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Abstract In this paper, the extended layerwise method
(XLWM), which was developed for laminated composite
beams with multiple delaminations and transverse cracks
(Li et al. in Int J Numer Methods Eng 101:407–434, 2015),
is extended to laminated composite plates. The strong and
weak discontinuous functions along the thickness direction
are adopted to simulate multiple delaminations and inter-
laminar interfaces, respectively, whilst transverse cracks are
modeled by the extendedfinite elementmethod (XFEM).The
interaction integral method and maximum circumferential
tensile criterion are used to calculate the stress intensity fac-
tor (SIF) and crack growth angle, respectively. The XLWM
for laminated composite plates can accurately predicts the
displacement and stress fields near the crack tips and delam-
ination fronts. The thickness distribution of SIF and thus the
crack growth angles in different layers can be obtained. These
information cannot be predicted by using other existing shell
elements enriched by XFEM. Several numerical examples
are studied to demonstrate the capabilities of the XLWM in
static response analyses, SIF calculations and crack growth
predictions.
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1 Introduction

Due to the outstanding designability, high strength/stiffness-
to-weight ratio and excellent resistance to fatigue and corro-
sion, carbonfiber reinforced polymermatrix composites have
been increasingly applied in various fields. Under different
loading conditions, the layered and orthotropic characteris-
tics would result in different failure modes in the composites.
In general, failure modes of composites include delam-
ination, matrix cracking, fibre breakage and fibre/matrix
debonding whilst the first two modes are dominating due to
the high tensile strength of the fiber. For instance, fiber break-
age is generally very limited and confined to the region under
and near the contact area between the impactor and compos-
ite laminates in low velocity impact of laminated composite
structures [1]. To model matrix cracks and delaminations,
damagemechanics and fracturemechanicswere usually used
[2–9]. Although there are a lot of investigations on the static
response, free vibration and buckling of laminated compos-
ite structures with delaminations or matrix cracks, only a few
of them consider multiple delaminations and matrix cracks
[10–14].

For problemswithmaterial and geometric discontinuities,
the extended finite element method (XFEM) was devel-
oped based on the conventional FEM and the concept of
partition of unity [15–19]. This method was generalized
to model transverse cracks and crack growth in plates and
shell [20–23]. Later on, it was extended to the delamina-
tion and in-plane crack of composite structures. Remmers
[24] presented a new finite element method for simulating
delamination growth in thin-layered composite structures
based on a solid-like shell element and the partition-of-unity
property of the element shape functions. For the problem
of interfacial cracks between dissimilar materials, XFEM
was extended by using the orthotropic enrichment func-
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tions [25]. Hettich and Ramm [26] carried out a detailed
geometric modeling of multi-phase materials and a local
mechanical modeling of material interfaces and interfacial
failure for multi-phase materials. The mechanical modeling
of material interfaces and interfacial cracks is accomplished
by XFEMwithout any crack tip enrichment. Nagashima and
Suemasu [27] applied XFEM to stress analysis of delam-
inated composite plate. To model the delamination, nodes
on above and below the delamination were enriched. Curiel
Sosa and Karapurath [28] applied the XFEM to simulat-
ing delamination in the fibre metal laminates. Their study
considered a double cantilever plate with mode I crack.
Development of the orthotropic crack-tip enrichment func-
tions for the composite materials are reported in a series of
works [29–31]. Motamedi and Mohammadi [32,33] studied
the dynamic crack stability and propagation in composites
based on static and dynamic orthotropic crack-tip enrichment
functions. Although, remarkable progress on the applica-
tion of XFEM in composite damages analysis has been
achieved in the last decade, two important aspects should be
improved. Firstly, existing shell elements methods enriched
by XFEM can only deal with the through-thickness cracks
yet many the matrix cracks are restricted to the single layers
around the impact contact zone [1]. Secondly, the existing
shell elements enriched by XFEM were applied to model
either cracks or delaminations. No work has been reported
for the typical damage pattern which include matrix cracks
and delaminations simultaneously. In particular, the damage
zone induced by low velocity impact contains complex three-
dimensional cracks with layered characteristics. Since it is
very difficult to apply XFEM directly to deal with complex
three-dimensional crack, one cannot just rely on XFEM to
solve this complex problem.

Recently, the Heaviside step-function was introduced
into the displacement field along the thickness direction
for modeling the delamination [34–39]. In those methods,
the delaminations were modeled by jump discontinuous
conditions across the interlaminar interfaces. Thus, the dis-
placements on adjacent layers remain independent, allowing
for separation and slippage.

Therefore, if the transverse cracks are perpendicular to
each layer, one can convert the complex three-dimensional
damage with layered characteristics to two two-dimensional
cracks (delaminations and transverse cracks) by using an
appropriate displacement assumption along thickness direc-
tion. Hence, the multiple delaminations can be simulated by
the jump discontinuous functions in the thickness direction
and the in-plane transverse cracks inside each ply can be
modeled independently by XFEM.

The displacement field employed in Layerwise theories
can be used to calculate the three-dimensional stresses and
strains of each mathematical layer. Particularly, the finite
element model of the displacement-based full layerwise the-

ory of Reddy is equivalent to the displacement-based 3D
continuum finite element model [40]. Thus, it would be suit-
able to simulate the complex three-dimensional crack with
layered characteristics by combiningwithXFEM. In our pre-
vious work [41], an extended layerwise method (XLWM)
was developed by using the layerwise theory and XFEM
for laminated composite beams with multiple delaminations
and transverse cracks. In the displacement field of XLWM,
the nodes in the thickness direction are located at the mid-
surface of each layer, top surface and bottom surface ofwhole
composite beams. The displacement field contains the linear
Lagrange interpolation functions, the one-dimensional weak
discontinuous function and strong discontinuous function.
The strong and weak discontinuous functions are applied to
model the displacement discontinuity induced by delamina-
tions and the strain discontinuity induced by the interlaminar
interface, respectively. Because the nodes in the thickness
direction are located at the mid-surface of each layer, the
XLWMcan be conveniently employed to deal with the trans-
verse cracks.

In the present work, the XLWM is extended to the lam-
inated composite plates for static responses analysis, SIF
calculation and transverse crack arbitrary growth prediction.
The rest of this paper is organized as follows. In the next
section, the displacement field for the laminated composite
plates is introduced. The in-plane displacement approxi-
mation used to model the laminated composite plate with
multiple delaminations and/or transverse cracks aswell as the
level set function and the crack-tip enrichment functions used
to represent the transverse cracks are described. In Sects. 3
and 4, the Hamilton’s principle, Euler–Lagrange equations
and constitutive equations are established for the XLWM
of laminated composite plates. The governing equations for
laminated plates with multiple delaminations and/or trans-
verse cracks are developed in Sect. 5. The SIF calculation
method and transverse crack propagation criterion are pre-
sented in Sect. 6. As the transverse crack grows, some nodes
would be very close to the crack surface. In this light, a local
remeshing scheme will be presented in Sect. 7. In Sect. 8,
several numerical examples for demonstrating the capability
of the XLWM in static responses analysis, SIF calculation
and crack arbitrary growth predication are presented. Con-
clusions are drawn in Sect. 9.

2 Displacements field and in-plane displacements
discretization

2.1 Displacements field

In our previouswork [41], in order tomodel the displacement
discontinuity of delaminations based on the strong discon-
tinuous functions, nodes along the thickness direction are
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Fig. 1 A N -ply composite plates with multiple delaminations

placed at the top surface, bottom surface and mid-surface
of each layer. This node distribution is also necessary for
the simulation of transverse cracks. However, the weak dis-
continuous function is needed in this displacement field to
model the strain discontinuity resulted from the interlaminar
interfaces.

