
Comput Mech (2016) 58:889–909
DOI 10.1007/s00466-016-1325-8

REVIEW PAPER

Computational modeling of Li-ion batteries

D. Grazioli1,2 · M. Magri1 · A. Salvadori1,3

Received: 10 July 2016 / Accepted: 11 August 2016 / Published online: 27 August 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract This review focuses on energy storage materi-
als modeling, with particular emphasis on Li-ion batteries.
Theoretical and computational analyses not only provide a
better understanding of the intimate behavior of actual batter-
ies under operational and extreme conditions, but they may
tailor new materials and shape new architectures in a com-
plementary way to experimental approaches. Modeling can
therefore play a very valuable role in the design and lifetime
prediction of energy storage materials and devices. Batteries
are inherently multi-scale, in space and time. The macro-
structural characteristic lengths (the thickness of a single cell,
for instance) are order of magnitudes larger than the particles
that form the microstructure of the porous electrodes, which
in turn are scale-separated from interface layers at which
atomistic intercalations occur. Multi-physics modeling con-
cepts, methodologies, and simulations at different scales, as
well as scale transition strategies proposed in the recent lit-
erature are here revised. Finally, computational challenges
toward the next generation of Li-ion batteries are discussed.
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1 Introduction

Greenhouse gas reduction strategies call for developing and
deploying innovative technologies. Industrial production of
high capacity energy storage devices is one of the major
challenges to achieve a low-carbon global economy in the
long-term. Li-ion batteries, LIBs, currently have the highest
energy storage density of any rechargeable battery technol-
ogy [1]. The present commercial realities, however, are not
yet at such a technological level to meet the requirements
of ambitious actions to tackle climate change, as for power-
ing electric vehicles (EVs) to displace fossil fuel transport
systems.

Since the commercial spreading begun by Sony in 1991
[2], Li-ion battery cells have been widely used to supply
electric portable devices such as mobile phones, laptop com-
puters and cameras. Being the latter characterized by limited
lifetime, battery aging was not a central topic. The expected
use of LIBs for high-power and high-capacity demanding
systems, as EVs, [3] and for storage systems for renewable
energy sources makes contained capacity fading and power
loss nowadays priorities for the world-wide research com-
munity. Whereas experimental studies are the backbones of
batteries investigation, modeling can provide fundamental
contributions, particularly in tailoringmaterial performances
and degradation.

Research activities carried out worldwide over the last few
years call attention to themulti-scale andmulti-physics mod-
eling of storage cells [4] to predict conditions to develop the
next generation of batteries for higher capacity and longer
cycling life. Computational simulations, based on rigorous
theoretical modeling and coupled to validation and quan-
tification of the uncertainties, have the potential to enhance
batteries’ performances, tailor architectural configurations
toward optimal functioning of energy storage devices, and
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shape new materials for greater capacity and power release.
Accurate reviews of batterymanagement systems in EVs [5],
of prognostics and health monitoring [6], of prominent phe-
nomena occurring during common operations as well as of
the material response to solicitations and of the aging mech-
anism [7] have been recently published. Apparently though,
a careful account of the broad literature on computational
modeling and simulations appears not to have been consid-
ered yet, with a few exceptions [8].

This paper aims at filling this gap, by providing a compre-
hensive overview and description of computational models
and methods proposed in recent years for batteries. Model-
ing of composite electrodes and electrolytes-either solid or
liquid, of core functioning of cells, of intercalation of lithium
ions in active materials and their multi-physics description,
with special emphasis on mechanical behavior and failure
will be reviewed and discussed. The main target is to under-
line the efforts of the scientific community in modeling and
simulating Li-ion batteries, by no means presuming to be
exhaustive of the widespread literature available on the topic.

Current challenges-including the lack of full 3D multi-
scalemodeling of themulti-physics processes from atomistic
to continuum, of hot spots generation, phase-segregations
and mechanical failure-are also identified and approaches to
address them are devised.

The paper is organized as follows. Section 2 illustrates
basic concepts of Li-ion batteries, highlighting the multi-
physics processes that occur at different length and time
scales. Sections 3–5 are the core of this review and examine
several computationalmodels for the processes of Sect. 2 that
have been developed in recent years. Macroscopic models 3,
microstructural models 4 as well as multiscale models 5 are
separately dealt with.

2 Processes, modeling, simulations

An electrochemical cell consists of two electrodes, a sep-
arator and, for liquid electrolytes, an electrolytic solution.
Electrons flow externally and through the electrodes, facili-
tated by a network of conductive particles. Mass and charges
are transported in form of ions through the electrolyte from
one electrode to the other, to bring reactants to the inter-
faces where intercalation reactions occur. A sketch of a LIB
cell is depicted in Fig. 1, whereas Fig. 2 illustrates the main
processes that take place during operations. As shown in
Fig. 3, each process requires its own modeling.

As already pointed out [9], the term battery modeling is
shared by different approaches, each of which makes use of
its own methodology to achieve specific targets. Some mod-
els for instance define the battery as a black box, aiming at
empirically describing its system-level characteristics, such
as capacity, efficiency, and voltage. Peukert’s law, which cor-

Fig. 1 Sketch of a Li-ion battery cell with porous electrodes. Additives
are used to create conductive networks in both electrodes, to increase
the electronic conductivity. Additives include large (graphite) and small
(carbon black) conductive particles, which are bound to the active par-
ticles that host Lithium by a polymer binder

Fig. 2 A list of processes that take place in a battery during normal
operation

Fig. 3 A list of models for the processes that take place in a battery
during normal operation
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relates the rate of discharge and the capacity, falls into this
class [10,11]. Other mathematical models study the non-
linear capacity/recovery effects in LIBs in a similar way
[12–14]. Equivalent circuit models simulate the battery with
combination of variable voltage sources, resistors, and capac-
itors [15,16]. Several of these models have been developed
in the literature [17], including Thevenin equivalent circuit
models [18], impedance-based models [19], and runtime-
based models [20]. A recent review can be found in [21].

Although those models have been quoted here for the sake
of completeness, the present review focuses on the multi-
scale and multi-physics modeling of the processes that take
place during charge/discharge, from the atomistic size up to
the cell size. This choice has a sound motivation, since the-
oretical and computational modeling not only provide the
ability of understanding the microscopic behavior of batter-
ies under operational and extreme conditions, but they may
also be tailored to devise and shape new materials as well as
new architectures in a way complementary to the experimen-
tal approaches. Modeling of multi-scale and multi-physics
processes taking place during charge/discharge can therefore
play the most valuable role for battery design and lifetime
prediction.

Any rigorous model of physical phenomena stems from
a few pillars. They are, in order: the balance (or continuity)
equations; the thermodynamic analysis, in terms of energy
and entropy balance; the constitutive theory and specifica-
tions; in the presence of large deformations, objectivity shall
also be properly investigated. Governing equations result
from this fundamental sequence of tasks. Scientific rigor
claims that this sequence shall be respected, but this is unfor-
tunately not always the case in the literature on battery
modeling. In particular, from the second law of thermody-
namics restrictions arise that constitutive modeling should
account for [22–26]. Furthermore, inmulti-scale approaches,
the so called Hill-Mandel condition must be considered, to
guarantee that energy is neither artificially created nor anni-
hilated in the scale transitions.

