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Abstract This study makes the first attempt to extend the
meshless boundary-discretization singular boundary method
(SBM) with time-dependent fundamental solution to two-
dimensional and three-dimensional scalar wave equation
upon Dirichlet boundary condition. The two empirical for-
mulas are also proposed to determine the source intensity
factors. In 2D problems, the fundamental solution inte-
grating along with time is applied. In 3D problems, a
time-successive evaluation approach without complicated
mathematical transform is proposed. Numerical investiga-
tions show that the present SBM methodology produces the
accurate results for 2D and 3D time-dependent wave prob-
lems with varied velocities c and wave numbers k.

Keywords Singular boundary method · Time-dependent
fundamental solutions ·Wave equation ·Empirical formulas ·
Boundary discretization method

1 Introduction

The phenomenon of wave propagation is widely encountered
in a variety of engineering disciplines, such as the stress
wave in an elastic solid, water wave, and sound wave etc [1–
3]. The development of highly accurate and efficient wave
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solvers remains an important and challenging research topic
even though there are diverse numerical methods available
today for solving the wave equation, such as the finite ele-
ment method (FEM) [4–6], the boundary element method
(BEM) [7–9], the method of fundamental solutions (MFS)
[10–12] the finite difference method [13,14], the finite vol-
ume method [15,16], and, most recently, meshless method
[17–19].

However, the standard domain discretiztion methods such
as the finite element, finite difference and finite volumemeth-
ods, require troublesome mesh generation for 3D problems
and are not efficient for unbounded domain problems. On
the other hand, the BEM encounters time-consuming and
mathematically sophisticated issue of the numerical integra-
tion over singularities. As for the MFS, the placement of the
fictitious boundary is vital for its reliability and numerical
accuracy, and remains an open issue to be optimally deter-
mined, especially for multi-connected or complex-shaped
domain problems.

To remedy the above-mentioned drawbacks, the SBM[20]
was proposed in 2009 as a strong-form boundary collocation
method free of mesh and integration. In order to regularize
the singularities of the fundamental solutions upon the coin-
cidence of the source and collocation points, the concept of
the source intensity factors (SIFs) was introduced, and it is
also called the origin intensity factors in some literatures
[20]. The SBM overcomes the harassing mesh generation in
the traditional FEM and the perplexing fictitious boundary
in the MFS. On the other hand, in comparison with the BEM
[21–23], the SBM introduces the SIFs to instead of singular
integrals, which makes the SBM get higher numerical accu-
racy and faster convergence rate than the BEMwith the same
computing resources [24].

Under the extensive studies, several techniques have been
proposed to determine the SIFs in the SBM of both the fun-
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Fig. 1 Domain of the 2D scalar wave equation

damental solutions and their derivatives [25,26]. Numerical
investigations show that these techniques help the SBM pro-
vide accurate solutions in the Helmholtz [27], potential [20],
waterwave [28,29], elastic and acousticwaves [30] problems
with arbitrarily complex-shaped computational geometries.

This study makes the first attempt to extend the SBM
with time-dependent fundamental solution to 2D and 3D
scalar wave equations upon Dirichlet boundary condition.
In the present SBM formulation, two empirical formulas are
proposed to determine the SIFs. In 2D problems, the fun-
damental solution integrating along with time is applied. In
3D problems, a time-successive evaluation approach with-
out complicatedmathematical transform is proposed. A brief
outline of this paper is as follows. Section 2 describes the
numerical methodology of the SBM using time-dependent
fundamental solution for scalar wave equations. In Sect. 3,
the efficiency and accuracy of the present approach are exam-
ined in 2D and 3D benchmark examples in comparison with
the analytical and linear BEM solutions. Finally, Sect. 4 con-
cludes this study with some remarks.

2 Numerical methodology

2.1 SBM for 2D wave equation with Dirichlet boundary
condition

The 2D time-dependent wave equation can be written as

u =

⎧
⎪⎨

⎪⎩

�u − 1
c2

∂2u
∂t2

= 0, (x, y) ∈ �, t > 0
u |� = u
u
∣
∣t=0 = u0,

∂u
∂t

∣
∣
t=0 = υ1

, (1)

where � is the computational domain with boundary � as
shown in Fig. 1, u the physical variable, c the wave speed, t
denotes time.

The fundamental solution of 2D scalar wave equation is
given by

G (t, r) = c

2π
√
c2t2 − r2

H (ct − r) , (2)

where the H(x) is the Heaviside function

H (x) =

⎧
⎪⎨

⎪⎩

0 f or x < 0

1/2 f or x = 0

1 f or x > 0

. (3)

The original wave equation u can be interpreted as an
initial-boundary value problems. In this paper, basing on the
superposition principle, we split the original equation into
two parts, i.e., u1 and u2. u1 can be interpreted as a boundary
value problemandu2 can be considered the initial value prob-
lem. The solution of Eq. (1) can be separated as u = u∗

1+u∗
2,

where

u∗
1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�u∗
1 − 1

c2
∂2u∗

1
∂t2

= 0, (x, y) ∈ �, t > 0

u∗
1 |� = u − u∗

2 = u∗
1

u∗
1

∣
∣
∣t=0 = 0,

∂u∗
1

∂t

∣
∣
∣
t=0

= 0

, (4)

u∗
2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

�u∗
2 − 1

c2
∂2u∗

2
∂t2

= 0, t > 0

u∗
2

∣
∣
� = u∗

2

u∗
2

∣
∣
∣t=0 = 0,

∂u∗
2

∂t

∣
∣
∣
t=0

= 0 (x, y) /∈ �

u∗
2

∣
∣
∣t=0 = u0,

∂u∗
2

∂t

∣
∣
∣
t=0

= υ1 (x, y) ∈ �

. (5)

At first, consider the initial value problem Eq. (5), the u∗
2 can

be calculated directly by using 2D poisson formulation [17]

u∗
2(xi , tn) = 1

c2

∫∫

C
M0
ctn

u0
∂G

∂n
ds

+ 1

c2

∫∫

C
M0
ctn

υ1Gds, xi ∈ �, tn > 0. (6)

where u∗
2(xi , tn) represents the physical variable u∗

2 for the

point xi in domain � at time level tns, C
M0
ctn the circular

domain with radium ctn , M0 the projection point of the com-
putation point M , at the t = 0s plane in the domain �, and
the center point of the circular domain CM0

ctn . In Eq. (5), we

only need to calculate Eq. (6) in CM0
ctn ∩� domain, called the

corresponding range of influence of the computation pointM
in this paper. And then the SBM only places the field points
inCM0

ctn ∩� domain for every computation point M as shown
in Fig. 2a, b.