For plate with multiple delaminations, the displacements
field is similar to that in our previous work [41], see Fig. 1.
In the Figure, hk is the thickness of the k-th layer and zk is
the thickness coordinate of the interface between kth layer
and (k − 1)th layer, the numbers on the left side denote the
nodes along the thickness direction, the numbers on the right
side denote the interfaces between the N layers in the plate.

The present layerwise concept is very general in the sense
that the number of mathematical layers can be greater than,
equal to or less than the number of thematerial layers.Within
a mathematical layer, the material is homogeneous. Adja-
cent material layers of the same fiber angle may be more
efficiently modelled as a single mathematical layer. On the
other hand, a material layer can be modelled by multiple
mathematical layers for higher resolution, if necessary. Fig-
ure 1 shows that the numbers of the nodal freedoms and the
nodeless freedoms for interfaces are N + 2 and N , respec-
tively.

The displacements at point (x, y, z) in the composite lam-
inated plate with multiple delaminations can be expressed
as

uα(x, y, z, t) =
N+2∑

k=1

φk(z)uαik(x, y, t)

+
ND∑

k=1

Ξk(z)uαlk(x, y, t)

+
N+1∑

k=2

Θk(z)uαrk(x, y, t) (1)

where ND is the number of nodes to be enriched for
modelling the delaminations; α = 1, 2, 3 denotes the com-
ponents in the x, y and z directions; uαik, uαlk and uαrk are
the nodal freedom, the additional nodal freedom to model
displacements discontinuity induced by delaminations and
the additional nodal freedom to model strains discontinuity
induced by interface between the layers, respectively; the
subscripts i, l and r denote the standard nodal freedom, the
additional nodal freedom for delaminations and the addi-
tional nodal freedom for interfaces, respectively; φk is the
linear Lagrange interpolation functions along the thickness
direction of the laminated composite plate, see Fig. 2a;Θk =
φk(z)χk(z) is the weak discontinuous shape function used
to model the strains discontinuity in the interface between
the layers (see Fig. 2b) and χk(z) is the one-dimensional
signed distance function; Ξk = φk(z)Hk(z) is the shape
function used to model delaminations and Hk(z) is the one-
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Fig. 2 Shape functions in the displacement field along the thickness direction. a φk ; b Θk = φk(z)χk(z) ; c Ξk = φk(z)Hk(z)

dimensional Heaviside function, see Fig. 2c. The detailed
expressions of φk,Θk and Ξk can be found in the Appendix
A. Therefore, in the proposed XLWM, the nodal freedoms
are located at the top surface, bottom surface andmid-surface
of each mathematical layer. The additional nodal freedoms
to model strains discontinuity are located at the mid-surface
of each mathematical layer. The additional nodal freedoms
to model displacements discontinuity induced by delamina-
tions are located at themid-surface of themathematical layers
nearby the delamination. The location of the freedoms also
can be found in Fig. 1.

Let

Φik = φk(z), Φlk = Ξk(z), Φrk = Θk(z) (2)

Using the Einstein summation convention for repeated
indexes, Eq. (1) can be expressed as

uα(x, y, z, t) = Φζk(z)uαζk(x, y, t), ζ = i, l, r (3)

where k ∈ [1, N + 2], [1, ND] and [2, N + 1] for ζ = i, l
and r , respectively.

If there is no delaminations, the displacement field can be
simplified to

uα(x, y, z, t) = Φζk(z)uαζk(x, y, t), ζ = i, r (4)

In the displacement-based full layerwise theory of Reddy
[40], the layerwise continuous functions, such as the one-
dimensional Lagrange interpolation functions along the
thickness direction, are used to develop the displacement
field of the laminated composite structures. In the present
displacement field, the nodes along the thickness direction
are located at the upper surface and bottom surface and mid-
surfaces of each layer. The displacement components are
continuous along the thickness direction but the derivatives
of the displacements (strains) are discontinuous at the inter-
faces. Therefore, the displacement field present here is an
improvement and extension to the Reddy’s theory.

2.2 In-plane displacements discretization

The basic idea of the XLWM is to convert a complex 3D
fracture problem to two 2D fracture problem (two 1D frac-
ture problem for composite beams [41]). For the laminated

composite plate with multiple delaminations and transverse
cracks, the nodal displacements (uαik) and the addition free-
doms (uαlk, uαrk) are expressed over each element as a linear
combination of theLagrange interpolation, the discontinuous
enrichment and the crack-tip enrichment functions as

uαζk(x, y, t) = ψm(x, y)Ũαζkm(t) + Λs(x, y)Ūαζks(t)

+Πhb (x, y)Ûαζkhb (t) (5)

where m = 1, . . . , NE ; and NE is the number of the in-
plane finite element nodes; s = 1, . . . , N P

E , and N P
E is the

number of in-plane nodes which are enriched by the discon-
tinuity of in-plane transverse cracks; hb = 1, . . . , NQ

E ; and

NQ
E is the number of in-plane nodes which are enriched by

the in-plane transverse crack tips; b = 1, . . . , NF ; and NF

is the number of the crack-tip enrichment functions; Ũαζkm

is the freedoms of the standard nodes; Ūαζks is the addition
freedoms introduced by the transverse cracks; and Ûαζkhb
is the addition freedoms introduced by the transverse crack
tips; ψm(x, y) is the two-dimensional Lagrange interpola-
tion function; Λs = ψs(x, y)FH

s (x, y) is the shape function
used to model in-plane cracks and FH

s (x, y) is the Heaviside
function; Πhb = ψh(x, y)Fhb (x, y) is the shape function
used to model transverse crack tips and the enrichment func-
tion Fhb(x, y) will be introduced in Sect. 2.4.

Because of the nodes along the thickness direction are
located at the mid-surface of each ply, the tip of mathematic
transverse crack is located at the mid-surface, instead of the
interface, as shown in our previous investigations [41]. To
truly simulate the tip of real crack,we had presented a scheme
based on the concept of sublaminates.

For the laminated composite plate without transverse
cracks, the nodal displacements and the addition freedoms
in the XLWM can be expressed over each element as a linear
combination of the Lagrange interpolation function ψm as
follows

uαζk(x, y, t) = ψm(x, y)Ũαζkm(t). (6)

2.3 Level set representation of cracks

The level set method (LSM) [42,43], which is a numerical
technique for tracking themotionof discontinuous interfaces,
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is employed here to track the interfaces resulted from the
transverse cracks. The crack faces are represented by level
curve ψ(x, t) = 0. The crack tips are represented by the
intersection of ψ(x, t) = 0 and φi (x, t) = 0 where φi are
also level set functions, and each i denotes a different crack
tip.

The initial conditions of the level curve ψ can be defined
as the signed-distance to the crack face

ψ(x, t = 0) = ± min
xγ ∈γ (t)

∥∥x − xγ

∥∥ (7)

where γ (t) represents the crack face.
Similarly, the the level curve φi can be constructed by

the signed-distance of the line orthogonal to crack at its tips,
namely

φi (x, t) = (x − xi ) · t̂ (8)

where xi is the location of the i th crack tip. t̂ is the unit vector
tangent to the crack at its tip.

Therefore, the crack can be represented by multiple level
set functions as

{x : ψ(x, t) = 0 and φi (x, t) ≤ 0} (9)

where the level sets ψ = 0 and φi = 0 are forced to be
orthogonal at their intersection point.

