728

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

125 25 5 25 25 5 1 5

25 125 25 5 5 25 5 1

5 25 125 25 1 5 25 5

25 5 25 125 5 1 5 25

25 5 1 5 125 25 5 25

5 25 5 1 25 125 25 5

1 5 25 5 5 25 125 25

5 1 5 25 25 5 25 125

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(72)

where the row vector N is formed by the standard eight tri-
linear shape functions and its gradient is denoted by B [2].
On the other hand, using the same quadrature rule defined in
Eq. (71), the stiffness matrix is given by:

K̃
e = c2hxhyhz

8

2∑

i, j,k=1

BT (ξ̃i , ξ̃ j , ξ̃k)B(ξ̃i , ξ̃ j , ξ̃k)
i
 j
k

= c2hxhyhz
8

⎡

⎢⎢⎢⎢⎣

K̃
e
11 K̃

e
12 K̃

e
13 K̃

e
14

K̃
eT
12 K̃

e
22 K̃

e
23 K̃

e
24

K̃
eT
13 K̃

eT
23 K̃

e
33 K̃

e
34

K̃
eT
14 K̃

eT
24 K̃

eT
34 K̃

e
44

⎤

⎥⎥⎥⎥⎦
(73)
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Fig. 16 Convergence comparison of the first four frequencies for the square membrane problem using biquadratic elements

Fig. 17 Non-uniform meshes for the square membrane problem using biquadratic elements

where the sub-matrices K̃
e
i j

′s, i, j = 1, . . . , 4, are given in
Appendix.

Based upon Eqs. (6), (72) and (73), the stencil equation
associated with the node xABC = (xA, yB , zC ) is:

H(d̈ABC ) + c2G(dABC ) = 0 (74)

where H(d̈ABC ) and G(dABC ) are given by:

H(d̈ABC ) = 1

1728⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d̈(A−1)(B−1)(C+1) + 10d̈(A−1)(B−1)C + d̈(A−1)(B−1)(C−1)

+ 10d̈(A−1)B(C+1) + 100d̈(A−1)BC + 10d̈(A−1)B(C−1)

+ d̈(A−1)(B+1)(C+1) + 10d̈(A−1)(B+1)C + d̈(A−1)(B+1)(C−1)

+ 10d̈A(B−1)(C+1) + 100d̈A(B−1)C + 10d̈A(B−1)(C−1)

+ 100d̈AB(C+1) + 1000d̈ABC + 100d̈AB(C−1)

+ 10d̈A(B+1)(C+1) + 100d̈A(B+1)C + 10d̈A(B+1)(C−1)

+ d̈(A+1)(B−1)(C+1) + 10d̈(A+1)(B−1)C + d̈(A+1)(B−1)(C−1)

+ 10d̈(A+1)B(C+1) + 100d̈(A+1)BC + 10d̈(A+1)B(C−1)

+ d̈(A+1)(B+1)(C+1) + 10d̈(A+1)(B+1)C + d̈(A+1)(B+1)(C−1)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(75)
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Fig. 18 Convergence comparison of the first four frequencies for the square membrane problem using biquadratic elements with non-uniform
meshes

Fig. 19 Meshes for the square membrane problem using 8-node serendipity elements

G(dABC ) = 1

72
(D1 + D2 + D3 + D4) (76)

where Di ’s, i = 1, . . . , 4, are defined in Appendix.
Invoking the following harmonic expression for dABC :

{
dABC (t) = d0 exp[ι(kx xA + ky yB + kzzC − ωht)]
d̈ABC (t) = −(ωh)2d0[ι(kx xA + ky yB + kzzC − ωht)]

(77)

Then Eq. (74) becomes:

ωh = c

√
12T
S (78)

where S and T are detailed in Appendix.
Let hy = shx = sh and hz = lhx = lh, and introduce

the following relationships:

kx = k cosϕ cos θ , ky = k cosϕ sin θ , kz = k sin ϕ (79)
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Fig. 20 Convergence comparison of the first four frequencies for the square membrane problem using 8-node serendipity elements

