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Abstract Wepropose an alternative crack propagation algo-
rithm which effectively circumvents the variable transfer
procedure adopted with classical mesh adaptation algo-
rithms. The present alternative consists of two stages: a
mesh-creation stagewhere a local damagemodel is employed
with the objective of defining a crack-conforming mesh and
a subsequent analysis stage with a localization limiter in
the form of a modified screened Poisson equation which is
exempt of crack path calculations. In the second stage, the
crack naturally occurs within the refined region. A staggered
scheme for standard equilibrium and screened Poisson equa-
tions is used in this second stage. Element subdivision is
based on edge split operations using a constitutive quantity
(damage). To assess the robustness and accuracy of this algo-
rithm, we use five quasi-brittle benchmarks, all successfully
solved.
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1 Introduction

For equilibrium problems, the presence of cracks causes the
displacement field to be discontinuous in the normal to the
crack faces. Finite element polynomial interpolation is inade-
quate for the representation of discontinuous functions. This
fact has encouraged the development of methods explic-
itly introducing a discontinuity in the interpolation functions
[1,2]. These methods entail technical challenges in terms of
generalization and have intricate coding requirements. How-
ever, it is also established that, if local solution accuracy is
not the primary objective of an analysis (i.e. singular stress
fields) there is no demand for specific treatment of the stan-
dard displacement-based solution to calculate the J -integral
(cf. [3]). From the energy balance perspective (specifically
localized strain energy density loss), displacement discon-
tinuities can be replaced by inactive elements or explicit
boundaries. In alternative, localization limiters (cf. [4]) with
strain softening constitutive laws allowa similar effect. Exist-
ing techniques for computational fracture can be classified
as either discrete or continuum-based:

• Remeshing procedures with extraneous crack path deter-
mination [5,6], local displacement [1,7–11] and strain [2,
12] enrichments, clique overlaps [13], edges reposition-
ing [14] and edge-based fracture with R-adaptivity [15].
Duflot and Nguyen-Dang [16] successfully introduced
the near-tip Westergaard field in moving least-squares
meshless weight functions, which parallels the extended
finite element developments. Another recent meshless
discretization based on discontinuous kernels was pro-
posed by Barbieri and Petrinic [17]. Peng et al. [18]
recently proposed an isogeometric/boundary element
method where NURBS patches are used to discretize the
crack surfaces. Element cutting by topological operations
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was recently proposed by Paulus et al. [19]. Full remesh-
ing techniques have also been used with some degree of
success (see the work of Bouchard [20,21]);

• Fixed-mesh element erosion [22], smeared band algo-
rithms [23], viscous-regularized techniques [24], gradi-
ent and non-local continua [25].

We aim robustness and generality (cf. [26]) with respect to
element technology and opt to use a purely constitutive algo-
rithm which produces a damage value that also serves as an
indicator of material collapse. This has been titled “contin-
uumapproach to fracture” [27] andwe explore it in thiswork.
With this approach, pre-cracks or pre-notches are unneces-
sary and explicit calculation of crack paths is not performed.
Regularization is adopted in the form of a staggered algo-
rithm for the strain with the screened Poisson equation (see,
e.g. [28]) herewith amodifiedversion.To ensure a reasonable
solution and corresponding crack path, we use a preliminary
stage with local remeshing. A two-stage algorithm is there-
fore introduced:

1. The first stage uses a standard local equilibrium analysis
with recursive local remeshing, node repositioning and
variable transfer. The analysis is performed without a
localization limiter, as the only objective is to produce an
appropriate mesh.

2. After unloading, the mesh obtained from the first stage
is used in a staggered algorithm using equilibrium equa-
tions and the screened Poisson equation.

Results produced by the present algorithm show that this is
able to achieve:

• Very good mesh-size independence.
• Excellent length-scale independence for values compat-
ible with the mesh size.

• Moderate step-size independence.
• Reproduction of curved crack paths.
• Successful application to demanding quasi-brittle prob-
lems.

2 Governing equations: constitutive integration
in finite strains

Using standard notation, we write the spatial equilibrium
equations as [29]:

∂σi j

∂x j

+ bi = 0 (1)

with theCauchy tensor componentsσi j (i, j = 1, 2, 3). In (1)
i is the direction index and j is the facet index. The compo-

nents of the body force vector are bi . In (1), coordinates x j are
the spatial, or deformed, coordinates of a given point under
consideration. In addition, the following natural and essen-
tial boundary conditions hold on each part of the boundary
� = �t ∪ �u where �t is the natural boundary and �u is the
essential boundary:

t = σ · v on �t (2)

u = u on �u (3)

where t is the known stress vector on �t where v is the outer
normal and u is the known displacement field on �u . It is
assumed that (1) and (2–3) are satisfied for a time parameter
t ∈ [0, T ] with T being the total time of analysis and for a
pointwith position x ∈ � belonging to the deformed position
domain at the time of analysis. Natural boundary �t is evolv-
ing in the sense that cracks create boundaries with known t .
Equilibrium configuration corresponds to the domain �. In
tensor notation, Eq. (1) can be presented as:

∇ · σ T + b = 0 (4)

with ∇ = ∂/∂x being the spatial gradient operator. After
multiplication by the velocity field u̇, integration in the
deformed configuration � and application of integration by
parts component-wise, we obtain the following power form
(Ẇint is the internal and Ẇext is the external power):

∫
�

σ : Ld�
︸ ︷︷ ︸

Ẇint

=
∫

�

b · u̇d� +
∫

�t
t · u̇d�

︸ ︷︷ ︸
Ẇext

(5)

where L is the velocity gradient: L = ∂ ẋ
∂x = ∂ u̇

∂x . Using the
undeformed configuration�0 for the left-hand side, it is well
known that (5) can be written as:

∫
�0

S : Ėd�0

︸ ︷︷ ︸
Ẇint

=
∫

�

b · u̇d� +
∫

�t
t · u̇d�

︸ ︷︷ ︸
Ẇext

(6)

where S is the second Piola-Kirchhoff stress and E is the
corresponding Green-Lagrange tensor. Eigenvalues of E
are identified as ε1, ε2 and ε3. For the quasi-brittle model
employed in this work, we use the Mazars [30] definition of
equivalent strain, here denoted εeq:

εeq =
√√√√ 3∑

i=1

〈εi 〉2 (7)

with 〈εi 〉 = εi+|εi |
2 , i = 1, 2, 3. From (7) the maximum

equivalent strain ε is defined as ε = maxhist
[
εeq

]
. With a
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non-local representation of ε, which is denoted ε we use
a strict approach: only the softening function depends on
ε. Note that in the literature, εeq is frequently adopted for
the nonlocal strain approach, e.g. [31]. Loading/unloading
conditions strictly involve local quantities and the structure
of the local constitutive representation remains. Defining the
equivalent stress as σeq = Eεeq and introducing a softening
function σ(ε), we establish the loading/unloading conditions
in terms of stress:

(1 − d) σeq − σ(ε) ≤ 0 (8)

ḋ ≥ 0 (9)

ḋ
[
(1 − d) σeq − σ(ε)

] = 0 (10)

from which a Hookean-like constitutive law is obtained,
where Voigt notation is used:

S = (1 − d)CE (11)

and C is the elastic tangent modulus. Function σ(ε) follows
the standard exponential softening law:

σ (ε) = σmax exp

[
−εLσmax

Gc

]
(12)

In (12), σmax is the maximum equivalent stress, Gc is the
critical strain energy release rate (all modes are equally com-
bined in εeq) and L is the length scale parameter. To ensure
consistence with other models, we identify d in (8–10) and
(11) as the damage constitutive variable. Implementation
details, including the control equation for the solution, are
provided in previous papers, see e.g. [32].

3 Regularization with the screened Poisson
equation

The classical screened Poisson equation [28] (typically
named Helmholtz-like, cf. [31,33]) is adopted to regularize
the otherwise ill-posed equilibrium problem in the presence
of strain softening [34]. Using an additional field, ε, we per-
form a coupling with the constitutive-based ε as:

l(d, Lm)2
(
∇2
bε

)
: I = ε − ε (13)

with the following boundary condition:

∇bε · v = 0 in �b (14)

A version with constant l was established by Lasry and
Belytschko [4] who used an explicit version of this model,
requiring higher-order continuity. In (13),∇2

b is theLaplacian
with respect to the coordinates in equilibrium configuration

�b, corresponding to an updated-Lagrangian formulation.
This allows the diffusion effect of (13) without the well-
known [33] flattening side-effect. It is worth noting that ε

given by equation (13) is a weighted average (see [31,35])
and therefore mesh size only affects the local quantity ε

which is not directly responsible for softening, as d is made
dependent on ε. In the present work we introduce the follow-
ing function l(d, Lm):

l(d, Lm) = L − dLm

where Lm is the average mesh edge size at the localization
region. The following constraint applies:

Lm ≤ L

this limits the spreading of the damaged region which occurs
with fixed l. An alternative approach with similar effect was
used by Geers et al. [35] by means of a rate effect. For the
beam example, see Sect. 5.1, two independent equations are
used for the lower and upper faces εlower and εupper, respec-
tively:

(L − dLm)2
(
∇2
bεlower

)
: I = εlower − εlower (15)

(L − dLm)2
(
∇2
bεupper

)
: I = εupper − εupper (16)

We use a staggered scheme to regularize the strain-
softening problem.We introduce an element that implements
Eq. (13) using the followingweak formwith the previous rate
notation:

Ẇε =
∫

�b

[
−(L − dLm)2

(∇bε · ∇bε̇
) + (ε − ε) ε̇

]
d�b

(17)

where, in terms of discretization for a triangle, ε =∑3
K=1 NK (ξ)εK where NK (ξ) are the classical shape func-

tions and εK are the nodal unknowns for the regularization
element. Linearization of (17) follows:

dẆε =
∫

�b

[
−(L − dLm)2

(∇bdε · ∇bε̇
) − dεε̇

]
d�b (18)

We omit the case for a plate or shell, as it constitutes
a simple extension of (17) and (18). The implementation is
performedwithMathematica [36] andAceGen software [37].
We obtain the following element residual for node M :

reM =
∫

�b

[
−(L − dLm)2

∂NK

∂xi

∂NM

∂xi
εK

+ (ε − NK εK ) NM

]
d�b = 0 (19)

123



1006 Comput Mech (2016) 58:1003–1018

Fig. 1 Stretched bar under
tension: localization region as a
function of ε for l = L and
l = L − dLm . (Color figure
online)
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Fig. 2 Two-stage algorithm for
crack propagation

with softening
local model
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Remeshing
Nodal repositioning
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First stage

Single Newton time-step
modified Poisson equation

Second stage

Eqs. 6 and 11-12
Single Newton time-step
regularized model
with softening
Eqs. 6 and 17

with 11-12

Unload, mesh transfer

where the sum symbol for K was omitted. In (19), NK are
the shape functions. The linearization corresponding to (19)
provides the element stiffness matrix for nodes M and K as:

Ke
MK =

∫
�b

[
−(L − dLm)2

∂NK

∂xi

∂NM

∂xi
− NK NM

]
d�b

(20)

To compare this new technique with the conventional
fixed-l algorithm, we compare the localization regions in
tension for a stretched bar in Fig. 1 where all relevant data
is shown. We can observe that our new technique with vari-
able l results in a much sharper definition of the localization
region.

4 Element subdivision and repositioning algorithm

We use two stages, depicted in Fig. 2:

1. In the first stage a local approach to fracture, known to
be ill-posed, cf. [38], whose only purpose in this context
is to provide, along with the remeshing algorithm herein
described, a locally refined mesh for the second stage.

2. We subsequently unload the final state of the first stage
keeping the new mesh and solve a regularized prob-
lem which constitutes the actual fracture analysis. In this
stage, the mesh remains fixed.

Since in the second stage no variable transfer occurs and
the equations correspond to a regularized problem, results
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Algorithm 1 Localized remeshing Algorithm.

Mark edges for splitting based on a convex interpolation of d
(Fig. 3)

Mark edges for splitting based on the aspect ratio of adjacent
elements (Fig. 3)

Create new nodes in the center of marked edges (Fig. 4)
Create new elements by subdivision of elements with marked
edges (Fig. 4)

Perform nodal repositioning
Map degrees-of-freedom and history variables for the new mesh

he

hopt < tol1 · he ⇒ mark edge for splitting

he

he1 he2

he > tol2(he1 + he2) ⇒ mark edge for splitting

hopt = (1 − de)he + dehmin

d e
=

max
(d 1

, d
2)

d1 = max[(dupper + dlower)/2]1

d2 = max[(dupper + dlower)/2]2

Fig. 3 Splitting based on d and aspect ratio

are very smooth and naturally follow the localization regions
determined in the first stage. In the first stage, we use a
combination of a simple element subdivision scheme with
nodal repositioning, identified as Algorithm 1. Three major
steps are performed (1. edge marking, 2. node and element
creation, 3. mesh smoothing and mapping). Splitting edges
is simpler than rotating edges (cf. [14]) and duplicating tip
nodes since no specific crack path tracking is required. We
classify each edge according to the maximum value of this
mean d for both adjacent elements, cf. 3. An optimal length
hopt is defined and, if it is smaller than the actual edge length
he, the edge is marked for splitting. Concerning the toler-
ances, Table1 shows typical values which are used in this
work. After all edges are marked for splitting, each element
containing at least one marked edge is analyzed for subdi-
vision according to the scheme of Fig. 4: one, two or three
divided edges result in one, two or three additional elements.

For node repositioning, we adopt an algorithm based on
the weighted Laplacian method (cf. [39]) where length ratios
are weights:

xK = 1∑Nn
I=1 αK I

Nn∑
I=1

αK I xK I (21)

where I is a given node number connected to node K by an
element, Nn is the number of nodes connected to K , and

αK I = ‖x I − xK ‖
‖x I − xK ‖(1 − ζI ) + hminζI

(22)

ζI = d I
max (23)

where d I
max is the maximum damage variable in all elements

sharing node I .
In the first stage, variable mapping is required between

meshes. Here it is strictly geometric and consists of the fol-
lowing two tasks:

• Finding the element in the previous mesh where the cen-
troid of each element in the current mesh falls. Then copy
the constitutive history data.