2.4 Enrichment functions

The enrichment function used to model in-plane cracks is
constructed by the Heaviside function

FH (x) =
{
1, ψ(x, t) > 0

−1, ψ(x, t) < 0
(10)

All laminae are orthotropic, so the near-tip functions
Fhb must span from the displacement fields derived for
orthotropic materials. According to Asadpoure and Moham-
madi [29,31], Fhb can be taken as [29–31,44]

F1 = √
r cos

θ1

2

√
g1 (θ), F2 = √

r cos
θ2

2

√
g2 (θ),

F3 = √
r sin

θ1

2

√
g1 (θ), F4 = √

r sin
θ2

2

√
g2 (θ)

(11)

where

g j (θ)=
√(

cos θ+s j x sin θ
)2+(

s jy sin θ
)

θ j = arctan

(
s jy sin θ

cos θ + s j x sin θ

) , j=1, 2 (12)

s j x and s jy are the real and imaginary components of the
roots of the characteristic equation derived by substituting
the Airy stress function into the compatibility equation of
anisotropic solids free of body force [44].

For the isotropic plates, Fhb should be taken as

F1 = √
r cos

θ

2
, F2 = √

r sin θ cos
θ

2
,

F3 = √
r sin

θ

2
, F4 = √

r sin θ sin
θ

2
.

(13)

3 Hamilton’s principle and Euler–Lagrange
equations

Substituting the displacements in Eq. (3) into the strain-
displacement relationship results in

εxx = Φζku1ζk,x εxy = Φζku1ζk,y + Φζku2ζk,x

εyy = Φζku2ζk,y εyz = Φζk,zu2ζk + Φζku3ζk,y

εzz = Φζk,zu3ζk εxz = Φζk,zu1ζk + Φζku3ζk,x (14)

Thus, the virtual strain energy is given by

δU =
∫

Ω

∫ H/2

−H/2

(
σxxδεxx + σyyδεyy + σzzδεzz

+ σxyδεxy + σyzδεyz + σxzδεxz
)
dzdxdy (15)

=
∫

Ω

(
Nx

ζkδu1ζk,x + Nxy
ζk δu1ζk,y + Qxz

ζkδu1ζk

+ N y
ζkδu2ζk,y + Nxy

ζk δu2ζk,x

+ Qyz
ζkδu2ζk + N yz

ζk δu3ζk,y + Nxz
ζk δu3ζk,x

+ Qzz
ζkδu3ζk

)
dxdy (16)

where the stress resultants are

(
Nx

ζk, N
y
ζk, N

xy
ζk , N yz

ζk , N
xz
ζk

)

=
∫ H/2

−H/2

(
σxx , σyy, σxy, σyz, σxz

)
Φζkdz,

(
Qzz

ζk, Q
yz
ζk, Q

xz
ζk

)

=
∫ H/2

−H/2

(
σzz, σyz, σxz

)
Φζk,zdz

(17)

The virtual work done by the external forces is given by

δW =
∫

Ω

[
qb(x, y, t)δu3

(
x, y,−H

2
, t

)

+ qt (x, y, t)δu3

(
x, y,

H

2
, t

)]
dxdy
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+
∫

Γ

∫ H/2

−H/2
(σ̄nnδun + σ̄nsδus + σ̄nzδu3) dzdΓ

=
∫

Ω

(
qbδu

N+2
3 + qtδu

1
3

)
dxdy

+
∫

Γ

(
N̄ nn

ζk δun1ζk + N̄ ns
ζk δu

s
1ζk + Q̄n

ζkδu3ζk
)
dΓ

where qb and qt are the distributed force at the bottom sur-
face (z = −H/2) and top surface (z = H/2) of the laminated
plate, respectively; H is the thickness of the composite lami-
nated plates. σ̄nn, σ̄ns and σ̄nz are the stresses at the boundary
Γ . Moreover,

N̄ nn
ζk =

∫ H/2

−H/2
σ̄nnφζkdz,

N̄ ns
ζk =

∫ H/2

−H/2
σ̄nsφζkdz,

Q̄n
ζk =

∫ H/2

−H/2
σ̄nzφζkdz

(18)

are the boundary stress resultants and

un1ζk = u1ζknx + u2ζkny

us1ζk = −u1ζkny + u2ζknx (19)

are the normal and tangential displacements at boundary.
The virtual kinetic energy is given by

δM =
∫

Ω

∫ H/2

−H/2
ρ0 (u̇1δu̇1 + u̇2δu̇2 + u̇3δu̇3) dzdxdy

=
∫

Ω

(
Iζηkeu̇1ηeδu̇1ζk + Iζηkeu̇2ηeδu̇2ζk

+ Iζηkeu̇3ηeδu̇3ζk
)
dxdy

(20)

where

Iζηke =
∫ H/2

−H/2
ρ0ΦζkΦηedz (21)

Substituting Eqs. (16), (18) and (20) into the Hamilton’s
principle

∫ T

0
(δU − δW − δM)dt = 0 (22)

and integrating by parts lead to the followingEuler–Lagrange
equations

δu1ζk :Nx
ζk,x + Nxy

ζk,y − Qxz
ζk = Iζηkeü1ηe

δu2ζk :N y
ζk,y + Nxy

ζk,x − Qyz
ζk = Iζηkeü2ηe

δu3ζk :N yz
ζk,y + Nxz

ζk,x − Qzz
ζk + qbδ

N+2
k + qtδ

1
k = Iζηkeü3ηe

(23)

with the natural boundary conditions

δu1ζk : Nnn
ζk − Ñ nn

ζk = 0

δu2ζk : Nns
ζk − Ñ ns

ζk = 0

δu3ζk : Qn
ζk − Q̄n

ζk = 0 (24)

In Eq. (23), δ0k and δN+1
k are the Kronecker delta and

Nnn
ζk = Nx

ζknx + Nxy
ζk ny

Nns
ζk = N y

ζkny + Nxy
ζk nx

Qn
ζk = N yz

ζk ny + Nxz
ζk nx

Ñ nn
ζk = N̄ nn

ζk nx − N̄ ns
ζk ny

Ñ ns
ζk = N̄ nn

ζk ny + N̄ ns
ζk nx . (25)

4 Constitutive equations

The constitutive law of the μth layer in the composite lami-
nate with respect to the global x − y − z coordinate system
is

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σxx
σyy

σzz
σyz

σxz
σxy

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(μ)

=

⎡

⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0
0 0 0 C45 C55 0

C16 C26 C36 0 0 C66

⎤

⎥⎥⎥⎥⎥⎥⎦

(μ) ⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εxx
εyy
εzz
εyz
εxz
εxy

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(μ)

(26)

Invoking the constitutive equation in Eq. (26), the force
resultants in Eq. (17) can be expressed in terms of the dis-
placements as

(
Nx

ζk , N y
ζk , Qzz

ζ , Nxy
ζk

)

=
(
A1
11ζηke, A1

12ζηke, A3
13ζηke, A1

16ζηke

)
u1ηe,x

+
(
A1
16ζηke, A1

26ζηke, A3
36ζηke, A1

66ζηke

) (
u1ηe,y + u2ηe,x

)

+
(
A1
12ζηke, A1

22ζηke, A3
23ζηke, A1

26ζηke

)
u2ηe,y

+
(
A2
13ζηke, A2

23ζηke, A4
33ζηke, A2

36ζηke

)
u3ηe

(
N yz

ζk , Qyz
ζk , Nxz

ζk , Qxz
ζk

)

=
(
A2
45ζηke, A

4
45ζηke, A

2
55ζηke, A

4
55ζηke

)
u1ηe

+
(
A2
44ζηke, A

4
44ζηke, A

2
45ζηke, A

4
45ζηke

)
u2ηe

+
(
A1
45ζηke, A

3
45ζηke, A

1
55ζηke, A

3
55ζηke

)
u3ηe,x

+
(
A1
44ζηke, A

3
44ζηke, A

1
45ζηke, A

3
45ζηke

)
u3ηe,y

(27)
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where the laminate stiffness coefficients A1
pqζηke, A2

pqζηke,

A3
pqζηke, A4

pqζηke are given in terms of modified elastic con-
stants and the through-thickness interpolation polynomials
as

A1
pqζηke =

∫ H/2

−H/2
ΦζkC

(μ)
pq Φηedz,

A2
pqζηke =

∫ H/2

−H/2
Φζk,zC

(μ)
pq Φηedz,

A3
pqζηke =

∫ H/2

−H/2
ΦζkC

(μ)
pq Φηe,zdz,

A4
pqζηke =

∫ H/2

−H/2
Φζk,zC

(μ)
pq Φηe,zdz.