In the 2D poisson formulation, the fundamental solution
G have singularities when r = ct �= 0. To remove these
singularities, we introduce a non-singular integral approach.
This paper replaces the point source by using line source
from r1 to r2 at arbitrary angles as shown in Fig. 3.
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Fig. 2 Distribution of the source, field and computation points a 3D plot; b 2D contour plot

Fig. 3 Domain of the annulus

The singular term Gii can be represented as follows

Gii =
∫ r2
r1

cr√
c2t2−r2

dr

π(r22 − r21 )
when r = ct �= 0. (7)

Then it can be rewritten as

Gii = c

π

√

r22 − r2
1

when r = ct �= 0, (8)

where point O is at (0, 0, t), r2 = ct denotes the outer
radium, r1 represents the inner radium. And the annulus
domain is on t = 0s plane.

Then, consider the boundary value problem Eq. (4). The
SBM uses the fundamental solutionG integrating along with
time as the kernel function

G∗ =
t∫

0

Gdτ

= 1

2π

[
H(c(t − τ) − r) cosh−1(c(t − τ)/r)

]∣
∣
∣
τ=t

τ=0
, (9)

Fig. 4 Distribution of the source points

where G∗ is the fundamental solution G integrating along
with time, i.e., G∗ = ∫ t0 Gdτ .

When we need to calculate the physical variable u∗
1 in

domain � at tns, the SBM only places the source points on
the physical boundary � at t = tns as shown in Fig. 4. The
solution u∗

1 (xi , tn) for the computation point xi in domain�

at t = tns can be approximated by a linear combination of
kernel function G∗ with respect to different source points s j
as below

u∗
1 (xi , tn) = u (xi , tn) − u∗

2 (xi , tn)

=
N∑

j=1

α j (tn)G
∗(
∣
∣xi − s j

∣
∣ , tn), (10)

where u∗
1(xi , tn) represents the physical variable u∗

1 of the
point xi in domain � at time level tns, N the number of
source points,α j (tn) the jth unknown coefficient at time level
tns, G∗(

∣
∣xi − s j

∣
∣ , tn) = ∫ tn0 Gdτ the kernel function at tns,∣

∣xi − s j
∣
∣ the distance between source point s j and colloca-

tion point xi .
The SBMplaces all computing nodes on the samephysical

boundary. Consequently, the source points
{
s j
}
and the col-

location points {xi } are the same set of boundary nodes. The
kernel function G∗ encounters singularities when xi = s j .

123



720 Comput Mech (2016) 58:717–730

To solve this singular problem, the SBM introduces the con-
cept of the source intensity factors. When xi = s j , we use
source intensity factors replacing the singular terms in the
SBM interpolation formulation. Thus the SBM interpolation
formulation can be expressed as

u∗
1 (xi , tn) = u (xi , tn) − u∗

2 (xi , tn)

=
N∑

j=1, j �=i

α j (tn)G
∗ (∣∣xi − s j

∣
∣ , tn
)

+αi Q
∗
i (tn), (11)

where u∗
1(xi , tn) is the solution of the Eq. (4) for the col-

location point xi on the boundary � at tns, u∗
2(xi , tn) the

solution of the Eq. (5) for the collocation point xi on the
boundary � at tns and u(xi , tn) the solution of the Eq. (1)
for the collocation point xi on the boundary � at tns. Q∗

i (tn)
denotes the SIFs at tns. The technique to determine the SIFs
will be introduced in the subsequent section. By substitut-
ing the boundary conditions u(xi , tn), u∗

2(xi , tn)and source
intensity factors Q∗

i (tn) into Eq. (11), we can determine the
unknown coefficients

{
α j (tn)

}
from Eq. (11). After we get

the unknown coefficients
{
α j (tn)

}
, the solution u∗

1(xi , tn) of
Eq. (4) in the computational domain� at tns can be obtained
from Eq. (10).

With the superposition principle, the solution u(xi , tn) of
Eq. (1) in the computational domain� at time level tns can be
obtained from u = u∗

1 + u∗
2. Fig. 2a, b illustrate the location

of the source and the field points for one computation point
M in domain �.

The technique to determine the SIFs will be introduced
in this section. In comparison with the inverse interpolation
technique (IIT) [30], an empirical formula is proposed to
determine the SIFs of the kernel function G∗ at xi = s j in
Eq. (11). The kernel function G∗ can also be written as

G∗ =
∫ t

0
Gdτ = 1

2π

[
H(c(t − τ) − r) (log(c(t − τ)

+
√
c2(t − τ)2 − r2) − log(r)

)]∣
∣
∣
τ=t

τ=0
. (12)

It can be found that the kernel function G∗ has the same order
of singularities with the fundamental solution of 2D Laplace
equation log(r)when si = s j [30]. By implementing the SIF
empirical formula of 2D Laplace equation [25]

G j
0 = log

(
L j

2π

)

. (13)

The detailed derivation of Eq. (13) is given in Appendix 1.
The SIFs at time level tn of 2D wave equation can be given
by

1−jS

jS

1+jS
11 +− jj SS

Fig. 5 The schematic configuration of the source points s j and the

curve in 2D problems

Q∗
j (tn) = 1

2π

[

H(c(tn − τ) − L j

2π
) (log(c(tn − τ)

+
√

c2(tn − τ)2 − (
L j

2π
)2) − log(

L j

2π
)

)]∣
∣
∣
∣
∣

τ=tn

τ=0

,

(14)

where L j is the corresponding range of influence of the
source point s j . For 2D problem, L j is half length of the
curve s j−1s j+1 between the source points s j−1 and s j+1 as
shown in Fig. 5.

To investigate the accuracy and efficiency of the proposed
empirical formulas. we make the investigation on numerical
accuracy of the empirical formula against time t as shown in
Fig. 6. The X axis is

log

⎛

⎝c(t − τ) +
√

c2(t − τ)2 −
(
L j

2π

)2
⎞

⎠ (15)

And the Y axis is the source intensity factors.
We find that the slope of the linear fitting curve is about

0.1592 ≈ 1
2π , which is in good agreement with Eq. (14). It

can be demonstrated that the form of the present empirical
formula is valid in time direction.