Despite many progresses have been made in the last
decades, modeling the complex microstructure of a bat-
tery still represents an open challenge. The different nature
of the phenomena involved (mechanical, electrical, electro-
chemical, and thermal) and the interactions among them
lead to complex mathematics with a very high number of
unknown fields (displacements, electric potential, concen-
trations, temperature). Moreover all the fields are coupled
through non-linear constitutive relations, thus leading to non
linear partial differential equations that require iterative algo-
rithms to be numerically solved. As a further complexity in
order to achieve predictive capabilities, several parameters
usually must be calibrated. Uncertainties in the measure-
ment of those parameters are significantly high for LIBs
[27,28].

Mass transfer entails a description of the movement of
mobile ionic species. In the absence of convection, as usually
assumed under operation conditions, movement of species is
governed by diffusion, driven by gradients of concentration,
or bymigration, driven by an electric field. The intercalation
reactions taking place at the electrode-electrolyte interfaces,
can be either described by Butler–Volmer-type equations or
by more complex analysis [9,29,30] of the phenomena that
occur in the atomistic-size layers, termed after Stern and
Gouy–Chapman.

Both negative-carbonaceous, mainly graphite, (C)—and
positive-LiCoO2 (LCO), LiNiO2 (LNO), LiFePO4 (LFP),
and LiMn2O4 (LMO)-electrodes intercalation materials
exhibit phase transition [31,32]. In some cases the transition
is sharp (e.g. from crystalline to amorphous in Silicon) and
can be clearly defined by an atomically thick boundary [33]
where a chemical reaction takes place. The material proper-
ties may change among phases, thus leading to unexpected
stress scenario which are under intense study. The reaction
rate at the front has been detected as one of the limiting fac-
tors for the electrode charge/discharge rate.

Modeling power loss and capacity fade with electrochem-
ical cycling-either in operating or non operating conditions—
is becoming a major branch of research [34–38], especially
in connection with high-power and high-density cells that
are prone to rapid degradation. The main mechanisms of
aging can be categorized in four groups, namely: surface film
formation (solid electrolyte interphase (SEI), Lithium plat-
ing), bulk changes (phase segregation), mechanical effects
due to lithiation (fracturing, dissipation, grinding), and para-
sitic reactions (corrosion, binder degradation). An up to date
review of the literature on aging of Lithium-ion batteries for
EVs can be found in [3], with special emphasis on physico-
chemical transformations. Recent publications on aging and
degradation accentuated the role of mechanical detrimental
effects. Although individual mechanism strongly depend on
the materials in the cell, general effects can be pointed out.
Phase-segregation and large volume changes in the active
particles are associated with the intercalation of neutral Li
in the hosting storage materials. Swelling induce inelastic
effects, micro-cracks and particle fracture, decrepitation or
pulverization, loss of integrity and loss of electric contact
with the current collector, finally leading electrodes to die.

Functional materials for energy conversion and stor-
age exhibit strong coupling between electrochemistry and
mechanics [39,40]. Volume expansion and fracturing of
composite electrode components may occur during battery
standard operations.Activematerials in composite electrodes
experience swelling and shrinking during cycling due to Li-
ions insertion and extraction. Volume changes reported in
the literature range between 6.5% for LMO [41] and about
10% for carbonaceous materials [42,43]. Such an amount of
deformation may induce stress which in turn cause fracture
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and detachment of particles from the conductive network. In
this regard, experimental data have been reported for vari-
ous active materials:, such as LCO [44], LMO [45,46], LFP
[47,48] and C [43,49–51]. The problem is even more rele-
vant inmaterials with large storage capacity. For instance, the
tremendous volume change experienced byLi-alloys, e.g., up
to 300% for Li–Si [52] causes fracturing after a small number
of cycles.

Deformations in composite electrodes may cause contact
loss among their different components accompanied by irreg-
ular SEI growth that can modify the porosity of the solid
matrix and reduce the overall ionic conductivity.

Temperature influences drastically the performance of
batteries under operation conditions. In extreme conditions,
temperature increase can initiate a sequence of detrimen-
tal effects, known as thermal runaway, that may lead to
a destructive result. Three paradigmatic mechanisms for
thermal runaway have been recently either experimentally
discovered or numerically envisaged. The first mechanism
[34,53] relates to deposition of metallic Lithium during
charging, which may compromise cell safety because of
dendritic growth and internal short-circuiting. The depo-
sition reaction occurs upon overcharge, fast charge, or at
low temperature. Thermally induced mechanisms have been
experimentally investigated in [54] in the presence of an
external heat source, as for the failure of neighboring cells.
They are fueled by the continuous exothermic decomposition
and reformation of the solid electrolyte interphase layer at
negative electrode/electrolyte interface, inducing a complex
chain of events up to battery explosion. Drops in concen-
trations at the same location, which have been predicted in
the presence of fast charge/discharge processes [55,56], can
trigger a similar series of events. Modeling and simulation of
those mechanisms involve complex physical processes cou-
pled across a wide range of length and time scales.

3 Macroscopic models

Although multi-physics phenomena described in Fig. 2 take
place at the length scale of the electrode particles-namely
three order of magnitudes below the battery cell size-or even
at smaller scales, boundary conditions that drive the response
of batteries cannot be identified from experimental observa-
tions at those scales. Boundary conditions are more naturally
defined at the battery cell scale, and they depend upon the
process (galvanostatic/potentiostatic, charge/discharge) and
upon the geometry of the cell (cylindrical, pouch, others).
The former remark, together with the quest of feasibility of
numerical simulations for the models described in Fig. 3 at
the finest scale with the state of the art of high performance
computing, lead to the conclusion that the computational
modeling of batteries must unavoidably be treated via multi-

scale approaches. Nevertheless, a large amount of research
in batteries focused on one-dimensional, single scale model-
ing, accounting in the best possible way for the underlying
microstructure.

3.1 Macroscopic models for liquid electrolytes and
separators

In liquid-electrolyte batteries, the inter-electrode medium is
a composite structure formed by the electrolyte and a separa-
tor membrane, that includes a network of interconnected and
irregular pores.Most liquid electrolyte models concern a sin-
gle binary electrolyte, i.e. a solution of a binary salt, say LiX
where X can for instance [59] be PF6, plus a solvent in which
the ionic concentration varies in the cell. Mass transfer in an
electrolytic solution requires a description of the motion of
mobile ionic species Li+ and X− which is due to diffusion,
migration, and advection. Even though the latter contribution
might be relevant for some electrochemical systems [60,61],
especially under abuse or extreme conditions [62], advection
is usually neglected in LIBs models.

In many cases, the ionic transport is described assuming
the electrolyte as an ideal infinitely diluted solution. Under
this hypothesis the energetic interactions between different
species are neglected; hence, the flux of a species is propor-
tional to the gradient of its own electrochemical potential
[63]. For systems involving n different species, the set of n
mass balance equations contains n + 1 unknowns, typically
n mass concentrations plus the electric potential. An addi-
tional equation is mandatory and the most common selection
in battery modeling is the electroneutrality condition [64].

Electroneutrality can be defined as follows: over macro-
scopic distances the difference in concentrations of the ionic
species is small compared to the ionic concentrations [65]
and can be neglected. Such an assumption is valid at material
points “far” from the electrode/electrolyte interfaces, where
high electric fields separate positive and negative charges
across very narrow layers.

Noteworthy, electroneutrality is not a fundamental law, but
rather an approximation towards the solution, which can lead
to paradoxes if not consciously adopted. Dickinson et al. [66]
have shown that electroneutrality does not constrain in any
way the electric field to satisfyMaxwell’s equations. Danilov
and Notten [63], while discussing numerical simulations
stemming from the electroneutrality assumption, pointed out
an unjustified electric field in spite a good estimation of the
ionic concentration. More general formulations that do not
account for electroneutrality in the set of balance equations
are required in multi-scale approaches [55,56,67,68]. Their
description is thus postponed to Sect. 5.