(28)

5 Finite element formulation

5.1 Finite element formulation for laminated plates with
multiple delaminations

Substituting Eq. (6) into Eq. (22), the finite element formu-
lation for the static laminated composite plate with multiple
delaminations can be expressed as

KαβζηkemnUβηen = Fαζkm (29)

where m, n = 1, . . . , NE ; The contraction of tensor is used
inhere, for example, the index pairs α, β in matrix K con-
tract with the index β, so the index α remain of vector
F; Kαβζηkemn is the element stiffness matrix given by

K11ζηkemn = ψm,x A
1
11ζηkeψn,x + ψm,x A

1
16ζηkeψn,y

+ψm,y A
1
16ζηkeψn,x

+ψm,y A
1
66ζηkeψn,y + ψm A4

55ζηkeψn

K12ζηkemn = ψm,x A
1
12ζηkeψn,y + ψm,x A

1
16ζηkeψn,x

+ψm,y A
1
26ζηkeψn,y

+ψm,y A
1
66ζηkeψn,x + ψm A4

45ζηkeψn

K13ζηkemn = ψm,x A
2
13ζηkeψn + ψm,y A

2
36ζηkeψn

+ψm A3
45ζηkeψn,y + ψm A3

55ζηkeψn,x

K21ζηkemn = ψm,y A
1
12ζηkeψn,x + ψm,x A

1
16ζηkeψn,x

+ψm,y A
1
26ζηkeψn,y

+ψm,x A
1
66ζηkeψn,y

+ψm A4
45ζηkeψn = K12ζηkemn

K22ζηkemn = ψm,y A
1
22ζηkeψn,y + ψm,y A

1
26ζηkeψn,x

+ψm,x A
1
26ζηkeψn,y

+ψm,x A
1
66ζηkeψn,x + ψm A4

44ζηkeψn

K23ζηkemn = ψm,y A
2
23ζηkeψn + ψm,x A

2
36ζηkeψn

+ ψm A3
45ζηkeψn,x + ψm A3

44ζηkeψn,y

K31ζηkemn = ψm A3
13ζηkeψn,x + ψm A3

36ζηkeψn,y

+ ψm,y A
2
45ζηkeψn + ψm,x A

2
55ζηkeψn

= K13ζηkemn

K32ζηkemn = ψm A3
23ζηkeψn,y + ψm A3

36ζηkeψn,x

+ ψm,y A
2
44ζηkeψn + ψm,x A

2
45ζηkeψn

= K23ζηkemn

K33ζηkemn = ψm,y A
1
44ζηkeψn,y + ψm,y A

1
45ζηkeψn,x

+ ψm,x A
1
45ζηkeψn,y + ψm,x A

1
55ζηkeψn,x

+ ψm A4
33ζηkeψn .

(30)

5.2 Finite element formulation for laminated plates with
multiple delaminations and transverse cracks

The finite element formulation for the static laminated com-
posite plate with multiple delaminations and matrix cracks
is obtained by substituting Eq. (5) into Eq. (22), as

KαβζηkeκιUβηeι = Fαζkκ (31)

where κ = m, s, hb; ι = n, g, fb;m, n = 1, 2, . . . , NE ; s,
g = 1, . . . , N P

E ; hb, fb = 1, . . . , NQ
E ; b = 1, 2, 3, 4. The

submatrices in Eq. (31) have the same form with the element
stiffness matrix of the XLWM for the laminated composite
plates Eq. (29). In Eq. (31), the index pairs (m, n), (s, g)
and (hb, fb) correspond to the shape functions ψ,Λ and Π,
respectively. So, the entries of Kαβζηkeκι can be obtained by
replacing the shape functions ψ in Eq. (30) with the shape
functions corresponding to the index pairs (m, n), (s, g) and
(hb, fb), for example

K11ζηkemg = ψm,x A
1
11ζηkeΛg,x

+ψm,x A
1
16ζηkeΛg,y + ψm,y A16ζηkeΛg,x

+ψm,y A
1
66ζηkeΛg,y + ψm A4

55ζηkeΛg

K11ζηkem fb = ψm,x A
1
11ζηkeΠ fb,x

+ψm,x A
1
16ζηkeΠ fb,y + ψm,y A16ζηkeΠ fb,x

+ψm,y A
1
66ζηkeΠ fb,y + ψm A4

55ζηkeΠ fb (32)

For the laminated composite plate with multiple delam-
inations and transverse cracks, it can be seen from Eq.
(31) that the element stiffness matrix is composed of nine
submatrixes. Kαβζηkemn is the submatrix of the nodal free-
doms whilst Kαβζηkesg and Kαβζηkehb fb are the subma-
trices of the additional nodal freedoms for delaminations
and transverse cracks, respectively. On the other hand,
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Kαβζηkemg, Kαβζηkem fb and Kαβζηkes fb are the coupling sub-
matrixes.

6 SIF calculation and crack propagation criterion
of the isotropic and orthotropic plates

6.1 SIF calculation

SIF is one of the most important parameters characterizing
the crack tip stress field. In XFEM, SIF is usually com-
puted by using the interaction integral method. Kim and
Paulino [45] presented a domain integral method for the
mix SIF of orthotropic materials. The method has been
applied to the SIF calculation of composite structures in
many researches [29,31,33,46–48]. In the present work, the
method is employed to calculate the SIFs associated with the
delaminations and transverse cracks, The method is intro-
duced briefly as follows.

The interaction integral method is carried out by using
actual and auxiliary displacement/stress/strain fields. The
actual field describes the physical problem and satisfies the
equilibrium and compatibility equations in each point of a
general inhomogeneous domain. In contrast, auxiliary fields
do not satisfy all governing equations (e.g. equilibrium, com-
patibility and constitutive equations) and are employed to
established the relationship between mix SIF and the inter-
action integral.

For the isotropic materials, the SIF KI and KII are related
to the J-integral M1 of the auxiliary field as

Ml = 2

E∗
(
K aux
I KI + K aux

II KII
)

(33)

where K aux
I and K aux

II are the SIF of the auxiliary field.
Detailed expression of Ml can be found in reference [44].

E∗ =
⎧
⎨

⎩
E plane stress

E

1 − v2
plane strain

E is the elastic modulus of isotropic materials.
For the anisotropic materials, one can obtain the modes I

and II SIF KI and KII by solving the linear algebraic equa-
tions
{
Ml

1 = 2c11KI + c12KII
(
K aux
I = 1, K aux

II = 0
)

Ml
2 = c12KI + 2c22KII

(
K aux
I = 0, K aux

II = 1
) (34)

where Ml
1 and Ml

2 denote the J-integral for the case I
(K aux

I = 1, K aux
II = 0) and case II (K aux

I = 0, K aux
II = 1).

