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Abstract The asymptotic homogenization technique is
presently developed in the framework of geometrical nonlin-
earities to derive the large strains effective elastic response
of network materials viewed as repetitive beam networks.
This works extends the small strains homogenizationmethod
developedwith special emphasis on textile structures inGoda
et al. (J Mech Phys Solids 61(12):2537–2565, 2013). A sys-
tematic methodology is established, allowing the prediction
of the overall mechanical properties of these structures in
the nonlinear regime, reflecting the influence of the geo-
metrical and mechanical micro-parameters of the network
structure on the overall response of the chosen equivalent
continuum. Internal scale effects of the initially discrete
structure are captured by the consideration of a micropolar
effective continuum model. Applications to the large strain
response of 3D hexagonal lattices and dry textiles exem-
plify the powerfulness of the proposed method. The effective
mechanical responses obtained for different loadings are val-
idated byFE simulations performedover a representative unit
cell.
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List of symbold

BR Set of beams within the reference unit cell
lb = εLb Length of the beam b
Bb = lbebx Beam vector length
λi Applied stretch in direction i
β i Curvilinear coordinates associated with the

unit vectors
� Lagrangian wryness tensor
δib Shift factor for nodes belonging to a neighbor-

ing cell
m Couple stress tensor
EG Green–Lagrange strain
R Position vector of any material point within

the effective continuum
ε = l/L Small scale parameter
Rn Micropolar rotation tensor
F Deformation gradient
Si Stress vectors
Fe External force
σ Stress tensor
Fε b Resultant of forces at the nodes of a beam b
μi Couple stress vectors
ϕ = ϕiei Microrotation vector
V Total potential energy
g Jacobian of the transformation fromCartesian

to curvilinear coordinates
v Virtual translational velocity field
I Second order identity tensor
Wext, Wint External and internal works
KS

T Stress stifness matrix
W Virtual rotational velocity field
Km

T Micropolar stiffness matrix
Z Set of cells of the macroscopic structure
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1 Introduction

In recent years, different materials have been analyzed in the
context of anisotropic finite-strain elasticity. These include
composites, foam-like structures, textiles in the form of
2D and 3D preforms and synthetic solids. Cellular solids,
by contrast to compact materials, are two or three dimen-
sional bodies divided into cells, the walls of which are
made of a solid material capable of undertaking large elas-
tic deformations without plastic failure or fracture. There are
numerous examples of such network structures, including
repetitive large scale deployable structures like antenna, 3D
textiles, cellular materials and especially auxetic structures
having excellent damping and impact absorption capabili-
ties [1].

The goal of this work is to compute the homogenized
nonlinear response of network materials, based on an analy-
sis performed over a repetitive unit cell at a mesoscopic level
of the representative unit cell (abbreviated as RUC), inter-
mediate between the microscopic level of the lattice and the
macroscopic scale of the structure. We shall employ the dis-
crete homogenization (DH in short) technique [2–5] which is
perfectly suited to the discrete architecture of different types
of networks, and which is extended to the nonlinear range in
the present work.We shall consider that the observed nonlin-
ear response is essentially due to the change of the network
configuration (the orientation and length of the beams change
with ongoing deformation).

Several models analyze simple topologies to obtain closed
form expressions of the linear behavior of the lattice stiffness
and strength, by solving the equilibrium problem of the unit
cell [6–10]. These studies can offer insight into the general
framework and theoretical basis for the development of a
non linear constitutive model for lattice materials. Extensive
reviews of these works can be found in [11,12].

The geometrical nonlinear behavior of cellular struc-
tures and network materials was extensively studied by
[13,14], considering the example of foams, using simpli-
fied pin jointed model for which the bending contribution
of the skeleton struts was neglected. Wang and Cuitino
[15] proposed another approach where axial, bending and
twisting deformations at local level were considered. One
study based on homogenization technique was given in
[16]. Linear effective models to analyze structures on the
basis of a beam model were presented in [17,18], in
which stretching and simultaneous bending occurs. More
recently, Janus-Michalska [19] extended this linear model
to construct the stress–strain relation and strain energy
function for the hyperelastic cellular material with arbi-
trary symmetry. An alternative approach was proposed by
Vigliotti et al. [20] using a computational homogeniza-
tion to derive a nonlinear constitutive model for lattice
materials.

A novel procedure for predicting the effective nonlinear
elastic responses of repetitive lattices in the framework of
the mechanics of micropolar continua through a combined
linear and nonlinear discrete homogenization scheme shall
be presented. The nonlinear stress–strain response will be
computed incrementally for 2D and 3D structures subjected
to different loading cases (uniaxial, biaxial, simple shear,
and bending), taking into consideration changes of the struc-
ture geometry. The combination of the proposed incremental
scheme with the homogenization method shall deliver both
the classical and nonclassical properties.

The outline of this contribution is as follows: Sect. 2 is
devoted to the description of the discrete homogenization
method at both microscopic and mesoscopic scales. The
homogenization technique and the expression of forces and
moments in the framework of 3D Euler–Bernoulli beams
are exposed. The algorithm used for the incremental proce-
dure performing the update of variables at the lattice level
accounting for the evolution of the lattice geometry will be
described in Sect. 2. Numerical examples are proposed to
illustrate the proposed methodology in Sect. 3, starting from
the 3D hexagonal lattice and extending then the applica-
tions to the computation of the nonlinear response of 2D and
3D textile structures. In Sect. 4, the computed stress–strain
homogenized responses are validated thanks to FE simula-
tions performed over a representative unit cell. We conclude
by a summary of the work and perspectives of developments
are mentioned in Sect. 5.

A few words regarding notations are in order. Vectors
and higher order tensors are denoted with boldface symbols.
The summation convention on repeated indices is presently
adopted, otherwise explicitly stated. The second order iden-
tity tensor is denoted I.

2 Microscopic and mesoscopic homogenization
problems

The discrete homogenization method is a mathematical tech-
nique to derive the equivalent continuous medium behaviour
of repetitive discrete structures; it is inspired from the homog-
enization of periodic media developed thirties years ago by
[21,22] and more recently applied in [23,24]. It has been
also combined with the energymethod by [25] and applied to
discrete homogenization. The interest of the discrete homog-
enization method is that it delivers the full compliance (or
rigidity)matrix, reflecting the sometimes complex anisotropy
of the so-built equivalent continuum; it is worthwhile noting
that the material symmetry group of the discrete lattice is
included in thematerial symmetry group of the homogenized
medium [26]. Such complex constitutive laws may then nur-
ture macroscopic simulations at the component level [27].
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In the present approach, we rely on the so-called dis-
crete homogenization method suitable for lattice materials
comprising a periodic array of beams; instead of mak-
ing full structural computations over the entire lattice—
which would be computationally too expensive—we derive
a nonlinear constitutive model at the intermediate meso-
scopic scale based on a continuum description, avoiding
the explicit description of the individual struts of the ini-
tial lattice. The DH method is first exposed in the linear
small strains regime in order to compute the initial effec-
tive moduli of the effective substitution continuum; it is
then extended to the nonlinear regime in order to account
for the variation of the lattice geometry under an imposed
kinematic loading over an identified representative unit
cell. The nonlinear response of the lattice is homoge-
nized at the RUC level, thereby providing both the stress–
strain and couple stress–curvature relations, based on an
incremental scheme accounting essentially for geometrical
nonlinearities.