Then, Fig. 7 shows the SIFs obtained by the empirical
formula (14) and the inverse interpolation technique against
the corresponding influence area L j , and the test domain
is a circle with radium 1. It can be observed that the SIFs
obtained by the empirical formula are in good agreement
with the inverse interpolation technique results with Err =
2.61E − 3.

And it is worthy of stressing that there is still no analyti-
cal solution of the SIFs for 2D wave problems. By using the
inverse interpolation technique, the SIFs can easily be cal-
culated, but the inverse interpolation technique is not always
numerically stable because of the inverse interpolation, and
this is also the reason that we do the present study to find
an empirical formula to evaluate the SIFs. In this paper, the
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Fig. 6 The source intensity
factors against time

Fig. 7 The source intensity
factors against the range of
influence L j

SIFs with the inverse interpolation technique is used as a ref-
erence solution (blue circle in Fig. 7) to verify the accuracy
and efficiency of the proposed empirical formula (red point
in Fig. 7).

2.2 SBM for 3D wave equation with Dirichlet boundary
condition

The 3D time-dependent wave equation is stated as

u =

⎧
⎪⎨

⎪⎩

�u − 1
c2

∂2u
∂t2

= 0, (x, y, z) ∈ �, t > 0
u |� = u
u
∣
∣t=0 = u0,

∂u
∂t

∣
∣
t=0 = υ1

. (16)

Its fundamental solutions is

G (r, t) = 1

4πr
δ [(t − τ) − r/c] , (17)

where δ is the Dirac delta distribution. Note that the fun-
damental solution G merely expresses the present potential
in values of the potential at previous moments called the

retarded moment. The retardation corresponds to the time
required for a wave to travel between the source and the
collocation points. Consequently, once the corresponding
unknown coefficients

{
α j (tR)

}
of the source points

{
s j
}
are

obtained at a certain time, the numerical results at the next
time step can be calculated.

By analogy with the SBM for 2Dwave equation, the solu-
tion of Eq. (16) can be split as u = u∗

1 + u∗
2.

u∗
1 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�u∗
1 − 1

c2
∂2u∗

1
∂t2

= 0, (x, y, z) ∈ �, t > 0

u∗
1 |� = u − u∗

2 = u∗
1

u∗
1

∣
∣
∣t=0 = 0,

∂u∗
1

∂t

∣
∣
∣
t=0

= 0

, (18)

u∗
2 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�u∗
2 − 1

c2
∂2u∗

2
∂t2

= 0, t > 0

u∗
2

∣
∣
� = u∗

2

u∗
2

∣
∣
∣t=0 = 0,

∂u∗
2

∂t

∣
∣
∣
t=0

= 0 (x, y, z) /∈ �

u∗
2

∣
∣
∣t=0 = u0,

∂u∗
2

∂t

∣
∣
∣
t=0

= υ1 (x, y, z) ∈ �

. (19)
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Fig. 8 The Distribution of the source and the field points for 3D problems

The solution u∗
2 of Eq. (19) can be calculated directly by

using the following 3D poisson formulation [18]

u∗
2(xi , tn) = 1

4π

∂

∂r

∫∫

SMct

u0
r
ds + 1

4cπ

∫∫

SMct

υ1

r
ds, xi ∈ �,

(20)

where u∗
2(xi , tn) represents the physical variable u∗

2 of the
point xi in domain� at time level tns. SMctn is a sphere surface
with radium ctn , M the center point of the sphere surface. In
Eq. (19), we only need to calculate Eq. (20) in SMctn ∩ �

domain, called the corresponding range of influence of the
computation point M in this paper. So the SBM only places
field points in the SMctn ∩ � domain for every computation
point M as shown in Fig. 8b.

Then, consider the solution u∗
1 of Eq. (18), with the Huy-

gens principle, “every point on the boundary reached by a
wave acts as a source” [18]. We can assume that there is a
series of wave sources α(r) = γ (xm, ū, t) on the bound-
ary, the sum of these secondary waves determines the form
of the wave at any subsequent time in the domain �. Where
α(r) = γ (xm, ū, t) denotes the secondarywave source inten-
sity. Then, the physical variable u∗

1(xi , tn) in the domain �

at time level tn can be expressed as

u∗
1(xi , tn) =

∫∫∫

�

α(r)

4πr
δ
(
tn − r

c

)
dv, xi ∈ �, tn > 0.

(21)

The SBM places the source points on the boundary �

as shown in Fig. 8a, and uses �t as the time interval.
The superscripts of t represent the time level. The solu-
tion u∗

1 (xi , tn) for the computation point xi in domain �

at tn ∈ ((n − 1) �t, n�t) can be approximated by a linear
combination of fundamental solution G with respect to dif-
ferent source points s j as below

u∗
1 (xi , tn) = u (xi , tn) − u∗

2 (xi , tn)

=
N∑

j=1

αj (tR)G
(∣
∣xi − s j

∣
∣ , tR
)
,

tR = tn − r

c
> 0 i = 1, 2, 3...... (22)

where α j (tR) is the jth unknown coefficient at the retarded
moment tR ,G(

∣
∣xi − s j

∣
∣ , tR) the fundamental solution of 3D

scalar wave equation at the retardedmoment tR ,
∣
∣xi − s j

∣
∣ the

distance between source point s j and collocation point xi .
In time-harmonic wave, we can assume that

α j (tR) = α∗
j (tR) e−iωtR ≈ α∗

j
(tm�t ) e

−iωtR , (23)

where 0 ≤ tm�t−tR < �t , if tR < 0, thewave does not reach
the collocation points, α j (tR) = α∗

j (tR) = 0. ω denotes the
wave frequency, k = ω/c the wave number.