Fig. 21 Meshes for the square membrane problem using bicubic elements

in which θ and ϕ are the wave propagation angles as
illustrated in Fig. 10. Accordingly, after proper Taylor’s
expansion and using ω = kc, Eq. (78) reduces to:

ωh

ω
≈
√
864 + χ2(kh)2 + χ4(kh)4

864 + φ2(kh)2 + φ4(kh)4

≈ 1 + χ2 − φ2

1728
(kh)2 + O(kh)4 (80)

with

χ2 = −72 cos4 ϕ cos4 θ + (−72 − 72s2) cos4 ϕ cos2 θ sin2 θ

+ (−72 − 72l2) cos2 ϕ cos2 θ sin2 ϕ − 72s2 cos4 ϕ sin4 θ

+ (−72s2 − 72l2) cos2 ϕ sin2 θ sin2 ϕ − 72l2 sin4 ϕ

(81)

χ4 = (6s2 + 6s4) cos6 ϕ cos2 θ sin4 θ

+ (6s2 + 6) cos6 ϕ cos4 θ sin2 θ + 12

5
cos6 ϕ cos6 θ
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Fig. 22 Convergence comparison of the first four frequencies for the square membrane problem using bicubic elements

Fig. 23 Meshes for the square membrane problem using biquartic elements

+ 12

5
s4 cos6 ϕ sin6 θ + (6s2l2 + 6s4) cos4 ϕ sin4 θ sin2 ϕ

+ (6s2 + 6l2 + 6s2l2) cos4 ϕ cos2 θ sin2 θ sin2 ϕ

+ (6l2 + 6) cos4 ϕ cos4 θ sin2 ϕ

+ (6l4 + 6l2s2) cos2 ϕ sin2 θ sin4 ϕ

+ (6l4 + 6l2) cos2 ϕ cos2 θ sin4 ϕ + 12

5
l4 sin6 ϕ (82)

φ2 = −72s2 cos2 ϕ sin2 θ − 72 cos2 ϕ cos2 θ − 72l2 sin2 ϕ

(83)

φ4 = 6 cos4 ϕ cos4 θ + 6s2l2 cos2 ϕ sin2 θ sin2 ϕ

+ 6s4 cos4 ϕ sin4 θ

+ 6l2 cos2 ϕ cos2 θ sin2 ϕ

+ 6s2 cos5 ϕ cos3 θ sin2 θ + 6l4 sin4 ϕ (84)

Consequently, if χ2 = φ2 in Eq. (80), the coefficient
of (kh)2 vanishes and we arrive at a 4th order accurate
superconvergent algorithm that does not depend on the wave
propagation angles θ and ϕ. This identity can be easily veri-
fied as follows:

χ2 = −72 cos4 ϕ cos4 θ + (−72 − 72s2) cos4 ϕ cos2 θ sin2 θ

+ (−72 − 72l2) cos2 ϕ cos2 θ sin2 ϕ − 72s2 cos4 ϕ sin4 θ

+ (−72s2 − 72l2) cos2 ϕ sin2 θ sin2 ϕ − 72l2 sin4 ϕ

= (−72s2 cos2 ϕ sin2 θ − 72 cos2 ϕ cos2 θ − 72l2 sin2 ϕ)

× (cos2 ϕ cos2 θ + cos2 ϕ sin2 θ + sin2 ϕ)

= −72s2 cos2 ϕ sin2 θ − 72 cos2 ϕ cos2 θ − 72l2 sin2 ϕ

= φ2 (85)
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Fig. 24 Convergence comparison of the first four frequencies for the square membrane problem using biquartic elements

Fig. 25 Meshes for the rectangular membrane problem using bilinear elements

5.3 General quadrature-based superconvergent
formulations

The quadrature rule in Eq. (71) produces the desired super-
convergent formulations for 1D, 2D as well as 3D linear
elements in a very simple and unified manner. One key point

in this work is that the superconvergent quadrature rule can
be derived from the 1D higher order mass matrix under the
requirement of exact integration. Next we generalize this
algorithm to higher order elements.

