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Abstract The paper introduces a novel approach to com-
putational homogenization by bridging the scales from
microscale to macroscale. Whenever the microstructure is in
an equilibrium state, the macrostructure needs to be in equi-
librium, too. The novel approach is based on the concept of
representative volume elements, stating that an assemblage
of representative elements should be able to resemble the
macrostructure. The resulting key assumption is the conti-
nuity of the appropriate kinematic fields across both scales.
This assumption motivates the following idea. In contrast
to existing approaches, where mostly constitutive quanti-
ties are homogenized, the balance equations, that drive the
considered field quantities, are homogenized. The approach
is applied to the fully coupled partial differential equa-
tions of thermomechanics solved by the finite element (FE)
method. A novel consistent finite homogenization element
is given with respect to discretized residual formulations
and linearization terms. The presented FE has no restric-
tions regarding the thermomechanical constitutive laws that
are characterizing the microstructure. A first verification of
the presented approach is carried out against semi-analytical
and reference solutions within the range of one-dimensional
small strain thermoelasticity. Further verification is obtained
by a comparison to the classical FE2 method and its differ-
ent types of boundary conditions within a finite deformation
setting of purelymechanical problems. Furthermore, the effi-
ciency of the novel approach is investigated and compared.
Finally, structural examples are shown in order to demon-
strate the applicability of the presented homogenization
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framework in case of finite thermo-inelasticity at different
length scales.
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Notation and abbreviations

Symbols and operators

⋃
Assemble operator

| Condition on the given set
D Gateaux derivative
∧ Logical and
� Macroscopic quantity, e.g., σ
�̇ Material time derivative
∂x Partial derivative with respect to x
∂2xy Second order partial derivative with respect to x, y
div Spatial divergence operator
grad Spatial gradient operator
sym Symmetry operator
d Total derivative
�T Transposition operator
∀ Universal quantifier

Thermomechanical quantities

θ Absolute temperature
K Assembled stiffness matrix
σ Cauchy stress tensor
Bt Current configuration
g Current metric tensor
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x Current position vector
F Deformation gradient
J Determinant of deformation gradient
u Displacement vector
wext External power term
r Internal heat source
wint Internal power term
q Spatial heat flux vector
qn Spatial heat flow
t Spatial surface traction
d Symmetric part of spatial velocity gradient
ϑ Temperature change with respect to reference tem-

perature
qp Thermal power
R Vector of residuals
x Vector of unknowns

Abbreviations

BVDH Boundary value driven approach to computational
homogenization

FE Finite element
FEM Finite element method
LDBC Linear displacement boundary conditions
PDBC Periodic displacement boundary conditions
PDE Partial differential equation
RVE Representative volume element
SST Substructure
UTBC Uniform traction boundary conditions

1 Introduction

The numerical analysis of the behavior of structures or sub-
structures (SSTs) is often required in engineering tasks.
Applied loads to be consideredmight be ofmechanical and/or
of thermal nature. The structural behavior is dependent on
the mechanical and thermal properties of the materials as
well as on their micro-, meso- andmacroscopic composition.
An interaction of these properties might be of importance
for engineering analyzes. Especially, if large deformations
combined with heat conduction or dissipative phenomena
are present, heat generation and convection within or at the
surface of the structure need to be considered. These effects
are often due to the application of synthetic materials such
as polymers. Additionally, polymers can be reinforced by,
e.g., particles or fibers, in order to improve their strength
or stiffness for specific purposes during their operating
life. Macroscopic structures, such as, e.g., bearings or car
bumpers, made of reinforced synthetic materials, are usually
characterized by a microscopic length scale, due to the rein-

forcement. Thus, a length scale ratio between, e.g., 1 µm
and 1 m is observed with respect to the heterogeneity of the
structure. The length scale ratio usually leads to high compu-
tational effort if heterogeneous structures shall be resolved
by the numerical discretization. This effort arises from the
spatial discretization in combinationwithmultiphysics of the
underlying problem which is a main aspect of consideration
of this investigation. Thus, efficient homogenization meth-
ods,which are applicable to fully coupled thermo-inelasticity
are required. The paper at hand presents an improved effi-
ciency compared to classical FE2 frameworks. Furthermore,
no limitations are existing in the presented approach regard-
ing the constitutive thermomechanical laws with respect to
homogenizing heterogeneous structural responses at differ-
ent length scales, which is an unpublished aspect so far.

In recent years, remarkable progress in the field of compu-
tational homogenization in structural engineering has been
made, see, e.g., [1–3] and references therein for a review.
Various approaches have been proposed in literature in
order to derive and to obtain homogenization methods for
purely mechanical problems. The window or superframe
method, introduced in [4], computes effective properties of a
microstructural sample in terms of statistical representative-
ness by embedding the microstructure into a superframe of a
homogeneous material and therewith achieves faster conver-
gence of the macroscopic effective properties. The authors
assume the equations of linear elasticity as basis for their
computational analysis of composite systems. The optimality
of the convergence of the windowmethod is investigated and
its basis is depicted in [5], where furthermore a comparison
with classical homogenization method results is carried out.
A numerical plate testing procedure is presented in [6], where
especially composite plates with an intrinsic in-plane peri-
odicity of the heterogeneous microstructure is considered.
This approach introduces shell elements at the macroscale
and volume elements at the micro-level as well as a consis-
tent coupling between the different degrees of freedom at the
different length scales. The authors perform a verification of
their method with respect to plate and laminate theories.

An adaptive formulation based on a material map from
micro- to macroscale has been developed in [7]. This kind
of database methodology is used in order to determine
the effective macroscopic behavior of orthotropic nonlin-
ear elasticity. In [8,9], effective properties of linear elastic
composite microstructures are derived by averaging them
over the microstructure. The homogenized quantities are
further used for the macroscopic stress analysis within an
finite element method (FEM) framework. Other approaches,
see, e.g., [10–17] use a microscopic fine scale fluctuation
field in order to determine the microstructural deformation
state depending on the mechanical boundary conditions. It is
based on certain assumptions for the boundary data of such
a microstructure. Once the mechanical microstructure equi-
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librium is computed, stresses and stiffness for the related
material point within the macrostructure are determined.
Higher order approximations for the scale-bridging defor-
mation gradient are introduced and used in [18–20] among
others. In [21], the computation of the macroscopic tangent
is investigated taking the microscopic fluctuation field into
account and a procedure for determining the stiffness from
a stress controlled testing method at the microscale is devel-
oped.

Different from the assumption of fully separated scales,
the authors of [22] consider the case of strongly coupled
FE meshes at different length scales. The strong coupling
of the displacement field across the scales is carried out
by placing certain boundary nodes of the microscale at
positions within the macrostructure, where macro-nodes are
existing. This methodology preserves uniqueness of the dis-
placements at certain points, but in between these unique
points, microscale-displacements are interpolated linearly.
The approach presented in [22] is investigated with respect
to inelastic heterogeneous microstructures. Similarly, in [23]
embedding of micro elements into a macrostructure with
respect to a multiscale FE solution is described. The authors
construct numerical base functions, assuming, e.g., linear
boundary conditions or periodic boundary conditions of the
microstructure, in order to relate the displacements of both
scales. This approach is derived in the context of small strain
elasto-plasticity at the microstructure.

Multiphysical computational homogenization methods,
e.g., considering thermomechanics, are still developing. In
[24], a staggered algorithm, which determines the macro-
scopic stresses and heat fluxes from the averaging over the
microscale within a nested FEM procedure, is introduced.
The authors of [25] provide a homogenization method in
case of continuum thermomechanics, which yields macro-
scopic stresses and heat flux, based on the Irving–Kirkwood
procedure. Therefore, they introduce a weighting function,
which relates the quantities, such as mass, linear momen-
tum and energy of the microscopic scale to the macroscopic
scale. The authors derive from their approach Hill–Mandel-
like conditions for stress and deformation as well as for heat
flux and temperature gradient. Porous solids with microscale
heat transfer are considered in [26]. The authors derive a
method for thermo-mechanical analysis at two length scales,
based on asymptotic expansion of the governing evolution
equations of the displacements and temperatureswith respect
to small strain thermo-elasticity.

A model reduction technique combined with a homoge-
nization approach is used in [27] in order to solve thermal
and electrical conduction problems efficiently and precisely
based on periodic microstructures as well as orthogonal
decomposition methods. Macroscopic quantities are iden-
tified in [28] by averaging of the appropriate microscopic
quantities separately over the microstructure in terms of

finite thermoelasticity. In [29], steady-state microscopic
thermo-dynamic wave propagation equations are derived
from higher-order methods in homogenization by means
of an asymptotic multiscale homogenization approach. Fur-
thermore, using the asymptotic expansion for thermome-
chanical homogenization, in [30] two uncoupled cells at the
microscale are introduced and obtained, one for the mechan-
ical field and one for the thermal field. The publication [31]
utilizes computational homogenization in combination with
statistical tests to compute the effective thermal conductivity
of hardened cement paste under consideration of the variation
of water content in the micropores. In [32], a hydro–thermo–
chemo-mechanical coupling regarding homogenization is
presented, where a combination of the classical linear dis-
placement boundary conditions (LDBCs) and the window
method is applied. Using this strategy, effective quantities are
computed and associated with statistical analysis in order to
predict and investigate problems with alkali-silica reactions
of concrete.