The nonlinear computations include as a first step the
evaluation of the elastic properties in the small strains
regime, followed by a succession of updating steps at the
micro level (the microstructure of the unit cell geometry
is updated), which entails an update of the homogenized
mechanical fields at the mesoscopic level of the effective
continuum.

2.1 Small strains homogenization: determination
of the initial elastic response

The asymptotic expansion of the nodal displacement uε is
written up to the second order as

uε(βε) = u0(β
ε) + εu1(β

ε) + ε2u2(β
ε) (1)

in which ε is the ratio of unit cell size to a characteristic
dimension of the entire structure.

The displacement difference�Ubε between the extremity
and origin node of each beam is expressed by a Taylor series
development, according to

�Ubε = uε(E(b)) − uε(O(b))

= ε

(
u
ER(b)
1

(
βε

) − u
OR(b)
1

(
βε

) + ∂u0 (βε)

∂β i
δib

)
︸ ︷︷ ︸

�Ub
1

+ ε2
(

u
ER(b)
2

(
βε

) − u
OR(b)
2

(
βε

))
︸ ︷︷ ︸

�Ub
2

= ε�Ub
1 + ε2�Ub

2 (2)

with δib the shift factor (equal to ±1) for nodes belonging
to a neighbouring cell, and nil for nodes located inside the
considered cell.

The asymptotic expansion of the nodal microrotation ϕnε

is here limited to the first order in ε; it is defined successively
at the origin and extremity of each beam as

ϕO(b)ε = ϕ
OR(b)
0 + εϕ

OR(b)
1 ;ϕE(b)ε = ϕ

ER(b)
0

+ ε

(
∂ϕ0

∂β i
δib + ϕ

ER(b)
1

)
(3)

wherein we have parameterized any point within the surface
element representative of the lattice by curvilinear coordi-
nates β i ; this allows treating lattices with curved material
lines following the fibers in their reference state.

Note that the present beam model and subsequent deriva-
tions of the effective mechanical response are not specific
to textile materials, but can be applied to any lattice mate-
rials showing interactions between tension, bending and
torsion.

The equilibrium of forces (self-equilibrium in the absence
of external forces) writes in virtual power form for the whole
lattice and after asymptotic development as

∑
υi∈Z3

∑
b∈BR

Fε b · (vε (O (b)) − vε (E (b))
) = 0 (4)

with v (·) a virtual velocity field vanishing on the unit cell
edges. The force vector Fε bdecomposes into a normal and
transverse forces as

Fε b = Fε b
x ex + Fε b

y ey + Fε b
z ez (5)

We denote by BR , in Eq. (4) the set of beams within the ref-
erence unit cell. The normal and transverse forces exerted on
the beam extremities are obtained after lengthy calculations
in the framework of 3D Euler–Bernoulli beams, expressed in
Appendix 1.

In (5), the unit vectors ex = [
Cxx ′ Cyx ′ Czx ′ ]T ,ey =[

Cxy′ Cyy′ Czy′ ]T , and ez = [
Cxz′ Cyz′ Czz′

]T
, where

Cxx ′ = cos θx ,Cyx ′ = cos θy , and Czx ′ = cos θz
are the direction cosines of x ′, describing the transforma-
tion between the local and global coordinate system in 3D
(Fig. 1). Similarly, the components of ey and ez are the direc-
tion cosines of y′ and z′, respectively.

In a second step, we write the discrete equilibrium
of moments, which can be expressed in two different
ways: one first considers the equilibrium of moments
for the unit cell nodes, which is necessary to solve for
the kinematic unknowns; it writes in asymptotic form
as
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Fig. 1 Direction cosines associated with the x axis

∑
υi∈Z3

∑
b∈BR

(
MO(b)ε · wε (O(b)) + ME(b)ε · wε (E(b))

)
= 0

(6)

Another writing involving the local equilibrium of each indi-
vidual beam is considered for the purposeof homogenization;
equilibrium is here written at the center of each beam in
asymptotic form as
∑

υi∈Z3

∑
b∈BR

(
MO(b)ε · wε (O(b)) + ME(b)ε · wε (E(b))

+ εlb
(

ex ∧ Fεb
)
.wε (C(b))

)
= 0 (7)

with w (·) the virtual rotational velocity field and MO(b),

ME(b) the moments exerted on the beam extremities,
expressed in Appendix 1. Details related to the first order
homogenization in the micropolar framework can be found
in [1,28,29]. In the forthcoming development, a circular
section of the beams is considered, hence the following geo-
metrical parameters are computed: the cross-sectional area
Aεb = π(εrb)2, the quadratic moment of the beam I εb

y =
I εb
z = π

(εrb)4

4 , and the torsional constant J εb = π

(
εrb

)4
2 .

The homogenization of the discrete equilibrium of forces,
Eq. (4), leads to the following continuum self-equilibrium in
virtual power form

∫
�

Si · ∂v (β)

∂β i dβ = 0 (8)

with the stress vector Si therein splitting into first and second
order contributions, viz. Si = Si

1 + εSi
2, with

Si
1 =

∑
b∈BR
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2
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0
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δib
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⎛
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3

(
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(
ϕ
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1 + ϕ

ER(b)
1 + ∂ϕ0

∂βi δib
))))

ey

+
(

3πEb
s
(
rb

)4
(lb)

3

(
ez · �Ub

2

+ lb
2

(
ey ·

(
ϕ
OR(b)
1 + ϕ

ER(b)
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ez

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

δib (9)

Similarly to the previous development, the moment equi-
librium (7) is homogenized after inserting the asymptotic
expansion of the virtual rotation rate, expression (36) in
Appendix 1: passing to the limit ε → 0 in the discrete sum,
this leads to the following continuous self-equilibrium in vir-
tual power form

∫
�

μi · ∂w (β)

∂β i dβ = 0 (10)

with the couple stress vector μi which incorporates the
moments, identified on two orders, viz. μi = εμi

1 + ε2μi
2,

with the first and second order contributions given by

μi
1 =

∑
b∈BR

(
1

2

(
ME(b)

1y −MO(b)
1y

)
ey+ 1

2

(
ME(b)

1z −MO(b)
1z

)
ez

)
δ
ib,

μi
2 =

∑
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(
ME(b)

2x ex + 1

2

(
ME(b)

2y − MO(b)
2y

)
ey

+ 1

2

(
ME(b)

2z − MO(b)
2z

)
ez

)
δ
ib (11)
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The subscripts 1 and 2 in these expressions refer respectively
to the first and second order moments in expressions (32)–
(34) in Appendix 1.

The general form of the constitutive equations can
presently be identified from the expressions of the homoge-
nized stress and couple stress tensors together with Si andμi

expressions as:

σ = 1

g
Si ⊗ ∂R

∂β i = 1

g

(
Si
1 + εSi

2

)
⊗ ∂R

∂β i

= 1

g
Si
1 ⊗ ∂R

∂β i︸ ︷︷ ︸
[Ks ]{ε}

+ 1

g
εSi

2 ⊗ ∂R
∂β i︸ ︷︷ ︸

[H]{χ}

m = 1

g
μi ⊗ ∂R

∂β i = 1

g

(
εμi

1 + ε2μi
2

)
⊗ ∂R

∂β i

= 1

g
εμi

1 ⊗ ∂R
∂β i︸ ︷︷ ︸

[H]{ε}

+ 1

g
ε2μi

2 ⊗ ∂R
∂β i︸ ︷︷ ︸

[Kμ]{χ}

(12)

with g the Jacobian of the transformation from Cartesian
to curvilinear coordinates and R the position vector of any
material point within the effective continuum.