Separators have to be designed to prevent internal short
circuiting while providing a path for ionic conduction in
the liquid electrolyte throughout its open porous structure.
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Examples of separators are microporous polymer mem-
branes, non-woven fabric mats, and inorganic composite
membranes. Although the separator does not participate in
the electrochemical reaction it influences the performance of
Li-ion battery cells, as experimentally observed by Djian et
al. [69].

Morphological features are macroscopically accounted
for through global parameters, such as porosity and tortuos-
ity. The former quantifies the volume fraction occupied by the
pores; the identification of an optimal value is a compromise
between the minimization of the ionic resistance, enabling
high-specific battery power (high porosity and large mean
pore size), and the limitations dictated by the mechanical
resistance of the membrane, preventing the risk of inner bat-
tery electrical shorting (thick membrane and low porosity).
The tortuosity is a measure of how the conductive path-
ways deviate from an ideal condition of straight channel of
uniform cross section. Increasing tortuosity also increases
the mean path length of ions, eventually favoring undesired
effects [70]. Many attempts can be found in the literature
[71–75] to relate porosity and tortuosity to effective conduc-
tivity and diffusivity of inhomogeneous media. The influence
of the underlying microstructure onto macroscopic material
properties is a goal of homogenization theory, which will be
discussed in Sect. 5.

As the integrity of the separator is crucial to the perfor-
mance and safety of batteries, stress analyses for the separator
can be found in literature [58,76], taking also into account
the SEI layer and its growth as one of the main degradation
mechanisms [77].

3.2 Macroscopic models for solid electrolytes

Solid electrolytes are of increasing interest due to their
possible application in microelectronic devices, such as
micro-electromechanical systems (MEMS), remote sensors,
self powered integrated circuits and health care implants [78–
80]. Despite a generally limited ionic conductivity, up to
three orders of magnitude smaller than conventional liquid
electrolytes [81], their application is characterized by unde-
niable advantages: safety, high energy density due to usage
of a pure Lithium metal anode is enabled yet ensuring stabil-
ity, no need for casting, no leakage, resistance to shock and
vibration, resistance to pressure and temperature variations,
electrochemical stability [81–84].

Inorganic glasses, with particular reference to lithium
phosphorus oxynitride (LiPON), find application in many
solid state thin-film lithium batteries [85]. A widespread
example is the Li/LiPON/LiCoO2 system, investigated by
Fabre et al. [83] and Danilov et al. [86]. LiPON solid
electrolyte is a glass-forming system in which immobile,
oxygen-binded Lithium is transferred to mobile Lithium by
means of a ionization reaction, during which a negative

charge is released. This process was described by Danilov
et al., who made use of the Nernst–Plank equation and the
electroneutrality assumption to describemass transport of Li-
ion and negative charges in a battery subjected to a discharge
process. A simplified approach was pursued by Fabre et al.,
who assumed the ionic concentration to be uniform in the
bulk electrolyte during both charge and discharge processes.
The mobile charges being exclusively Li-ions, Ohm’s law
was used to relate the current density to the electric potential
distribution across the LiPON. The effect of temperature on
the input parameters of the model was also studied.

Polymer electrolyte find application in three-dimensional
[78] and flexible [87] batteries. Ionic transport in these mate-
rials is related to the segmental motion of the polymer chains.
The repeated association and dissociation of the ions with the
polymer segments and the continuous rearrangement of the
latter allow ions to be transferred from one electrode to the
other [88].As themotion of the polymer chains is enhanced at
temperatures above the glass transition temperature, higher
ionic conduction are also observed at higher temperatures
[82]. For reviews on the ionic transport mechanisms in
polymer electrolytes, their dependence on temperature and
modeling approaches at different scales the reader is referred
to [89,90].

Solid electrolyte have recently been modeled from a con-
tinuum level perspective by Natsiavas et al. [91]. The latter
investigated the effect of pre-stresses on the dendrites for-
mation of lithium metal anode either in contact with LiPON
electrolyte or dioxolane-dimethoxy ethane, a soft polymer.
In both cases the electrolyte was modeled as a linear elastic
material undergoing small deformations.A continuummodel
for diffusion of multiple charged species in a solid medium
in the presence of stress, electrostatic and chemical poten-
tial gradient was developed by Bucci et al. [92]. The model,
applied for the investigation of the effect ofmechanical stress
in kinetic demixing and ambipolar diffusion (both phenom-
ena are peculiar of solid oxide fuel cell) is also amenable for
solid electrolyte modeling.

3.3 Macroscopic models for porous electrodes

For porous heterogeneous electrodes, one-dimensionalmacro-
scopic mathematical models reflect reality only in an average
sense, that must be properly defined. Porous electrodes are
in fact multi-phase structures, which include a network of
interconnected and irregular pores and channels [58]. They
consist of active particles bound by a polymer to a network
of conducting particles, see Fig. 4. Storage materials are
subjected to Lithium intercalation, while conducting parti-
cles provide a conductive path that enhances the electronic
mobility from the current collector to the active particles
surface. Lithium transport in form of ions takes place in the
electrolytic solution. The porous configuration increases the
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Fig. 4 Sketch of a Lithium metal/liquid electrolyte separator/porous
insertion electrode cell and a FIB–SEM image of a LiCoO2 commer-
cial electrode. Large active particles are clearly visible, together with

the carbon additive particles that form amicro-porous structure between
them. Separator scanning electrodemicroscope images can be found for
instance in [57,58]

effective interfacial area per unit volume between the elec-
trolyte and the active material, favoring the intercalation of
Lithium. The rate at which the latter occurs depends on the
structure and on the material properties of the phases of the
composite electrodes [64]. These factors influence the poten-
tial drop and concentration changes in both the solution and
solid phases [93].

From the seminal works byNewman et al. [94,95] amulti-
tude ofmodels based on the so-called porous electrode theory
have been applied to the insertion electrodes. The approach
circumvents the description of the complex microstructural
geometry and processes, by considering macroscopic aver-
aged quantities “over a region of the electrode small with
respect to the overall dimensions but large compared to the
pore structure” [64]. Two components, occupying different
domains, are considered: an homogeneous separator—in
which only the electrolytic solution is present—and multi-
component porous electrodes—in which the electrolytic
solution and the solid matrix are treated as superposed
continua, ensuring connectivity between all points of the
electrode [96]-both present at any point of the domain.

The model entails a set of partial differential equations,
which describe the processes at the cell scale in an averaged,
phenomenological way. The unknown fields are: the molar
concentration ci of species i (both in the separator and in
the porous electrodes); the electric potentials φe and φs of
the electrolyte and of the solid phase respectively. The fields

are assumed to be continuous functions in time and space.
Porosity ε accounts for the void volume fraction, filled by
the electrolytic solution. It equals unity in the separator and
is strictly smaller than one in the porous electrodes [97,98].

Mass conservation equation

∂ ε ci
∂t

+ div
[ �hi

]
= Ri (1)

is enforced to any mobile species i in the electrolytic solu-
tion. It relates variations of the molar concentration to the
molar mass flux �hi and to the mass supply Ri . The latter is
identically equal to zero in the separator (unless chemical
reactions are explicitly considered) while it macroscopically
accounts for the microscopic pore-wall flux density in the
porous electrodes [64].