• Finding the element in the previous mesh where each
node of the current mesh falls. Then interpolate the
degrees-of-freedom.

5 Numerical tests

5.1 Shell discretization of a cantilever beam bending
with quasi-brittle behavior

The first stage of the proposed algorithm, which includes a
modified screened-Poisson equation and a staggered algo-
rithm is now assessed in its basic features. The modification
of the original screened-Poisson equation also modifies
the localization behavior. The staggered algorithm must be
inspected with respect to drifting of results. We are also con-
cerned with hypothetical spurious diffusion caused by large
number of steps. Therefore, a cantilever beam is introduced
where all these aspects can be judged without remeshing,
which is used in subsequent examples. In summary, the objec-
tives of the simple numerical test (described in Fig. 5) are:

• To assess the dependence of mesh size in the displace-
ment/reaction results. In this case the parameter h shown
in Fig. 5 is used. Triangular elements are compared with
quadrilaterals.

• To assess the effect on step size in the displace-
ment/reaction results. Refering to Fig. 5, the parameter
	w is used.

• To study the relation between the length parameter L and
the element size h.
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Table 1 Typical values of the parameters for the localized remeshing
algorithm

Symbol Interpretation Value

tol1 Ratio of lengths, below which an edge is partitioned. 0.70

tol2 Ratio between length of the largest edge and the sum
of the other two lengths above which the largest
edge is partitioned.

0.95

hmin Minimum edge length. �
�Problem data

Figure 5 shows the relevant data for the quasi-brittle can-
tilever beam. Our triangular shell element [40] is used to
perform the discretization and independent nonlocal strains
εlower and εupper, see Eqs. (15–16), are used to correctly rep-
resent shell bending. To study the effect of mesh size, we use
four values of h, as indicated in Fig. 5. A slight dependence
on h is observable for higher values in Fig. 6a. In terms of
element topology and for h = 1.4286 and h = 2 mm, it
can be observed in Fig. 7 that triangular elements produce
slightly stiffer results. In terms of step size, a clear effect
can be noted in Fig. 7 which attenuates for 	w ≤ 5 × 10−3

mm. Finally, the effect of L is also observable in Fig. 8, with
larger values producing slightly more brittle results. We note
that, although some dependence on the parameters in the
force-displacement results can be observed, this dependence
is generally mild and acceptable in most problems.

h = 2.5 mm

h = 2 mm

h = 1.4286 mm

h = 1.25 mm
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0.8
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F
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]

w [mm]

Triangle, h = 2 mm

Quadrilateral, h = 2 mm

Triangle, h = 1.4286 mm

Quadrilateral, h = 1.4286 mm
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0 1 2 3 4 5 6

F
[N

]

w [mm]

(a)

(b)

Fig. 6 Cantilever beam: effect of mesh size and element topology. a
Effect of h, L = 5 mm. b Effect of element topology, L = 5 mm.
(Color figure online)

Fig. 5 Cantilever beam:
relevant geometry and properties

XY
Z

F (total)

10 mm

w

100
mm

h
1 mm

E = 210000 N/mm2

ν = 0.29
σmax = 50 N/mm2

Gc = 1 N/mm
L = 5, 10, 20, 40 mm

h = 1.25, 1.4286, 2, 2.5 mm
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Δw = 2 × 10−2 mm
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Fig. 7 Cantilever beam: effect of step size 	w. (Color figure online)
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Fig. 8 Cantilever beam: effect of length parameter L . (Color figure
online)

5.2 L-shaped panel

We now study a L-shaped panel introduced by Winkler [41]
and numerically analyzed by Most and Bucher [42] using
the natural element method and by Dumstorff and Meschke
[43] using the extended finite element method (XFEM).More
pertinent than the discretization method is the crack propa-
gation technique used to define the path. In [42], the Authors
used twodistinct crack direction algorithms, namely the aver-
aged Rankine criterion and the Erdogan-Sih LEFM criterion,
cf [44], as each separately fails to predict the correct crack
path in different problems. In [43], the Authors use a thermal
tracking algorithm to estimate the crack lines. The present
work avoids the need for a crack tracking algorithm, which
is a considerable advantage.

Relevant data for this problem is shown in Fig. 9 agreeing
with properties reported in [42]. Displacement control, with
component v identified in Fig. 9, is used in the indicatedmon-
itored pointwith F being the corresponding force.Both crack
path agreement and load/deflection results are scrutinized.
We use three values of the initial characteristic mesh size

h = 8, 6 and 4mmwith corresponding hmin = 5.333, 4.000
and 2.666 mm.