When xi = s j , we use source intensity factors replacing
the singular terms in the SBM interpolation formulation. The
technique to determine the SIFs will be introduced in the
subsequent section. Thus, the SBM interpolation formulation
can be expressed as

u∗
1 (xi , tn) = u (xi , tn) − u∗

2 (xi , tn)

=
N∑

j=1, j �=i

αj (tR)G
(∣
∣xi − s j

∣
∣ , tR
)

+αi (tR) Qi (tR),

tR = tn − r

c
> 0 i = 1, 2, 3...... (24)

α j (tR) = α∗
j (tR) e−iωtR ≈ α∗

j
(tm�t ) e

−iωtR , (25)

where u∗
1(xi , tn) is the solution of the Eq. (18) for the colloca-

tion point xi on the boundary � at tns, u∗
2(xi , tn) the solution

of the Eq. (19) for the collocation point xi on the boundary
� at tns and u(xi , tn) the solution of the Eq. (16) for the col-
location point xi on the boundary � at tns. Qi (tR) the SIFs

123



Comput Mech (2016) 58:717–730 723

Fig. 9 The source points s j and the corresponding infinitesimal area
L j in 3D problems

at the retarded moment, 0 ≤ tm�t − tR < �t , if m < n,
the unknown coefficient α j (tR) has been calculated in the
previous steps. If tR < 0, the wave does not reach the col-
location points, α j (tR) = α∗

j (tR) = 0. ω denotes the wave
frequency, k = ω/c the wave number. By substituting the
boundary conditions u(xi , tn), u∗

2(xi , tn)and source intensity
factors Qi (tR) into Eqs. (24) and (25), we can calculate the
unknown coefficient α j

∗ (tn�t ) at tn = n�ts and α j (tR)

at the retarded moment. At last, the solutions u∗
1 (xi , tn) of

the Eq. (18) in the computational domain � at tns can be
obtained from Eqs. (22) and (23).

With the superposition principle, the solution u(xi , tn) of
Eq. (16) for the computation point xi in the computational
domain� at time level tns can be obtained from u = u∗

1+u∗
2.

The technique to determine the SIFs is introduced in this
section. InEq. (24), the fundamental solutionG has singulari-
tieswhen xi = s j . Due to the property of the sameorder of the
singularities between the fundamental solutions of Laplace
equation [30] and wave equation at the retarded moment tR ,
the SIFs Qi at the retarded moment can be expressed as

Qi = Q0
i + B, (26)

Q0
i = (xi ) −∑N

j=1, j �=i G0
(∣
∣x j − xi

∣
∣
)
L j

Li
, (27)

where (xi ) = ∫
�
G0 (|xi − s|) d� (s) is the integration

of the fundamental solution G0 over the whole physical
boundary, G0 (|xi − s|) = 1

4πr(|xi−s|) the fundamental solu-

tion in 3D Laplace equation,
∣
∣xi − s j

∣
∣ the distance between

source point s j and collocation point xi . L j the corre-
sponding range of influence of source points s j as shown
in Fig. 9, Q0

i the SIFs for 3D Laplace equation, Qi the
SIFs for 3D wave equation at the retarded moment tR ,
B = ik

4π in 3D wave equation upon Dirichlet boundary
condition.

Under the extensive studies, we find that in some spe-
cific solid of revolution domain, the (xi ) can be calculated
directly to avoid the numerical integration. For example, in

sphere-shaped domain, the (xi ) can be calculated directly
by

(xi ) = 1

4π

∫ 2π

0

∫ π

0

R2 sin(θ)
√
2R2(1 − cos θ)

dθdφ = R. (28)

3 Numerical results and discussions

In this section, the accuracy and efficiency of the present
SBM are tested to 2D and 3D benchmark examples in com-
parison with the analytical and linear BEM solutions. The
numerical accuracy can be measured by the absolute root
mean square errors (Err) and the relative root mean square
errors (Rerr) as stated below

Err(u) =
√
√
√
√ 1

NT

NT∑

k=1

|u(k) − ū(k)|2, (29a)

Rerr(u) =
√

1
NT

∑NT
k=1 |u(k) − ū(k)|2

√
1
NT

∑NT
k=1 |ū (k)|2

, (29b)

where ū (k) and u (k) are the analytical and numerical solu-
tions at xi , respectively, and NT is the total number of the
test points in the interest domain �. To investigate the con-
vergence rate of the present approach in 3D problems, the
following formulation is introduced.

C3D = −2
ln (Error (N1)) − ln (Error (N2))

ln (N1) − ln (N2)
, (30)

where Error (N1) and Error (N2)denote the errorsRerr (u)

or Err (u) of the SBM with N1 and N2 source points,
respectively. In the direct linear BEM, the discretization for-
mulation introduced in reference [18] is adopted.

3.1 Error analysis

3.1.1 SBM for 2D wave equation

Example 1 The vibrations of thin membrane in square
domain with zero initial conditions.

Consider the unit square domain, namely, a = 1, b = 1. In
this case, the present SBM uses 40 source points (Ns = 40)
and zero field points (N f = 0), where the distribution of
source points is shown in Fig. 10.And the governing equation
is given by

⎧
⎪⎪⎨

⎪⎪⎩

utt = c2
(
uxx + uyy

)
, 0 < x < a, 0 < y < b, t > 0,

u|t=0 = ut |t=0 = 0, 0 ≤ x ≤ a, 0 ≤ y ≤ b,
u|x=0 = u|x=a = 0, 0 ≤ y ≤ b, t ≥ 0,
u|y=0 = 0, u|y=b = sin πx

a sin t, 0 ≤ x ≤ a, t ≥ 0.
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The analytical solution is given by

u(x, y, t) = y

a
sin
(πx

a

)
sin t +

∞∑

m=1

(

b1m sin λ1mct

+ f1m
u1m

sin t

)

sin
(πx

a

)
sin
(mπy

b

)
,

where

λnm = π

√

n2

a2
+ m2

b2
,

f1 j = 4

ab2

(

1 − c2π2

a2

)∫ a

0

∫ b

0
y sin2

πx

a
sin

jπy

b
dxdy

= 2 (−1) j+1

jπ

(

1 − c2π2

a2

)

, j ≥ 1

μ1 j = c2λ21 j − 1 �= 0,

b1m = 2 (−1)m

cmλ1mπ
− f1m

cλ1mμ1m
, m ≥ 1

Figure 11 depicts the displacement history by SBM at
(0.8, 0.8),(0.5, 0.5) and (0.2, 0.2) with c = 10, respec-

Fig. 10 Distribution of the source and the computation points for 2D
membrane vibration problem in a square domain

tively. These results agree well with the analytical solution.
It shows that the SBM provides the accurate results for
two-dimensional membrane vibration problem even using
very few source points. Then, Fig. 12 depicts the Maximum
absolute errors (Merr) by SBM against time with different
velocities (c = 10, c = 20 and c = 50), respectively. At
last, we list the Table 1 to investigate the numerical accuracy
when the test points are close to the boundary and corner
with c = 10, t = 10, Ns = 40 and Nf = 0.