Since for all periodical uniform structures endowed with
a central symmetry, the stiffness coefficients are invariant
under a coordinate inversion, this entails that the pseudo-
tensor Hi jkl vanishes [26]. The previous constitutive equa-
tions then implies that the vectors μi

1 and Si
2 in (12) vanish;

this leads to an important simplification of the stress and
couple stress vectors respectively,

Si = Si
1 =

∑
b∈BR

(
Fb
x1ex + Fb

y1ey + Fb
z1ez

)
δib and

μi = μi
2 =

∑
b∈BR

(
ME(b)

2x ex + 1

2

(
ME(b)

2y − MO(b)
2y

)
ey

+1

2

(
ME(b)

2z − MO(b)
2z

)
ez

)
δib

with Fb
x1, F

b
y1, F

b
z1, M

n
2x , M

n
2y , and Mn

2z respectively, the
first order normal and transverse forces and the second order
moment about x’, y’, and z’. Those expressions still involve
the unknown displacements un

1 , un
2 and rotations ϕn

0, ϕn
1,

which are determined for all nodes by solving the equilibrium
equations (4) and (6).

2.2 Large configuration changes of lattices by the DH
method

We next expose the extension of the previous DH method
to the nonlinear regime, in order to account for the large
changes of configuration of the networks. This shall lead to
an algorithm for the computation of the large strains response

of the considered networks. The analysis is performed over
the RUC selected as the lattice unit cell, relying on recent
results [20] showing that the RUC size has no effect on the
predicted homogenized response in the nonlinear regime, as
long as no bifurcations occur.

2.2.1 Microscopic incremental problem over the lattice

In this subsection, we extend the linear framework so far
adopted and consider the impact of a variation of the
lattice geometry on the effective structure behaviour. We
accordingly write down the non-linear equilibrium prob-
lem associated to the large perturbations of the network; the
nonlinearity is due to the beam directors and beam lengths
changing with the applied loading.

As a starting point, the incremental formof the principle of
virtual displacements in continuum mechanics is expressed

δWext − δWint = 0 ⇒ δV =
∫
D

σ · δ EGdV = Fe · δ u

(13)

with δWext, δWint, V, EG, Fe the virtual variation of the
external and internal works, the total potential energy, the
Green–Lagrange strain and the external force respectively.

Wewrite down the non-linear equilibriumproblem associ-
ated to the large perturbations of the network; the nonlinearity
is due to the large displacements and microrotations, which
in turn are responsible for the large changes of beam direc-
tors orientation and beam lengths. From this, one can set up a
kinematically driven scheme, based on the incremental writ-
ing of the equilibrium equations in translation and rotation
(we refer the reader to the small strain equations (4) and (7)
respectively), successively the two following equations

∀v ∈ R3,
∑
b∈BR

(
δFεb(k)

x eb(k)x + Fεb(k)
x δeb(k)x

)

·�v +
∑
b∈BR

(
Fεb(k)
x eb(k)x

)
· �v

+
∑
b∈BR

(
δFεb(k)

y eb(k)y + Fεb(k)
y δeb(k)y

)
· �v

+
∑
b∈BR

(
Fεb(k)
y eb(k)y

)
· �v

+
∑
b∈BR

(
δFεb(k)

z eb(k)z + Fεb(k)
z δ eb(k)z

)
· �v

+
∑
b∈BR

(
Fεb(k)
z eb(k)z

)
· �v = 0, ∀w ∈ R3,

∑
b∈BR

(
δ

(
MεE(b)(k)

x eb(k)x + MεE(b)(k)
y eb(k)y
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Fig. 2 Variation of beam
orientation (left) and length
(right)

b
xe

b b
x x+ δe e

bl

b bl l+ δ

+MεE(b)(k)
z eb(k)z

)
· wE(b)

+ δ

(
MεO(b)(k)

x eb(k)x + MεO(b)(k)
y eb(k)y

+MεO(b)(k)
z eb(k)z

)
· wO(b)

)

+
∑
b∈BR

δ

(
ε lb

(
ex ∧ Fε b

))
· wC(b)

+
∑
b∈BR

(
MεE(b)(k) · wE(b) + MεO(b)(k) · wO(b)

)

+
∑
b∈BR

(
ε lb

(
ex ∧ Fε b

)
· wC(b)

)
= 0 (14)

with�v = v (ER (b))−v (OR (b)) the relative virtual veloc-
ity of the two extremity nodes of any beam. Introducing the
beam vector length Bb = lbebx (Fig. 2) with lb the beam
length and ebx the unit beam director, respectively the quan-

tities lb = ∥∥Bb
∥∥ and ebx = Bb

lb
.

We shall consider lattices which are much softer in bend-
ing in comparison to tension, so that we shall presently
address geometrical nonlinearities, which are traduced by
changes of beam orientation and length, pictured on Fig. 2.

For any b ∈ BR, the beamvector can be evaluated from the
imposed transformation gradient Gj and the relative position
vector between the two extremity nodes, quantity RER(b) −
ROR(b) as

Bb = RER(b) − ROR(b) + Gj
δ
jb (15)

Similarly, the relative microrotation is defined and expressed
versus the imposed microcurvature Mj as

ϕER(b) − ϕOR(b) =
(
ϕ
ER(b)
1 − ϕ

OR(b)
1 + Mj

δ
jb
)

(16)

The following notations have been introduced: Gj = ∂R
∂β j ,

Mj = ∂ϕ0
∂β j are respectively the imposed mesoscopic trans-

formation gradient and microcurvature mapping over the
unit cell, and RER(b) − ROR(b) and ϕER(b)

1 − ϕOR(b)
1 are the

unknown kinematic relative positions and rotations that are
computed incrementally, as will be explained later on.

The variation of the beam unit vectors and lengths given
in Appendix 2, Eq. (37) together with the perturbed expres-
sions of forces and moments expressed in (40) are inserted
into the incremental equilibrium (14); this entails the iden-

tification and extraction of the total tangent stiffness matrix,
which in turn is divided to the stress stifness

(
KS

T

)
and the

micropolar stiffness
(
Km

T

)
.We observe that the tangent stress

stiffness leads to identify three type of stiffness matrices
KSo, Ku, Kσ, respectively the linear stiffness matrix, the ini-
tial displacement stiffness matrix and initial stress stiffness
matrix, given in Appendix 2. The tangent stress stiffness
accordingly decomposes additively as

KS
T =

∑
b∈BR

(
Kb

So + Kb
u + Kb

σ

)
(17)

For the micropolar nonlinear response, the tangent stiffness
matrix similarly decomposes additively as

Km
T =

∑
b∈BR

(
Kb

mo + Kb
m

)
(18)

with Kb
mo the initial micropolar stiffness matrix and Kb

m
the tangent micropolar stiffness matrix, both expressed in
Appendix 2.

Now the left-hand side of equations (15, 16) includes both
the imposed mesoscopic transformation gradient Gj = ∂R

∂β j

and microcurvature mapping Mj = ∂ϕ0
∂β j over the unit cell,

and the unknown kinematic quantities RER(b) − ROR(b) and
ϕER(b)−ϕOR(b). The solution for these differences is obtained
by solving iteratively previous incremental scheme based on
the modified Newton–Raphson method.