In terms of crack-path prediction, we note that the finer
mesh (h = 4, hmin = 2.666 mm) gives rise to an almost-
straight crack. Some difference is observable with respect
to the experimental envelope. This is known to be caused
by the use of a regularized continuum. Previous numeri-
cal experiments carried out by the Authors have provided a
similar conclusion (see, e.g. [45]). With respect to the force-
displacement results, we use the reported data from Most
and Bucher [42] who use Carol et al. specific mixed-mode
cohesive law [46]. The comparison is presented in Fig. 10.
Satisfactory agreement is observed with respect to the results
reported in [42]with a slight variation between the threemesh
sizes.

5.3 Single edge notched beam: assessment of L, h and
step size

An evaluation of the effect of L , h and step size is now per-
formed. With this objective, the single edge notched (SEN)
beam introduced by Schlangen (cf. [47]) is adopted using
three distinct mesh densities with the same ratio hmin/h =
0.5325.A description of this problem,with constitutive prop-
erties and boundary conditions is shown in Fig. 11. Three
uniform meshes are adopted, with h = 4, 3 and 2 mm. In
terms of remeshing, the corresponding hmin are 2.13, 1.6
and 1.07 mm. For the screened-Poisson equation we adopt
four distinct values of L: L = 5, 10, 15 and 20 mm. The
arc-leng-
thmethod is used in the solution, withmonotonically increas-
ing CMSD (crack mouth sliding displacement). The crack
path reproduces closely the experimental envelope, as can
be observed in Fig. 12; even near the support the experimen-
tal observations are adequately reproduced. A comparison
with the experimental results and the DSDA method [48–
50], along with a study of mesh and step size influence is
performed. As can be observed in Fig. 13, excellent agree-
ment is obtained, with very good insensitivity to the step
size. In terms of length-scale L , we found that some sensi-
tivity occurs for smaller values (L = 5 mm is particularly
off) although values between 10 and 20 mm produce similar
results. In terms of the effect of h, Fig. 14 shows an excellent
robustness which is traditional of regularized solutions (cf.
[31,33]).

5.4 Four-point single edge-notched beam

The four-point single-edgenotched shear beam(SENS)prob-
lem by Arrea and Ingraffea [51] is described in Fig. 15.
Properties coincide with the work of Most and Bucher [42],
see also [52]. Here, we focus on the effect of mesh size h for
fixed hmin/h = 0.5. Four mesh sizes are adopted, correspond-

123



Comput Mech (2016) 58:1003–1018 1011

h = 4, hmin = 2.666 mm

E = 18 GPa
ν = 0.18
σmax = 3 MPa
Gc = 90 N/m
L = 8 × 10−3 m

50
0

500

25
0

210

250

H = 100

(mm)

Experimental
envelope

h = 8, hmin = 5.333 mm

h = 6, hmin = 4.000 mm

v, F

Monitored node

Fig. 9 L-shaped panel: geometry and relevant data

ing to edge lengths h: h = 5, 6, 8 and 10 mm. As in the SEN
test, we use the CMSD as control variable (with each incre-
ment fixed as 	CMSD = 1× 10−3). A comparison with the
meshless results reported by Most and Bucher [42] and the
reported experimental results is performed in Fig. 16 where,
despite some difference between distinct meshes, reason-

able agreement can be observed. Snap-back behavior in the
v − F diagram is shown in Fig. 17. Crack paths for four val-
ues of h are in excellent agreement with the experiments, as
Fig. 18 shows. However, finer meshes tend to slightly reduce
the crack path curvature, which can be observed for the case
h = 5 mm.
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Fig. 10 L-shaped panel: v-F diagram. (Color figure online)

5.5 Crack growth in a four-point bending concrete
beam: effect of hmin/h

Concerning the crack path formation and robustness, the
effect of hmin/h should be inspected. For this exercise we
make use of the four-point bending concrete beam proposed
by Bocca et al. [53]. The four-point bending beam prob-
lem consists of a bi-notched beam subjected to two point
loads. The effect of size is inspected: two specimens with
different dimensions are tested. From the set of specimens
studied by Bocca et al. [53] we focus on specimens with
c/b = 0.8, b = 50 and b = 200 mm, since these have
reproducible experimental data. We use L = 12 mm for
the larger specimen and L = 3 mm for the smaller one.
We compare the crack paths and the force-displacement
numerical results with those reported in [53]. It is worth not-
ing that, using the cracking particle method, Rabczuk and

Belytschko [54] obtained very good crack path predictions,
although the force in the force-displacement diagram was
higher than experimentally observed. In addition, with the
particle methods, there is the problem of selecting the sup-
port dimension in the crack region. Relevant data is shown
in Fig. 19, along with the contour plot of ε. Crack paths and
mesh size evolution are shown in Fig. 20 for the four val-
ues of hmin/h. Below hmin/h = 0.495, the crack path begins to
exhibit the correct curvature and agreement with the exper-
iments. In terms of analysis, for anti-symmetry reasons, we
force the same mouth horizontal displacement at the edge of
notches A andB:	uB = 	uA. The relativelywide spread of
experimental crack paths is typical and results from the use
of six specimens of reference [53]. Experimentally, some
residual crack evolution in the opposite direction of the final
path was observed and we also obtained that effect. Force-
displacement results are shown inFig. 21where a comparison
with the measurements of Bocca et al. [53] and the cracking
particle method of Rabczuk and Belytschko [54] is made.