The current �i is defined as the charge flux density per
unit area. It coincides with the electrolytic current �ie within
the separator where the ions are the only mobile charged
species, and with the sum �ie + �is in the porous electrodes.
Charge conservation is ensured being �is the amount of cur-
rent carried by the electrons in solid phase within porous
electrodes.

By imposing the electroneutrality condition

∑
i

zi ci = 0 (2)
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where zi is the charge number of species i , the net charge is
always zero and the total current density satisfies the charge
balance equation

div
[�i

]
= 0 (3)

both in the separator and in the porous electrodes.
Constitutive assumptions relate the mass fluxes �hi , the

current densities �ie and �is and the bulk terms Ri to the
molar concentrations ci and the electric potentials φe and
φs , which are the thermodynamic variables and the unknown
fields of the model. Faraday’s law relates the electrolytic
current density to the ionic mass fluxes in the electrolyte,
whereas Ohm’s law is assumed to govern the movement of
electrons in thematrix phase. Either dilute,moderately-dilute
or concentrated solution theories may be adopted, leading
to thermodynamic scenarios characterized by an increasing
degree of mathematical complexity. For the sake of brevity,
the reader is addressed to specific literature [63,64,97–100]
for the explicit expressions of the constitutive equations.

The macroscopic physical properties that enter the con-
stitutive equations assume the meaning of averaged micro-
structural features within the porous electrode. For example,
the effective ionic diffusivity in random porous structures
intrinsically accounts for the porosity and the tortuosity
[75].

A Butler–Volmer type kinetic expression was introduced
to account for the kinetics of the charge-transfer processes
at the electrode in place of the assumption of infinitely fast
insertion [97,100]

in = i0

[
exp

(
αa F η

RT

)
− exp

(
−αc F η

RT

)]
(4)

i0 is the exchange current density,whose value varieswith the
concentrations of reactants and products, temperature, and
the nature of the electrode-electrolyte interface; αa and αc,
called apparent transfer coefficients, express how an applied
potential favors one direction of reaction over the other (their
values range in literature between 0.2 and 2); η = φs−φe−U
is the surface overpotential and U is the open-circuit poten-
tial, corresponding to thermodynamic equilibriumconditions
(zero net transfer current density). The mass supply Ri is
related to the average transfer current density in .

The open-circuit potential U is related to the state of
charge. The so-called pseudo-2D models [101,102] have
been introduced to investigate such a dependency. The
etymology of this class of models arises from the two “unre-
lated” dimensions that are involved, namely the cell and
the active-particles. The latter have been assumed as spher-
ical (with rather few exceptions, e.g. [100,103]) of constant
radius upon intercalation of external species.

Porous electrode theory has been applied with an increas-
ing degree of complexity over time, since enhanced compu-
tational tools became available. In particular, modeling of
electrodes attempted to account for the fine microstructure
within the porous electrode theory, with strategies sometimes
formulated on a phenomenological rather than a solid theo-
retical ground.

The modeling of full-cells composed by Lithium metal/
solid polymer separator/insertion positive electrode and sim-
ulation of galvanostatic charge/discharge processes pursued
byDoyle et al. [97] enhancedprevious approaches [100,103],
accounting for interactions of the battery components. Con-
centrated solution theory was used to describe transport
process occurring in the electrolyte.

The “constitutive” relation between the open-circuit
potential and the state of charge controls the current distri-
bution inside the porous electrode. Materials characterized
by significant changes in open circuit potential for limited
variation of the state of charge (e.g. carbonaceous materials)
lead to more uniform current profiles in the porous electrode
compared to materials exhibiting this dependence to a lim-
ited extent (e.g. LMO), [98] and hence to a better utilization
[34].

Intercalation materials were regarded as perfectly con-
ductive and interested by Fickian solid diffusion, as in
[96,97,100,103]. Constant physical properties were used for
all the components. Film resistances on both electrodes was
introduced by Doyle et al. [104].

All the models described above share some fundamen-
tal hypotheses. The electrolyte consists of a binary salt
in a single solvent [96–98,100], a picture recently ques-
tioned under high C-rates [105,106]. Side reactions (e.g.
SEI layer formation and electrolyte decomposition) have not
been considered, therefore the amount of Lithium during all
processes is conserved, which contrasts experimental obser-
vations [34]. Volume changes due to intercalation have not
been accounted for, therefore the models do not account for
mechanical effects that strongly contribute to degradation
[107].

Numerical simulations with the porous electrode the-
ory have been carried over a wide range of materials
and configurations [97,98,104,105,108–110]. Outcomes, in
terms of concentration profiles and pore wall flux distrib-
ution within composite electrodes during charge/discharge
processes, provided meaningful insights on battery design
and optimization. As observed by Doyle et al. [97], cell opti-
mization relates to battery configuration, energy and power
density requirements of the system, and cost of components.
Whereas thinner electrodes limit electrolyte depletion and
allow for higher specific power, thicker electrodes increase
specific energy by reducing the number of cells in the bat-
tery stack and the volume fraction of inactive components
[105].
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The robustness of the Pseudo-2D approach is assessed
by the number of recent models that stem from it, as
[101,111,112]. Pseudo-2D models also present limitations:
typically, the large amount of material parameters requires
remarkable experimental efforts. The main drawback though
relates to microscopic approximations. Pseudo-2D models
do not allow to describe in detail the processes taking place
at the finest scale, which can have a significant impact on
the overall battery response [99]. The capacity fade due
to active particles fracturing and decrepitation, the porosity
change caused by SEI formation or reaction products depo-
sition have already been remarked. A thorough discussion on
the applicability of macroscopically homogeneousmodels to
Lithium-ion battery description can be found in [113], where
a poor predictive capacity is highlighted for high C-rates.

Macroscopic battery models that do not make use of New-
man’s porous electrode theory have been published, too. In
general, they replace the porous structure with aggregates
of solid-phase particles, which are directly embedded in the
electrolytic phase [114–116]. Mechanical stress generation
was in few cases accounted for in the solid-phases [99,116].

Despite the formulation was derived in 3D, the numeri-
cal implementation was often restricted to 2D [99,114,116].
Three-dimensional simulations were developed in [115],
where a half-cell Lithium battery was modeled on a LMO
spherical particles array. Numerical analyses suggest that
small sized particles and regular arrangement ensure higher
capacity, especially when active materials are characterized
by low diffusivity.

Macroscopic models for solid (non porous) electrodes
have also been studied. The geometry of the cell is ideal-
ized as blocks stacked in order to reproduce the sequence of
the battery components, idealizing the battery with a one-
dimensional structure [30,83,86].

4 Microscopic phenomena and their modeling

Several models have been proposed to investigate the micro-
scopic response of electrodes during intercalation, in order
to provide design criteria for enhancing electrodes perfor-
mance. In fact, the response of the electrodes upon Lithium
uptake and release during batteries charge and discharge
depends on the thermo-chemo-mechanical properties of the
compound of active and conductive particles. The micro-
structural composition and the geometrical configuration are
of paramount relevance for the intercalation process and the
performances of the electrodes.

Since the cell is first assembled, charges are localized at
the interfaces between electrodes and electrolyte, causing
an intense electric field to develop in an adsorption layer
(named after Stern [117])with atomic-scale dimensions adja-
cent to the interface, together with a more diffuse region of

charge (known as theGouy–Chapman layer [118,119]) in the
electrolyte [120]. These regions together (in the order of 10
to 20nm according to the literature [64]) define a so-called
electric double layer. An exhaustive dissertation about the
electric double layer can be found in classical books [29,64]
as well as in more recent literature, among which Bazant and
co-workers publications deserve special merit [65,121,122].