Consider the exact integration of the quadratic higher
order mass matrix defined by Eq. (14) using three sampling
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Fig. 26 Convergence comparison of the first four frequencies for the rectangular membrane problem using bilinear elements

Fig. 27 Non-uniform meshes for the rectangular membrane problem using bilinear elements

points ξ̃1, ξ̃2 = 0, ξ̃3 = −ξ̃1, andweights
1,
2,
3 = 
1,
then the higher order mass matrix can be expressed as:

Meh =
3∑

i=1

NT (ξ̃i )N(ξ̃i )J (ξ̃i )w̃i (86)

where N(ξ) = {N1(ξ) N2(ξ) N3(ξ)} = {ξ(ξ − 1)/2 1 −
ξ2 ξ(ξ + 1)/2}, J (ξ) = h/2. It is straightforward to show
that Eq. (86) only gives three independent equations:
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Fig. 28 Convergence comparison of the first four frequencies for the rectangular membrane problem using bilinear elements with non-uniform
meshes

Fig. 29 Meshes for the rectangular membrane problem using biquadratic elements

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Meh(1, 1) =
3∑

i=1
N1(ξ̃i )N1(ξ̃i )

h
2
i = 7h

45

Meh(1, 3) =
3∑

i=1
N1(ξ̃i )N3(ξ̃i )

h
2
i = − h

90

Meh(2, 2) =
3∑

i=1
N2(ξ̃i )N2(ξ̃i )

h
2
i = 28h

45

(87)

or

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ̃21 (ξ̃1 − 1)2
1 + ξ̃21 (ξ̃1 + 1)2
1 = 56
45

ξ̃21 (ξ̃21 − 1)
1 = − 2
45

2(1 − ξ̃21 )2
1 + 
2 = 56
45

(88)
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Fig. 30 Convergence comparison of the first four frequencies for the rectangular membrane problem using biquadratic elements

Fig. 31 Non-uniform meshes for the rectangular membrane problem using biquadratic elements

The resulting solutions for integration points andweights are:

{
ξ̃1 = −

√
13
15 , ξ̃2 = 0, ξ̃3 =

√
13
15


1 = 5
13 ,
2 = 16

13 ,
3 = 5
13

(89)

On the other hand, an exact numerical integration for the
cubic higher ordermassmatrix of Lobatto element inEq. (50)
requires four integration points and related weights. By sym-
metry, the integration points and weights can be assumed as:
ξ̃1, ξ̃2, ξ̃3 = −ξ̃2, ξ̃4 = −ξ̃1, and 
1,
2,
3 = 
2,
4 =
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Fig. 32 Convergence comparison of the first four frequencies for the rectangular membrane problem using biquadratic elements with non-uniform
meshes

Fig. 33 Meshes for the rectangular membrane problem using 8-node serendipity elements
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Fig. 34 Convergence comparison of the first four frequencies for the rectangular membrane problem using 8-node serendipity elements

Fig. 35 Meshes for the rectangular membrane problem using bicubic elements
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Fig. 36 Convergence comparison of the first four frequencies for the rectangular membrane problem using bicubic elements

Fig. 37 Meshes for the rectangular membrane problem using biquartic elements
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Fig. 38 Convergence comparison of the first four frequencies for the rectangular membrane problem using biquartic elements

Fig. 39 3D meshes for the cubic cavity problem using trilinear elements


1. Then the numerical integration of Eq. (50) yields four
independent equations:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Meh(1, 1) =
4∑

i=1
N1(ξ̃i )N1(ξ̃i )J (ξ̃i )w̃i = 27h

336

Meh(2, 2) =
4∑

i=1
N2(ξ̃i )N2(ξ̃i )J (ξ̃i )w̃i = 135h

336

Meh(2, 1) =
4∑

i=1
N2(ξ̃i )N1(ξ̃i )J (ξ̃i )w̃i =

√
5h

336

Meh(1, 4) =
4∑

i=1
N1(ξ̃i )N4(ξ̃i )J (ξ̃i )w̃i = h

336

(90)

where the shape functions N ′
as are given in Eq. (20). An

expansion of Eq. (90) yields:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
25ξ̃61 + 15ξ̃41 − 9ξ̃21