Ml
1, M

l
2, c11, c12 and c22 can be found in Ref. [44].

Thus SIF Kμ
I and Kμ

II of each mathematical layer in the
XLWM can be calculated.

ω

θ

E1
E2

X2

x2

x1

X1

Crack tip

Fig. 3 The crack growth angle, global and local coordinates of the
crack tip for the anisotropic materials

6.2 Crack propagation criterion

The maximum circumferential tensile stress criterion [49]
assumes that a crack starts to propagate when the max-
imum circumferential SIF exceed the critical SIF at the
direction perpendicular to the maximum circumferential
stress-direction. For isotropic materials, the propagation cri-
terion is

Kθmax = KI

KIc
cos3

θ0

2
− 3

2

KII

KIc
cos

θ0

2
sinθ0 = KθC (35)

and the propagation direction is given by

KIsinθ0 − KII (3 cos θ0 − 1) = 0

KI cos
θ0

2
(1−3 cos θ0)+KIIsin

θ0

2
(9 cos θ0+5)<0 (36)

where KθC is the fracture toughness.
In 1987, Saouma el at. [50] extended the maximum cir-

cumferential tensile stress criterion of isotropic materials to
the crack growth problem of anisotropic materials. The crack
growth angle, global coordinates and the crack tip coordi-
nates for the anisotropic materials are shown in Fig. 3.

For the anisotropic materials, the crack growth angle θ0
need to meet

σθ

σθmax
= KIRe [A (μ1B2 − μ2B1)]+KIIRe [A (B2 − B1)]

K 1
Icr cos

2 β + K 2
Icrsin

2β

= 1 (37)

where σθ is the circumferential tensile stress; σθmax is the
maximum circumferential tensile stress; β = θ0 + ω and ω

is the angle between the crack and thematerial direction; A =
1

μ1 − μ2
, Bi = (cos θ + μi sin θ)1.5; K 1

Icr and K 2
Icr are the

critical SIF for cracks along direction x1 and x2, respectively.
The coefficients μ1 and μ2 can be found in Ref. [44].

There are two fronts of the transverse crack in the pro-
posed XLWM: the front in the thickness direction and the
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O

O'

lgap

n

∆x

Fig. 4 Scheme of local remesh

front in in-plane. In the proposed study, only the front in in-
plane is considered. For the front in the thickness direction,
if the virtual crack closure technique (VCCT) is employed
to calculate the strain energy release rate (SERR) along the
transverse crack front, and the transverse crack growth in
the thickness direction can be predicted by the mixed-mode
fracture criterion.

7 Local remesh for crack arbitrary growth

As the crack grows, some nodes such as node O in Fig. 4may
become very close to the crack surface. When one part of an
element divided by a crack is far smaller than another part,
Guass integral cannot accurately obtain the stiffness matrix
of the element and would result in significant error. Because
the level set function cannot be accurately calculated nearby
the turning point of a crack, the whole calculation process
may be terminated. In order to overcome this problem, a
local remesh is undergone near the crack bymoving the node
O to O ′, as shown in Fig. 4. Let lgap denote the minimum
distance between node O and the intersection point of the
element edge and the crack. As the crack grows, lgap deter-
mines whether one needs to move the node (local remesh).
To restrict excess element distortion, the node is moved by

Δx = f len (38)

where le is the length of the element edge; f is the coef-
ficient that limits the distance of move and excess element
distortion; n is the outward normal vector of crack surface.
As an illustration, there are nodes very close to the crack
surface in Fig. 5a, After the local remeshing with f = 0.2,
nodes are shifted away from the crack surface while themesh
quality is reserved as shown in Fig. 5b. The large value of
f would result into the grid distortion and the small value
cannot make the nodes away from the crack surface ade-

(b)(a)

Fig. 5 Local remesh. a Before local remesh; b After local remesh

(a) (b)

y

x

6

10

Delaminated region

Matrix crack

Tip location: (4,4)
4

2.5981

Fig. 6 Composite laminated plate with elliptic delamination and trans-
verse crack. a Schematic diagram; b FE mesh (the length dimension is
in m)

quately, so the value of f = 0.2 is determine by a number of
examples.

The integration scheme for elements enriched by strong
discontinuous function is based on subdomains (sub-
triangle), its details can be found in Refs. [44,51]. In this
approach, the enriched elements are to subdivide into sub-
triangles at both sides of the crack whose edges are adapted
to crack faces. For the crack tip elements, more sub-triangles
are required in front of the crack tip because of the existence
of a highly nonlinear and singular stress field.

8 Numerical examples

8.1 Static responses analysis

TheXLWM is used tomodel the plates withmultiple delami-
nations and/or transverse crack. Figure 6 shows the geometry
and FE mesh for a rectangular plate with a semi-elliptic
delamination and a transverse crack. The major axis of the
delamination coincides with the y-axes. The transverse crack
is along the minor axis of the ellipse. Three kinds of bound-
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Table 1 Maximum
displacement of the isotropic
plates with elliptic delamination

BC Num. of nodes u1 (10−5 m) u2 (10−6 m) u3 (10−4 m)

MSC XLWM MSC XLWM MSC XLWM

CFFF 2090 1.49643 1.35393 3.44315 3.35562 3.28209 2.99266

5140 1.45269 3.30989 3.04532

6286 1.45888 3.33837 3.20157

CCCF 2090 0.38195 0.34896 3.52243 3.26685 0.74457 0.70077

5140 0.36917 3.41381 0.72090

6286 0.37177 3.44705 0.72615

CCFF 2090 0.37653 0.34402 3.58173 3.31871 0.75339 0.70862

5140 0.36395 3.47041 0.72944

6286 0.36651 3.50424 0.73473

Table 2 Maximum
displacement of the isotropic
plates with transverse crack

BC Num. of nodes u1 (10−6 m) u2 (10−6 m) u3 (10−5 m)

MSC XLWM MSC XLWM MSC XLWM

CFFF 2090 13.22468 12.19856 2.49105 2.41575 29.3749 26.85609

5140 12.86313 2.40270 28.49373

6286 12.90100 2.42031 28.63100

CCCF 2090 2.18307 2.04472 3.02683 2.85328 5.08927 4.74906

5140 2.13233 2.96655 4.94175

6286 2.14423 2.97985 5.00548

CCFF 2090 2.03693 1.92158 3.31632 3.11804 5.51124 5.12707

5140 1.99643 3.24751 5.34512

6286 2.00772 3.26068 5.41431

ary conditions are investigated: (1) x = 6 is clamped and
other edges are free (CFFF); (2) y = 10 and y = 0 are
clamped and other edges are free (CCFF); (3) x = 0 is free
and other edge are clamped (CCCF). The plate is subjected
to a unit transverse pressure on the delaminated region in top
surface.

The plate of overall thickness H = 0.4 m is evenly divided
into eight layers. For comparison purpose, these problems
are also analyzed by using MSC.Nastran with Hex8 solid
elements. Nodes pairs along the delamination interface and
through-thickness crack are employed to model the displace-
ment discontinuity. Meanwhile, the discretization scheme of
the XLWM is the same with that used in the finite element
analysis.

Firstly, the isotropic plateswith delamination and/or trans-
verse crack are employed to validate the proposed XLWM.
The material properties are taken as E = 52GPa, ν = 0.3.