This incremental scheme provides an update for the kine-
matic variablesBb(k+1),ϕb(k+1)at any iteration (k + 1), from
their values at previous iteration k within the reference unit
cell: for a given imposed mesoscopic transformation gradi-
ent andmicrocurvature, respectively the variablesGj, Mj, the
update of the position and microrotation vectors is written as

Bb(k+1) = Bb(k) + δ Bb(k), with Bb(k) = RER(b)(k)

−ROR(b)(k) + Gj
δ
jb

ϕb(k+1) = ϕb(k) + δϕb(k), with ϕb(k)

= ϕER(b)(k) − ϕOR(b)(k) + Mj
δ
jb (19)

For a given kinematic loading over the RUC described by
∂R
∂β j δ

jb, ∂ϕ

∂β j δ
jb, j = 1, 2, 3,one candetermine thequantities

Bb, ebx , eby, ebz , F
b
x , Fb

y , Fb
z , Mb

x , M
b
y , M

b
z , for any b ∈ BR,
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allowing to calculate the stress and the couple stress vectors
Siand μi respectively.

The mesoscopic incremental equations are next written at
the continuum level of the RUC.

2.2.2 Mesoscopic field equations over the reference unit cell

As an extension of the small perturbation equilibrium, the
discrete incremental equilibrium takes after homogenization
a form similar to its continuum counterpart, viz it holds

∑
υi∈Z3

∑
b∈BR

δ Fb · vε +
∑

υi∈Z3

∑
b∈BR

δ Mb · Wε = 0

⇒
∫
�

δ Si(k) · ∂v
∂β i dβ +

∫
�

δμi(k) · ∂w
∂β i dβ = 0 (20)

with δSi(k) and δμi(k) the incremental stress and couple
stress vectors; previous integral formulation constitutes the
incremental weak form of the equilibrium (self-equilibrium)
posed over the Lagrangian domain � occupied by the refer-
ence unit cell.

We next aim at writing the incremental constitutive law at
the mesoscopic level. We first recall a few needed notations
from nonlinear continuum mechanics. A generic particle
occupies a reference position X. When the body deforms
due to prescribed tractions or displacements, the spatial posi-
tion of the particle originally at X is given by x = f(X),
with function f supposed to be a smooth one-to-one point
mapping. The displacement u(X)of the particle is defined by
u(X) = f(X) − X, and the deformation gradient elaborated
as F(X) = ∇f(X).

We shall applied kinematic-controlled loadings over the
unit cell, we shall impose at each increment the discretized
version of F, or the microcurvature, which is specific to
each type of loading. We shall subsequently investigate
the response of lattices under uniaxial tension, equibiax-
ial tension, simple shear, and bending. The kinematic load
parameter is started at zero value and incremented, and the
equilibrium solution is computed at each increment; we shall
in the sequel denote n the step number.

We shall in the sequel and in view of setting up the
incremental scheme for the resolution of the nonlinear meso-
scopic BVP (acronym for boundary value problem) write
the discretized version of the elastic constitutive equation
successively between the incremental stress �S(k)

n and the
incremental strain �E(k)

Gn, and between the incremental cou-

ple stress �M(k)
n and incremental curvature tensor ��

(k)
n

(these two increments are in fact imposed over the RUC), as

�S(k)
n = KS

T,n : �E(k)
Gn

�M(k)
n = Km

T,n : ��(k)
n (21)

The Green–Lagrange strain (EG) therein is defined by
EG = 1

2

(
FT · F − I

)
. The stress tangent stiffness matrix

KS
T,n results from the assembly of the microscopic tangent

stiffness matrices, and is computed at each increment.
We further express the Lagrangian wryness tensor�as the

following second order tensor versus the finite rotation vector
ϕ = ϕiei [30]

� = ∇Xϕ

[
sin (‖ϕ‖)

‖ϕ‖ I − 1 − cos (‖ϕ‖)
‖ϕ‖2 ϕ × I

+ ‖ϕ‖ − sin (‖ϕ‖)
‖ϕ‖3 ϕ ⊗ ϕ

]
(22)

denoting therein ∇X the gradient operator with respect to
the Lagrangian coordinate X. For a given elementary load-
ing characterized by a continuously varying scalar loading
parameter λn, the incremental Lagrangian strain �EGn is
related to the increment of the loading parameter λn and the
increment �Fn as in [31]

�EGn(λn,�λn) = sym
(

Fn (λn)
T · ∇X�un

)

≡ sym
(

Fn (λn)
T · �Fn (�λn)

)
(23)

together with the relation

Fn (λn) = I + ∇Xun → �Fn (�λn) = �∇Xun ≡ ∇X�un

(24)

We recall that the stress increment �S(k)
n expresses versus

the strain increment �EGn according to Eq. (21).
The updated Cauchy stress tensor is next obtained by a

push-forward of the incremental Lagrangian stress �S(k)
n

from configuration �n to �n+1, elaborated as

σ
(k)
n+1 =

(
J−1
n Fn · S(k)

n · FT
n

)
︸ ︷︷ ︸

σ
(k)
n

+
(
J−1
n Fn ·

(
�S(k)

n

)
· FT

n

)
︸ ︷︷ ︸

�σ
(k)
n

(25)

where J = det (F) is the Jacobian, defined as the determinant
of the deformation gradient tensor. A subscript k refers to
the iteration index which is inside the increment loop. The
Cauchy stress at increment n + 1 is accordingly given from
its counterpart at previous increment n, based on the initial
stress S(k)

n (the first contribution on the right-hand side of
(25)) and the incremental stress �σ

(k)
n (the second term on

the right-hand side).
In order to get an update for the incremental couple stress

tensor, one has to exploit a similar relation previously derived
for the Cauchy stress.
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Fig. 3 3D hexagonal lattice a geometric description of the repeatable unit cell and b the representative unit cell

m(k)
n+1 =

(
Rn · M(k)

n · FT
n

)
︸ ︷︷ ︸

m(k)
n

+
(

Rn ·
(
�M(k)

n

)
· FT

n

)
︸ ︷︷ ︸

�m(k)
n

(26)

where Rn is the micropolar rotation tensor at increment n,
defined as Rn = exp(spn(ϕ)) and expressed in closed form
by using the Euler–Rodrigues formula, as explained in [32].

Within a specified type of loading (imposed transforma-
tion gradient or microcurvature over the unit cell), one has to
determine the adequate macroscopic displacement boundary
conditions that have to be imposed over the RUC; this is next
done for uniaxial tension, simple shear, equibiaxial tension,
and bending considered as elementary loadings.

Moreover, the characteristic lengths for bending of the
micropolar effective nonlinear continuum are further evalu-
ated from both the effective classical and micropolar tangent
stiffnessmatrices, relying on the linear situation. The internal
lengths are then computed at each increment of the scheme.
An example shall be given later on in this contribution.

2.3 Algorithm of the homogenization method

In a first step, the homogenized constitutive law is evaluated
in the linear framework. As a next step, one set up a kine-
matic driven algorithm by which, for each load increment,
the incremental stress and couple stress tensors are computed
versus the imposed mesoscopic loading (transformation gra-
dient and microcurvature). The evolution of the kinematic
and static quantities follows the update of the lattice geome-
try.

A dedicated code has been constructed from the pro-
posed algorithm, in order to solve for the nodal kinematical
unknowns (displacements and microrotations) of each beam
within the repetitive unit cell. The code relies on an input file
the initial reference unit cell topology and mechanical prop-
erties, and delivers as an output the homogenizedmechanical
properties (classical and micropolar moduli) and stress–
strain response for a given deformation path; the response is

computed more specifically for each of the aforementioned
elementary loadings, as explained in Box 1.

The implementation of the algorithm for the solution of
both the linear and nonlinear problems has been done in sym-
bolic language giving rise to a dedicated Maple code.