)

1

+
(
25ξ̃62 + 15ξ̃42 − 9ξ̃22

)

2 = 29

7(
25ξ̃61 − 45ξ̃41 + 15ξ̃21

)

1

+
(
25ξ̃62 − 45ξ̃42 + 15ξ̃22

)

2 = 1

7(
−25ξ̃61 + 30ξ̃41 − 5ξ̃21

)

1

+
(
−25ξ̃62 + 30ξ̃42 − 5ξ̃22

)

2 = 4

21 + √
5(

−25ξ̃61 + 35ξ̃41 − 11ξ̃21

)

1

+
(
−25ξ̃62 + 35ξ̃42 − 11ξ̃22

)

2 = − 17

21

(91)

From Eq. (91), the four integration points and corresponding
weights for cubic Lobatto element can be solved as:
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Fig. 40 Convergence comparison of the first four frequencies for the cubic cavity problem using trilinear elements

Fig. 41 3D meshes for the cubic cavity problem using triquadratic elements

⎧
⎪⎪⎨

⎪⎪⎩

ξ̃1 = 0.964335275880, ξ̃2 = 0.429352058316,
ξ̃3 = −ξ̃2, ξ̃4 = −ξ̃1


1 = 0.199826014448, 
2 = 0.800173985552,

3 = 
2, 
4 = 
1

(92)

A similar derivation also applies to the higher order
mass matrix of quartic Lobatto element. All the results of
quadrature rules corresponding to linear, quadratic, cubic and
quartic Lobatto elements are tabulated in Table 1, and the
degree of precision for each integration rule is given as well.
Consequently, a unified formulation can be established to
achieve superconvergent eigenvalue computation of 1D, 2D
and 3D wave equations by employing the quadrature rules in

Table 1 for both the stiffness andmassmatrices. For example,
the 3D formulation is given as:

M̃
e =

ñint∑

i, j,k=1

NT (ξ̃i , ξ̃ j , ξ̃k)N(ξ̃i , ξ̃ j ,

ξ̃k)J (ξ̃i , ξ̃ j , ξ̃k)
i
 j
k (93)

K̃
e = c2

ñint∑

i, j,k=1

BT (ξ̃i , ξ̃ j , ξ̃k)B(ξ̃i ,

ξ̃ j , ξ̃k)J (ξ̃i , ξ̃ j , ξ̃k)
i
 j
k (94)
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Fig. 42 Convergence comparison of the first four frequencies for the cubic cavity problem using triquadratic elements

Fig. 43 3D meshes for the cubic cavity problem using 20-node serendipity elements

where ñint denotes the number of integration points in each
direction as shown in Table 1. It turns out that the pth
order quadrature rule in Table 1 exactly integrate 1D stiff-
ness matrix of a given pth order element as well. Therefore,
the proposed quadrature-based superconvergent formulation
reduces to the higher order mass matrix formulation in 1D
case. While in multidimensional cases, the present method
is not equivalent to the higher order mass matrix formulation
and the wave propagation angle dependence arising from the
frequency computation is completely removed by the pro-
posed algorithm with trivial numerical implementation.

6 Numerical demonstration

6.1 2D square membrane problem

Consider the free vibration of a square membrane that is sub-
jected to a fixed boundary condition, the analytical solution
of the vibration frequency for this problem is [43]:

ωi j = πc

L

√
i2 + j2 (95)

where L is the length of the membrane.
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Fig. 44 Convergence comparison of the first four frequencies for the cubic cavity problem using 20-node serendipity elements