It can be observed that the present SBM has the good
performance with different velocities c. However, the error
analysis shows that numerical accuracy has slightly decrease
when the test points are close to the boundary and corner.

Fig. 12 TheMaximumabsolute errors (Merr) by the SBMagainst time

Table 1 The numerical results of SBM

Test point (0.1, 0.1) (0.1, 0.9) (0.9, 0.1) (0.9, 0.9)

Analytical −4.36E−3 −1.22E-−1 −4.36E-3 −1.22E−1

SBM −4.50E−3 −1.25E−1 −4.50E−3 −1.25E−1

Err 1.43E−4 3.02E−3 1.42E−4 3.00E−3

Rerr 3.28E−2 2.47E−2 3.26E−2 2.46E−2

Fig. 11 The evolution of
numerical results and analytical
solutions in square domain
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Fig. 13 Distribution of the
source, field and computation
points a 3D plot Distribution of
the source, field and
computation points, b 2D
contour plot

It is interesting to notice that the SBMcan solve this exam-
ple without using field points due to the initial conditions are
zero in this case. Moreover, we only place the source points
at one certain time level tn as shown in Fig. 2, since 2D kernel
function is the fundamental solutions integrating along with
time in the present SBM.

Example 2 The 2D wave propagation in annulus domain
with non-zero initial conditions.

Consider the annulus domain with outer radium R2 = 0.5
and inner radiumR1 = 0.2. In this case, the present SBMuses
70 source points (Ns = 70) and 1255 field points for every
computation point (N f = 1255), where the distribution of
source points is shown in Fig. 13.And the governing equation
is given by

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

utt = c2
(
uxx + uyy

)
, (x, y) ∈ �

u|t=0 = 0
ut |t=0 = ck sin( k√

2
(x + y))

ū = sin( k√
2
(x + y)) sin(ckt), (x, y) ∈ �

.

In this example, the effect of wave number kon numerical
accuracy is investigated. We fix the velocity c = 10 and
choose three different wave numbers

(
k1 = π

8 , k2 = π
6 and

k3 = π
3

)
. The test points are placed on three circles having

radium 0.3, 0.35 and 0.4, respectively. Figure 14 depicts the
SBM numerical results in comparison with analytical and
linear BEM solutions. It is observed that the SBM solution
agreewell with the analytical solutions andBEM results with
70 boundary elements.

Figure 15 depicts the Maximum absolute errors (Merr) by
SBM against time with different wave numbers

(
k1 = π

8 ,

k2 = π
6 andk3 = π

3

)
. The test points are placed on a circle

with radium 0.4.
It can be observed that the present SBM resultswith differ-

ent wave numbers are in good agreement with the analytical
solutions along with time evolution. And it is worthy of
stressing that the SBM only places field points in the cor-
responding range of influence for every computation point
M in 2D problems as shown in Fig. 13.

3.1.2 SBM for 3D wave equation

Example 3 Wave propagation in a sphere domain.
We first consider a simple case of 3D wave propagation in

a sphere domain with radium 1. And the governing equation
is given by
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Fig. 14 The numerical results
and analytical solutions against
angular coordinate θ in annulus
domain case

Fig. 15 TheMaximumabsolute errors (Merr) by the SBMagainst time

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

utt = c2
(
uxx + uyy + uzz

)
, (x, y, z) ∈ �

u|t=0 = 0

ut |t=0 = ck cos
(

k√
3
(x + y + z)

)

ū = cos
(

k√
3
(x + y + z)

)
sin(ckt), (x, y, z) ∈ �

.

In this case, the SBMuses time interval�t = 2×10−1 under
velocity c = 10 and the field points number N f = 1255
for every computation point. The test points are placed on
a sphere surface with radium 0.5 at t = 1s. Fig. 16 shows
the SBM results against the number of source points under
different wave numbers (k1 = 0.5, k2 = 1 and k3 = 3). It
can be found from Fig. 16 that the SBM converges rapidly to
the analytical solution with C = 2.0. And the more accurate
results are obtained with the decreasing wave number.

Ck=0.5 = 2.0, Ck=1 = 2.0, Ck=3 = 2.2

Then, we use time interval �t = 2×10−1 under wave num-
ber k = 1 with source points number Ns = 324 and field
points number N f = 1255 for every computation point. The
test points are placed on a line x = y = z, x ∈ (−0.5, 0.5).

Fig. 16 The relative rootmean square errors (Rerr) by the SBMagainst
source points number Ns

Fig. 17 The evolution of numerical results and analytical solutions in
sphere domain

Figure 17 depicts the SBM numerical results under varied
velocity c1 = 10, c2 = 50, and c3 = 100, respectively,
which match well with the analytical solutions and BEM
results with 324 boundary elements.

To further investigate the SBM performance, we use time
interval �t = 2 × 10−1 under velocity c = 10 with source
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Fig. 18 The absolute rootmean square errors (Err) by the SBMagainst
time t in sphere domain

Fig. 19 Real part of the analytical and numerical solutions

points number Ns = 900 andfield points number N f = 1255
for every computation point. The test points are placed on a
sphere surface of radium 0.5. Fig. 18 shows that the SBM
results with respect to time under different wave numbers
(k1 = 0.5, k2 = 1 and k3 = 3).

Example 4 Wave propagation for exterior problem.
Consider the acoustic radiation from a pulsating sphere

with radium a = 1 and uniform radial velocity v0. The
analytical solution of the pulsating-sphere model can be rep-
resented as [28]

u (r, θ, t) = a

r

(
ikaz0
ika − 1

)

v0e
ik(r−a)+iwt ,

where z0 = ρ0c is the characteristic impedance of the
medium in which ρ0 denotes the density of the medium and
c the sound velocity and ω = kc the wave frequency.