In Li-ion battery modeling literature, the double layer
is generally assumed as infinitesimally narrow, with a
few exceptions [123]. Local electroneutrality is generally
assumed in the electrolyte and a discontinuity in the potential
across the electrode/electrolyte boundary is allowed for (see
among others [60,61,63,112,116]). Butler–Volmer equation
[124–126] is used to relate the intercalation flux to the poten-
tial discontinuity between the electrode and the points in
the solution immediately beyond the ideally narrow double
layer [99,116,127–129]. Streeter and Compton [130] criti-
cally discuss the electroneutrality and the negligibly small
double layer approximations, arguing that they are appro-
priate only if the active particles of the electrode are much
larger than the electric double layer. Dreyer et al. [131] for-
mulated a continuum model of the layer, including solvation
effects of the dissociated ions, as well as the mechanical
effects. Landstorfer and Jacob [9] discuss weak and strong
electroneutrality conditions and split the electrochemical
intercalation-deintercalation process in three simple reac-
tions, in order to define appropriate boundary conditions.
That paper also accounts for a large bibliography on the
mathematical modeling of intercalation, to which we further
address the interested reader.

An accurate morphology reconstruction is a crucial infor-
mation for micro-scale analysis. This statement applies to
localized phenomena, like hot spot formation, as well as
to ensemble averaged material properties, which have been
shown to be extremely sensitive to the size, shape, and par-
ticle distribution within a Representative Volume Element
[132].

Accurate reconstructions of the connectivity and of the
internal structure of electrodes is a very hard task: binder,
active, and conductive particles give rise to tangled and
intricated geometries. The complexity of the morphology
of electrodes and separator restricted the focus of most
publications to the behavior of a single particle, disre-
garding the influence of the electrode microstructure [133–
144].

The microscopic arrangement of active particles, carbon,
binder and pores can be recovered from statistical analyses
of 2D cross sections of the electrode achieved through scan-
ning electronmicroscopewith focused ionbeam.Theparticle
geometry can either be a simplified abstraction of reality—
for example using cluster of spherical [74,145] or ellipsoidal
[146] particles that yet represent challenges for computa-
tional discretization [147,148]-or be digital reconstruction
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of realistic morphology [149–155]-generally restricted to
single-particle analyses.

In recent years major progresses have been made in the
area of X-ray computed tomography [156–159] and focused
ion beam scanning electron microscopy [149,151,160–163],
paving the way to numerical simulations on realistic three
dimensional microstructures. They involve high computa-
tional costs [147,148,151] and are feasible only in a high
performance computing environment.

Modeling temperature evolution in Li-ion battery cells is
important in operation conditions [9,111,164–166], to dic-
tate parameters for cooling devices design, but even more
under abuse or extreme conditions, to predict and control
thermal runaway [54,167]. A recent review can be found in
[168].

Whereas operating temperature ranges may vary upon
different applications and related national standards, it is
generally established that an increase of temperature, either
becauseof external conditions or during fast charge/discharge
[69], boosts degradation mechanisms. In general, temper-
ature affects ion mobilities, SEI formation and dissolu-
tion, interface reactions-eventually promoting undesired side
effects. Accounting for the influence of temperature in mod-
eling is extremely complex mostly because: (i) temperature
affects transport properties of materials, interface kinetics,
electrical and mechanical properties in ways that are dif-
ficult to capture experimentally and reproduce numerically
[169], even though the general thermodynamic framework
that lays the groundof every rigorous theory is nowadayswell
established [170]; (ii) numerical treatment of multi-physics
problems in coupled chemo-electro-thermo-mechanics are
not completely understood [171]; (iii) temperature in the cell
may increase after the formation of very localized hot-spots,
which are related to the speed of charge/discharge [152].

A few attempts only accounted for realisticmicrostructure
of porous electrodes considering the temperature field and the
hot spots formation under extreme conditions in amulti-scale
and multi-physics framework [62,153,170].

Notwithstanding the large number of publications focused
on Lithium-ion battery, the modeling of the detrimental
effects related toagingmechanisms is a relatively recent topic
[172]. Arora et al. [34], browsing the most relevant capac-
ity fade mechanisms concerned with side reactions in Li-ion
batteries, observed that the only model on the topic available
at that time was provided inDarling and Newman [173]. The
latter represents the first attempt of simulating aging process
in a physical model, as recently remarked also by Barré et al.
[7].

Aging affects electrolyte, composite electrodes, as well
as the electrode/electrolyte interfaces. Many different factors
concur to capacity decrease and power fading of Lithium-ion
batteries both during storage and charge/discharge cycling.
Calendar aging is monitored in terms of capacity loss,

impedance rise, state of charge and state of health [37]; it
has been proved to be sensible to storage conditions, espe-
cially temperature and state of charge [7]. Cycle aging may
be detected through capacity fade, impedance rise and over-
potential that can be measured during cycling [37]. Various
studies have experimentally shown that it is enhanced by
larger amount of charge variation during cycles [174,175],
high charging/discharging voltage [176] and current peaks
[7]. Calendar and cycle aging coexist during the whole bat-
tery lifetime. An example of estimation and comparison
between their relevance on the performance of a C/LFP cell
can be found in Safari and Delacourt [177].

The processes by which Lithium is either produced or
consumed within a battery cell include Lithium deposition,
electrolyte decomposition, active material dissolution, phase
changes in the insertion electrode materials, and passive film
formation over the electrode and current collector surfaces.
Often they are collectively termed side reactions [34]. The
interaction among any of the processes mentioned above is
favored by the similar timescales overwhich they occur,mak-
ing difficult their specific identification. Moreover most of
them are strongly related to the peculiar features of the cell
(shape, microstructure, material components).

Detrimental effects may also descend from other
processes, such as interaction between binder polymer with
active and conductive particles, current collector corrosion
and plating, gas formation within the cell [3,7,37].

The most relevant aging mechanism for carbon anodes is
attributed tophenomenaoccurring at the electrode/electrolyte
interface, where a passivating layer, termed solid electrolyte
interface (SEI), prevents further interfacial reactions yet
allowing the Lithium ion migration [31,178]. Notwithstand-
ing the protective function attributed to the SEI, its formation
entails a capacity loss as a consequence of the irreversible
consumption of Lithium ions. The process is more pro-
nounced during the first few cycles [179]. Among the factors
affecting the SEI layer’s evolution, a strong dependence on
temperature and state of charge has been proved to exist for
its morphology, composition and Lithium ionic conductivity
[7,37]. Continuum theory for the growth of an SEI layer have
been recently proposed by many authors [77,128,180–191].

4.1 The modeling of micro-mechanical effects

Since mechanical effects are among the most important
mechanisms of capacity fade and impedance growth in
Lithium-ion batteries [34], the stress generation during
Lithium diffusion in active materials has been widely inves-
tigated. The intercalation process is generally modeled
as a multicomponent system [192,193], which comprises
Lithium diffusing in a hosting material lattice. Atomic dif-
fusion in solids is much slower than deformation [194],
therefore mechanical equilibrium is postulated at all instants.
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High capacity electrodematerials, such as Silicon andTin,
manifest huge expansions when lithiated. Storage particles
develop non-uniform Lithium concentration profiles, which
cause differential strains and originate a stress fieldwithin the
particle (referred to as chemical stresses [143] or diffusion-
induced stresses [133]). Many efforts have been made in
the last decade in order to understand and model the stress
evolution in active particles [195]. Modeling involves multi-
physics description of the processes as they entails coupling
among mechanics, transport, and thermo-electro-chemical
kinetics. Lithiation influences material parameters [107] and
may lead to phase segregation, too, which causes lattice mis-
match within the particle.