The next sections are devoted to different examples to
illustrate the proposed computational method; we will com-
pute the nonlinear mechanical response of the 3D hexagonal
lattice, followed by dry textile structures for 2D and 3D
geometries.

3 Numerical examples

3.1 3D hexagonal lattice

Amechanical analysis of a general 3D anisotropic hexagonal
latticewith in-plane struts of length L and h andvertical struts
of length Lv (out-of-plane) is considered, both endowedwith
circular cross-section of diameter d (Fig. 3a). The whole
lattice is generated from the repetition of the unit cell shown
in Fig. 3b thanks to three periodicity vectors defined in the
Cartesian basis. This geometry is representative of the unit
cell of vertebral trabecular bone. The length of the periodicity
vectors Y1, Y2, Y3 in the Cartesian basis are L1 = L2 =√

(Lcosθ)2 + (h + Lsinθ)2 and L3 = Lv .
The considered hexagonal unit cell is composed of five

beams: three horizontal beams b1, b2, and b3 and the vertical
beams b4 and b5. Beams b2 and b3 have the same length L
and are inclined by the angle θ = 30◦ towards the horizontal
direction, while beam b1 has length h. The vertical beams b4
and b5 have the same length Lv. The connectivity Table 1
gives the numbering of beams and nodes within the chosen
representative unit cell.

We consider to be specific a hexagonal unit cell pictured
in Fig. 3 with the following geometrical parameters: d = 0.25
mm, L = 1 mm, Lv = 0.5 mm, h = 0.5 mm, and θ = 30◦;
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Box 1 Algorithm for the nonlinear discrete homogenization of repetitive lattices

For each kinematic increments �E(k)
Gn , ��

(k)
n ;

For each iteration k inside the increment loop;

1. Compute the effective mechanical properties in the linear regime based on the linear discrete homogenization framework, Eq. (12).

2. Define the incrementally imposed strain and microcurvature applied over the RUC.

3. Compute the incremental Second Piola-Kirchhoff stress tensor and couple stress tensor, Eq. (21),

�S(k)
n = KS

T,n : �E(k)
Gn

�M(k)
n = Km

T,n : ��
(k)
n

4. Check convergence at iteration k; if it is attained, go to next step.

5. Compute the incremental deformation gradient, Eq. (24), and its Jacobian.

6. Update Cauchy stress and couple stress at increment (n + 1), by a push forward of their Lagrangian counterpart from �n to �n+1,
Eqs. (25) and (26):

σ
(k)
n+1 = J−1

n Fn ·
{

S(k)
n + �S(k)

n

}
· FT

n =
(
J−1
n Fn · S(k)

n · FT
n

)
︸ ︷︷ ︸

σ
(k)
n

+
(
J−1
n Fn ·

(
�S(k)

n

)
· FT

n

)
︸ ︷︷ ︸

�σ
(k)
n

m(k)
n+1 =

(
Rn · M(k)

n · FT
n

)
︸ ︷︷ ︸

m(k)
n

+
(

Rn ·
(
�M(k)

n

)
· FT

n

)
︸ ︷︷ ︸

�m(k)
n

7. Update the network configuration from �n to �n+1.

8. Repeat steps 1–7 up to the maximum applied strain and curvature over the unit cell.

Table 1 Connectivity array for
the 3D hexagonal lattice

Beam 1 2 3 4 5

O (b) 1 2 2 1 2

O (b) 2 1 1 1 2

δ1 0 1 0 0 0

δ2 0 0 1 0 0

δ3 0 0 0 −1 −1

Young’s modulus and Poisson’s ratio of the cell wall material
are selected as Es = 12,000 MPa νs = 0.3.

We next plot the nonlinear elastic responses in terms of the
components of Cauchy stress versus the stretches for differ-
ent types of loading. Figure 4 shows the nonlinear response
in terms of the evolution of the Cauchy stress diagonal com-
ponents versus the stretch applied in the three corresponding
directions x, y and z. The comparison with the extrapolated
linear response highlights a strong nonlinear response for ten-
sion along x, and a less pronounced nonlinear response for
tension along the two other directions. The response under
tension in z-direction shows a nearly linear behaviour fol-
lowed by a light softening (see Fig. 4c).

The responses under equi-biaxial tension show a nearly
linear evolution of Cauchy stress components versus stretch
for both x and y directions, as shown in Fig. 5.

The shear stress response shows an important differ-
ence between the linear and geometrical nonlinear analysis
beyond about 10% shear strain (Fig. 6), due to a large change
in the beam director orientation during shear, contrary to the
equi-biaxial test.

We next compute the nonlinear response of textile dry
preforms which exhibit strong geometrical nonlinearities.
Many modeling approaches have been used to analyze
the mechanical behavior of fabrics, which can be clas-
sified into analytical and numerical models. A lot of
mesostructurally based analytical models have been devel-
oped for the study of the behavior of woven fabrics
[1] and references therein. The literature review [33,34]
shows that finite element analyses and analytical methods
are powerful tools for studying the mechanical proper-
ties of woven fabrics. However, the complexity of the
micro-structure is proportional to the number of parame-
ters controlling the mechanical properties. Consequently,
various assumptions should be proposed to simplify the
analysis.

3.2 Nonlinear response of textile monolayers

We consider to be specific textile monolayer fabrics patterns,
viz plain weave and twill as representative examples of 2D
preforms. The RUC of the fabric is constructed and modeled
as a network of trusses connected by nodes at cross points
of the interwoven yarns within the fabric. These trusses have
extensional and bending rigidities to represent yarn stretch-
ing and flexion. The contact interactions between yarns at
the cross-over points are captured by beam segments con-
necting the nodes. The proposed methodology has been used
for the analysis of plain weave and twill fabrics subjected to
large applied strains. The stress–strain responses are evalu-
ated after applying appropriate boundary condition to the
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Fig. 4 Evolution of Cauchy stress components versus the corresponding applied stretch under uniaxial tension of the 3D hexagon in a x-direction,
b y-direction and c z-direction
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Fig. 5 Equi-biaxial tensile Cauchy stress versus stretch for the 3D hexagon in a x-direction and b y-direction
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Fig. 6 Nonlinear in-plane shear stress response versus applied shear
strain for the 3D hexagon

RUC, considering the previous three elementary loading
cases, namely uniaxial tension, bi-axial tension and simple
shear.

Most of the models for woven fabrics are based on
the definition of the unit cell geometry and include the
major architectural parameters for predicting the mechan-
ical properties. The unit cell is selected as the smallest
unit of textile that, when tiled, will generate the full scale
textile. The initial geometry of the unit cell is modeled
using TexGen, a free and open source license software,
operating on Windows and Linux, and developed for the
purpose of research on technical textiles at the Univer-
sity of Manchester (www.texeng.co.uk). Two typical textile
patterns are considered in the present work, plain weave
and twill fabrics (Fig. 7). Modeling of this architecture is
relatively tedious with conventional CAD, so we instead
use TexGen in order to save time in the generation of
the geometrical model and to export the geometric files to
ABAQUS where the finite element analysis is subsequently
done.
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Weft

Warp

Twill
Plain weave

Fig. 7 Representative plain weave and twill unit cells

Weft
Warp
Contact

Fig. 8 Geometric description for the unit cell of plain weave (left) and twill (right)

The RUC of the fabric is constructed and modeled as a
network of trusses connected by nodes at cross points of the
interwoven yarns within the fabric. For the two chosen appli-
cations of (a) plain weave (b) twill, the proposed geometrical
description for the unit cell of fabric and the corresponding
periodicity vectors are represented on Fig. 8. The geomet-
rical and mechanical parameters of these two structures are
given in Appendix 3.