The Figs. 19 and 20 show the real parts Re
(
u(2a,0,0)

z0v0

)

and imaginary parts Im
(
u(2a,0,0)

z0v0

)
of the non-dimensional

solution with source points number Ns = 400 and �t =
0.5s.

Fig. 20 Imaginary part of the analytical and numerical solutions

Fig. 21 The distribution of source points on the tire surface

It can be observed that the SBM results remain in good
agreement with the analytical solutions, except ka = π with
slight difference. In addition, the MFS can match well with
the analytical solutionswhen the fictitious boundary d = 0.5.
However, when d = 0.9, there is considerable error. And it is
worthy of stressing that the field point is no longer required
in the SBM for this exterior problem.

Example 5 Wave propagation in a tire-shaped domain.
Consider 3D wave propagation in a tire-shaped domain.

The tire surface is defined by the following equation

{(x, y, z) |x = (R + r cosϕ) cos θ, y=(R + r cosϕ) sin θ,

z = r sin ϕ, 0 ≤ θ, ϕ < 2π} ,

where R = 0.8, r = 0.2. The distribution of source points
on the tire surface is shown in Fig. 21.

And the governing equation is given by

⎧
⎪⎪⎨

⎪⎪⎩

utt = c2
(
uxx + uyy + uzz

)
, (x, y, z) ∈ �

u|t=0 = 0
ut |t=0 = ck(cos(kx) + cos(ky) + cos(kz))
ū = (cos(kx) + cos(ky) + cos(kz)) sin(ckt), (x, y, z)∈�

.
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Fig. 22 The relative rootmean square errors (Rerr) by the SBMagainst
source points number Ns

Fig. 23 TheMaximumabsolute errors (Merr) by the SBMagainst time
t in tire-shape domain

In this case, we use time interval �t = 2 × 10−1 under
velocity c = 10 and the field points number N f = 1255
for every computation point. The test points are placed on a
circle having radium 0.8 at t = 1s. Figure 22 shows the SBM
results against the number of source points for Example 5
with different wave numbers (k1 = 0.5, k2 = 5 and k3 =
10). It can be found from Fig. 22 that the SBM converges
rapidly to the analytical solution with C = 2.0, and the rate
of convergence can even reach C = 5.0 when k = 5.

Ck=0.5 = 2.3, Ck=5 = 5.0, Ck=10 = 3.0

Then, we use time interval �t = 2× 10−1 under velocity
c = 10 with source points number Ns = 972 and the field
points number N f = 1255 for every computation point. The
test points are placed on a circle with radium 0.8. Figure 23
depicts the SBM results with respect to time at different wave
numbers (k1 = 0.5, k2 = 5 and k3 = 10). It can be observed
that as time evolves, the numerical results remain in good
agreement with the analytical solutions even in the multi-
connected domain.

Through all these 3D benchmark numerical examples,
it can be observed that the present SBM results are quite

accurate under different velocities c and wave numbers k.
And as time evolves, the efficiency and accuracy of the
numerical results are still in good agreement with the analyt-
ical solutions. The SBM converges remarkably rapidly with
the increasing boundary node number Ns . The error analy-
sis shows that the present SBM has rapid convergence rate
(C3D = 2) for 3D wave propagation.

4 Conclusions

This study makes the first attempt to extend the SBM with
time-dependent fundamental solution to two-dimensional
and three-dimensional scalar transient wave equation upon
Dirichlet boundary condition. In the present SBM, two
empirical formulas are proposed to determine the SIFs in
2D and 3D problems, respectively.

In 2D problems, the fundamental solution integrating
along with time is applied. The SBM only places the source
points at the interested time level tn . By introducing the con-
cept of the source intensity factors, there is no numerical
integration by the SBM in 2D problems.

In 3D problems, a time-successive evaluation approach
based on Huygens principle is proposed, and the time-
dependent fundamental solution is applied. There is no
complicatedmathematical transformby the SBM in 3Dprob-
lems, and the concept of the field point is introduced.

In this paper, a fundamental difference between the 2Dand
3D cases is observed. “The influence due to a source function
at the point r, on the potential at (r0, t0) is restricted to the
value at the retarded time tR = t0 − |r − r0|/c for the 3D
case, whereas, for 2D case, the influence has to be integrated
from −∞ to tR [18]”. This difference in response behaviors
is because the 2D wave has aftereffect phenomenon, i.e., the
dispersion of waves. And in contrast, the 3D wave does not
have such an aftereffect phenomenon.

In 2Dproblems, because thewave has aftereffect phenom-
enon, the range of influenceCM0

ctn ∩�will become larger and
larger as time evolves. However, it will not be larger than
the domain �. In 3D problems, the wave does not have the
aftereffect phenomenon. The field point is no longer required
after a certain time, because the range of influence SMctn ∩ �

equals zero at that time.
In several benchmark numerical experiments, it can be

observed that the present SBM results are quite accurate
under different velocities c and wave numbers k. As time
evolves, the efficiency and accuracy of the numerical results
remain in good agreementwith the analytical solutions. In 3D
wave propagation problems, the SBM converges remarkably
quickly with the increasing boundary node number Ns . The
error analysis shows that the present SBM scheme has rapid
convergence rate C3D = 2 in all tested 3D examples. With-
out mesh and complicated mathematical transform, the SBM
appears computationally efficient and may be considered a
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competitive alternative after further numerical and theoreti-
cal study.

It isworth noting that as the first step,we have only consid-
ered the 2D and 3D wave equation upon Dirichlet boundary
conditions in this study. And the SBM with time-dependent
fundamental solutions for scalar wave equation upon Neu-
mann boundary conditions and Robin boundary conditions
is under intense study and will be reported in a subsequent
paper.
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Appendix: The detailed derivation of Eq. (13)

The derivation of Eq. (13) will be provided via a circle
domain with uniformly distributed points. It is beyond our
capability to derive this formula in more general situations.
However, our numerical experiments show that Eq. (13) can
be extended to irregular domains with non-equally distrib-
uted points.