Besides multiphysical homogenization strategies, mul-
tiscale approaches towards cracks and delamination phe-
nomena are under investigation in recent years. In [33], a
non-local theory is developed for damage of brittle compos-
ites by applying an asymptotic expansion in order to obtain
overall macroscopic properties. The computation of effective
macroscopic properties due to certain mesoscopic structures
under consideration of damage and fracture processes for
concrete is proposed in [34]. Recently in [35], a multiscale
cohesive approach is developed for coupling the microscale
damage evolution with the resulting macroscopic proper-
ties. A scale bridging method for cohesive interfaces at the
macroscale and a representative volume element (RVE) at
the microscale are proposed in [36], where the macroscopic
properties are computed via homogenization. A contribu-
tion using a homogenization technique for predicting crack
propagation and coalescence of cracks at the micro- and
macroscale in an extended FE framework is given in [37].
Concluding, efficiency andgenerality regardingmultiphysics
of computational homogenization approaches need to be fur-
ther developed and improved.

This contribution introduces the boundary value driven
approach to computational homogenization (BVDH), which
is applied to fully coupled thermomechanics. The differ-
ent length scales are consistently coupled and considered
within BVDH as well as a fully coupled thermomechani-
cal framework without any requirements on the constitutive
descriptions regarding thermo-inelasticity and therewith, dis-
sipative material behavior is provided. BVDH is based on a
continuous setting over all length scales of the considered
field quantities, here the temperature and the displacements in
an macroscopic equilibrium state. Therewith, the key idea is
the homogenization of the thermomechanical balance equa-
tions, namely the linear momentum and the thermal power.
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Fig. 1 Sketch of a
heterogeneous macrostructure
(Bt ), its partition into possible
substructures (SSTs) and one
specific SST (BtSST )

In combination with the kinematic assumptions and their
treatment as well as scale bridging in terms of BVDH, these
features are not existing so far in computational homogeniza-
tion frameworks. Moreover, comparing computation times
of BVDH solutions to existing methods, BVDH turns out
to be numerically more efficient. This comparison is made
by applying BVDH to purely mechanical problems, since no
comparable method is existing with respect to fully coupled
thermo-inelasticity at finite deformations of heterogeneous
solids.

The paper is structured as follows. First, the theoretical
setting of BVDH is given, where kinematics and thermome-
chanics at different length scales are introduced. Second, the
continuous BVDH formulation is linearized and developed
to be implemented into an FEM framework. Third, an algo-
rithmic treatment for the FE implementation is developed
and given. In order to verify BVDH, numerical verification
examples follow, starting with a comparison of BVDH, a
semi-analytical solution and a reference solution for one-
dimensional thermoelasticity at small strains. A further
verification of BVDH is carried out for three-dimensional
mechanical examples at finite deformations, comparing the
reliability and efficiency of BVDH to FE2 frameworks. Addi-
tionally, a comparative study with respect to the length scale
ratio δ and h-convergence behavior is presented. The paper
closes with an application example of an inelastic and ther-
momechanical structural investigation, where the predicted
numerical results are compared to experimental data.

2 A boundary value driven approach
to computational homogenization

The following sections introduce and investigate theoreti-
cal as well as algorithmic aspects of BVDH. The first section
deals with the developed theory, which is based on the under-
lying one-scale heterogeneous problem of a solid body in the
current configuration, while the second section contains the
algorithmic aspects of the proposed computational homoge-
nization method.

2.1 Theoretical setting

Consider a heterogeneous body, e.g., a fiber reinforced poly-
mer, as schematically depicted in Fig. 1. The macrostructure
Bt has a current volume v = ∫

dv, based on the length scale
l and can be divided into certain SSTsBSST

t , having a current
volume v = ∫

dv with a length scale l, such that

Bt =
N⋃

SST=1

BSST
t , (1)

v =
∫

Bt

dv =
N∑

SST=1

⎡

⎢
⎣

∫

BSST
t

dv

⎤

⎥
⎦ , (2)

hold. Following the concepts of RVEs, one of the SSTsmight
fulfill the requirements of being chosen as an RVE. BVDH
is not restricted to considering periodic RVEs as long as the
RVEs are representative for the thermomechanical properties
of the microstructure of the considered heterogeneous solid.
The RVE has a current volume v and a typical length scale
l. Evaluating

δ = v

v
, (3)

leads to the observation 1 � δ > 0, since any chosen
RVE has a non-zero volume. For any load, that is applied
to the macrostructure, a numerical FEM solution, based on a
discretization across all length scales, can be achieved. Obvi-
ously, this one-scale discretization can lead to a very large
number of degrees of freedom, as soon as δ is very small. Dis-
cretizing the heterogeneous body with FEs and solving the
one-scale problem with a standard Newton-type FEM leads
to a structural response, which can be used as a reference
solution for numerical results obtained by a homogenization
approach.

2.1.1 Kinematics and isoparametrical relations at different
length scales

Since macroscopic displacements u(x, t) and macroscopic
temperature changes ϑ(x, t) = θ(x, t) − θ0 are the
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unknowns of interest for obtaining structural responses on
the macroscopic length scale, the following kinematical def-
initions are introduced.

First, a homogenization domain decomposition of the
macrostructure Bt denotes the basis for macroscopic solu-
tions with BVDH. Figure 2 shows schematically the BVDH
domain decomposition, which is based on the assumptions

Bt =
N⋃

E=1

BtE , (4)

BtE := {
SST1, . . . ,SSTNSST | SST = BtRVE

}
, (5)

BtRVE =
N⋃

E=1

BtE .. (6)

Equation (4) states nothing more than a standard spatial
discretization of a macrostructure Bt , having a current vol-
ume v, into macroscopic FEs BtE , having a current element

volume vE .The procedure leads to a discretization of the dis-
placement and temperature field ({u, ϑ}) within Bt such that
both fields can be evaluated at the introduced nodal points

xE . Equation (5) states that the physical properties of every
of these macroscopic FEs BtE are sufficiently described by
a set of SSTs, that fulfill the conditions of being an RVE.
Every RVE BtRVE has a current volume v = ∫

dv. Essential
for the homogenization domain decomposition and for Eq.
(5) is the condition

v =
N∑

E=1

∫

BtE

dv =
N∑

E=1

∫

BtE

⎛

⎜
⎝
1

v

∫

BtRVE

dv

⎞

⎟
⎠ dv. (7)

After a spatial discretization of the macrostructure into
macroscopic FEs (BtE ), the assignment of the RVEs (BtRVE)
to their positions within the macroscopic FEs has to be
carried out. Using a numerical integration scheme, e.g.,
Gaussian quadrature, for determining the RVE volumes (v)
and the macroscopic volume (v), spatial integration points
are required. Equation (7) can only hold if the volume aver-
age over the microscopic volume is related to macroscopic
integration points. This requirement implies the position for
every single RVE as well as the total amount NSST of RVEs
per macroscopic element during a numerical FEM solution,
which makes use of a numerical integration scheme. Equa-
tion (6) can be seen as being a standard FE decomposition. A
further assumption for the discretized kinematical relations
of BVDH is denoted by the fact, that every point of an RVE
in an equilibrium state can be mapped on its position within
the macrostructure according to

x = x ∀ (
x ∈ BtRVE ∧ x ∈ ∂BtRVE

)
. (8)

This principal assumption is motivated by the underlying
one-scale discretization, compare Fig. 1 and Eq. (1), where
obviously the boundary data of Bt drives the boundary of the
SSTs. All unknown field quantities, evaluated at the bound-
aries of the SSTs, reassemble themacroscopic unknown field
quantities. Hence, the identities

u(x, t) = u(x, t) ∀ (
x ∈ BtRVE ∧ x ∈ ∂BtRVE

)
, (9)

ϑ(x, t) = ϑ(x, t) ∀ (
x ∈ BtRVE ∧ x ∈ ∂BtRVE

)
, (10)

are introduced. This homogenization domain decomposition
and its assumptions are motivated and strengthened by the
fact, that a macrostructure, which is driven by certain bound-
ary conditions, such as displacements or temperature and
which can be divided into SSTs, is in a thermomechanical
equilibrium state as soon as every SST is in an equilibrium
state.

This implies, that every one-scale equilibrium denotes the
reference and benchmark state for any homogenized struc-
ture. Now, the test functions for the two unknown fields are
introduced according to

δu(x) := {
δu(x) ∈ BtRVE | δu(x) = δu(x)∀ x ∈ ∂BtRVEu

}
,

(11)

δϑ(x) := {
δθ(x) ∈ BtRVE | δθ(x) = δϑ(x)∀ x ∈ ∂BtRVEϑ

}
.

(12)

Equations (11) and (12) relate the microscopic test func-
tions to the macroscopic test functions δu(x) and δϑ(x) at
the boundaries of BtRVE . The boundary of an RVE BtRVE is
denoted by

∂BtRVE := {
∂BtRVEu , ∂BtRVEϑ

}
, (13)

where only displacements and temperature are prescribed at
∂BtRVE . The test function definitions

δu(x) := {
δu(x) ∈ Bt | δu = 0 ∀ x ∈ ∂Btu

}
, (14)

δϑ(x) := {
δϑ(x) ∈ Bt | δϑ = 0 ∀ x ∈ ∂Btθ

}
, (15)

at the macroscopic scale ensure their continuity

δu(x) = δu(x) ∀ x, (16)

δϑ(x) = δϑ(x) ∀ x, (17)

over the whole macroscopic domain Bt , including all
RVEs. Equations (16) and (17) are in accordance with
the assumptions of Eqs. (9) and (10). Additionally, the
interpolation functions N(ξ) for the microscopic unknown
fields and related test function, within the domain BtE of
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Fig. 2 Sketch of a macroscopic BVDH finite element BtE contain-
ing a set of substructures (SSTs), the isoparametric relations of the
discretized unknown macro fields ({u, ϑ}) and unknown micro fields

({u, ϑ}) between BtE and a BtRVE boundary node, as well as a chosen
RVE (BtRVE ) with a schematic discretization into microscopic FEs BtE

BtRVE , are introduced. Therefore, the isoparametric rela-
tions of the unknown and test function fields read, e.g.,
u(x, t) = N(ξ)IuI and ϑ(x, t) = N(ξ)Iϑ I , where I =
1, . . . , I E denotes the index for a single node of BtE , hav-
ing I E nodes. The appropriate gradients are given by, e.g.,
gradu(x, t) = ∂

∂xN(ξ)IuI and gradϑ(x, t) = ∂
∂xN(ξ)Iϑ I ,

where ∂
∂xi

N(ξ)I = BI
i is abbreviated in the following.