It has been observed that both anodic and cathodic mate-
rials may fracture during charging/discharging operations.
Some electrode materials, such as Lithium-alloys, undergo
decrepitation, i.e. fracturing in many small parts, caused
by large deformations during lithiation [196]. Cracks have
been observed even in active materials that undergo small
deformations when lithiated, as for LiCoO2, LiMn2O4, and
LiFePO4 [197]

To predict the onset of fracture in electrode particles,many
authors [196–203] resorted to linear-elastic fracture mechan-
ics [204–207].Apre-existingflawspopulation in the particles
was assumed and Griffith’s criterion used to investigate the
effects of charging rate and fracture toughness on the fail-
ure of particles of different sizes. Assumptions have been
often taken upon the most dangerous flaw orientation, which
might be incorrect [208].Alternatively, someauthors adopted
cohesive models for crack nucleation inside the electrode
[127,209,210] or phase-field methods [211–219].

Other studies lead to design criteria in order to avoid par-
ticle fracturing based on the stresses generated inside the
electrode. For example tensile stresses [135,220] or von
Mises equivalent stresses [143] have been taken as measures
of the distance to the onset of fracture.

In what follows, homogeneous material formulations and
phase segregation models will be separately described.

4.1.1 Lithiation models in homogeneous particles.

It is common in literature to idealize the geometry: parti-
cles are either modeled as spheres [133–136,139,141,220,
221], cylinders [210,222], or thin films [30,209]. Chemo-
mechanical features are also simplified: materials are often
taken to be isotropic with properties (Young’s modulus,
Poisson’s ratio, diffusivities) insensitive to Lithium content
[133,134,137,139,141–143].

Since Lithium transport is severely influenced by the
deformation of the hosting material and vice-versa, diffu-
sion and mechanics are entangled processes. Accordingly,
the thermodynamic forces that drive Lithium diffusion shall
be mathematically coupled to mechanical deformation. The

coupling is usually described in analogy with thermo-
mechanics, i.e. the variation of solute atoms concentration in
the hosting material causes a pure volumetric deformation:
the partial molar volume plays the same role of the thermal
expansion coefficient [223–226].

Whereas most early models neglected the role of mechan-
ics, recent ones couple the mass transport to the mechanics
in a one-directional way. In those models, the driving force
for the diffusion is solely the concentration gradient, there-
fore the Lithium concentration can be evaluated by solving
the transport problem, while the chemical stresses can be
computed afterwards. For linear-elastic material with para-
meters independent upon Lithium concentration, analytical
solutions are attainable for simple geometries. This approach
was taken in [133,134], to investigate the critical factors that
influence the overall response of active materials. Diffusion
induced stresses were computed in spherical active particles
under either galvanostatic or potentiostatic control, as well
as under more realistic boundary Butler–Volmer kinetics. It
was shown that during lithiation the Lithium concentration
decreases from the outer surface to the center, inducing the
outer shell to swell and generating compressive hoop stresses
near the particle surface and tensile stress into the inner core,
in view of geometrical compatibility, as described in Fig. 5.
The opposite during delithiation. The stress magnitude was
found to depend on the charge/discharge rate [141] and on
the particle size.

The effects of surface mechanics in nano-sized spherical
particles were studied in [194,221], in order to design parti-
cle of longer cyclability. It resulted that the magnitude and
distribution of stresses can be significantly affected by sur-
face mechanics if the particle is in the nanometer range. Such
an approach was applied to nanowire electrodes [137], too.

Two-way coupling was considered in more recent papers.
Themass flux ismodeled as dependent on both concentration
and hydrostatic pressure gradients, as in the inspiring frame-
work of Larche and Cahn [227,228]. Some authors assumed
that particles remain linear-elastic during the whole process
[139,142,143,229,230]. This assumption is reasonable for
electrodes with moderate swelling, as LiC,LMO. Zhang et
al. simulated the charging/discharging process of LixMn2O4

for 0 ≤ x ≤ 1 and captured the range in which phase
transitions occur as a function of the state of charge. The
stress generation in three-dimensional ellipsoidal particles
with different aspect ratios was evaluated through numeri-
cal simulations [143]. The numerical outcomes suggest that
larger aspect ratio and smaller particle size may reduce the
intercalation induced stresses.

The influence of particle morphology has been simulated
in [230] after digitalization of real particles. The maximum
von Mises stress induced by the lithiation in a digitalized
particle turned out to be one order of magnitude higher than
the one predicted on idealized shapes.
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Fig. 5 Schematic of particle expansion during Lithium insertion (e.g.,
during charge) and contraction during Lithium extraction (e.g., during
discharge). Arrows pointing toward each other indicate regions of com-

pression in the particle, while arrows pointing away from each other
indicate regions of tension. Concentric circles mark host-lattice tags,
which are initially evenly spaced [135]

Miehe and Dal [140] proposed a computational the-
ory accounting for electro-chemo-mechanical interaction of
Silicon particles. Numerical simulations shown significant
discrepancy between small and finite strains approaches,
pointing out the importance of large strains theory in model-
ing materials with significant swelling.

Silicon thin-films and particles show a markedly inelastic
behavior during charge/discharge. Plasticity seem to infer
a specific failure mechanism, since for spherical particles
the initial compressive hoop stress in the outer shell during
intercalation may even reverse [136]. The Lithium transport
problem was coupled to plasticity models at infinitesimal
[203] as well as at finite strains [30,127,128,136,144,222,
231–234].

Bower et al. [30] developed a general model that accounts
for finite strains and plastic flow in electrodes materials. A
Silicon thin-film was studied and compared with experimen-
tal evidences [235]. Cui et al. [136] focused on the chemical
potential in the framework of finite strains and plastic flow
as well. They proposed a chemical potential that extends the
formulation of Larché-Cahn. Numerical examples on spher-
ical Silicon particles emphasized the role of plastic flow in
the lithiation process.

4.1.2 Models accounting for phase-segregation

Multi-phase models aim at investigating the behavior of par-
ticles in which phases co-exist because of lithiation. They
essentially differ for Lithium content and for the crystal
structure, which is transformed after intercalation [236]. The
thickness of the physical region that separates distinct phases,
the so-called phase boundary, varies upon materials. For

instance, crystalline Silicon reacts with Lithium forming an
amorphous phasewith atomically sharp reaction front - about
1nm thick [33]. Experimental evidences for LiFePO4 show
a wider phase boundary, of several nanometers [237,238].

The widespread class of so-called sharp-interface mod-
els splits particles in two distinct regions and idealizes the
phase boundary to a zero-thickness interface. The class of
phase-fieldmodels, usually stemming from theCahn-Hilliard
theory [239], smears the phase boundary in a narrow region
of finite thickness, avoiding localized discontinuities. Alter-
native models recover discontinuous concentration profiles
without recourse to any of the methods above. A review of
modelingmethods for phase boundary canbe found inThorn-
ton et al. [240].