Consider a 2D Laplace equation on Dirichlet boundary
condition

∇2u (x) = 0, x ∈ �, (31)

u (x) = ū (x) , x ∈ �D, (32)

where ∇2 denotes the Laplacian operator, u(x) represents
the potentials in domain �, ū(x) is the known function, �D

represents the Dirichlet boundary conditions.
The formulation of the SBM can be stated as

u (xm) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

N∑

n=1
αnG0 (xm, sn), xm ∈ �\∂�

N∑

n = 1
n �= m

αnG0 (xm, sn) + αmUm
0 , xm ∈ �D

,

(33)

where G0(xm, sn) = ln(rmn) is the fundamental solution of
2D Laplace equations, Um

0 the source intensity factors, αn

the unknown coefficient.
Consider� a circlewith radius R. {xm}Nm=1 denote the col-

location and source points uniformly placed on the boundary
∂�. Ln represents the length of the auxiliary line in 2D as
shown in Fig. 5.

For xm ∈ ∂�, it is easy to verify that the following contour
integral is zero.

∮

ln(r(xm, s)/R)d�s = 0, (34)

where r is the distance between xm and source points s on
the circle. Eq. (34) can be discretized as

N∑

n=1

ln(r(xm, xn)/R) = 0. (35)

Due to the symmetry property of the circle, the derivation is
independent of the indices of the collocation points. m = 1
is used in the following derivation. Hence, we have

N∑

n=1

ln(r(x1, xn)/R) = 0, (36)

where x1 = (1, 0). Notice that

r(x1, xn) = 2R sin

(
n − 1

N
π

)

. (37)

Substituting Eq. (37) into Eq. (36), and define the desingu-
larized value of the natural logarithm function as a,

a = ln R − ln

(

2N−1
N∏

n=2

sin

(
n − 1

N
π

))

. (38)

The key issue is to determine the value of
∏N

n=2 sin
( n−1

N π
)
.

Let ω = cos(2π/N ) + i sin(2π/N ) = exp(2π i/N ). Note
that ω is a solution of the equation

zN − 1 = 0. (39)

Similarly, ω2, ω3, ..., ωN−1 are also the solution of Eq. (39).
After some algebraic manipulations, Eq. (39) is equivalent
to

zN−1 + zN−2 + · · · + z + 1

= (z − ω)(z − ω2) · · · (z − ωN−1), (40)

For z = 1, we obtain

N = (1 − ω)(1 − ω2) · · · (1 − ωN−1). (41)

It follows that

N = |1 − ω|
∣
∣
∣1 − ω2

∣
∣
∣ · · ·
∣
∣
∣1 − ωN−1

∣
∣
∣ . (42)

Since

1 − ωk = 2 sin
kπ

N

(

sin
kπ

N
− i cos

kπ

N

)

. (43)

We have

∣
∣
∣1 − ωk

∣
∣
∣ = 2 sin

kπ

N
. (44)
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Therefore,

N∏

n=2

sin

(
n − 1

N
π

)

= N

2N−1 . (45)

From Eqs. (38) and (45), we have

a = ln(R/N ). (46)

It follows that Um
0 for the natural logarithm function is

Um
0 = ln

(
2πR

2πN

)

= ln

(
Lm

2π

)

, (47)

where Lm = 2πR/N .

References

1. Young DL, GuMH, Fan CM (2009) The time-marching method of
fundamental solutions for wave equations. Eng Anal Bound Elem
33:1411–1425. doi:10.1016/j.enganabound.2009.05.008

2. Chen KH, Chen JT, Chou CR, Yueh CY (2002) Dual boundary
element analysis of oblique incident wave passing a thin sub-
merged breakwater. Eng Anal Bound Elem 26:917–928. doi:10.
1016/S0955-7997(02)00035-8

3. Šarler B (2009) Solution of potential flowproblems by themodified
method of fundamental solutions: Formulations with the single
layer and the double layer fundamental solutions. Eng Anal Bound
Elem 33:1374–1382. doi:10.1016/j.enganabound.2009.06.008

4. Zienkiewicz OC, Taylor RL (1991) The finite element method, 4th
edn. McGraw-Hill, New York

5. Avilez-Valente P, Seabra-Santos FJ (2004) A Petrov–Galerkin
finite element scheme for the regularized longwave equation. Com-
put Mech 34:256–270. doi:10.1007/s00466-004-0570-4

6. He ZC, Liu GR, Zhong ZH, Zhang GY, Cheng AG (2010)
Dispersion free analysis of acoustic problems using the alpha
finite element method. Comput Mech 46:867–881. doi:10.1007/
s00466-010-0516-y

7. ChenKH,Chen JT (2006)Adaptive dual boundary elementmethod
for solving oblique incident wave passing a submerged breakwa-
ter. Comput Method Appl Mech 196:551–565. doi:10.1016/j.cma.
2006.06.002

8. Cheng AHD, Cheng DT (2005) Heritage and early history of the
boundary element method. Eng Anal Bound Elem 29:268–302.
doi:10.1016/j.enganabound.2004.12.001

9. Carrer JAM, Mansur WJ, Vanzuit RJ (2009) Scalar wave equation
by the boundary element method: a D-bem approach with non-
homogeneous initial conditions. Comput Mech 44:31–44. doi:10.
1007/s00466-008-0353-4

10. Chen CS, Karageorghis A, Smyrlis YS (2008) The method of
fundamental solutions—a meshless method. Dynamic Publishers,
Atlanta

11. Gu MH, Young DL, Fan CM (2009) The method of fundamen-
tal solutions for one-dimensional wave equations. Comput Mater
Contin 11:185–208. doi:10.3970/cmc.2009.011.185

12. Chen CS, Fan CM, Monroe J (2008) The method of fundamen-
tal solutions for solving elliptic partial differential equations with
variable coefficients. In: Chen CS, Karageorghis A, Smyrlis YS
(eds) The method of fundamental solutions-a meshless method.
Dynamic Publishers Inc, Atlanta, pp 105–175

13. TanSR,HuangLJ (2014)An efficient finite-differencemethodwith
high-order accuracy in both time and space domains for modelling
scalar-wave propagation. Geophys J Int 197:1250–1267. doi:10.
1093/gji/ggu077

14. Chen HM, Zhou H, Zhang QC, Xia MM, Li QQ (2016) A k-
space operator-based least-squares staggered-grid finite-difference
method for modeling scalar wave propagation. Geophysics
81:T39–T55. doi:10.1190/geo2015-0090.1

15. Kim J, Kim D, Choi H (2001) An immersed-boundary finite-
volume method for simulations of flow in complex geometries.
J Comput Phys 171:132–150. doi:10.1006/jcph.2001.6778