Fig. 45 3D meshes for the rectangular cavity problem using tricubic elements

In the computation, without loss of generality, we take
L = 1 and c = 1. For this square membrane problem,
we perform convergence tests for all four types of elements
discussed previously, i.e., bilinear, biquadratic, bicubic and
biquartic Lobatto elements, plus the commonly used 8-node
serendipity element. Under each circumstance, the finite
element meshes and corresponding convergence results for
the first four frequencies are presented in a sequence. Fig-
ures 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 and
24 list the finite element meshes and frequency convergence
results for this square membrane problem, where CM and
LM represent the conventional consistent and lumped mass
matrices by standard Gauss integration, QSF represents the
proposed quadrature-based superconvergent formulation. It
is evident that all the results predict a superconvergence for

the proposed QSF with convergence rates of 4, 6, 8 and 10
for the bilinear, biquadratic, bicubic and biquartic Lobatto
elements, while they are 2, 4, 6 and 8 for CM and LM,
respectively. In particular, the non-uniformmeshes as shown
in Figs. 13 and 17 also produce superconvergent results of
Figs. 14 and 18. Another very interesting observation is that
when we directly adopt the proposed three-point quadra-
ture rule for the 8-node serendipity element, as shown in
Figs. 19 and 20, the superconvergence also occurs for the
frequencies, although the superconvergent quadrature rules
is designed for Lagrangian type of Lobatto elements. How-
ever, the LM of 8-node serendipity element by row sum only
leads to 2nd order accurate frequencies, in contrast to the
4th order accuracy for CM and the 6th order accuracy for
QSF.
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Fig. 46 Convergence comparison of the first four frequencies for the rectangular cavity problem using tricubic elements

Fig. 47 3D meshes for the rectangular cavity problem using triquartic elements

6.2 2D rectangular membrane problem

It is noted that the HOM in Eq. (15) is only applicable to
square elements. In order to comprehensively assess the pro-
posed method, the rectangular membrane with four fixed
sides is further studied herein. This rectangular membrane
has length Lx and width Ly and its analytical frequency ωi j

can be expressed as [43]:

ωi j = πc

√(
i

Lx

)2

+
(

j

L y

)2

(96)

In the finite element analysis, we assume c = 1, Lx = 1 and
Ly = 2. Similar to the square membrane problem, the finite
element discretizations and results of frequency convergence
are sequentially presented in Figs. 25, 26, 27, 28, 29, 30, 31,

32, 33, 34, 35, 36, 37 and 38, for the bilinear, biquadratic,
serendipity, bicubic and biquartic elements. The results con-
sist of the first four frequencies using three formulations,
namely, CM, LM and QSF, as again reveal that the pro-
posedQSF gives a very superior performance comparedwith
CMandLM. The superconvergence is consistently observed,
which is proved by the frequency convergence rates of 4, 6,
8 and 10 for the bilinear, biquadratic, bicubic and biquar-
tic Lobatto elements, i.e. two additional orders of accuracy
are gained by the proposed QSF in comparison with CM and
LM.At the same time, evenwhen the non-uniformmeshes of
Figs. 27 and31 are used for this rectangularmembrane, as can
be seen from Figs. 28 and 32, the present QSF also preforms
very well in contrast to CM and LM. Moreover, although
the proposed three-point quadrature rule is designed for the
biquadratic element, a direct adoption of this integration rule
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Fig. 48 Convergence comparison of the first four frequencies for the rectangular cavity problem using triquartic elements

for the 8-node serendipity element yields superconvergent
results with 6th order accuracy as well, which is clearly
demonstrated in Figs. 33 and 34, but LM in this case only
gives 2nd order accurate frequencies, two orders lower than
CM.

6.3 3D cubic and rectangular cavity problems

One strength of the proposed method is its easiness of exten-
sion to 3D problems. Here we investigate its performance
for 3D problems. Two typical examples are considered, i.e.,
the cubic and rectangular cavity problems and the frequen-
cies of acoustic pressure in these domains are searched. The
length, width and height of rectangular cavity are denoted
by Lx , Ly and Lz , if a homogenous boundary condition is
assumed, the analytical frequency solution for this problem
is [43]:

ωi jk = πc

√(
i

Lx

)2

+
(

j

L y

)2

+
(

k

Lz

)2

(97)

This solution applies to the cubic cavity problem when
Lx = Ly = Lz .