The shape or interpolation functions for the domain BtE

are introduced according to, e.g., u(x, t) = N(ξ)IuI and

ϑ(x, t) = N(ξ)Iϑ
I
. Making use of the isoparametric rela-

tions within the macrostructure and using the identities of
Eqs. (16) and (17), obviously every unknown quantity, e.g.,
temperature, of the boundary nodal points can be interpo-
lated from the driving macroscale boundary conditions at

the macroscopic FE nodes xE and can be used as boundary
conditions for the equilibrium of BtRVE according to

u(x, t) = N(ξ)IuI ∀ x ∈ ∂BtRVE , (18)

ϑ(x, t) = N(ξ)Iϑ
I ∀ x ∈ ∂BtRVE . (19)

Equations (18) and (19) are essential for prescribing the
boundary data of the RVE. Figure 2 illustrates schematically
this procedure.

2.1.2 Thermomechanical equilibrium at different length
scales

In order to obtain a mechanical or thermomechanical FEM
solution for a macrostructure as exemplarily depicted in Fig.
1, the balance of linearmomentum and the transient heat con-
duction equation are dealt with by Galerkin’s method. The
starting point for obtaining the thermomechanical equilib-
rium state is the equilibrium at the microscale, reading in its
local form

ρü = ρb + div(σ ), (20)

ρcθ̇ = −div(q) + ρr + ρwext − ρwint, (21)

with respect to the current configuration of the RVE. The
external and internal power terms are given by

ρwext = ρ
[
θ2∂2gθψ

]
: d, (22)

ρwint = ρ
[
∂Iψ − θ∂2Iθψ

]
: İ, (23)

introducing the Helmholtz free energy ψ, the current met-
ric g, the symmetric part of the spatial velocity gradient d
as well as any set of internal variables I. The heat flux q
is assumed to follow Fourier’s law for isotropic conductive
material behavior according to

q = − k

J
gradϑ, (24)

but is not restricted to it. The macroscopic partial differential
equations (PDEs) for deriving the equilibrium read

ρü = ρb + div(σ ), (25)

ρcθ̇ = −div(q) + ρr + ρwext − ρwint, (26)

where (•) denotes in the following a quantity defined at the
macroscopic scale. Using Galerkin’s method, the next step
is the multiplication of Eqs. (20), (21), (25) and (26) with
the appropriate test function and their integration over the
domains BtRVE and Bt , respectively, reading for the RVE

0 =
∫

BtRVE

δu · [div(σ ) + ρb − ρü]dv, (27)

0 =
∫

BtRVE

δϑ
[
ρcθ̇ + div(q) − ρr

−ρwext + ρwint] dv. (28)
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Considering a one-scale solution, the discretization effort
is tremendous as soon as the scale ratio δ is very small.
In the context of computational homogenization, one can
reduce it by considering a small number of RVEs within the
macroscopic domain Bt as long as Eq. (7) is fulfilled. The
corresponding macroscopic global form is given by

∫

Bt

δu · [ρb + div(σ ) − ρü]dv = 0, (29)

∫

Bt

δϑ
[
cθ̇ + div(q) − ρr − ρwext + ρwint

]
dv = 0. (30)

Recasting the divergences in Eq. (27) to Eq. (30)

δu · div(σ ) = div(σ δu) − grad(δu): σ , (31)

δu · div(σ ) = div(σ δu) − grad(δu): σ , (32)

δϑdiv(q) = div(δϑq) − q · grad(δϑ), (33)

δϑdiv(q) = div(δϑq) − q · grad(δϑ), (34)

and applying the Gauss theorem leads to the continuous for-
mulation, which will be numerically solved by the FEM and
which reads for both scales

∫

∂BtRVEt

δu · tda =
∫

BtRVE

gradδu: σ

− δu · (ρb − ρü)dv, (35)

−
∫

∂BtRVEq

δϑqnda =
∫

BtRVE

δϑ
(
ρcθ̇ − ρr

−ρwext + ρwint)

− grad(δϑ) · qdv, (36)
∫

∂Btt

δu · tda =
∫

Bt

gradδu: σ

− δu · (ρb − ρü)dv, (37)

−
∫

∂Btq

δϑqnda =
∫

Bt

δϑ
(
ρcθ̇ − ρr

−ρwext + ρwint)

− grad(δϑ) · qdv. (38)

Considering that the RVE is driven by the thermomechanical
unknowns as the boundary data, see Eq. (13), the right hand
side of Eqs. (35) and (36) are assumed to be zero. Recalling
the volume average of homogenization

(•) = 1

v

∫

v

(•)dv, (39)

where a macroscopic quantity (•) is computed by the inte-
gration of the appropriate microscopic quantity (•) over a
specific volume v, Eq. (39) is applied to Eqs. (35) and (36).
Therewith, the microthermomechanical equilibrium state of
a specific RVE is related to a macroscopic material point.
The application of the volume average to the weak forms
of the RVE equilibrium conditions needs to ensure, that the
average of a product of two functions is equal to the product
of the averages of two functions. Considering, e.g., an arbi-
trary function f (x) defined within the volume of an RVE,
the relations

1

v

∫

v

δu(x) f (x)dv = δu(x) f (x) = δu(x) f (x), (40)

hold as long as the properties of the test functions ensure this.
Among other possibilities, e.g., any constant test function
(δu(x) := {δu(x) = const. ∀ x ∈ v ∧ δu(x) = 0 ∀ x ∈ ∂v})
within the integration domain ensures that the average of the
product of that constant with an arbitrary function is equal to
the product of the averages of both functions at a frozen time
t. The use of Eq. (39) in combination with a computational
homogenization scheme allows now to relate an RVE to an
integration point of a macroscopic FE BtE . This assumption

reduces the discretization effort over the domain BtE drasti-
cally, compared to a one-scale solution, which can be clearly
seen from the comparison of Figs. 1 and 2. Therewith, the
homogenized version of Eq. (35), connected to a material
point within Bt , is given by

gradδu: σ − δu · (ρb − ρü)

= 1

v

∫

BtRVE

gradδu: σ − δu · (ρb − ρü)dv, (41)

and the homogenized version of Eq. (36) reads

δϑ
(
ρcθ̇ − ρr − ρwext + ρwint

)
− grad(δϑ) · q

= 1

v

∫

BtRVE

δϑ
(
ρcθ̇ − ρr − ρwext + ρwint

)

− grad(δϑ) · qdv. (42)

The identification of Eq. (41) as the internal contribution
to Eq. (37) as well as Eq. (42) as the internal contribution
to Eq. (38) provides the scale bridging from microscale to
macroscale.
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The introduced way of relating both scales is new com-
pared to classical and existing methods of computational
homogenization. Intrinsically, no restrictions on constitu-
tive descriptions are necessary regarding BVDH, since the
balance laws are homogenized in an equilibrium state. The
generality of considering the complete set of thermomechan-
ical balance equations removes the necessity of introducing
additional assumptions for homogenizing specific consti-
tutive quantities, such as stresses or heat fluxes. The Hill
condition, see [38], and its resulting conditions for the
boundary data of the microstructure lead to these addi-
tional assumptions in classical approaches. Consequently,
they have to be determined for every single quantity to be
homogenized.

The weak form of the macroscopic thermomechanical
equilibrium state reads in a continuous formulation

∫

∂Btt

δu · tda

=
∫

Bt

1

v

∫

BtRVE

gradδu: σ − δu · (ρb − ρü)dvdv, (43)

−
∫

∂Btq

δϑqnda

=
∫

Bt

1

v

∫

BtRVE

δϑ
(
ρcθ̇ − ρr − ρwext + ρwint

)

− grad(δϑ) · qdvdv. (44)

Since quasi-static solutions are considered in this study, iner-
tia and body force terms of Eq. (43) are neglected in the
following. The spatially discretized microscopic nodal reac-
tions are obtained from Eqs. (43) and (44)

RE I

meci =
∫

BtE

BI
jσ i jdv, (45)

RE I

the =
∫

BtE

N I (ρcθ̇ − ρr − ρwext + ρwint
)

− BI
i qidv. (46)

Knowing that the macroscopic solution state is dependent on
the microscale equilibrium, which is obtained by an FEM
solution for every RVE, no inner nodal reactions are present,
meaning

RE I

meci = 0 ∀ {
I ∈ E | I /∈ ∂BtRVEu

}
, (47)

RE I

the = 0 ∀
{
I ∈ E | I /∈ ∂BtRVEϑ

}
, (48)

where implicitly a distinction between the inner nodes xa /∈
∂BtRVE and the outer nodes xb ∈ ∂BtRVE of the RVE is made.
The boundary nodes xb are driven by the nodal values of the
surrounding macroscopic element domain BtE according to
Eqs. (18) and (19). Considering Eq. (47), Eq. (43) can be
recast into

0 =
N⋃

E=1

∫

BtE

1

v

N⋃

E=1

δuI
i R

E I

meci dv

−
N⋃

E=1

δuI
i

∫

∂BtE t

N(ξ)
I
tida ∀ δuI

i ∈ ∂BtRVEu . (49)