6 Conclusions and extensions

By combining a staggered algorithm with the modified
screened Poisson equation and adaptive mesh refinement,
we successfully solved five problems in quasi-brittle frac-
ture. Two main goals were achieved:

1. Crack path criteria are not required. Mesh refinement
indirectly provides the crack path.

2. Cohesive laws are not required. A regularized continuum
law, within a smearedmodel, is usedwhich provides very

Fig. 11 Schlangen’s SEN test:
geometry, boundary conditions
and material properties
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(a)

(b)

(c)

Experimental envelope (Schlangen 1993)

DSDA

Present model

(d)

Fig. 12 Schlangen’s SEN test: Deformed meshes for the three values
of h. Elements with high values of d are removed. Crack path (h = 2
mm) compared with DSDA [50] (yellow) and the experimental results

by Schlangen [47]. a h = 4 mm (magnified). L = 10 mm. b h = 3
mm (magnified). L = 10 mm. c h = 2 mm (magnified). L = 10 mm.
d Crack path comparison. (Color figure online)
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Fig. 13 Schlangen’s SEN test: load-CMSD results: comparison with
the experimental results by Schlangen [47] and effect of L and step
size. a Load-CMSD results for four values of 	CMSD. b Load-CMSD
results for four values of L . (Color figure online)
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Fig. 14 Schlangen’s SEN test: load-CMSD results: effect of mesh size
h (	CMSD = 3 × 10−4 mm, L = 10 mm). (Color figure online)

accurate results in terms of energy dissipationwithout the
requisite of special surface elements.

Besides the usual mesh length h, which is required to solve
anyfinite element problem, only twoadditional solutionpara-
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Fig. 15 SENS problem: relevant data and meshes
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Fig. 16 SENS problem: Force-CMSD results: effect of mesh size h.
Also shown are results fromMost and Bucher [42] and the experimental
results. (Color figure online)
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Fig. 17 SENS problem: Force-displacement results: effect of mesh
size h. (Color figure online)

meters are required: the non-local length L appearing in the
screened-Poisson equation and also in the smeared model,
which is applied in a staggered form, and themesh refinement
length hmin, controlling the subdivision of elements. When
compared with enrichment methods or classical remeshing
algorithms, we detected the following two shortcomings in
the present technique:
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Fig. 18 SENS problem: Force-displacement results: effect of mesh size h
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Fig. 19 Four-point bending of a concrete beam: geometry, boundary conditions, multipoint constraints (	uB = 	uA) and material properties.
Also shown is the contour plot for ε. (Color figure online)
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Fig. 20 Four-point bending of a concrete beam: crack paths compared with the envelope of experimental results by Bocca et al. [53]. The increase
in the number of nodes is shown for four values of hmin/h. (Color figure online)

1. Computational cost is comparatively high, since two
analysis are performed, with the second involving regu-
larization andequilibriumequations.Degrees-of-freedom
also increase in the first stage of the analysis.

2. In the L-shaped panel there was some difficulty in repro-
ducing the experimental crack path.

The two-stage algorithm introduced, consists of:

1. A local approach to fracture with local remeshing and
global node repositioning. The only parameter in this

stage is the minimum element size, hmin. The purpose
of this stage is to establish the appropriate mesh for the
regularized problem.

2. A second stagewhich consists of a regularized continuum
with a modified screened Poisson equation depending
on L and a smeared model using the same parameter
L .

Mostly good crack path agreement with quasi-brittle
experiments was obtained. Good agreement in the force-
deflection and force-CMSD results was also observed.
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Fig. 21 Force-displacement results, compared with the results of
Bocca et al. [53] and the cracking particle method of Rabczuk and
Belytschko [54] (for the case b = 200 mm) with their 68,000 particle
analysis. a b=200nm. b b=50nm. (Color figure online)

Concerning the extension to three-dimensional analysis,
Eqs. (19) and (20) remain unchanged and only the remeshing
algorithm described in Section differs 4 in terms of edge and
face partitioning. The work of [55] on adaptive tetrahedron
edge division is applicable.