For brevity purpose, the trilinear, triquadratic and 20-node
serendipity elements are used to compute the frequencies
for the cubic cavity problem, while tricubic and triquartic
elements are adopted for the frequency analysis of the rec-

tangular cavity problem. The parameters used for the cubic
and rectangular cavity problems are: Lx = Ly = Lz = 1 and
c = 1; Lx = Ly = 2, Lz = 1 and c = 1. Figures 39, 40, 41
and 42 show the finite element meshes and frequency conver-
gence results of the first four frequencies for the cubic cavity
problem, which demonstrate that the frequency convergence
rates are 2 and 4 for both CM and LM using the trilinear and
triquadratic elements, but they are upgraded to 4 and 6 by
the proposed QSF, i.e., superconvergence is achieved for this
3D problem. In case that the 20-node serendipity elements
are used, as shown in Figs. 43 and 44, LM and CM produce
2nd and 4th order accurate frequencies, while once again
QSF provides 6th order accurate results. The finite element
discretizations and results of frequency convergence for the
rectangular cavity problem are plotted in Figs. 45, 46, 47 and
48, where the tricubic and triquartic Lobatto elements are
utilized. These frequency convergence results exhibit super-
convergent behaviors one more time for the proposed QSF
that leads to 8th and 10th order accurate frequencies, where
6th and 8th order accurate frequencies are obtained by CM
and LM.

7 Conclusions

A unified quadrature-based superconvergent finite element
formulation was presented to compute the eigenvalues of
wave equations. The proposed formulation is built upon the
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Lagrangian type of Lobatto elements with Lobatto points as
the finite element nodes. In 1D setting, a general method
of α mass matrix formulation was proposed to develop the
higher order mass matrices for arbitrary order elements.
Both theoretical proofs for linear and quadratic elements and
numerical examinations for cubic and quartic elements uni-
versally demonstrated that a choice of αopt = p + 1 leads
to the desired higher order mass matrices with eigenvalue or
frequency superconvergence. For example, 4th, 6th, 8th and
10th order of accuracy are achieved by the higher order mass
matrices, in contrast to 2nd, 4th, 6th and 8th order of accuracy
by the corresponding consistent and lumped mass matrices,
for linear, quadratic, cubic and quartic elements, respec-
tively. Subsequently, the multidimensional superconvergent
formulation was realized through adopting a set of super-
convergent quadrature rules simultaneously for the mass
and stiffness matrices. Through theoretical derivations for
bilinear and trilinear elements and numerical justifications
for other elements, it was shown that these superconver-
gent quadrature rules essentially are the ones that exactly
integrate the proposed 1D higher order mass matrices. The
superconvergent quadrature rules for linear, quadratic, cubic
and quartic elements were presented in detail. As a result,
a quadrature-based superconvergent formulation was estab-
lished in a unified fashion for multidimensional problems
with no difficulty and complexity regarding to the numeri-
cal implementation. The proposed approach reduces to the
higher order mass formulation for 1D problems since these
superconvergent quadrature rules exactly integrate 1D higher
order mass and stiffness matrices. At the same time, without
the requirement of further effort, the present quadrature-
based superconvergent formulation completely eliminates
the wave propagation direction dependence issue associated
with the multidimensional higher order mass matrix for-
mulation. The expected superconvergence in the frequency
computation of wave equations is well demonstrated by
numerical examples.
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Appendix

The sub-matrices K̃
e
i j ’s in Eq. (73) are defined as follows:

K̃
e
11 =

⎡

⎣
25

18h2x
+ 25

18h2y
+ 25

18h2z
− 25

18h2x
+ 5

18h2y
+ 5

18h2z
− 25

18h2x
+ 5

18h2y
+ 5

18h2z
25

18h2x
+ 25

18h2y
+ 25

18h2z

⎤

⎦ (98)

K̃
e
12 =

⎡

⎣
− 5

18h2x
− 5

18h2y
+ 1

18h2z
5

18h2x
− 25

18h2y
+ 5

18h2z
5

18h2x
− 25

18h2y
+ 5

18h2z
− 5

18h2x
− 5

18h2y
+ 1

18h2z

⎤

⎦ (99)