Similarly, Eq. (44) reads

0 =
N⋃

E=1

∫

BtE

1

v

N⋃

E=1

δϑ IRE I

thedv

+
N⋃

E=1

δϑ
I

∫

∂BtEq

N(ξ)
I
qnda ∀ δϑ I ∈ ∂BtRVEϑ

, (50)

under consideration of Eq. (48). Making use of the rela-
tions introduced in Eqs. (16), (17), (47), (48), (18), (19) and
denoting ξb := ξ(x)∀ x ∈ ∂BtRVE , a further recasting of the
macroscopic thermomechanical equilibrium state leads

0 =
N⋃

E=1

δuI
i

∫

BtE

1

v
N

(
ξb

)I N⋃

E=1

RE
meci dv

−
N⋃

E=1

δuI
i

∫

∂BtE t

N(ξ)
I
tida, (51)

0 =
N⋃

E=1

δϑ
I
∫

BtE

1

v
N

(
ξb

)I N⋃

E=1

RE
thedv

+
N⋃

E=1

δϑ
I

∫

∂BtEq

N(ξ)
I
qnda. (52)

Within Eqs. (51) and (52), the identities of Eqs. (18) and
(19) are used as well as the BVDH domain decomposition
of Eqs. (4)–(6). A macroscopic BVDH FE residual can now
be expressed for a macroscopic node I by
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δuI
i R

I
meci = δuI

i

∫

BtE

1

v
N

(
ξb

)I N⋃

E=1

RE
meci dv

−
∫

∂BtE t

N(ξ)
I
tida, (53)

for the mechanical field and by

δϑ
I
R
I
the = δϑ

I
∫

BtE

1

v
N

(
ξb

)I N⋃

E=1

RE
thedv

+
∫

∂BtEq

N(ξ)
I
qnda, (54)

for the thermal field. The whole macroscopic domain Bt can
now be assembled from Eqs. (53) and (54) by use of Eq. (4).

R
I
meci and R

I
the can be recast into

R
I
meci =

∫

BtE

1

v
N

(
ξb

)I
Rb
meci dv −

∫

∂BtE t

N(ξ)
I
tida, (55)

R
I
the =

∫

BtE

1

v
N

(
ξb

)I
Rb
thedv +

∫

∂BtEq

N(ξ)
I
qnda, (56)

since Eqs. (47) and (48) hold and the RVE domain is
divided into inner and boundary nodes. What remains is the
linearization and the discretization of the macroscopic ther-
momechanical equilibrium state, Eqs. (43) and (44), in order
to achieve a fully coupled Newton-type FE solution.

2.1.3 Linearized thermomechanical equilibrium at different
length scales

A consistent FE implementation, which enables a solution
that rapidly converges to a thermomechanical equilibrium for
Eqs. (49) and (50), requires a linearization of both equations
for the macroscopic displacements and temperature changes.
Having a look at the RVE FEM solutions, which are implied
by Eqs. (55) and (56) and defining

x :=
N⋃

E=1

⎡

⎢
⎢
⎣

u(x, t)Ia ∀ x /∈ ∂BtRVE
ϑ(x, t)Ia ∀ x /∈ ∂BtRVE
u(x, t)Ib ∀ x ∈ ∂BtRVE
ϑ(x, t)Ib ∀ x ∈ ∂BtRVE

⎤

⎥
⎥
⎦ =

[
xa
xb

]

, (57)

as well as

R :=
N⋃

E=1

⎡

⎢
⎢
⎣

RE (x, t)amec ∀ x /∈ ∂BtRVE
RE (x, t)athe ∀ x /∈ ∂BtRVE
RE (x, t)bmec ∀ x ∈ ∂BtRVE
RE (x, t)bthe ∀ x ∈ ∂BtRVE

⎤

⎥
⎥
⎦ =

[
Ra

Rb

]

, (58)

the first step is recalling the definition of the microscopic
thermomechanical RVE residual (under negligence of inertia
and body force terms) as

Rmec =
∫

BtRVE

gradδu: σdv, (59)

Rthe =
∫

BtRVE

δϑ
(
ρcθ̇ − ρr − ρwext + ρwint

)

− grad(δϑ) · qdv. (60)

This enables to follow the methodology of linearization for
quasi-static analysis. First, a discretization of Eq. (59) is car-
ried out, reading

Rmec =
N⋃

E=1

δuI
k

∫

BtE

BI
l σ kldv, (61)

as well as of Eq. (60), which can be expressed as

Rthe =
N⋃

E=1

δϑ I
∫

BtE

N I [ρcθ̇ − ρr − ρwext + ρwint
]

− BI
kqkdv. (62)

A linearization of Eq. (59) reads

DRmec =
∫

BtRVE

gradδu:
[
grad(Δu)σ

+C : sym(grad(Δu)) − (∂θσ )Δθ
]
dv. (63)

Neglecting any heat source inside the volume, the lineariza-
tion term of Eq. (60) can be expressed as

DRthe =
∫

BtRVE

δϑ
(
ρc∂θ θ̇Δϑ

− ∂uρwext · Δu − ∂θρwextΔϑ

+ ∂uρwint · Δu + ∂θρwintΔϑ)

− grad(δϑ) ·
[

2sym(grad(Δu)q

+
(
k

J

)

gradΔϑ

]

dv. (64)
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The discretized form of Eq. (63) reads

DRmec =
N⋃

E=1

δuI
k

⎡

⎢
⎣

∫

BtE

BI
i σ j iBJ

j δkm

+BI
i Ckim jBJ

j dv

⎤

⎥
⎦ΔuJ

m

+
N⋃

E=1

δuI
k

⎡

⎢
⎣

∫

BtE

BI
i ∂θσ kiN Jdv

⎤

⎥
⎦Δϑ J , (65)

and Eq. (64) can be discretized as

DRthe =
N⋃

E=1

δϑ I

⎡

⎢
⎣

∫

BtE

BI
kqiB

J
i + BI

i qkB
J
i

− N I
[
(∂gki ∂θσmn + ∂gik∂θσmn): dmnBJ

i

+θ (∂θσ )ki B
J
i

1

Δt
+ θ (∂θσ ) j i lk jB

J
i

]

+ N Iρ
(
∂gkiwint + ∂gikwint

)
BJ
i dv

]
ΔuJ

k

+
N⋃

E=1

δϑ I

⎡

⎢
⎣

∫

BtE

N Iρc
1

Δt
N J + BI

i (k/J )BJ
i

−N IρwextN J

+ N IρwintN Jdv
]
Δϑ J . (66)

Equation (65) contains the mechanical part of the element
stiffness as well as a coupling between the mechanical and
the thermal field and can be rewritten as

DRmec =
N⋃

E=1

δuI
k

[
KE I J

uukm

]
ΔuJ

m

+
N⋃

E=1

δuI
k

[
KE I J

uϑk

]
Δϑ J . (67)

Equivalently, Eq. (66) contains the thermal part of the ele-
ment stiffness as well as a coupling between the thermal and
the mechanical field and can be given as

DRthe =
N⋃

E=1

δϑ I
[
KE I J

ϑuk

]
ΔuJ

k

+
N⋃

E=1

δϑ I
[
KE I J

ϑϑ

]
Δϑ J . (68)

Therewith, the microscopic element stiffness

KE I J =
[
KE I J

uu KE I J

uϑ

KE I J

ϑu KE I J

ϑϑ

]

, (69)

can be defined according to the order of nodes and degrees
of freedom. Neglecting the inertia terms in Eq. (59) and con-
sidering a vector of nodal values for the test function fields
δu and δϑ

δx :=
N⋃

E=1

[
δuI

δϑ I

]

, (70)

and a vector of nodal values for the increments of the
unknown fields

Δx :=
N⋃

E=1

[
ΔuI

Δϑ I

]

. (71)

Equations (61), (62), (65) and (66) can now be formulated as

δxT [∂xR]Δx + δxT [R] = 0, (72)

where [∂xR] =: K is defined as the assembled RVE stiffness
matrix reading

K =
N⋃

E=1

[
KE

]
, (73)

see Eq. (69). Furthermore, the assembled RVE residual vec-
tor, [R], compare Eq. (58), is used. For any admissible test
function field, the solution of the microscopic thermome-
chanical equilibrium state for a quasi static and iterative FE
solution can now be obtained by solving

KΔx + R = 0, (74)

in a typical time increment Δt = tn+1 − tn . Considering the
RVE partition into inner and boundary nodes, compare Eqs.
(57) and (58), a similar decomposition can be carried out for

K =

⎡

⎢
⎢
⎣

∂uaR
a
mec ∂ϑaR

a
mec ∂ubR

a
mec ∂ϑbR

a
mec

∂uaR
a
the ∂ϑaR

a
the ∂ubR

a
the ∂ϑbR

a
the

∂uaR
b
mec ∂ϑaR

b
mec ∂ubR

b
mec ∂ϑbR

b
mec

∂uaR
b
the ∂ϑaR

b
the ∂ubR

b
the ∂ϑbR

b
the

⎤

⎥
⎥
⎦

=
[

Kaa Kab

Kba Kbb

]

. (75)

The consistent linearization of Eqs. (55) and (56) is based on
the assemblage of

N
I
b :=

[

N
(
ξb

)I
]

, (76)
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as well as on

R
E
I :=

[
R
I
mec

R
I
the

]

, (77)

and

xE
I

:=
[
uI

ϑ
I

]

, (78)

for a macroscopic node I . Using a matrix representation, the
linearization can be formally written as