Tables 1 and 2 compare the maximum displacements
obtained by the proposed XLWM and MSC.Nastran for the
isotropic plates with delamination or through crack, respec-
tively. In the damage zone, the delamination can be denoted
as [θ/θ/θ/θ/ ∩ /θ/θ/θ/θ ], which means that the delamina-
tion is located at the interface between 4th layer and 5th layer
(4th interface). It can be seen from the table that the proposed

method is accurate and reliable for the plates with delamina-
tionor throughcrack. InTable 1, themaximumdisplacements
u1 and u3 occur at the central point of the delamination region
(x = 0, y = 5), and the maximum displacement u2 occurs
at the point (x = 0, y = 2.8) and (x = 0, y = 7.2). In Table
2, the maximum displacement u1 occurs at the central point
of the delamination region (x = 0, y = 5) for CFFF, point
(x = 2.9, y = 5.0) for CCFF and point (x = 2.6, y = 5.0)
for CCCF. Themaximumdisplacement u2 occurs at the point
(x = 0, y = 0) and (x = 0, y = 10.0) for CFFF, point
(x = 0, y = 3.4) and (x = 0, y = 6.6) for CCFF and CCCF.
The maximum displacements u3 occurs at the central point
of the delamination region.

For the isotropic plates with delamination and non-thick-
through crack, the maximum displacements calculated by
XLWM and MSC.Nastran are compared in Table 3. In the
damage region, the delamination and crack can be denoted as
[θ/θ/θ/θ/∩ /θ/θ/θ/θ ], which means that the delamination
is located at the interface between 4th layer and 5th layer and
the crack cuts though the last four layers. It can be seen from
Table 3 that the proposed method is accurate and reliable for
the isotropic plates with both delamination and crack. The
locations of maximum displacements are same with those in
Table 2.

123



Comput Mech (2016) 58:657–679 667

Table 3 Maximum
displacement of the isotropic
plates with delamination and
transverse crack

BC u1 (10−6 m) u2 (10−6 m) u3 (10−4 m)

MSC XLWM MSC XLWM MSC XLWM

CFFF 14.58864 14.24940 5.42915 5.25124 3.51073 3.42605

CCCF 4.35420 4.28484 4.46578 4.37015 1.04054 1.02144

CCFF 4.20282 4.14198 4.65572 4.54863 1.06545 1.04501

Table 4 Maximum
displacement of the laminated
composite plates with transverse
crack

BC u1 (10−6 m) u2 (10−5 m) u3 (10−4 m)

MSC XLWM MSC XLWM MSC XLWM

[0]8 CFFF 5.01844 4.99346 0.38525 0.38156 1.19114 1.18586

CCCF 3.88164 3.84104 0.57331 0.56740 0.96525 0.95664

CCFF 6.15848 6.06648 1.32531 1.29033 2.21315 2.15968

[0/90/0/90]s CFFF 6.75187 6.71632 0.38373 0.38006 1.58868 1.58058

CCCF 2.45285 2.43959 0.34860 0.34687 0.59886 0.59565

CCFF 2.75320 2.73721 0.42823 0.42560 0.72470 0.72024

[90/0/90/0]s CFFF 12.33980 12.24270 4.35336 4.28203 2.84058 2.81729

CCCF 1.82850 1.82283 2.42813 2.41897 0.42132 0.41972

CCFF 1.83708 1.83281 2.53723 2.52786 0.43750 0.43596

u1 u2 u3

Fig. 7 Deformation of the composite laminated plate with multiple elliptic delaminations and transverse crack

The XLWM is also employed to model the cross-ply lam-
inated plate with multiple delaminations and/or transverse
cracks in this example. The material properties of the sin-
gle layer are taken as E11 = 181GPa, E22 = E33 =
10.3GPa,G12 = G13 = 7.17GPa,G23 = 6.21GPa, ν12 =
0.28, ν13 = 0.02, and ν23 = 0.40.

For the three stacking sequences [0]8, [0/90/0/90]s and
[90/0/90/0]s , Table 4 compares the maximum displace-
ments calculated by XLWM and MSC.Nastran for the plates
with delamination [θ/θ/θ/θ/ ∩ /θ/θ/θ/θ ]. It can be seen
from Table 4 that the proposed method is also accurate and
reliable for the plates with transverse crack.

For the laminated composite plate [0/90/0/90]s with
multiple delaminations and transverse cracks, the boundary
condition is CCCF. In the damage region, the delaminations
and non-thick-though transverse cracks can be denoted as
[θ/θ/∩/θ/θ/θ/θ/∩/θ/θ ]which means that delaminations

are located at the 2th and 6th interfaces and the cracks cut
though the first two and the last two layers. Deformations and
stresses of the laminated composite plate with multiple ellip-
tic delaminations and transverse cracks are plotted in Figs. 7
and 8.

8.2 SIF calculation

The rectangular isotropic and composite plates with an edge
through crack are used to examine the performance of the
present method for the SIF calculation. The results obtained
by the present method are compared with those given by
the analytical solutions and the available numerical results.
In addition, the effects of the crack size and the orthotropic
angle on the distribution of SIF along the thickness direction
are investigated.
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σ11 σ22 σ33

σ12 σ13 σ23

Fig. 8 Stresses of the composite laminated plate with multiple elliptic delaminations and transverse crack

8.2.1 Rectangular isotropic plates with a through-thickness
edge crack

The rectangular isotropic plate with a through-thickness
crack (see Fig. 9a) is employed to validate the presentmethod
for the calculation of SIF. As shown in Fig. 9a, the plate
is subjected to a unit tensile stress σ0 at two ends and the
crack angle ϕ is the angle between the crack and the direc-
tion transverse to the tensile stress. The square region around
the crack tip is the domain used for computing the J-integral.
The length of the rectangular plate is twice the width. The
material parameters are E = 1.0GPa, and ν = 0.3. Two dif-
ferent meshes shown in Fig. 9b, c are used. When the crack
angle ϕ = 0, SIF KI I = 0 and the analytical solution of KI

is given by

KI =
[
1.12 − 0.23

(a
b

)
+ 10.56

(a
b

)2

− 21.74
(a
b

)3 + 30.42
(a
b

)4]
σ0

√
πa (39)

For different crack lengths, the values of KI of the rectan-
gular isotropic plates with an edge through crack calculated
by the present method, Mohammadi [44] and the analytical
method are compared in Table 5. The present predictions
agree well with those of the others.

Because the XLWM is quasi three dimensional and the
transverse cracks of each single layer are independently

b=10

a=5

c

ch=
20 φ

(a) (b) (c)

σ 0 = 1

σ 0 = 1

Fig. 9 Rectangular isotropic plates with an edge through crack. aGeo-
metric size and crack size; b 20 × 40 elements; c 40 × 80 elements

described, the distribution of the SIF along the thickness
direction can be obtained by the present method. It is
an important advantage compared with the existing shell
elements enriched by XFEM. For different crack sizes, dis-
tributions of KI of the rectangular isotropic plates with an
edge through crack are plotted in Fig. 10, which shows that
the crack size has significant influence on the distribution of
KI along the thickness direction. In general, the SIF at top
and bottom surfaces is larger than that at the mid-plane. If
the ratio of crack size to the width of plate is approaches 0.5,
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Table 5 KI of the rectangular
isotropic plates with an edge
through crack

a/b Analytical 20 × 40 40 × 80 50 × 100 70 × 140 80 × 160

Ref. [44] XLWM Ref. [44] XLWM XLWM XLWM XLWM

0.30 1.660 1.630 1.478 1.646 1.586 1.608 1.633 1.650

0.45 2.420 2.362 2.155 2.396 2.325 2.437 2.451 2.465

0.60 4.027 3.876 3.549 3.961 3.828 3.884 3.951 3.992

Normalized  KI

0.995 1 1.005 1.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

z

a/b=0.30
a/b=0.45
a/b=0.60

Fig. 10 Distribution of KI of the rectangular isotropic plates with an
edge through crack

KI decreases from the surface to the mid-plane. If the ratio of
crack size to the width of plate is greater or less than 0.5, KI

first decreases and then increases from the top/bottom sur-
faces to mid-plane. Because the boundary condition and the
loads are symmetrical with respect to the mid-plane in the
present numerical example, the distribution of KI along the
thickness direction is symmetrical as well.