K̃
e
13 =

⎡

⎣
5

18h2x
+ 5

18h2y
− 25

18h2z
− 5

18h2x
+ 1

18h2y
− 5

18h2z
− 5

18h2x
+ 1

18h2y
− 5

18h2z
5

18h2x
+ 5

18h2y
− 25

18h2z

⎤

⎦ (100)

K̃
e
14 =

⎡

⎣
− 1

18h2x
− 1

18h2y
− 1

18h2z
1

18h2x
− 5

18h2y
− 5

18h2z
1

18h2x
− 5

18h2y
− 5

18h2z
− 1

18h2x
− 1

18h2y
− 1

18h2z

⎤

⎦ (101)

K̃
e
22 =

⎡

⎣
25

18h2x
+ 25

18h2y
+ 25

18h2z
− 25

18h2x
+ 5

18h2y
+ 5

18h2z
− 25

18h2x
+ 5

18h2y
+ 5

18h2z
25

18h2x
+ 25

18h2y
+ 25

18h2z

⎤

⎦ (102)

K̃
e
23 =

⎡

⎣
− 1

18h2x
− 1

18h2y
− 1

18h2z
1

18h2x
− 5

18h2y
− 5

18h2z
1

18h2x
− 5

18h2y
− 5

18h2z
− 1

18h2x
− 1

18h2y
− 1

18h2z

⎤

⎦ (103)

K̃
e
24 =

⎡

⎣
5

18h2x
+ 5

18h2y
− 25

18h2z
− 5

18h2x
+ 1

18h2y
− 5

18h2z
− 5

18h2x
+ 1

18h2y
− 5

18h2z
5

18h2x
+ 5

18h2y
− 25

18h2z

⎤

⎦ (104)

K̃
e
33 =

⎡

⎣
25

18h2x
+ 25

18h2y
+ 25

18h2z
− 25

18h2x
+ 5

18h2y
+ 5

18h2z
− 25

18h2x
+ 5

18h2y
+ 5

18h2z
25

18h2x
+ 25

18h2y
+ 25

18h2z

⎤

⎦ (105)

K̃
e
34 =

⎡

⎣
− 5

18h2x
− 5

18h2y
+ 1

18h2z
5

18h2x
− 25

18h2y
+ 5

18h2z
5

18h2x
− 25

18h2y
+ 5

18h2z
− 5

18h2x
− 5

18h2y
+ 1

18h2z

⎤

⎦ (106)

K̃
e
44 =

⎡

⎣
25

18h2x
+ 25

18h2y
+ 25

18h2z
− 25

18h2x
+ 5

18h2y
+ 5

18h2z
− 25

18h2x
+ 5

18h2y
+ 5

18h2z
25

18h2x
+ 25

18h2y
+ 25

18h2z

⎤

⎦ (107)

The symbols Di ’s in Eq. (76) are given by:

D1 =
(

− 1

2h2x
− 1

2h2y
− 1

2h2z

)
d(A−1)(B−1)(C+1)

+
(

− 5

h2x
+ 1

h2y
− 5

h2z

)
d(A−1)(B−1)C

+
(

− 1

2h2x
− 1

2h2y
− 1

2h2z

)
d(A−1)(B−1)(C−1)

+
(

1

h2x
− 5

h2y
− 5

h2z

)
d(A−1)B(C+1)

+
(
10

h2x
+ 10

h2y
− 50

h2z

)
d(A−1)BC

+
(

1

h2x
− 5

h2y
− 5

h2z

)
d(A−1)B(C−1) (108)

D2 =
(

− 1

2h2x
− 1

2h2y
− 1

2h2z

)
d(A−1)(B+1)(C+1)

+
(

− 5

h2x
+ 1

h2y
− 5

h2z

)
d(A−1)(B+1)C

+
(

− 1

2h2x
− 1

2h2y
− 1

2h2z

)
d(A−1)(B+1)(C−1)
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+
(

− 5

h2x
− 5

h2y
+ 1

h2z

)
dA(B−1)(C+1)