DR
E := S

E
:ΔxE = ∂

xE R
E
:ΔxE . (79)

In order to obtain a consistent implementation for the macro-
scopic BVDHFE, Eqs. (55) and (56) are derived with respect
to the nodal unknowns, defined in Eq. (78), which reads

S
E
I J =

∫

BtE

1

v
N

I
b

[
∂xbRb − ∂xaRb: ∂Raxa∂xbRa

]
N

J
T

b dv + B
E
I J ,

(80)

after evaluating the implicit function theorem. Finally, the
thermomechanical stiffness matrix with respect to the nodes
I and J of a BVDH FE is obtained

S
E
I J =

∫

BtE

1

v
N

I
b

[
Kbb − KbaK−1

aa Kab

]
N

J
T

b dv + B
E
I J , (81)

where

B
E
I J

:=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
∫

∂BtE t

N
I
∂
uJ (tda) −

∫

∂BtE t

N
I
∂
ϑ
J (tda)

∫

∂BtEq

N
I
∂
uJ (qnda)

∫

∂BtEq

N
I
∂
ϑ
J (qnda)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (82)

contains the linearized boundary terms. The macroscopic
overall FE solution can now be achieved by the assemblage
of all macroscopic residuals and stiffnesses and the solution
of

⎡

⎣
N⋃

E=1

S
E

⎤

⎦ :

⎡

⎣
N⋃

E=1

ΔxE

⎤

⎦ +
⎡

⎣
N⋃

E=1

R
E

⎤

⎦ = 0. (83)

After having set the theoretical basis for an FE implemen-
tation, what remains is the description of an algorithmic
treatment as Newton-type solution procedure.

2.2 Algorithmic treatment

The previous sections introduced the shape function N(ξb),

that relates the appropriate RVE boundary node I to the
macroscale element node I .RecallingEq. (8), this is based on
the assumption of the natural scale relation between micro-
and macroscale, due to their specific length scale ratio δ.

Therefore, for every RVE boundary node, the natural coor-
dinate ξb needs to be determined in order that Eqs. (18) and
(19) hold. In terms of an FEM solution procedure, this can
be carried out in a preprocessing part and stored to be at
hand for the solution of the micro and macro FE equations.
Since the mapping in Eqs. (18) and (19) is not invertible,
a local Newton procedure is carried out according to Algo-
rithm 1. The implementation of the proposed computational
homogenization scheme is of large importance, in order to
obtain an FE solution of a heterogenous macrostructure. An
algorithm for a three-dimensional thermomechanical BVDH
element at finite strains is given in Algorithm 2.

3 Verification examples of BVDH

After having introduced BVDH, a comparison to common
homogenization methods for different model examples con-
cerning reliability and numerical efficiency is carried out.
Since an analytical solution of the homogenization of small
strain linear thermoelasticity for computing effective mate-
rial properties is at hand, see [39], the first model problem
is the comparison of BVDH to the numerical solution of
such a type of problem as well as to the reference fine scale
mesh solution. This comparison is made in order to ver-
ify BVDH solutions and to identify the reliability of them.
Further verification examples are introduced by comparing
BVDH to LDBCs, periodic displacement boundary condi-
tions (PDBCs) and uniform traction boundary conditions
(UTBCs) for three-dimensional mechanical finite deforma-
tion type of problems as described in [13]. This section closes
with a comparative study on the influence of themesh density
and the length scale ratio δ onto the predictive capabilities of
LDBC, PDBC and BVDH solutions at finite inelasticity.

3.1 One-dimensional thermoelasticity at small strains

This section investigates the predictive capabilities of BVDH
in case of small strain and one-dimensional linear ther-
moelasticity. The model problem under investigation is
schematically depicted in Fig. 3, where Fig. 3a shows the
homogeneous and Fig. 3b the underlying heterogeneous
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Algorithm 1 Determination of the macroscopic natural RVE coordinates ξb

require: known initial position of RVE boundary within macrostructure: XR
require: iteration counter: k = 0

ensure: initial estimate: ξ
k
b

compute initial position estimate XRVE(ξ
k
b) = N(ξ

k
b)X

E

compute initial residual R = XR − XRVE(ξ
k
b)

while ‖R‖ > tolerance do

compute position XRVE(ξ
k
b) = N(ξ

k
b)X

E

compute residual R = XR − XRVE(ξ
k
b)

linearize LinR = R|
ξ
k
b
+ ∂ξb

R
∣
∣
∣
ξ
k
b

: Δξb

update Δξb = ξ
k+1
b − ξ

k
b

update k = k + 1
end while

(a)

(b)

Fig. 3 Geometry and boundary conditions of a fully coupled ther-
momechanical linear one-dimensional rod. a Homogeneous model
problem of one-dimensional rod. b Heterogeneous model problem of
one-dimensional rod

model structure.Main focus of the consideredmodel problem
is the comparison against other solution methods. First alter-
native is the fine scale meshing and consideration of every
single rod section, that has certain thermomechanical prop-
erties. The second alternative is a numerical investigation of
an analytical homogenization solution of linear thermoelas-
ticity, which is given in [39]. The homogenization of linear
thermoelasticity in [39] is carried out such that, under the
assumption of weakly converging displacements u of the
fine scale to displacements u of the coarse scale for a length
scale ratio δ tending to zero, effective parameters for the
coarse scale can be computed. Considering the underlying
heterogeneous model problem, compare Fig. 3b, the alter-
nating thermomechanical properties, summarized in Table 1,
are arbitrarily chosen. E denotes the Young’s modulus, ρ

represents the density, c is the mass specific heat capacity,
m = √

Ecρ/θ0 is the thermoelastic coupling parameter and k
represents the thermal conductivity. The parameters of lines
1 and 2 in Table 1 are alternating after 1 mm and are valid for
a reference temperature of θ0 = 293 K. The total length
l0 is taken to be 4 m and the cross-section is A = 0.1
m2. Thus, for the fine scale meshing solution 4000 ther-

momechanical linear displacement elements are considered.
The semi-analytical solution procedure, which is a numer-
ical computation based on the analytical solution given in
[39], considers 160 of such elements, whose homogenized
parameters are given in Table 2. The parameter w in Table
2, given in N/m2 K, denotes the multiplication of the den-
sity ρ and the specific heat capacity c. These parameters are
obtained as described in [39] and denote the effective para-
meters under consideration of a length scale ratio tending
to zero. 160 thermomechanical linear displacement BVDH
elements are also used to discretize the rod for a BVDH
solution.

3.1.1 Excitation of the temperature field

The first model problem considered is an excitation of the

temperature field at x = 0 with a constant rate of ϑ̇ =
5.0E−06 K/s for 1.0E+06 s, while the displacement field
at x = 0 is fixed. At x = l0, the rod is isolated and the
displacement is not fixed. The computed results for displace-
ments u and reaction forces F are depicted in Fig. 4, where
the continuous line represents the results of the reference
fine scale solution and the dotted lines the homogenization
results, which do overlap. As can be seen in Fig. 4a, the rod
elongates in positive x direction for all the solution meth-
ods. In the context of heating, it is the expected result. The
homogenization approaches are almost identical with the
reference solution. This demonstrates the prediction capa-
bilities of the semi-analytical and the BVDH approach in
case of linear thermoelasticity. Figure 4b depicts the thermal
power computed for the three alternative solution methods,
measured at the fixed face of the rod. The results are again
almost identical. Comparing the three alternatives, BVDH
results show a reliable prediction of numerical solutions in
time. The differences to the reference solution are almost
negligible.
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Algorithm 2 Thermomechanical BVDH element, BtE
require: RVE geometry and material description
positioning of BtRVE within BtE according to Eq. (7)

compute local coordinates ξ of RVE nodes according to Algorithm 1
for l = 1 to NSST do � loop over NSST RVEs

for E = 1 to N do
for I = 1 to I E ∀ I ∈ ∂BtRVE do

get shape functions N(ξ)I

end for
end for
for E = 1 to N do

for I = 1 to I E ∀ I ∈ ∂BtRVE do
interpolate displacements u(x, t) according to Eq. (18)
interpolate temperature changes ϑ(x, t) according to Eq. (19)

end for
end for
while

∥
∥RT

∥
∥ = ∥

∥[Rmec, Rthe]T
∥
∥ > tol do � iterate for RVE equilibrium

for E = 1 to N do
for l = 1 to L do � loop over L microscopic integration points

get RVE material response, e.g. σ , ρwext
end for

end for
for E = 1 to N do

for l = 1 to L do � loop over L microscopic integration points
compute RE contributions, see Eq. (45) and Eq. (46)
compute KE contributions, see Eq. (69)

end for
end for
for E = 1 to N do

assemble RVE residual R, see Eq. (58)
assemble RVE stiffness K, see Eq. (73)

end for
solve K:Δ[u, ϑ]T + R = 0, see Eq. (74)
update [u, ϑ]T by Δ[u, ϑ]T

end while
compute R

E
l and S

E
l � perform homogenization

end for � end loop over NSST RVEs

compute R
E
from R

E
l and S

E
from S

E
l , see Eq. (77) and Eq. (81)

Table 1 Model parameters for
the fine scale solution and
BVDH

E (N/m2) ρ (kg/m3) c (J/kgK) m (N/m2 K) k (W/mK)

1 7.00E10 2.50E6 8.70E2 4.56E5 2.36E2

2 7.08E5 2.61E3 9.00E1 4.66E2 2.50E0

Table 2 Model parameters for
the semi-analytical solution

E (N/m2) ρ (kg/m3) w (N/m2 K) m (N/m2 K) k (W/mK)