The influence of the angle between the crack and the
transverse direction of plate ϕ on SIF is investigated in this
numerical example and plotted in Fig. 11, where the values

of SIF is the average along the thickness direction. It can be
seen that KI decreases as angle ϕ increases, while KII first
increases and then decreases with turning point at ϕ ≈ 30◦.

For different angles ϕ, distributions of SIF KI and KII

along the thickness direction after normalizedby their respec-
tive thickness averages are shown in Fig. 12. As angle ϕ

increases, the change in amplitude of KI along the thick-
ness direction first decreases and then increases. If angle
ϕ ≈ 18◦, KI does not change along the thickness direction.
If angle ϕ is less than 18◦, KI decreases from the top/bottom
surface to the mid-plane. If angle ϕ is greater than 18◦, KI

increases from the top/bottomsurface and attains itmaximum
at the mid-plane, while KI at the upper/bottm surface is max-
imumwhen angle ϕ is less than 18◦. As angle ϕ increases, the
change in amplitude of KII along the thickness direction first
decreases and then become almost zero when angle ϕ ≈ 45◦.
KII decreases from the top/bottom surface to the mid-plane,
namely, KII at top/bottom surface is maximum. KI and KII

are symmetrical along the thickness direction with respect to
the mid-plane, and always equal to their respective average
values at z/H ≈ 0.2 and z/H ≈ 0.8.

8.2.2 Rectangular composite plates with an edge through
crack

The rectangular composite platewith an edge though crack to
be considered has the same geometric size, boundary condi-
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Fig. 11 Influence of angle φ on SIF
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Fig. 13 Comparison of SIF for rectangular composite plates with an edge crack

tion, loads andmesh with the isotropic plate in above subsec-
tion. The material properties are E11 = 114.8GPa, E22 =
E33 = 11.7GPa,G12 = G13 = 9.66GPa,G23 =
6.21GPa, ν12 = v13 = 0.21, and ν23 = 0.40.

For five fibre angles (0◦, 30◦, 45◦, 60◦ and 90◦), Fig. 13
compares the normalized KI and KII obtained by the pre-
sented method with those obtained by XFEM [29,31], BEM
[52] and XEFG [53]. The SIF results obtained by the XLWM
agree well with those obtained by other methods.

Figure 14 shows the distributions of SIF along the thick-
ness direction. When fibre angle θ = 45◦, the change in
amplitude of KI along the thickness direction is maximum.
When fibre angle θ = 90◦, the change in amplitude is mini-
mum. The change in amplitude of SIF KII along the thickness
direction decreases as the fibre angle increasing. Similar to
the isotropic plate with an edge crack, KI and KII are sym-
metrical along the thickness direction with respect to the
mid-plane, and KI and KII always equal to their respective
average values near the points z/H ≈ 0.2 and z/H ≈ 0.8.

The influence of the crack angle ϕ on SIF for the
rectangular composite plate with an edge crack is also exam-
ined. Figure 15 shows the influence of ϕ on SIF for five
fibre angles. KI and its change in amplitude decrease as
ϕ increases. On the other hand, the decrease in amplitude
of SIF reduces as the fibre angle increasing. KII increases
as angle ϕ increases, and the increase in amplitude of KII

for θ = 0◦ is significantly higher than that for other fibre
angles.

Figures 16, 17, 18, 19, and 20 show the distributions of
SIF along the thickness direction for the five fibre angles θ

and different crack angles ϕ. KI and KII are symmetrical
along the thickness direction with respect to the mid-plane
and always equal to their respective average values near the
points z = 0.2 and z = 0.8. When θ = 0◦, the change in
amplitude of the SIF KI and KII along the thickness direction
first decreases and then increases as ϕ increases. When angle
ϕ ≈ 26◦, the change in amplitude is minimum. When θ =
30◦, 45◦ and60◦, the change in amplitude of KI and KII along
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Fig. 14 Distribution of SIF along the thickness direction for the rectangular composite plates with an edge crack
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Fig. 15 Influence of angle ϕ on SIF of the composite plate
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Fig. 16 Distribution of SIF along the thickness direction for the composite plate with an edge crack (θ = 0◦)

the thickness direction decreases as the angle ϕ increases.
θ = 90◦, the change in amplitude of KI along the thickness
direction increases for increasing ϕ. That of KII is just the
opposite.

8.3 Transverse crack arbitrary growth

Crack growth predictions are carried out in this section for
plates with an edge through crack and for plates with both an
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Fig. 17 Distribution of SIF along the thickness direction for the composite plate with an edge crack (θ = 30◦)
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Fig. 18 Distribution of SIF along the thickness direction for the composite plate with an edge crack (θ = 45◦)
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Fig. 19 Distribution of SIF along the thickness direction for the composite plate with an edge crack (θ = 60◦)
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Fig. 20 Distribution of SIF along the thickness direction for the composite plate with an edge crack (θ = 90◦)
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Fig. 21 Effect of the crack size on the SIF for the rectangular isotropic
plates with an edge through crack

edge through crack and an semi-elliptical delamination. Both
isotropic and composite plates are considered. The effects of
the fibre angle on the growth angle are investigated.

8.3.1 Rectangular composite plates with edge through
cracks

The isotropic plate employed in Sect. 8.1, see Fig. 5, is first
considered. The initial crack length is 1.5 m and the crack
angle ϕ is zero. The average crack growth angle is used to
update the location of crack tip. Figure 21 shows the effect of
the crack size on the KI. The predicted growth angle is zero,
which agreeswith the analytical solution.As the crack grows,
KI first increases slowly and then quickly. Moreover, the
predicted SIF in all layers are graphically indistinguishable
as noted in the figure.

The composite plate employed in Sect. 8.1, see Fig. 6, is
then considered. The initial crack length is 3.5 m and the
crack angle ϕ is zero. Again, the average crack growth angle

is used to update the location of crack tip. The predicted KI

and KII versus the crack size are shown in Fig. 22. Figure
23 shows the growth paths for different fibre angle. As the
crack grows, KI increases whilst KII first increases and then
decreases. If the fibre angle θ = 0◦ and 90◦, the crack growth
angle predicted by the present method is zero. From the
existing solution [54], the crack growth angle varies approx-
imately sin(2θ) with the maximum and minimum growth
angles occurring at θ = 35◦ and θ = 135◦, respectively.
For the fibre angles considered in this numerical example,
the maximum value of growth angle occurs when θ = 30◦,
which somehow agrees with the existing solution.

8.3.2 Rectangular composite plates with semi-elliptical
delaminations

SIF and crack growth prediction are conducted for the rec-
tangular composite plate with an elliptic delamination and an
edge through crack shown in Fig. 6. The initial crack length
is 3.02 mm, and the delamination is located at the mid-plane.
A unit uniform load is imposed on the top and bottom sur-
faces of the delaminated region, and a unit tensile stress is
applied to the upper and lower edges of the plate.