Small strain discrete homogenization schemes were
recently developed by Goda et al. [1] for the determination
of the effectivemechanical properties of textiles monolayers,
with the stiffness matrix components expressed versus the
material and microstructural geometric parameter. The dis-
crete homogenization approach as explained in Sect. 2 has
been implemented for the two types of fabric. The analyses
of the periodic reinforcements modelled as RUC have been
implemented within a dedicated code considering the impact
of a variation of the structure geometry simultaneously in a
nested manner.

A comparison between the mechanical response of plain
weave and twill is next performed under three types of load-
ing (uniaxial tension, biaxial tension and simple shear).

– Uniaxial tension Figure 9 shows a comparison between
the Cauchy stress response versus stretch under a uni-
axial tensile loading test, for both plain weave and twill.
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Fig. 9 Cauchy stress evolution versus stretch for plain weave and twill
under a uniaxial tensile loading

The initial homogenized tensile rigidity in the weft direc-
tion are 113.5 and 170.4MPa for plain weave and twill
respectively. The stiffest response obtained for twill can
be explained by the fact that yarns within the representa-
tive unit cell are more aligned in the direction in traction;
we expect this tendency to be valid for any loading.

– Biaxial tension The biaxial tensile strain simulation is
realized by applying a strain in the longitudinal direction
of warp and weft yarns; we shall define the biaxial strain
ratio ε2/ε1, where ε1 is the primary textile strain corre-
sponding to weft direction, and ε2 is the secondary strain
corresponding to the warp direction. Figure 10 shows the
comparison of the biaxial response for plain weave and
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Fig. 10 Comparison between Cauchy stress evolutions versus stretch for plain weave and twill in a x-direction and b y-direction
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Fig. 11 Comparison between the shear response for plain weave and
twill

twill for a biaxial ratio equal to two: twill shows as for
uniaxial tension a stiffer response.

– Simple shear test The shear response shows nearly the
same trend for both types of fabrics up to a shear strain
of 0.15, with a small difference occurring for large
strains, as shown in Fig. 11; this can be explained by the
fact that the initial yarn crimp does not play an impor-
tant role in simple shear (contrary to uniaxial loading
conditions).

– Bending test Bending is applied to the twill structure
by imposing an increasing microcurvature over the unit
cells; the incremental bending response is then computed
based on the incremental scheme exposed in Sect. 2.
Note that although we perform a pure bending test, we
need to solve both the equilibrium equation of forces
and moments (see Fig. 12). Since we shall focus on
bending applied along one coordinate axis, a straight-
forward computation shows that the Lagrangian wryness
expressed in (22) simplifies to � = Grad (ϕ). We com-
pute as an illustration the flexural response (out-of-plane
bending) of twill performed over its representative unit
cell shown on Fig. 8. The small bending stiffness which
is needed to initiate the nonlinear bending computations
is related to the linearized curvature (χxy = ∂ϕy/∂x)
by

mxy = Km
T,xy χxy (27)
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Fig. 12 Nonlinear and linear evolutions of the couple stress versus
microcurvature for twill

The internal bending length for twill is evaluated from the
computed effective rigidities by the expression built from
the ratio of the tangent bending modulus to the sum of the
corresponding tangent shear moduli,

lc =
√(

Km
T,xy/2

(
K S
T,xz + K S

T,yz

))
; (28)

it shows a linear increase versus the applied curvature
(Fig. 13). The components of the tangent stiffness therein
evolve versus the imposed curvature based on the effective
constitutive law under bending, relation (27).

The next section is devoted to the computation of the large
strains response of 3D textile preforms.

3.3 Large strain response of 2.5D layer-to-layer
interlock

The homogenization scheme is quite general and versatile
enough to be applicable for any networks having a periodi-
cal architecture. In view of this generalization, a 3D textile
multilayer is analyzed.We consider as specific structures tex-
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Fig. 13 Characteristic length evolution versus curvature for twill

tile multilayer fabrics patterns, viz 2.5D layer-to-layer angle
interlock. In the same manner, a RUC of the fabric is con-
structed and modeled as a network of trusses connected by
nodes at cross points of the interwoven yarnswithin the fabric
(Fig. 14).

Warp yarns are undulated through the successive layers
of weft yarns. They can be bound to different depths where
various arrangement of yarns placement can be used to pro-
duce a wide range of this type of interlock. The material data
for the plain weave and twill, which are used to define the
material parameter for the 2.5D interlock RUC, are provided
in Appendix 3. The entire geometry of the unit cell is con-
structed based on the geometrical parameters as summarized
in the Table 2.

We next employ the proposed discrete homogenization
method to analyze the deformation of the 2.5D layer-to-layer
interlock subjected to uniaxial and equibiaxial loading tests.
In the same manner, we plot the Cauchy stress component
versus the corresponding stretch. Uniaxial tension in warp
direction shows an important difference between the linear
and the geometrical nonlinear analyses (Fig. 15).

Table 2 2.5D layer to layer interlock yarn geometrical parameters

Width (mm) Thickness (mm)

Weft 0.25 0.15

Warp 0.25 0.15
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Fig. 15 Cauchy stress versus stretch for 2.5D layer to layer interlock

The response under equibiaxial tension is pictured on
Fig. 16, in terms of the evolution of Cauchy stress compo-
nents along x and y.

The pronounced nonlinearity of the response along x
reflects the change of crimpof the yarnwhich tends to align in
this direction as the stretch level is increased (for both uniax-
ial and biaxial tension); on the opposite, since the transverse
yarn is initially straight, it does not produce geometrical non-
linearities, as one can infer from the rather linear response
observed in Fig. 16b. This behaviour clearly illustrates geo-
metrical nonlinearities present in these textile structures.

Y1: Weft Y2: Warp

Fig. 14 Schematic representations on TexGen of 2.5D angle interlock: layer-to-layer RUC (left) and Geometrical model of an elementary cell
(right)
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Fig. 16 Cauchy stress in a
x-direction and b y-direction
versus stretch for the 2.5D layer
to layer interlock
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Fig. 17 Comparison of the tensile response based on discrete homogenization and finite element method in a x-direction, b y-direction and c
z-direction

4 Comparison of the homogenized responses with
FE simulations

We here demonstrate the usefulness of the unit cell approach
in finite element analyses to compute the uniaxial, biaxial,
and shear mechanical responses accounting for large config-
uration changes. A comparison to finite element results aims
to evaluate the effectiveness and accuracy of the discrete
homogenization approach. The finite element method con-
sists in determining the overall effective nonlinear mechani-
cal response over a representative unit cell of the considered
structure, relying on a FE discretization of the unit cell geom-
etry. It is possible in ABAQUS to define a problem as a
“large-displacement” analysis, which means that geometric
nonlinearity is accounted for in the element calculations. For
each step in the analysis, we indicate whether ABAQUS will
account for nonlinear effects from large displacements and
deformations. If the displacements in a model due to loading

are relatively small during a step, the effects may be small
enough to be ignored. However, in cases where the loads on
a model result in large displacements, nonlinear geometric
effects can become important.

We validate the homogenized responses previously
obtained for the considered structures (3D hexagon, plain
weave, twill, 2.5D interlock) by comparing the evolution of
stresses with those obtained thanks to FE computations per-
formed over the corresponding representative unit cell.