16. Anastasiou K, Chan CT (1997) Solution of the 2D shal-
low water equations using the finite volume method on
unstructured triangular meshes. Int J Numer Meth Flu-
ids 24:1225–1245. doi:10.1002/(SICI)1097-0363(19970615)24:
11<1225:AID-FLD540>3.0.CO;2-D

17. Rabczuk T, Belytschko T (2004) Cracking particles: a simplified
meshfree method for arbitrary evolving cracks. Int J Numer Meth-
ods Eng 61:2316–2343. doi:10.1002/nme.1151

18. NguyenVP,RabczukT, Bordas S,DuflotM (2008)Meshlessmeth-
ods: a review and computer implementation aspects. Math Comput
Simul 79:763–813. doi:10.1016/j.matcom.2008.01.003

19. Fu ZJ, Chen W, Yang W (2009) Winkler plate bending problems
by a truly boundary-only boundary particle method. Comput Mech
44:757–763. doi:10.1007/s00466-009-0411-6

20. ChenW,Wang FZ (2010)Amethod of fundamental solutionswith-
out fictitious boundary. EngAnal Bound Elem 34:530–532. doi:10.
1016/j.enganabound.2009.12.002

21. Xu SZ (1995) The boundary element method in geophysics. Sci-
ence Press, Beijing

22. Brebbia CA (1981) Progress in boundary element methods, vol 2.
Springer, New York

23. Cheng AHD, Young DL, Tsai CC (2000) Solution of poisson’s
equation by iterative DRBEM using compactly supported, positive
definite radial basis function. Eng Anal Bound Elem 24:549–557.
doi:10.1016/S0955-7997(00)00035-7

24. Li JP, Chen W, Fu ZJ (2016) Numerical investigation on con-
vergence rate of singular boundary method. Math Probl Eng
2016:1–13. doi:10.1155/2016/3564632

25. Wei X, ChenW, Sun LL, Chen B (2015) A simple accurate formula
evaluating origin intensity factor in singular boundary method for
two-dimensional potential problems with Dirichlet boundary. Eng
Anal Bound Elem 58:151–165. doi:10.1016/j.enganabound.2015.
04.010

26. Sun LL, Chen W, Cheng AHD (2016) Singular boundary method
for 2D dynamic poroelastic problems. Wave Motion 61:40–62.
doi:10.1016/j.wavemoti.2015.10.004

27. Chen W, Zhang JY, Fu ZJ (2014) Singular boundary method for
modifiedHelmholtz equations. EngAnalBoundElem44:112–119.
doi:10.1016/j.enganabound.2014.02.007

28. FuZJ,ChenW,Chen JT,QuWZ(2014)Singular boundarymethod:
three regularization approaches and exterior wave applications.
CMES-Comput Model Eng 99:417–443. doi:10.3970/cmes.2014.
099.255

29. Li JP, Fu ZJ, Chen W (2016) Numerical investigation on the
obliquely incident water wave passing through the submerged
breakwater by singular boundary method. Comput Math Appl
71:381–390. doi:10.1016/j.camwa.2015.11.025

30. Fu ZJ, Chen W, Gu Y (2014) Burton–Miller-type singular bound-
ary method for acoustic radiation and scattering. J Sound Vib
333:3776–3793. doi:10.1016/j.jsv.2014.04.025

123

http://dx.doi.org/10.1016/j.enganabound.2009.05.008
http://dx.doi.org/10.1016/S0955-7997(02)00035-8
http://dx.doi.org/10.1016/S0955-7997(02)00035-8
http://dx.doi.org/10.1016/j.enganabound.2009.06.008
http://dx.doi.org/10.1007/s00466-004-0570-4
http://dx.doi.org/10.1007/s00466-010-0516-y
http://dx.doi.org/10.1007/s00466-010-0516-y
http://dx.doi.org/10.1016/j.cma.2006.06.002
http://dx.doi.org/10.1016/j.cma.2006.06.002
http://dx.doi.org/10.1016/j.enganabound.2004.12.001
http://dx.doi.org/10.1007/s00466-008-0353-4
http://dx.doi.org/10.1007/s00466-008-0353-4
http://dx.doi.org/10.3970/cmc.2009.011.185
http://dx.doi.org/10.1093/gji/ggu077
http://dx.doi.org/10.1093/gji/ggu077
http://dx.doi.org/10.1190/geo2015-0090.1
http://dx.doi.org/10.1006/jcph.2001.6778
http://dx.doi.org/10.1002/(SICI)1097-0363(19970615)24:11<1225:AID-FLD540>3.0.CO;2-D
http://dx.doi.org/10.1002/(SICI)1097-0363(19970615)24:11<1225:AID-FLD540>3.0.CO;2-D
http://dx.doi.org/10.1002/nme.1151
http://dx.doi.org/10.1016/j.matcom.2008.01.003
http://dx.doi.org/10.1007/s00466-009-0411-6
http://dx.doi.org/10.1016/j.enganabound.2009.12.002
http://dx.doi.org/10.1016/j.enganabound.2009.12.002
http://dx.doi.org/10.1016/S0955-7997(00)00035-7
http://dx.doi.org/10.1155/2016/3564632
http://dx.doi.org/10.1016/j.enganabound.2015.04.010
http://dx.doi.org/10.1016/j.enganabound.2015.04.010
http://dx.doi.org/10.1016/j.wavemoti.2015.10.004
http://dx.doi.org/10.1016/j.enganabound.2014.02.007
http://dx.doi.org/10.3970/cmes.2014.099.255
http://dx.doi.org/10.3970/cmes.2014.099.255
http://dx.doi.org/10.1016/j.camwa.2015.11.025
http://dx.doi.org/10.1016/j.jsv.2014.04.025

	Singular boundary method using time-dependent fundamental solution for scalar wave equations
	Abstract
	1 Introduction
	2 Numerical methodology
	2.1 SBM for 2D wave equation with Dirichlet boundary condition
	2.2 SBM for 3D wave equation with Dirichlet boundary condition

	3 Numerical results and discussions
	3.1 Error analysis
	3.1.1 SBM for 2D wave equation
	3.1.2 SBM for 3D wave equation


	4 Conclusions
	Acknowledgments
	Appendix: The detailed derivation of Eq. (13)
	References