1.41599E6 1.25130E6 1.08762E9 4.70948E2 4.94759E0

3.1.2 Excitation of the displacement field

The second model problem consists of an excitation of
the displacement field of the rod depicted in Fig. 3. The
underlying heterogeneous structure is again composed of the
alternating thermomechanical properties, given in Table 1.
The boundary conditions here are now set such that the dis-
placement field u is fixed at l = l0 = 4m and prescribedwith
a constant compression rate of 10E−07 mm/s at l = 0 for

10E+06 s. The temperature field ϑ is isolated at l = l0 = 4
m and fixed at l = 0. The results obtained are depicted in
Figs. 5 and 6. The first measured quantities are the displace-
ments at l = l0/2 = 2 m. Since the prescribed displacement
at l = 4 m is 0.1 m after 10E+06 s and in case of a pure
mechanical problem, the geometrical and physical linear-
ity of the problem would require u = 0.05 m at l = 2 m.
Figure 5a depicts that all the different solution methods are
nearly satisfying this requirement. The thermomechanical
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Fig. 4 Comparison of displacements u at l = 4 m and thermal power q p at l = 0 for the reference, the one-scale semi-analytical and the BVDH
solution
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Fig. 5 Comparison of displacements u at l = l0/2 and temperature changes ϑ at l = l0/2 for the reference, the one-scale semi-analytical and the
BVDH solution

coupling and therewith the change of mechanical to ther-
mal energy could cause slight differences compared to the
pure mechanical solution. The heating of the rod at l = 2
m is shown in Fig. 5b, which is expected since the rod is
compressed. The identical solutions shown in Fig. 5 of the
three different solution strategies are remarkable in context
of the coupled PDE system of linear thermoelasticity. Ther-
mal power and reaction forces for the considered problem are
given in Fig. 6. Analyzing Fig. 6b and expecting a final reac-
tion force at the fixed side of the rod with an absolute value
of approximately F = (E A/l0)u ≈ 3.54× 104 N in case of
a homogeneous mechanical rod, the dimension of the plotted
reaction force time dependency is verified. The sign is nega-
tive since compression is considered. The computed thermal
power q p depicted in Fig. 6a shows almost no differences
between the fine scale reference solution and both homog-
enization results. Concluding, the predictive capabilities

of BVDH and the semi-analytical approach are remark-
able and reliable compared to a solution at the fine length
scale.

3.2 Three-dimensional uniaxial tensile test

Next, a macroscopic uniaxial tensile test is carried out for
a cubic specimen, having a heterogeneous microstructure.
The considered problem is investigated with respect to relia-
bility, taking into account the solutions obtained by BVDH,
LDBC, PDBC and UTBC. The cubic macrostructure is dis-
cretized with 16 linear displacement elements in case of
LDBC, PDBC and UTBC. At each of the integration points,
the stresses and tangent moduli are computed as described
in [13] in case of LDBC, PDBC and UTBC, respectively.
The discretization in case of BVDH is carried out by 16
mechanical BVDH elements, similar to the thermomechani-
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Fig. 6 Comparison of thermal power q p at l = 0 m and reaction force F at l = 4 m for the reference, the one-scale semi-analytical and the BVDH
solution

Fig. 7 Model example of heterogeneous cubic structure at homogeneous tensile test: geometry, boundary conditions and heterogeneous periodic
microstructure (elements 1, 4, 6, 7 denoted by κ1, μ1 and elements 2, 3, 5, 8 denoted by κ2, μ2, see Table 3)

cal BVDH elements, described in Algorithm 2. The specific
geometry of the macroscopic specimen is depicted in Fig. 7.
The top surface is driven in global x3 directionwith a constant
velocity of u̇3 = 0.2 mm/s for 10 s and the displace-
ment boundary conditions are set, such that u1(x1 = 0) =
u2(x2 = 0) = u3(x3 = 0) = 0. The related periodic RVE
geometry is set to a cube with a side-length of 0.05 mm,
which results in a length scale ratio of δ = 3.125×10−5 and
is discretized using 8 quadratic displacement elements hav-
ing 20 nodes each, which results approximately in a distance
of 0.01 mm between the RVE-nodes. The RVE size is chosen
in order to obtain a quantitatively small number for the scale
ratio. Time is discretized with 10 identical time stepsΔt = 1
s. The RVE consists of two types of standard neo-Hooke-
material, which is periodically alternating distributed within
the microstructure as illustrated in Fig. 7. The different neo-
Hooke parameters are arbitrarily chosen and given in Table 3.
The resulting reaction forces are compared. The convergence
behavior is investigated for each of the different solution
methods.

Table 3 Model parameters of
the RVE

κ (MPa) μ (MPa)

1 1500 655

2 1200 200

3.2.1 Comparison of reliability

As a comparable resulting quantity, the reaction force in
global x3 direction of the driven top surface is summed up for
all top nodes. The limits for the structural response obtained
by BVDH are denoted by LDBC and UTBC, compare, e.g.,
[17]. Having a look at Fig. 8a, where the reaction forces
of the four different approaches are plotted versus the pre-
scribeddisplacements, one can recognize thatLDBCreaction
forces are larger and the values for the UTBC reaction forces
are smaller than the ones obtained by BVDH. The first fact
to discuss is the stiff result of LDBC compared to the less
stiff result of UTBC. This fact denotes the two limits, which
should not be violated by any physically meaningful homog-
enization result. The scale ratio at hand is δ = 3.125× 10−5
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Fig. 8 Comparison of reaction force F3 of the prescribed displacement u3 at the top surface and comparison of the convergence behavior at t = 10
s for LDBC, UTBC, PDBC and BVDH for the homogeneous tensile test

Table 4 Norm of the residual of
the convergence behavior for the
tensile test with Δt = 1.0 s

Iteration steps (–) BVDH ‖R‖ (N) LDBC ‖R‖ (N) PDBC ‖R‖ (N) UTBC ‖R‖ (N)

1 8.60E+02 9.03E+02 8.60E+02 4.71E+02

2 8.16E+00 8.57E+00 8.16E+00 1.30E+00

3 5.27E−03 5.54E−03 6.08E−03 4.33E−04

4 2.20E−09 2.31E−09 5.99E−08 1.41E−09

in terms of a cubic RVEwith a side length of 0.05mm. There-
with, the second fact to discuss is the BVDH result. Recalling
Sect. 3.1, where the reliability of BVDH is demonstrated for
one-dimensional small strain problems, again the numerical
solutions obtained by BVDH are within the physical range of
computational homogenization, which can be seen in Fig. 8a.
Analyzing Fig. 8b, one can state that all considered homog-
enization approaches converge superlinear with respect to
the norm of the residual. This implies a correct algorithmic
implementation. Table 4 depicts the specific values of the
mechanical residual forces of the underlying tensile test at
t = 10 s for the three different approaches. Figure 9 depicts
the linearly deformed RVE shapes as well as their stress dis-
tribution at three different positions inside the macroscopic
specimen during the BVDH computation. Having a close
look at Fig. 9a, b, one can observe the non-homogeneous
stress distribution, here with respect to σ33, which is a result
of the fully prescribed boundary data and the heterogeneous
material structure inside the RVEs. The macroscopic homo-
geneous stresses (σ 33) are depicted in Fig. 9c, d.

3.2.2 Comparison of efficiency

Evaluating the efficiency of the homogeneous tensile test,
depicted in Fig. 7 for BVDH and three different boundary
conditions of the homogenization approach introduced in
[13], one can observe BVDH to be more efficient than the

two other cases. The quantities to compare, such as compu-
tation time of the results plotted in Fig. 8a, are given in Table
5. Having the same number of global iteration steps, BVDH
is more than 3 times faster than LDBC, about 8 times faster
than UTBC and approximately 11 times faster than PDBC,
without loosing reliability. The reason for the reduced effi-
ciency of the UTBC and PDBC homogenization schemes is
the construction of the microscopic fluctuation field, which
needs to be determined by additional boundary constraints.
In both cases, an extra iteration needs to be introduced, com-
pare [13], which causes an increase in computation time, in
order to determine the microscopic fluctuation field based
on the assumption of a uniform traction distribution as well
as periodic displacements at the surface of the RVE. In case
of LDBC, additional computations need to be carried out,
in order to determine from the microscopic stresses and
tangent moduli the macroscopic element residual and stiff-
ness, compare [13]. In case of LDBC, PDBC and UTBC,
the introduction of the microscopic fluctuation field leads to
additional assumptions for the deformation of the surface of
the RVE and causes an increase in computational costs.