Sharp-interface models [241–243] shown the ability to
reproduce the observed voltage plateau [107] in the discharge
profile of iron-phospate [241] andLithium cobalt oxide [243]
electrodes. To account for the phase transition, electrodes
were modeled with the so called shrinking-core particle
approach [242], which idealizes active particles as spheres
with two distinct phases occupying the outer shell and the
inner core, respectively [241]. The interface location is one of
the unknowns of the problem and evolves in the radial direc-
tion driven by the Lithium transport in the Li-rich phase and
on the concentration gap at the interface. Mechanical effects
are included in the shrinking-core approach [112,138,220].
Particles have beenmodeled as linear-elastic bodies with dif-
ferent chemo-mechanical properties between the two phases.
The onset of chemical stresses wasmodeled with the analogy
to thermal stresses as in the single-phase models, therefore
the stress field affects the phase-boundary kinetics. These
models are capable to predict the rise of tensile stresses in
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the core-phase and compressive hoop stress in the outer shell
during lithiation. Differently from single-phase models, the
hoop stress can be discontinuous at the phase-boundary. The
interfacial stress discontinuity depends upon the interface
location, equilibrium concentration, and the material proper-
ties of the two phases.

In the phase-field models the dynamics of phase-
segregation is ruled by the free-energy of the system. Differ-
ently from theFickian description of diffusion, theHelmholtz
free energy includes an interface energy, related to the gra-
dient of concentration. Phase-segregation is not imposed a
priori via sharp interfaces but arises as a consequence of the
thermodynamic evolution of the system [244].

Early works applied the conventional Cahn-Hilliard
phase-field model to describe phase separation in LiFePO4

electrodes [245–247]. In particular Singh et al. [245] showed
the ability of this theory tomodel the anisotropic ionicmobil-
ity in single crystals. The Cahn-Hilliard theory was extended
in order to assess the conditions for phase-segregation in elec-
trode particles. The total free energywasmodeled accounting
for additional terms, such as the strain and surface energies.
In this way Tang et al. [248,249] and Cogswell and Bazant
[250] investigated the effect of particle size, mechanics, and
applied overpotential in the phase transition pathways of stor-
age particles.

Anand et al. [251] developed a general thermodynami-
cally consistent theory that couples the Cahn-Hilliard theory
with large elasto-plastic deformation mechanics. Simula-
tions show the phase-transformation of a three dimensional
LiFePO4 spheroidal particle [252].

Basic computational aspects of phase-segregation model-
ing in electrodes have been recently dealt with in [253].

Stress evolution in two-phase electrodes was also mod-
eled alternatively. A sharp-interface was reproduced either
creating a series of step-like concentration profiles [254],
by choosing concentration dependent parameters [255], or
making recourse to the concept of Lithium traps [256,257].
Active particles, mostly idealized as spheres, were assumed
to deform visco-plastically, to mimic the mechanics of
lithiated Silicon. Huang et al. [254] showed that the ini-
tial compressive hoop stress in the lithiated shell could be
reversed if thematerial undergoes plastic deformations. Yang
et al. [255] adopted a concentration dependent diffusivity and
imposed that Li diffusivity in the lithiated region is much
larger than in the pristine core. This induces the concen-
tration profile to assume a typical pattern of a two-phase
system,with interface tracking controlled by diffusion.Droz-
dov [256,257] assumes that Lithium within the particle is
separated in mobile and alloyed. The latter is treated as a
kinetic process, which ultimately permits to recover a sharp
interface.

More recent models of lithiation in Silicon describe
the phase-boundary kinetics [32,258,259] and the observed

anisotropy in intercalation [260].CrystallineSiliconbecomes
amorphous upon lithiation, and diffusion through the amor-
phous phase has beenobserved to be faster than the reaction at
interface [259]. Therefore the phase-boundarymotion, differ-
ently from the shrinking-core models, shall not be controlled
byLithiumdiffusion. Zhao et al. [259] formulated the driving
force of the reaction between pristine Silicon and Lithium at
the interface including the effects of the stress field. By sim-
ple benchmarks they showed that the interface motion could
be inhibited by the stress field generated in the particle.With a
more general approachCui et al. [258] developed a two-phase
model for Silicon particles accounting for diffusion in both
phases, stress generation and phase-boundary kinetics. The
kinetics of reaction at interface and diffusion in both phases
are concurrent processes. Their numerical results showed the
impact of different ratios between rates of interface kinetics
and bulk diffusion in Lithium distribution and stress genera-
tion.

5 Multiscale models

Intercalation, swelling, and eventually the mechanical fail-
ure originate at a scale three order of magnitudes smaller
than the battery cell scale, at which ion mobility is usually
modeled. Since modeling a whole battery cell at the nano-
scale is computationally unfeasible, nano-scale effects are
incorporated into the micro-scale problem through homoge-
nization approaches and constitutive models that are derived
from multiscale approaches. They frame on a representa-
tive volume element (RVE), in which the relevant features of
the microscopic morphology are accounted for. The proper
selection of the RVE is a fundamental ingredient, as usual
in the theory of composite materials. According to [261],
an RVE may be defined in two different ways. It can be
considered as the smallest microstructural volume for which
the averages of properties represent with “sufficient accu-
racy” the mean macroscopic response. Accordingly, RVE’s
size is influenced by the material behavior of the microstruc-
tural components. A second definition requires the RVE to
be statistically representative of the microstructure, that is to
essentially include a sampling of all possible microstructural
configurations occurring in the composite. This definition
leads to significantly larger RVEs than in the former case, as
the microstructural element must incorporate several kinds
of material heterogeneities. Based on this definition, statisti-
cal methods have been presented to determine the size of the
RVE and the number of inclusions to consider [262–265].

Representative models of the battery microstructure were
based on experimentally obtained statistical information.
The three dimensional microstructure of a graphite porous
electrode was reconstructed recurring to tomographic tech-
niques [157]. The minimum RVE size was calculated as
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43 × 60 × 60µm after evaluating several geometrical para-
meters (e.g. porosity, pore and particle size distribution)
and extracting the relative standards deviations. An esti-
mate of the characteristic dimensions of a cubic RVE for
LiCoO2 electrodes was derived in [149], resulting in an edge
of ≈ 30µm. A similar approach [266] was employed for
LiFePO4 electrodes, 5 × 5 × 15µm.

Ferguson and Bazant [267] made use of Wiener and
Hashin-Shtrikman bounds to characterize the electrical con-
ductivity and tortuosity of porousmedia, while an asymptotic
multiscale expansion was pursued by Schmuck and Bazant
[268].

Wieser et al. [155] made use of 3D imaging at different
scales and homogenization techniques to estimate effective
transport properties of ionic species within porous elec-
trodes. The authors identified a micrometer porosity for the
composite electrodes-made up by solid active material, addi-
tives and open pores filled by the liquid electrolyte—and a
nanometer porosity within the additives—a mixture of car-
bon conductive particles and polymeric binder. A lithium
metal/separator/graphite-based porous electrode half-cell
was simulated showing that the impact of additives nanome-
ter porosity on transport limitation is negligible.

Awarke et al. [145] attempted to quantify the impact of
changes in the arrangement of solid particles within Li-
ion battery electrode on the conductivity and tortuosity of
a LiFePO4 based cathode. A Finite Element Method (FEM)
wasused to analyzeRVEsmadeupby spherical particleswith
various arrangements representing the same porous agglom-
erate under differentmechanical and electrical loading condi-
tions. Volume averages have been used to compute effective
macroscopic properties (elastic tensor, volume expansion
coefficient and electrical conductivity) which have in turn
been adopted in numerical analyses on a cathode sample.

Lee et al. [269] adapted the variational multi-scale prin-
ciple to a Li-ion battery system, in order to improve the
predictions of battery performance by includingmultiphysics
phenomena among the particle aggregates in the electrode.
The role of the microstructure was highlighted, in terms of
particle shape, tortuosity, and material composition.