4.1 Validation of the homogenization method for the 3D
hexagonal structure

The effective uniaxial responses under tension (in x, y and
z-directions), shear, and biaxial tension (in x–y plane) are
evaluated using displacement boundary conditions, as pic-
tured in Figs. 17, 18 and 19. The unit cell of the 3D hexagon
pictured in Fig. 3 has beenmeshed by C3D10 elements, a 10-
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Fig. 18 Comparison of the
equi-biaxial tensile stress
response based on discrete
homogenization and finite
element method
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Fig. 19 Nonlinear response for the shear stress versus shear strain com-
pared with FE results

nodes quadratic tetrahedral finite element used in ABAQUS
environment. The analysis has been performed using a non-
linear perturbation analysis.

The uniaxial tensile responses in x, y and z directions
are determined using displacement boundary conditions; the
edge nodes are displaced by a specified amount while the
nodes on the opposite edge are prevented from any trans-
lation in the displacement direction. The nodes located at
one of the two opposite sides in the direction normal to the
displacement direction are prevented from translation in the
direction normal to the displacement direction. The stress–
stretch curves are then constructed from the reaction forces
and displacements are captured at each increment in the dis-
placement directions (Fig. 17a–c).

In a similar way, the stress–strain curves under biaxial
tensile x–y loading conditions are constructed by displacing
the edge nodes by a specified amount, while the nodes at
the opposite edge are prevented from translating in the direc-
tion of the displacement. The displacements are imposed at
the both sides, which means that boundary conditions are
imposed at all four sides (x and y directions). The stress–
stretch responses are then constructed from the reaction
forces and displacements, both captured at each increment in
the displacement directions (x and y). The effective uniaxial
stresses in x and y directions computed from FE simulations
compare well with those obtained by discrete homogeniza-
tion, as shown in Fig. 18.

A FE simulation for simple shear in x–y plane is addi-
tionally performed to deliver the shear response for each
displacement loading step. In this simulation, we impose a
displacement field on the top surface of the unit cell along
the x direction, while the bottom surface is constrained in
the same direction. Both the left and right surfaces are also
prevented from translating in the direction perpendicular to
x. The shear stress–strain response is then constructed from
the reaction force and displacement at each increment. The
evolutions of the effective shear stress obtained from the DH
method and FE simulations show a quite good agreement
(Fig. 19).

A relatively good agreement is obtained between the
stress–strain responses predicted by finite elements and those
calculated by discrete homogenization, which shows that the
developed discrete homogenization method has the ability to
deliver the effective response of these structures in the non-
linear regime with a good accuracy and at a low numerical
cost.

The displacement distributions over the 3Dhexagonal unit
cell under uniaxial tension in x, y and z, biaxial tension in
x–y plane and in-plane shear are pictured on Fig. 20.

4.2 FE validation of the nonlinear responses of plain
weave and twill

In the current section, 3D finite element models of woven
fabrics at meso-level are developed to evaluate the accu-
racy of the effective mechanical properties predicted from
discrete homogenization. The FE model is capable of sim-
ulating elementary cells under simultaneous axial loadings
along both yarn directions. The previous results for the
stress–strain response obtained with the DH technique are
now compared with numerical results obtained from the
FE method (ABAQUS), under the specified types of load-
ings (we restrict the validation of the computed response
to uniaxial and biaxial tests), with appropriate boundary
conditions. The warp and weft yarns are meshed with the
eight-node solid linear hexahedral element (ABAQUS ele-
ment type C3D8); a total of 14,804 elements are used to
model the balanced plain weave. In order to account for the
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Fig. 20 Displacement distributions over the 3D hexagonal unit cell submitted to a uniaxial test in a x-direction, b y-direction, c z-direction, d
equi-biaxial test in x–y plane and e in-plane shear test
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Fig. 21 Comparison of the uniaxial tensile response for a balanced plain weave and b twill between the DH method and FE simulations

Fig. 22 Displacement distributions over a balanced plain weave and b twill submitted to a uniaxial test in x- direction

possible relative displacements between the yarns, a con-
tact with friction is introduced with a master/slave approach.
Contact is considered to be an intrinsic character of woven
fabrics which cannot be neglected during the meso-level
analysis. Contact conditions are prescribed between the pos-
sible interlacing surfaces of the yarns under loading and
are the same for all loading cases. The tangential behav-
ior at the contact surfaces in the frame of Coulomb friction
model is defined using the penalty method with a fric-
tion coefficient selected here as 0.05, relying on data from
[35].

The uniaxial response for the balanced plain weave is
shown in Fig. 21 (left); a good agreement is obtained using
both methods (DH and FE simulations), with a maximum
discrepancy close to 1.41 % in the uniaxial test for the con-
sidered unit cell of plain weave (Fig. 21, left), and close to
6 % at 20 % for twill submitted to uniaxial strain (Fig. 21,
right).

The displacement distribution over the RUC under uniax-
ial test conditions for both plain weave and twill patterns are
pictured on Fig. 22.

4.3 Validation of he homogenized response of 3D textile
structure

We validate the stress–strain responses obtained with the DH
methodwith full FE computations performed under the spec-
ified types of loadings (uniaxial and equibiaxial) applied on
the representative unit cell (see Fig. 23).

The displacement distributions over the RUC for the 2.5D
layer-to-layer under both uniaxial and biaxial testing condi-
tions are pictured in Fig. 24.

The discrepancy (about 15 % at 20 % strain) observed
between the response computed by DH and FE simulations
is possibly due to the choice of the contact beam rigidities;
accordingly,wenext conduct a sensitivity analysis to evaluate
the effect of the contact beam rigidities (tensile, flexural and
torsional rigidities) on the global behavior of the 2.5D layer-
to-layer angle interlock.

The range of variation of the contact beam rigidity has
been chosen as 0.1–10 times the longitudinal beam rigidity.
The evolutions of the x component of the Cauchy stress ver-
sus stretch obtained with the DH technique are compared
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Fig. 23 a Comparison of the uniaxial tensile response and b, c the equibiaxial tensile response for the 2.5D layer-to-layer interlock between the
DH method and FE simulations

Fig. 24 Displacement distributions over the 2.5D layer to layer interlock due to a uniaxial extension in x direction and b equi-biaxial extension in
xy direction

with FE results (ABAQUS), under an equibiaxial loading,
for four values of the flexural rigidity of the contact beams.

Independent computations show that the tensile and tor-
sion rigidities of the contact beams have relatively small
(almost zero) effect on the nonlinear response. In contrast
to this, a variation of the flexural rigidity has a significant
effect, with the percentage of difference variation between
DH and FE results from 13.31 to 2.89 % for the Cauchy
stress in x-direction and from 14 to 9.52 % for the stress in
y-direction, as shown in Fig. 25. The mechanical properties

of the contact beams are unknown in the absence of measure-
ments, so that they are adjusted by an inverse approach based
on a comparison of the response of the DH method with full
scale FE computations over the RUC. The conclusion of the
adjustment is that the transverse rigidity of the yarn repre-
sented by the contact beam elements is not the only factor
to be considered, since also inter-yarn friction is expected to
play an important role, as explained in [1].

A fewwords about the computational cost of the employed
DHmethod in comparison to FE computations are in order. In
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Fig. 25 Effect of flexural rigidity of the contact beam on the stress–strain response from nonlinear discrete homogenization compared with FE
simulations

fact a high accuracy of local stress peak requires fine meshes
resulting in long computation times. In addition, large defor-
mation problems can result in a huge number of degrees of
freedom effectively increasing the size of stiffness matrices.
Larger the stiffness matrix longer is the computational time
required. In comparison, the DH method involves compara-
tively a much small number of degrees of freedom since the
beam degrees of freedomwithin the unit cell are only defined
at its extremity nodes.