References

1. Moës N, Dolbow J, Belytschko T (1999) A finite element method
for crack growth without remeshing. Int J Numer Methods Eng
46:131–150

2. Oliver J (1995) Continuum modelling of strong discontinuities in
solid mechanics using damage models. Comput Mech 17:49–61

3. Henshell RD, ShawKG (1975) Crack tip elements are unnecessary.
Int J Numer Methods Eng 9:1727–1742

4. Lasry D, Belytschko T (1988) Localization limiters in transient
problems. Int J Solids Struct 24:581–597

5. Bittencourt TN, Wawrzynek PA, Ingraffea AR, Sousa JL (1996)
Quasi-automatic simulation of crack propagation for 2D LEFM
problems. Eng Fract Mech 55(2):321–334

6. Colombo D, Giglio M (2006) A methodology for automatic crack
propagation modelling in planar and shell fe models. Eng Fract
Mech 73:490–504

7. Karihaloo BL, Xiao QZ (2003) Modelling of stationary and grow-
ing cracks in FE framework without remeshing: a state-of-the-art
review. Comput Struct 81:119–129

8. Loehnert S, Belytschko T (2007) A multiscale projection method
for macro/microcrack simulations. Int J Numer Methods Eng
71:1466–1482

9. Moës N, Belytschko T (2002) Extended finite element method for
cohesive crack growth. Eng Fract Mech 69:813–833

10. Nguyen-Xuan H, Liu GR, Nourbakhshnia N, Chen L (2012) A
novel singular ES-FEM for crack growth simulation. Eng Fract
Mech 84:41–66

11. Pierard O, Jin Y, Wyart E, Dompierre B, Bechet E (2016) Sim-
ulation of contact on crack lips and its influence on fatigue life
prediction. In: Carpintieri A, Fatemi A, Navarro C (eds) Interna-
tional Conference on Multiaxial Fatigue and Fracture, ICMFF11,
Seville. Fracture and structural integrity

12. Alfaiate J, Wells GN, Sluys LJ (2002) On the use of embedded
discontinuity elements with crack path continuity for mode-I and
mixed-mode fracture. Eng Fract Mech 69:661–686

13. HansboA,HansboP (2004)Afinite elementmethod for the simula-
tion of strong andweak discontinuities in solidmechanics. Comput
Methods Appl Mech Eng 193:3523–3540

14. Areias P, Rabczuk T (2013) Finite strain fracture of plates and
shells with configurational forces and edge rotations. Int J Numer
Methods Eng 94:1099–1122

15. Miehe C, Gürses E (2007) A robust algorithm for configurational-
force-driven brittle crack propagation with r−adaptivemesh align-
ment. Int J Numer Methods Eng 72:127–155

16. Duflot M, Nguyen-Dang H (2004) A meshless method with
enriched weight functions for fatigue. Int J Numer Methods Eng
59:1945–1961

17. Barbieri E, PetrinicN (2014) Three-dimensional crack propagation
with distance-based discontinuous kernels in meshfree methods.
Comput Mech 53(2):325–342

18. Peng X, Atroshchenko E, Kerfriden P, Bordas SPA (2016) Iso-
geometric boundary element methods for three dimensional static
fracture and fatigue crack growth. Comput Methods Appl Mech
Eng (in press)

19. Paulus CJ, Untereiner L, Courtecuisse H, Cotin S, Cazier D (2015)
Virtual cutting of deformable objects based on efficient topological
operations. Vis Comput 31:831–841

20. Bouchard PO, Bay F, Chastel Y (2003) Numerical modeling of
crack propagation—implementation, techniques and comparison
of different criteria. Comp Methods Appl Mech Eng 192(35–
36):3887–3908

21. El Khaoulani R, Bouchard PO (2012) An anisotropic mesh adap-
tation strategy for damage and failure in ductile materials. Finite
Elem Anal Des 59:1–10

22. Teng X, Wierzbicki T (2006) Evaluation of six fracture models in
high velocity perforation. Eng Fract Mech 73:1653–1678

23. Oliver J (1989) A consistent characteristic length for smeared
cracking models. Int J Numer Methods Eng 28:461–474

24. Etse G, Willam K (1999) Failure analysis of elastoviscoplastic
material models. J Eng Mech 125:60–69

25. Schreyer HL, Chen Z (1986) One-dimensional softening with
localization. J Appl Mech 53:791–797

26. Areias P. Simplas. http://home.uevora.pt/~pmaa/SimplasWebsite/
Simplas.html

27. Lemaitre J (1996) A course on damage mechanics, 2nd edn.
Springer, New York

28. Fetter AL, Walecka JD (2003) Theoretical mechanics of particles
and continua. Courier Dover, New York

123

http://home.uevora.pt/~pmaa/SimplasWebsite/Simplas.html
http://home.uevora.pt/~pmaa/SimplasWebsite/Simplas.html


1018 Comput Mech (2016) 58:1003–1018

29. Ogden RW (1997) Non-linear elastic deformations. Dover Publi-
cations, New York

30. Mazars J (1984)Applicationde lamécaniquede l’endommagement
au comportement non linéaire et à la rupture du béton de structure.
Thèse de Doctorat d’Etat, Université Paris VI, Paris

31. Peerlings RHJ, de Borst R, BrekelmansWAM, de Vree JHP (1996)
Gradient enhanced damage for quasi-brittle materials. Int J Numer
Methods Eng 39:3391–3403