+
(

−50

h2x
+ 10

h2y
+ 10

h2z

)
dA(B−1)C

+
(

− 5

h2x
− 5

h2y
+ 1

h2z

)
dA(B−1)(C−1)

+
(
10

h2x
− 50

h2y
+ 10

h2z

)
dAB(C+1) (109)

D3 =
(
100

h2x
+ 100

h2y
+ 100

h2z

)
dABC

+
(
10

h2x
− 50

h2y
+ 10

h2z

)
dAB(C−1)

+
(

− 5

h2x
− 5

h2y
+ 1

h2z

)
dA(B+1)(C+1)

+
(

−50

h2x
+ 10

h2y
+ 10

h2z

)
dA(B+1)C

+
(

− 5

h2x
− 5

h2y
+ 1

h2z

)
dA(B+1)(C−1)

+
(

− 1

2h2x
− 1

2h2y
− 1

2h2z

)
d(A+1)(B−1)(C+1) (110)

D4 =
(

− 5

h2x
+ 1

h2y
− 5

h2z

)
d(A+1)(B−1)C

+
(

− 1

2h2x
− 1

2h2y
− 1

2h2z

)
d(A+1)(B−1)(C−1)

+
(

1

h2x
− 5

h2y
− 5

h2z

)
d(A+1)B(C+1)

+
(
10

h2x
+ 10

h2y
− 50

h2z

)
d(A+1)BC

+
(

1

h2x
− 5

h2y
− 5

h2z

)
d(A+1)B(C−1)

+
(

− 1

2h2x
− 1

2h2y
− 1

2h2z

)
d(A+1)(B+1)(C+1)

+
(

− 5

h2x
+ 1

h2y
− 5

h2z

)
d(A+1)(B+1)C

+
(

− 1

2h2x
− 1

2h2y
− 1

2h2z

)
d(A+1)(B+1)(C−1) (111)

The symbols S and T in Eq. (78) read:

S = cos(−kxhx + kyhy − kzhz)

+10 cos(−kxhx − kzhz) + cos(−kxhx − kyhy − kzhz)

+100 cos(−kzhz) + 10 cos(kyhy − kzhz)

+10 cos(−kyhy − kzhz) + 10 cos(kxhx − kzhz)

+ cos(kxhx + kyhy − kzhz)

+ cos(kxhx − kyhy − kzhz) + 10 cos(−kxhx + kyhy)

+100 cos(−kxhx ) + 10 cos(−kxhx − kyhy)

+100 cos(kyhy) + 500 (112)

T = −
(

1

h2x
+ 1

h2y
+ 1

h2z

)
cos

(
kxhx − kyhy + kzhz

)

−
(
10

h2x
− 2

h2y
+ 10

h2z

)
cos (kxhx + kzhz)

−(
1

h2x
+ 1

h2y
+ 1

h2z
) cos(kxhx + kyhy + kzhz)

+
(

2

h2x
− 10

h2y
− 10

h2z

)
cos(kyhy − kzhz)

+
(
20

h2x
+ 20

h2y
− 100

h2z

)
cos(kzhz)

+
(

2

h2x
− 10

h2y
− 10

h2z

)
cos(kyhy + kzhz)

−
(

1

h2x
+ 1

h2y
+ 1

h2z

)
cos(kxhx + kyhy − kzhz)

−
(
10

h2x
− 2

h2y
+ 10

h2z

)
cos(kxhx − kzhz)

−
(

1

h2x
+ 1

h2y
+ 1

h2z

)
cos

(
kxhx − kyhy − kzhz

)

+
(

−10

h2x
− 10

h2y
+ 2

h2z

)
cos(kxhx − kyhy)

+
(

−100

h2x
+ 20

h2y
+ 20

h2z

)
cos(kxhx )

+
(

−10

h2x
− 10

h2y
+ 2

h2z

)
cos(kxhx + kyhy)

+
(
20

h2x
− 100

h2y
+ 20

h2z

)
cos(kyhy)

+100

h2x
+ 100

h2y
+ 100

h2z
(113)
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