Considering next to be specific the 2.5D layer to layer
interlock, the computational time is much reduced with
the DH method (few minutes on a two-core processor
machine) in comparison to FE computations (1 hr on the
same machine), due to the strong reduction of the number of
degrees of freedom.

From a numerical viewpoint, the developed DH algo-
rithms can be easily implemented as they rely on a text file
including all necessary input data (geometry of the structure
and microscopic properties of the beams in terms of their
geometry and mechanical properties). The low cost com-
putations allow computing in a quite efficient manner the
effective anisotropic mechanical properties of 3D repetitive
network materials.

5 Summary and future work

The development of suitable micromechanical schemes for
the computation of the effective mechanical response of
architecture materials such as fibrous networks is quite
important, in order to have at hand predictive models to ana-
lyze the overall computed response in terms of the underlying
microscopic mechanisms. When a RUC can be identified
for a quasi periodic network, it is possible to develop spe-
cific homogenization schemes relying on the assumption of
inherent periodicity. Although a lot of attention has been
devoted to replacing large periodic networks of lattice mate-

rials by effective continuum models, less attention has been
paid to the consideration of both geometrical nonlinearities
and microstructure effects leading to generalized continua at
the continuum level.

We presently extended the linear discrete asymptotic
homogenization framework to the nonlinear setting, based
on an update of the lattice geometry and elastic computations
done incrementally under a kinematic control. A novel proce-
dure for predicting the effective nonlinear elastic responses of
these repetitive lattices through a combined linear andnonlin-
ear discrete homogenization scheme has been presented. The
nonlinear stress–strain and couple stress–curvature responses
have been analyzed incrementally for different 3D structures
under different loading cases: uniaxial, biaxial, simple shear,
and bending, taking into consideration changes of the struc-
ture geometry. The combination of the incremental scheme
with the homogenization method delivers both the classi-
cal and nonclassical properties; especially, the micropolar
framework allows deriving the bending response.

These theoretical developments have been implemented
into a dedicated code using the lattice geometry and
microstructural properties as an input, and delivering as an
output the effective response in the nonlinear range at the
mesoscopic continuum level of the RUC.

These nonlinear homogenization schemes have been
applied to meso-level analyses of the mechanical behav-
ior of textile monolayers, 2.5D layer-to-layer interlocks and
3D hexagonal lattices to construct their effective anisotropic
micropolar continuum response at the mesoscopic level.

The chief advantage of the discrete homogenization tech-
nique developed in the present work is inherent to its
predictive and systematic nature, and its numerical efficiency
in comparison to FE methods.

The proposed micromechanical approach is particularly
appealing, due to the difficulty to measure such effective
properties for textiles considering their discreteness. The
proposed homogenization technique proves efficient from a
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numerical point of view, and it has a great versatility as to
the topology of the textile armor, which makes it a suitable
tool to explore and compare in future developments vari-
ous textile architectures for both single and multilayer 3D
configurations.More generally speaking, the potentiality and
versatility of themethod shall enable to compute themechan-
ical response of architectured materials having a repetitive
microstructure.

Appendix 1: Small strains homogenization: expres-
sions of forces, moments and virtual translation and
rotation velocities

The first order normal and transverse forces and the second
order moment about x′, y′, and z′ at the beam extremities
can be successively expressed versus the kinematical nodal
variables as
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where Eb
s and Gb

s the tensile and shear modulus of the bulk
material.

The asymptotic development of the virtual velocity and
rotation rate are next expressed. For any virtual velocity field
vε(β), a Taylor series expansion leads to

vε (O (b)) − vε (E (b)) ≈ ε
∂v

(
βε
)

∂ βi
δ
ib (35)

The rotation rate field is similarly expanded taking into
account the central node of the beam, so that a change of
curvature of any beam can be captured:

wO(b) ε (β) = w (β) ; wE(b) ε
(
β+ ε δi

)
= w (β)

+ ε
∂w (β)

∂ βi
δ
i (36)

Appendix 2: Computation of the tangent stiffness
matrix for the DH scheme

Thevariations of thebeamorientation and length are obtained
after straightforward computations as follows:

δ ebx = C · P · δ Bb/lb, δ eby = �z · δ ebx, δ ebz = �y · δ ebx

δ lb = Bb · [I + C · P] · δ Bb/lb (37)

In (37), we have introduced the projection operators P and
C expressing as
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In the present large strains regime, since the beam length is
changing, one has to expand it versus the asymptotic para-
meter ε as for all other kinematic variables (these expansions
are not repeated in this subsection),

lb = lb0 + ε lb1 + ε2lb2 + · · · + εplbp (39)

The induced perturbations of the forces and moments are
then obtained as
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We introduced in (40) the two orthogonal transformations
�y,�z elaborated as
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The linear stiffness, the initial displacement stiffness and ini-
tial stress stiffness express successively as
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The tangent couple stress stiffness matrix therein express as
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Appendix 3: Geometrical and mechanical parame-
ters for the considered textile performs

The geometrical parameters for plain weave and twill are
given in Table 3.

Mechanical properties of weft and warp made of PET are
given in Table 4; we intentionally choose very different mod-
uli to represent an unbalanced fabric, leading to an expected
anisotropic behavior.

The mechanical properties of the yarns are the same for
both unit cells. The tensile, flexural, and torsion rigidities of
the beam segments are given in Table 5.

Furthermore, the geometric and material parameters for
the contact beam are

Lc1,2 = L f1Sinθ f , Lp1Sinθp, rc = r f + rp
2

,Gsc

= Gs f + Gpf

2
, and Esc = Es f + Epf

2

where Lc1,2, rc, Gsc, and Esc, represent the lengths, radius,
shear andYoung’smodulus of the contact beams respectively
(beams connecting the warp and weft yarns at their crossing
points). As an assumption, we take the contact beam with
radius and mechanical modulus as average values from the
weft and warp corresponding values.

Table 3 Plain weave and twill
fabric configuration parameter

Weave Set of input geometric data required for modeling

Plain

Weft L f 1 = 0.618 mm – θ f = 40◦ d f = 0.27 mm

Warp L p1 = 0.56 mm – θp = 40◦ dp = 0.25 mm

Twill

Weft L f 1 = 0.618 mm L f 2 = 0.487 mm θ f = 40◦ d f = 0.27 mm

Warp L p1 = 0.56 mm L p2 = 0.41 mm θp = 40◦ dp = 0.25 mm

Table 4 Elastic properties of
weft and warp yarns

Set of input material data

Weft Es f = 1889MPa Gs f = 756MPa ν f = 0.25

Warp Esp = 13,853MPa Gsp = 5541MPa νp = 0.25

Table 5 Mechanical properties
of weft, warp and contact beams

Beam rigidity Beams at

Weft Warp Contact

Tensile kl f1,2 = Es f A f
L f1,2

klp1,2 = Esp Ap
L p1,2

klc1,2 = Esc Ac
Lc1,2

.

Flexural kt f 1 = 12Es f I f

(L f 1)
3 ktp1 = 12Esp Ip

(L p1)
3 ktc1,2 = 12Esc Ic(

Lc1,2

)3 .

Torsional kr f 1 = Gs f J f
L f 1

krp1 = Gsp Jp
L p1

krc1,2 = Gsc Jc
Lc1,2

.
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