A continuummodel for Li-ion battery accounting for elec-
trochemical and mechanical effects at multiple scales was
presented by Golmon et al. [270] . Transport processes and
battery deformation have been modeled at the cell scale,
where the mechanical interactions with surrounding layers
was considered through tractions boundary conditions.A sin-
gle spherical active particle was analyzed to account for the
microscopic evolution of the system both in terms of inter-
calated Lithium (state of charge) and chemically induced
local stresses. The macroscopic pore wall flux was related
to the microscale following Newman’s porous electrode the-
ory, while the Mori-Tanaka effective-field theory was used
to relate mechanical properties between scales. Both scales

were idealized to one-dimensional problems as in pseudo-2D
models. The electrochemical and mechanical performance
of half-cell have been studied by varying the electrochemi-
cal properties, the cathode particle radius, the porosity of the
cathode, the discharge current density and the mechanical
boundary conditions. The model has been further applied to
design optimization of a Li-foil/separator/porous electrode
battery [271] and to a battery cell in which both electrodes
were porous [272].

Volume averaging techniques that are applicable to the
entire cell with arbitrary 3D electrode configuration have
been recently proposed [273].

Gupta et al. [146] proposed an electrochemical model for
porous electrodes that accounts for two different scales. At
the microscopic scale an RVE made up by an electrolyte and
a solidmatrix domainwas identified for the porous electrode.
Governing equations for Lithium and electric charges were
written over each domain moving from conservation equa-
tions typical of continuum models. The cell scale governing
equations differ from the ones detailed in [67,68] because
the volume-averaged fluxes have been explicitly provided
through the introduction of effective transport properties,
such as theBruggeman’s equation [72]. This approach differs
from pseudo-2D models because all the macroscopic vari-
ables have been derived frommicroscopic volume averaging.

In recent contributions, [67,68] a computational homog-
enization (CH) technique was tailored to Li-ion batteries by
using amultiscale schemewith a complexmulti-particleRVE
idealizing active particles in the composite electrodes as net-
work solids followingLarche andCahn [227], with the lattice
material assumed as insoluble in the electrolyte. The CH
technique is based on the solution of nested boundary value
problems, one for each scale. A complete set of equations
and boundary conditions governing the stress, electric, chem-
ical, and electrochemical potentials was derived [67] for the
whole battery cell for both scales following non-equilibrium
thermodynamics of porous electrodes [64,267]. Use of the
Butler–Volmer equation was made to describe the intercala-
tion kinetics accounting for the flux of Lithium between the
particles and the electrolyte, which at the macro scale was
modeled as a bulk supply. At such a scale, transport and stress
evolution were modeled via volume averaged conservation
equations.

In the rigorous mathematical formulation of multi scale
modeling-see [274,275]—themicro tomacro scale transition
requires conservation of power expenditure between both
scales, thus assuring that energy is neither artificially gen-
erated nor artificially dissipated across the scales. If electro-
neutrality is used in place ofMaxwell’s equations, recovering
the energy description of the electromagnetic interactions is
not possible. Therefore, electroneutrality assumption (2) can-
not be used in multi scale approaches [68]. In the approach
proposed in [67,68], rather then imposing the electroneu-
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trality condition as an equation to be fulfilled, the impact
that it has on the fundamental balance laws was investigated.
Lorentz forces were thus neglected, whereas it was shown
that electroneutrality has no influence on Maxwell’s law.

A rigorous analysis of general principles of
non-equilibrium thermodynamics [24,276] has been per-
formed in [55,56]. The electrochemical potential was defined
moving from the rate at which power is expended on a mate-
rial region, in terms of mechanical contribution as well as
of the power due to mass transport and to electromagnetic
interactions. All processes were taken to be isothermal. The
entropy imbalancewith theColeman-Noll procedure provide
thermodynamic restrictions, satisfied by the usual Fickian
description of diffusion and migration in terms of electro-
chemical potential, defined as in [22,23]. Infinitely dilute
solutions as well as solutions close to saturation have been
numerically simulated.

A mixture theory has been presented in [131] for a liquid
solvent containing (completely) dissociated ions. Electro-
mechanical interaction has been explicitly taken into account
by introducing the Lorentz contribution within the balance
of forces and a chemical potential dependence on pressure.
The effect of solvationwas also considered in the definition of
entropy of mixing. A fully coupled model for charge, species
and thermal transport in Li-ion batteries has been devel-
oped by Latz et al. [170]. The formulation, based on general
principles of non-equilibrium thermodynamics, makes use
of charge neutrality assumption for both electrolyte and
active particles. Electrical, chemical and thermal interac-
tions between electrolyte and active particle were taken into
account by proper interface conditions.

6 Conclusions

The relevance and timeliness of modeling and simulations
in the field of energy storage materials [277] is made evi-
dent by the intense flow of scientific publications. A review
of this abundant literature may reveal thus useful, although
keen to become soon obsolete. An effort was provided in this
note, moving from the inherent multi-scale nature of Li-ion
batteries.

Continuum thermo-chemo-electro-mechanical models
have been discussed at different scales and multi-scale
approaches have been analyzed as well. This study illus-
trated the progresses made since the pioneering publications,
and made clear that modeling is becoming more and more
accurate and predictive and, with the availability of high
performance computing, it can integrate experimental cam-
paigns in discovering new materials and developing new
architectures.

The non-equilibrium thermodynamics, coupled with rig-
orous scale transitions, is the appropriate theoretical back-

ground for multi-scale and multi-physics modeling. The
future scientific endeavors will stem from this fundamen-
tal framework. They are expected to finalize the three-
dimensional multi-scale approaches currently in progress
into high-performance computing scalable codes, in order
to investigate major concerns in current batteries technol-
ogy as the behavior at high C-rates and voltages, which may
lead to thermal runaway fueled by side reactions. A clear
understanding of these phenomena may provide significant
progresses in batteries safety, particularly under abuse or
extreme conditions.

Several aging phenomena in batteries require further
scientific investigations. These study may address some
fundamental problems of electrode chemo-mechanical insta-
bilities that have so far limited the power, energy, and
durability of advanced batteries. The modeling of Lithium
deposition and dendritic growth, for instance, is particularly
relevant for the safe use of Lithium metal anodes yet lags
behind the experimental evidences, in spite of recent investi-
gations [91]. Co-designed experiments and simulations may
pave the way to a deeper understanding of these limiting
phenomena.

The predictive ability of modeling and simulations relies
on the realistic reconstruction of three-dimensional porous
electrode. Evident progresses have been made in this recent
years, particularly in the field of X-ray tomography. The
required accuracy of the electrode reconstruction is strictly
related to the targeted processes, so that the classical sta-
tistical paradigms of homogenization may not always be
applicable successfully.

This review did not focus on atomistic simulations. A
major challenge of the future investigations will concern the
incorporation of quantum mechanics and molecular dynam-
ics into coarser scales formulations. As pointed out also in
[8,278], it will become more and more important to develop
multi-scale models that account for a realistic chemical
environment by means of coupling discrete and contin-
uum approaches. This seems to be particularly relevant in
the modeling the interface phenomena, that take place in
atomistic-size narrow layers.

Modeling unavoidably requires identification of material
parameters, most of which can hardly be measured exper-
imentally [279] especially in operating conditions [280].
Severe procedures of calibrationmust be put in place in order
to ensure that modeling indeed achieves predictive science
capability. In this regard, computational modeling and simu-
lations may take advantage of the most recent achievements
in the fields of uncertainty quantification and sensitivity
analysis.
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