3.3 Three-dimensional inhomogeneous compression test

Third, a macroscopic inhomogeneous compression test is
carried out for a cubic specimen, considering first a periodic
and second a non-periodic heterogeneous microstructure
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(a) (b)

(c) (d)

Fig. 9 Micro stresses at three specific RVEs and macroscopic stresses depicted at different times of the homogeneous tensile test for the BVDH
solution. a σ33 at t = 5.0 s. b σ33 at t = 10.0 s. c σ̄33 at t = 5.0 s. d σ̄33 at t = 10.0 s s

Table 5 Comparison of efficiency with respect to different homogenization schemes for the homogeneous tensile test performed at four CPUs
(Intel�Core™i7-4790 CPU: 3.60 GHz) in parallel with Δt = 1 s

Homogenization techniques LDBC [13] PDBC [13] BVDH UTBC [13]

Absolute computation time (s) 771.62 2727.46 248.53 1931.05

Relative computation time (%) 310 1097 100 777

Global iteration steps 40 40 40 40

similar to Sect. 3.2. The inhomogeneous compression test
is investigated with respect to reliability and efficiency.
Therefore, again a comparison of the solutions obtained by
BVDH, LDBC, PDBC and UTBC is evaluated. The cubic

macrostructure is discretized by 12 linear displacement ele-
ments in case of LDBC, PDBC and UTBC. At each of the
integration points, the stresses and tangent moduli are com-
puted as described in [13]. 12 mechanical BVDH elements
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Fig. 10 Model example of a heterogeneous cubic structure at inho-
mogeneous compression test: geometry, boundary conditions and
heterogeneous microstructure (periodic: elements 1, 4, 6, 7 denoted

by κ1, μ1 and elements 2, 3, 5, 8 denoted by κ2, μ2; non-periodic:
elements 1, 3, 4, 6, 7, 8 denoted by κ1, μ1 and elements 2, 5 denoted
by κ2, μ2, see Table 3)
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Fig. 11 Comparison of reaction force F3 of the prescribed displace-
ment u3 at the top surface and comparison of the convergence behavior
at t = 10 s for LDBC, UTBC, PDBC and BVDH for the inhomoge-
neous compression test. a Reaction force versus displacement plot for a

periodic RVE. bConvergence behavior with a periodic RVE. cReaction
force versus displacement plot for a non-periodic RVE. d Convergence
behavior with a non-periodic RVE
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Table 6 Norm of the residual
for the compression test with a
periodic RVE (Δt = 1.0 s)

Iteration steps (–) BVDH ‖R‖ (N) LDBC ‖R‖ (N) PDBC ‖R‖ (N) UTBC ‖R‖ (N)

1 2.69E+03 2.82E+03 2.69E+03 3.72E+02

2 2.76E+01 2.90E+01 2.77E+01 5.76E+00

3 3.43E−03 3.60E−03 2.13E−02 3.20E−03

4 6.51E−10 3.34E−10 1.39E−06 3.15E−08

(a) (b)

(c) (d)

Fig. 12 Micro stresses of three specific RVEs and macroscopic stresses depicted at different times of the inhomogeneous compression test for the
BVDH solution with a periodic microstructure. a σ33 at t = 5.0 s. b σ33 at t = 10.0 s. c σ̄33 at t = 5.0 s. d σ̄33 at t = 10.0 s

are used, in order to discretize the macrostructure, compare
Algorithm 2. The specific geometry of themacroscopic spec-
imen is depicted in Fig. 10. The top surface is driven in
global x3 direction with a constant velocity of u̇3 = −0.15
mm/s for 10 s, and the displacement boundary conditions are
set, such that the top and bottom displacements are fixed.
The related RVE geometry is a cube having a side length of
0.06 mm, which results now in a length scale ratio of δ =
3.375 × 10−6 and is discretized using 8 quadratic displace-
ment elements. Time is discretized by 10 identical time steps
Δt = 1.0 s.

3.3.1 Comparison of reliability

As a comparable resulting quantity, the reaction force dis-
tribution in global x3 direction of the driven top surface
is summed up for all top nodes. The reaction force-
displacement dependency computed by LDBC denotes the
stiffest structural behavior in terms of homogenization, while
the softest structural response is obtained by UTBC. Hav-
ing a look at Fig. 11a, where the reaction forces of the four
different approaches are plotted versus the prescribed dis-
placement for the periodic microstructure, one can recognize
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(a) (b)

(c) (d)

Fig. 13 Micro stresses of three specific RVEs and macroscopic stresses depicted at different times of the inhomogeneous compression test for the
BVDH solution with a non-periodic microstructure. a σ33 at t = 5.0 s. b σ33 at t = 10.0 s. c σ̄33 at t = 5.0 s. d σ̄33 at t = 10.0 s

Table 7 Norm of the residual of
the convergence behavior for the
compression test with a
non-periodic RVE (Δt = 1.0 s)

Iteration steps (–) BVDH ‖R‖ (N) LDBC ‖R‖ (N) PDBC ‖R‖ (N) UTBC ‖R‖ (N)

1 3.00E+03 3.15E+03 2.99E+03 3.93E+02

2 2.62E+01 2.76E+01 2.82E+01 1.12E+01

3 1.73E−03 1.81E−03 2.12E−02 6.80E−02

4 9.35E−10 1.15E−10 1.45E−06 8.77E−06

Table 8 Comparison of efficiency with respect to different homogenization schemes for the inhomogeneous compression test with a periodic
microstructure performed at six CPUs (Intel�Core™i7-4790 CPU: 3.60 GHz) in parallel with Δt = 1.0 s

Homogenization techniques LDBC [13] PDBC [13] BVDH UTBC [13]

Absolute computation time (s) 438.72 1663.13 115.89 1406.30

Relative computation time (%) 378 1435 100 1213

Global iteration steps 40 40 40 40

that UTBC and LDBC are denoting the lower and upper
bound forBVDHandPDBC, respectively. PDBCandBVDH
are giving identical results with respect to the periodicity of
the RVE. Comparing Fig. 11a, c, BVDH and PDBC are not

anymore overlapping. With increasing deformation, PDBC
results in a less stiffer structural response, while BVDH tends
to compute stiffer reaction forces for the identical macro-
scopic model problem. It should be noted, that the problem
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Table 9 Comparison of efficiency with respect to different homogenization schemes for the inhomogeneous compression test with a non-periodic
microstructure performed at six CPUs in parallel (Δt = 1.0 s)

Homogenization techniques LDBC [13] PDBC [13] BVDH UTBC [13]

Absolute computation time (s) 440.23 1840.47 116.90 1391.45

Relative computation time (%) 376 1574 100 1190

Global iteration steps 40 40 40 40

(a) (b)

Fig. 14 Model example of a heterogeneous cubic structure at inhomo-
geneous compression test: geometry, boundary conditions and inelastic
heterogeneous microstructure (non-periodic: elements 1, 3, 4, 6, 7, 8

denoted by material 1 and elements 2, 5 denoted by material 2, see
Table 10). a Model setup of mesh density investigations. b Model setup
of length scale ratio investigations

considered is of academic nature. Industry related and more
complex problems might cause larger differences between
all four homogenization techniques. Similar to the pre-
vious tensile test, all three solution techniques converge
globally at least superlinear to a zero residual of the dif-
ference between external and internal force contributions, as
depicted in Fig. 11b, d. The residual forces are explicitly
given in Table 6. Figure 12 illustrates different stress states
for different times of the micro- and the macroscale with a
periodic RVE, while Fig. 13 depicts the appropriate micro-
andmacroscale situationswith the non-periodicRVE.Table 7
contains the normof the residual forceswhile iteration for the
macroscale including a non-periodic RVE. As depicted, the
RVEs are characterized by an inhomogeneous stress state and
its approximate mean value yields the homogenized macro-
scopic stress state, compare Eq. (39).

3.3.2 Comparison of efficiency

Evaluating the efficiency of the inhomogeneous compression
test containing a periodic and a non-periodic microstructure
as depicted in Fig. 10, again for BVDH and three different
boundary conditions of a common homogenization method,
one can observe BVDH to be more efficient than the other

Table 10 Model parameters of the heterogeneous inelastic RVE

κ (MPa) μ (MPa) σy (MPa) γ̇
p
0 (1/s)

Material 1 1500 655 200 5.0E−05

Material 2 1200 200 100 7.0E−05

cases. The efficiency measures to compare, such as compu-
tation time of the results plotted in Fig. 11a, c, are given in
Tables 8 and 9, respectively.

3.4 Mesh density dependency

In order to study the influence of the mesh quality and mesh
density on the structural results of the displacement driven
homogenization methods, the example of the inhomoge-
neous compression test with a non-periodic microstructure is
considered, see Fig. 14. The discretization is carried out with
the density factor n, such that a mesh of a regular structure
n×n×n is realized, see Fig. 14a. Themacroscopic boundary
conditions as well as the geometry are given in Fig. 14 and
are constant for all differently tested mesh density factors
n. The top displacement u3 = −1.5 mm is applied in 10 s
for constant time steps of 1 s. The constitutive model used
with different parameters for materials 1 and 2 (see Table
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Fig. 15 Comparison of maximum of the reaction force F3 of the pre-
scribed displacement u3 at the top surface with respect to different
mesh densities and length scale ratios for the displacement dependent

homogenization techniques PDBC, LDBC and BVDH, respectively.
a Reaction force versus mesh density factor. b Reaction force versus
length scale ratio

Fig. 16 Geometry and discretization of the macroscopic tensile test specimen according to [41] and the RVE geometry as well as discretization
for the fiber direction dependent uniaxial tensile test

Table 11 Identified model
parameters of the RVE

κ (MPa) μ (MPa) γ̇0 (1/s) sss (MPa) h (MPa) c1 (MPa)

Polyamide 5620 1600 8.0E+16 170 300 2

c2 (MPa) αt (1/K) k (W/mK) ĉ (N/K mm2) ΔG (J) s0 (MPa)

Polyamide −0.05 2.E−6 0.23 1.3 2.4E−19 195

κ (MPa) μ (MPa) αt (1/K) k (W/mK) ĉ (N/K mm2)

Glass-fiber 43,500 28,646 1.0E−6 0.5 1

κs (N/mm3) ηd (N/mm) kc (N/mm3) αt (1/K) k (W/mK)

Interface 20 23.6 1.0E+5 2.E−6 1.3
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10) is an elasto-plastic model, suitable for finite deforma-
tions and is based on the developments made in [40]. In [40],
semicrystalline polymers are constitutively described by sep-
aratelymodeling their amorphous and their crystalline phase.
The model applied in the investigation at hand is based on
the elasto-plastic model for the crystalline part, see [40]. All
different homogenization methods and their maximum com-
pressive force are asymptotically converging to a steady state
value, as shown in Fig. 15a. This fact corresponds to the typ-
ical h-convergence behavior of finite displacement elements.
Concluding, it can be noted, that with increasing mesh den-
sity, the different homogenization methods tend to different
asymptotes.