The crack growth problem of the isotropic plate with
delamination and crack is first considered. Thematerial prop-
erties are E = 52GPa, and ν = 0.3. Figures 24 and 25
portray how the predicted SIF varies with the crack length
and along the thickness direction. Figure 24 shows that KI

increases as the crack size increases. Figure 24 shows that the
SIF assumes its maximum value when the crack tip is very
close to the delamination front as in the case of crack length
equal to 3.1805 m. Otherwise, the maximum values occurs
at the top/bottom surfaces. In other words, the delamination
front significantly affects the crack tip stress field. KI and KII

are symmetrical along the thickness direction with respect
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Fig. 22 Variation of SIF versus the crack size in different fibre angle for the rectangular composite plates with an edge crack
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Fig. 23 The crack growth path for different fibre angles

to the mid-plane. The displacement and stress contours are
shown in Figs. 26 and 27, respectively. In the crack growing
process, stress concentration appears at the transverse crack
tip and delamination front. Stress concentrations of σ11 and
σ22 are most significant along ω = 0◦ and ω = ±90◦ which
define the minor and major axis of the semi-elliptical delam-
ination, respectively. Meanwhile, stress concentration of σ12
is most significant along ω = ±45◦.

The material properties of the rectangular composite plate
with delamination and transverse crack are the same as
those given in Sect. 8.2.2. Three kinds of stacking sequences
[30]8, [45]8 and [60]8 are considered. The boundary condi-
tion and loads are the same as those of the isotropic plate.
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Fig. 24 Variation of SIF versus the crack size for the rectangular
isotropic plates with an edge crack and elliptic delamination
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Fig. 25 Distribution of SIF along the thickness direction as the crack
growing for the rectangular isotropic plates with an edge crack and
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Fig. 26 Fringe of displacements for the rectangular isotropic plates with an edge crack and elliptic delamination a u1; b u2 and c u3
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Fig. 27 Fringe of stresses for the rectangular isotropic plates with an edge crack and elliptic delamination a σ11; b σ22 and c σ12

The elliptic delamination is located at the 4th interface,
namely, [θ/θ/θ/θ/ ∩ /θ/θ/θ/θ ].

Variation of SIF versus the crack size is shown in Fig.
28. The distributions of SIF along the thickness direction are
shown in Fig. 29 as the crack grows. For fibre angle equal to
45◦. KI increases with the crack length. Meanwhile, KII first
increases and then decreases as the crack grows. Similar to
the isotropic plate, the delamination front significantly affects
the crack tip stress field. Both KI and KII along the thickness
direction are symmetrical with respect to the mid-plane. The
changes in KI and KII along the thickness direction increase
as the transverse crack tip approaches the delamination front.

Displacement and stress contours are shown in Figs.
30 and 31, respectively, which can illustrate the effect of
fibre angle on the displacement and stress distributions with
respect to those of the isotropic plate. Stress concentrations

still appear at the transverse crack tip and delamination front.
However, in the delamination front, the concentration area of
σ11 is located at the directions ω = −30◦, the concentration
area ofσ22 is located at the directionsω = −45◦ andω = 90◦
and the concentration area of σ12 is located at region near the
directions ω = ±45◦.

For three kinds of fibre angle (θ = 30◦, θ = 45◦ and
θ = 60◦), growth paths are shown in Fig. 32.

9 Conclusions

Using an improved layerwise displacement assumption and
the extended finite element method (XFEM), a new analysis
method is proposed for the laminated composite plates with
transverse transverse cracks and/or multiple delaminations.
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Fig. 28 Variation of SIF versus the crack size for the rectangular composite plates with an edge crack and elliptic delamination
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Fig. 29 Distribution of SIF along the thickness direction as the crack grows for the rectangular composite plate with an edge crack and an
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Fig. 30 Fringe of displacements for the rectangular composite plates with an edge crack and an semi-elliptic delamination a u1; b u2 and c u3
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Fig. 31 Fringe of stresses for the rectangular composite plates with an edge crack and elliptic delamination a σ11; b σ22 and c σ12
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Fig. 32 Growth path for different fibre angle

The SIF and the crack growth are predicted by the interaction
integral method and the maximum circumferential tensile
criterion, respectively.

The extended layerwise method (XLWM) of laminated
composite plates can not only describe the multiple delam-
inations together with through and non-through transverse
cracks but also accurately predict the displacement and stress
fields of the crack tip and delamination front. As the XLWM
is quasi three dimensional and the transverse cracks of each
single layer are independently described, the thickness dis-
tribution of the SIF can be calculated and the predict crack
growth angle can be different for eachmathematic layer. This
is an important advantage compared with the existing shell
elements enriched by XFEM. The XLWM extends the appli-
cation of the XFEM in damage analysis and prediction to
laminated composite structures.

The predicted static responses, SIF and crack growth are
in excellent agreement to the analytical and the available
solutions. From the numerical investigations, the following
conclusions can be drawn:

(1) Some nodes will be very close to the crack surface as the
crack grows. The present local remeshing scheme can
shift these nodes without scarifying the mesh quality.

(2) For the static response, the present displacement predic-
tion agrees well to that of the 3D elastic prediction of
MSC.Nastran whilst the SIF and crack angle predictions
are in excellent agreement with the analytical or other
reference solutions.

(3) The boundary and loading conditions are symmetricwith
respect to the mid-plane in the numerical example, the
thickness distribution of KI follows. Furthermore, KI

and KII are always equal to their respective average val-
ues along the thickness direction near z/H ≈ 0.2 and
z/H ≈ 0.8.

(4) The delamination front has a profound effect on the crack
tip stress field. The changes in KI and KII along the
thickness direction increase as the transverse crack tip
gets closer to the delamination front.

Acknowledgments Supported by National Natural Science Founda-
tions of China (11272180 and 11502286), Tsinghua University Initia-
tive Scientific Research Program and the “Blue Sky Young Scholar”
plan of Civil Aviation University of China (205003110307).

Appendix: The shape functions in the displacements
field along the thickness direction

The linear Lagrange interpolation functions φk can be
expressed as
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φk(z) =

⎧
⎪⎨

⎪⎩

ϕ1
k = − z̄k−1 − z

z̄k − z̄k−1
z̄k−1 ≤ z ≤ z̄k

ϕ2
k = − z − z̄k+1

z̄k+1 − z̄k
z̄k ≤ z ≤ z̄k+1

(40)

where z̄0 = z1, . . . , z̄k = zk+zk+1
2 , . . . , z̄N+1 = zN+1. zk

are defined in Fig. 1.
The weak discontinuous shape function Θk can be

expressed as

Θk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ϕ1
k

z̄k−1 − z

z̄k−1 − zk−1
z̄k−1 ≤ z ≤ zk

−ϕ1
k
z − z̄k
z̄k − zk

zk ≤ z ≤ z̄k

−ϕ2
k
z̄k − z

z̄k − zk
z̄k ≤ z ≤ zk+1

−ϕ2
k

z − z̄k+1

z̄k+1 − zk+1
zk+1 ≤ z ≤ z̄k+1

(41)

The shape function Ξk used to model delaminations can
be expressed as

Ξk =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

− z̄k−1 − z

z̄k−1 − zk−1
z̄k−1 ≤ z ≤ zk

z − z̄k+1

z̄k+1 − zk+1
zk+1 ≤ z ≤ z̄k+1

0 else

. (42)
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