32. Areias P, Dias-da-Costa D, Alfaiate J, Júlio E (2009) Arbitrary
bi-dimensional finite strain cohesive crack propagation. Comput
Mech 45(1):61–75

33. Areias PMA, César de Sá JMA, Conceição CA (2003) A gradient
model for finite strain elastoplasticity coupled with damage. Finite
Elem Anal Des 39:1191–1235

34. de Borst R, Pamin J, Geers MGD (1999) On coupled gradient-
dependent plasticity and damage theories with a view to localiza-
tion analysis. Eur J Mech A 18:939–962

35. Geers MGD, de Borst R, BrekelmansWAM, Peerlings RHJ (1998)
Strain-based transient-gradient damage model for failure analysis.
Comput Methods Appl Mech Eng 160:133–153

36. Wolfram Research Inc. Mathematica (2007)
37. Korelc J (2002) Multi-language and multi-environment generation

of nonlinear finite element codes. Eng Comput 18(4):312–327
38. Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements

for continua and structures. Wiley, New York
39. Frey PJ, George P-L (2000) Mesh generation: application to finite

elements. Hermes Science, Oxford
40. Areias P, Garção J, Pires EB, Barbosa JI (2011) Exact corotational

shell for finite strains and fracture. Comput Mech 48:385–406
41. Winkler BJ (2001) Traglastuntersuchungen von unbewehrten und

bew.Betonstrukturen auf derGrundlage eines objektivenWerkstof-
fgesetzes für Beton. PhD thesis, University of Innsbruck, Innrain
52, 6020 Innsbruck

42. Most T, Bucher C (2006) Energy-based simulation of concrete
cracking using an improved mixed-mode cohesive crack model
within a meshless discretization. Int J Numer Anal Met 31:285–
305

43. Dumstorff P, Meschke G (2007) Crack propagation criteria. Int J
Numer Anal Met 31:239–259

44. Erdogan F, Sih GC (1963) On the crack extension in plates under
plane loading and transverse shear. J Bas Eng 85:519–527

45. Areias P,MsekhMA,Rabczuk T (2016) Damage and fracture algo-
rithmusing the screened poisson equation and local remeshing. Eng
Fract Mech 158:116–143

46. Carol I, Prat PC, López CM (1997) Normal/shear cracking model:
application to discrete crack analysis. J Eng Mech 123:765–773

47. Schlangen E (1993) Experimental and numerical analysis of frac-
ture processes in concrete. PhD thesis, Delft

48. Alfaiate J, Simone A, Sluys LJ (2003) A new approach to strong
embedded discontinuities. In: Bicanic N, de Borst R, Mang H,
MeschkeG (eds) ComputationalModelling ofConcrete Structures,
EURO-C 2003. St. Johann im Pongau

49. Areias PMA, César de Sá JMA, Conceição António CA, Carneiro
JASAO, Teixeira VMP (2004) Strong displacement discontinuities
andLagrangemultipliers in the analysis of finite displacement frac-
ture problems. Comput Mech 35:54–71

50. Dias-da-Costa D, Alfaiate J, Sluys LJ, Júlio E (2009) A discrete
strong discontinuity approach. Eng Fract Mech 76(9):1176–1201

51. Arrea M, Ingraffea RA (1982) Mixed-mode crack propagation in
mortar and concrete. Technical Report Report 81-13, Cornell Uni-
versity, Department of Structural Engineering

52. Areias PMA, Belytschko T (2005) Analysis of three-dimensional
crack initiation and propagation using the extended finite element
method. Int J Numer Methods Eng 63:760–788

53. Bocca P, Carpinteri A, Valente S (1991) Mixed mode fracture of
concrete. Int J Solids Struct 27(9):1139–1153

54. Rabczuk T, Belytschko T (2004) Cracking particles: a simplified
meshfree method for arbitrary evolving cracks. Int J Numer Meth-
ods Eng 61:2316–2343

55. Ruprecht D, Müller H (1998) A scheme for edge-based adaptive
tetrahedron subdivision. In: Hege H-C, Polthier K (eds)Mathemat-
ical visualization: algorithms., Applications and numericsSpringer,
Berlin, pp 61–70

123


	A novel two-stage discrete crack method based on the screened Poisson equation and local mesh refinement
	Abstract
	1 Introduction
	2 Governing equations: constitutive integration  in finite strains
	3 Regularization with the screened Poisson equation
	4 Element subdivision and repositioning algorithm
	5 Numerical tests
	5.1 Shell discretization of a cantilever beam bending with quasi-brittle behavior
	5.2 L-shaped panel
	5.3 Single edge notched beam: assessment of L, h and step size
	5.4 Four-point single edge-notched beam
	5.5 Crack growth in a four-point bending concrete beam: effect of hminh

	6 Conclusions and extensions
	References