3.5 Length scale ratio dependency

In order to study the influence of the length scale ratio
δ = v/v on the structural results of the displacement driven
homogenization methods, the example of the inhomoge-
neous compression test with a non-periodic microstructure is
considered. The macroscopic boundary conditions, the dis-
cretization as well as the geometry are given in Fig. 14b and
are constant for all differently tested scale ratios δi . The top
displacement u3 = −1.5 mm is applied in 10 s for equal
time steps of 1 s. The non-periodic RVE is considered with
two different inelastic materials similar to the elasto-plastic
model developed in [40], see Sect. 3.4.

As shown in Fig. 15b, LDBC and PDBC are independent
of the scaling of the RVE size, as long as the structure of
the RVE does not change, compare Sect. 3.3. In case of the
influence of δ on the BVDH solutions, a slight decrease of
reaction forces with increasing δ can be recognized, see Fig.
15b. The macroscopic discretization yields the limit for the
maximum length scale ratio with respect to BVDH, since the
RVEs of a macroscopic BVDH-element (see Algorithms 1
and 2) have to completely fit into the macroscopic element.
This restriction follows from the kinematical assumptions
(see Sect. 2.1.1) and has to be accepted due to the fact, that
otherwise the application of a homogenization method does
not make sense. But the scale ratio dependent results for
F3max with respect toBVDHare acceptablewith regard toEq.
(39). The independency of LDBC and PDBC solutions from
δ similarly arises from the volume averaging, seeEq. (39) and
the assumption of considering RVEs as macroscopic points
without a direct scale relation. The differences between each
homogenization method can be explained in the context of
the different procedures of homogenizing themicrostructural
properties.

4 Application example of BVDH

The final predictive example is a numerical investigation of
a macroscopic uniaxial tensile test specimen, see [41]. Fig-

Fig. 17 Comparison of engineering stress strain relations of experi-
mental investigations (taken from [41]) and numerical simulations using
BVDH for different fiber orientations

ure 16 depicts the geometry and the discretization of the
macroscopic specimen, which represents a short-glass-fiber
reinforced thermoplastic (polyamide PA66GF35). Only a
quarter or a half of the specimen is discretized due to single-
symmetry or double-symmetry of the structure with respect
to the fiber-orientations of 0◦, 30◦ and 90◦.

As stated in Sect. 2, one advantage of homogenization
approaches is the reduced discretization workload. Hence,
the macroscopic specimen is discretized using 7 or 14 ther-
momechanical BVDH elements, as described in Sect. 2.2
and by Algorithm 2. The test investigated is carried out
at a constant tensile speed of 0.3 mm/min and the result-
ing displacements are applied to the driven surface. The
opposite surface is fixed with respect to the displacements.
The boundary conditions for the temperature field are set
to free surfaces, since no thermal isolation is assumed. No
convection to the surrounding environmental temperature is
assumed at the macroscopic scale. The RVE is chosen to
have a cubic geometry with a volume v = 0.001 mm3.

The discretization of the RVE is carried out by 80 linear
thermomechanical elements for the bulk materials, such as
matrix, fiber and interphase and by 16 thermomechanical
interface elements according to [42] for the designated fail-
ure layer between interphase and matrix. The constitutive
description of the thermoplastic matrix material polyamide
PA66GF35 and the interphase treatment are taken from [43].
The glass-fiber material is modeled according to [44] as
a thermoelastic neo-Hooke material. The RVE geometry
and material description represent a glass fiber reinforced
polyamide thermoplasticwith approximately 3.5%fiber con-
tent. The model parameters are identified using the uniaxial
tensile test for a fiber orientation of 0◦ and verified at fiber
orientations of 30◦ and 90◦ with respect to the tensile direc-
tion. The full model parameter set is given in Table 11. Figure
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Fig. 18 Macro stresses and
micro stresses of the
investigated structure for a fiber
orientation of 0◦ at a
macroscopic engineering strain
of 2% at the middle of the neck

Fig. 19 Macro stresses and
micro stresses of the
investigated structure for a fiber
orientation of 30◦ at a
macroscopic engineering strain
of 2% at the middle of the neck

17 depicts the resulting engineering stresses versus engineer-
ing strains in tensile direction evaluated at the middle of the
neck of the macroscopic specimen for the three fiber ori-
entations. As can be seen in Fig. 17, the simulation results
are in acceptable agreement with the experimental results.
Since the parameter identification is carried out at small
strains, where the materials are undergoing almost only elas-
tic deformations, mainly the elastic constants of the different
materials are identifiable. The remaining inelastic parameters
of polyamide are assumed to be similar to polymethyl-
methacrylate and are based on the parametric study in [45].

The differences between simulations and experiments in
the range of 1–2% strain for fiber directions of 30◦ and 90◦,
seeFig. 17, are havingdifferent reasons. Thefirst reason is the
lackof information about the inelastic behavior ofPA66GF35
as exclusive bulk material, which results in a parameter iden-
tification for the composite. Second, the preparation of the
test specimens, as described in [41], does not ensure a perfect
fiber orientation for every single short-fiber in every orien-
tation case, compared to the numerical investigations. The
experiments are carried out at least three times with respect
to the uniaxial tensile tests for every fiber orientation and dis-
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Fig. 20 Macro stresses and
micro stresses of the
investigated structure for a fiber
orientation of 90◦ at a
macroscopic engineering strain
of 2% at the middle of the neck

Fig. 21 Temperature
distribution of the investigated
structure for a fiber orientation
of 0◦ at a macroscopic
engineering strain of 2% at the
middle of the neck

placement rate, as stated in [41]. The resulting uncertainty
of data is not considered in the numerical simulations. The
macroscopic stress distribution and the related microscopic
stresses of specific RVEs are depicted in Figs. 18, 19 and
20. The plots are depicting an engineering strain of 2% at
the middle of the neck. As can be seen from these figures,
the stresses decrease in the neck of the specimen as the fiber
orientation changes from 0◦ to 90◦, which is plausible due
to the reduced stiffness in tensile direction. Additionally, it is
recognizable, that themacroscopic stress distribution follows
the fiber orientation.Mainly, the fiber reinforcements are car-

rying the tensile loads as can be seen from the RVE stress
distributions due to their large stiffness. The related temper-
ature distributions for the three different fiber orientations of
the specimen as well as of three specific RVEs are depicted
in Figs. 21, 22 and 23. The neck heats up, due to dissipative
phenomena of the inelastic matrix material, while the parts
of the specimen, which are still within the elastic stress range
or start to develop inelastic deformation, are denoted by the
entropic cooling under tension or slightly heat up, respec-
tively. The specific RVE temperature changes are within the
range of the surrounding macroscopic temperature changes.
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Fig. 22 Temperature
distribution of the investigated
structure for a fiber orientation
of 30◦ at a macroscopic
engineering strain of 2% at the
middle of the neck

Fig. 23 Temperature
distribution of the investigated
structure for a fiber orientation
of 90◦ at a macroscopic
engineering strain of 2% at the
middle of the neck

5 Conclusion and outlook

A novel multiphysical homogenization method (BVDH),
suitable for fully coupled thermomechanical problems, is
developed and consistently treated for use within an FEM
framework. The reliability of BVDH solutions is verified for
semi-analytical and reference solutions, and its efficiency
is also successfully proved against standard computational
homogenization. The applicability of BVDH is demon-
strated for structural investigations by comparing simulation
results to experimental investigations. Dynamic loadings and
resulting inertia effects can be considered using BVDH for

structural applications. An investigation of the reliability and
efficiency of BVDH regarding these effects will be carried
out in future research. Focuswill also be set on localization of
deformation phenomena at dynamic loadings of inelastic het-
erogenous solids. Thus, the dynamic BVDH reliability needs
to be verified for different time integration procedures, e.g.,
implicit or explicit methods. It would also be interesting to
investigate the predictive capabilities of BVDH for field the-
ories other than thermomechanics, e.g., electro-mechanics.
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43. Božić M, Fleischhauer R, Kaliske M (2015) Thermomechanical
modeling of epoxy/glass fiber systems including interphasial prop-
erties. Eng Comput 33:1259

44. Miehe C (1988) Zur Behandlung thermomechanischer Prozesse.
PhD Thesis, Universität Hannover

45. Tømmernes V (2014) Implementation of the Arruda–Boyce mate-
rial model for polymers in Abaqus. Master’s Thesis, Norwegian
University of Science and Technology

123


	A novel approach to computational homogenization  and its application to fully coupled two-scale thermomechanics
	Abstract
	1 Introduction
	2 A boundary value driven approach  to computational homogenization
	2.1 Theoretical setting
	2.1.1 Kinematics and isoparametrical relations at different length scales
	2.1.2 Thermomechanical equilibrium at different length scales
	2.1.3 Linearized thermomechanical equilibrium at different length scales

	2.2 Algorithmic treatment

	3 Verification examples of BVDH
	3.1 One-dimensional thermoelasticity at small strains
	3.1.1 Excitation of the temperature field
	3.1.2 Excitation of the displacement field

	3.2 Three-dimensional uniaxial tensile test
	3.2.1 Comparison of reliability
	3.2.2 Comparison of efficiency

	3.3 Three-dimensional inhomogeneous compression test
	3.3.1 Comparison of reliability
	3.3.2 Comparison of efficiency

	3.4 Mesh density dependency
	3.5 Length scale ratio dependency

	4 Application example of BVDH
	5 Conclusion and outlook
	Acknowledgments
	References




