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Abstract In this paper, a 3D computational model has been
developed to investigate biofilms in a multi-physics frame-
work using smoothed particle hydrodynamics (SPH) based
on a continuum approach. Biofilm formation is a complex
process in the sense that several physical phenomena are
coupled and consequently different time-scales are involved.
On one hand, biofilm growth is driven by biological reac-
tion and nutrient diffusion and on the other hand, it is
influenced by fluid flow causing biofilm deformation and
interface erosion in the context of fluid and deformable solid
interaction. The geometrical and numerical complexity aris-
ing from these phenomena poses serious complications and
challenges in grid-based techniques such as finite element.
Here the solution is based on SPH as one of the powerful
meshless methods. SPH based computational modeling is
quite new in the biological community and the method is
uniquely robust in capturing the interface-related processes
of biofilm formation such as erosion. The obtained results
show a good agreement with experimental and published
data which demonstrates that the model is capable of simu-
lating and predicting overall spatial and temporal evolution
of biofilm.
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1 Introduction

Although Biofilm could be simply described as the aggrega-
tion of microorganisms, for example bacteria, on a surface,
its formation and evolution is quite complex due to the fact
that several physical phenomena account for that. Indeed,
bacteria tend to grow in clustered populations instead of indi-
vidually wandering because this type of living make them
more resistant to environmental and external threats. They
anchor themselves to a solid surface where sufficient nutri-
ent is available to feed them. An internally secreted matrix
called extra polymeric substance (EPS) keep them together
and forms a spatially heterogeneous solid like material.

Biofilms may be either beneficial or detrimental to
human’s life. In some industrial applications, for example
water treatment units, one can take the advantage of biofilms
whereas in medical application they are considered to be
infectious and harmful. In this research , the focus is on the
formation of biofilms on the surface of teeth as well as dental
implants. In fact biofilm formation in the mouth cavity sig-
nificantly contributes to later dental plaque emergence. Aside
from their role in human’s life, a great deal of attention has
been drawn especially over the last three decades to simulate
their formation in order to predict and finally control their
behavior.

Early attempts to mathematically model the biofilms date
back to 1980s, see [1,2]. Here it was tried to develop a one
dimensional system of partial differential equation describ-
ing biofilm growth. Since then, a variety of methods have
been proposed to model two and three dimensional biofilm,
all of which fall into either continuum-based [3—7] or Hybrid
discrete-continuous models that are known as individual-
based methods (IBM) [8—10]. There are also some cellular
automaton (CA) models which are conceptually more or less
similar to IBM in this sense that the overall behavior and spa-
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tial structure of biofilm comes out of biological interactions
taking place at the individual level between discrete agents
[11-13]. In spite of being simple, such agent based mod-
els are capable of reproducing quite complex morphologies
such as finger like and fractal shape of biofilm in case that
biofilm growth is governed by diffusion-limited aggregation
(DLA) model in which the nutrient diffusion is the dominant
process [14].

It might be noteworthy to mention that agent based meth-
ods are more appealing to biologist because of their inherent
simplicity and their capacity to incorporate new local ad hoc
rules being inspired from biology such as bacterial binary
division, attachment and detachment of bacteria. Further-
more, handling multi species biofilm is not a big deal by
defining local interactions between different agents [15].
Nevertheless drawbacks of these methods are introduced sto-
chastic effects and geometrical anisotropy which make the
results less physical. So many parameters challenge predic-
tiveness of the model. Non-trivial error estimation and more
aesthetically driven results oppose mathematical and physi-
cal based predictions [16].

To discuss concisely what has been done with regard
to biofilm simulation in the literature, the physics behind
the process needs to be deeply understood. Biofilm mod-
els are based on three principal concepts. First transport
mechanisms (diffusion—advection) which bring nutrients to
biofilms, second biological consumption and consequently
growth mechanisms which directly contribute to biofilm
structural form and third biofilm-fluid interface related mech-
anisms that account for the effect of a surrounding fluid
on biofilms in terms of surface erosion (detachment) or the
attachment of planktonic bacteria.

The first mechanism has been well developed in a
continuum-based frame work in all existing above mentioned
references.

The second mechanism is exactly the point where two dif-
ferent approaches, i.e Individual-based and continuum based
methods, branch. The main idea of agent-based methods for
growth is that discrete elements mimicking bacteria grow
and afterward a contact model handles the overlap between
agents and results in overall expansion of the system which
is called shoving mechanism. The most recent open source
simulator for biofilms is called iDynoMiCS (Individual based
Dynamics of Microbial communities Simulator) developed
in Java Language [17]. When it comes to a continuum frame-
work for biofilm growth, almost all researcher assume the
biofilm to behave like a viscous fluid with a mass source
term [18-20]. This assumption is favourable although the
biofilm is apparently a solid-like material. The fact is that the
characteristic time scale of biofilm growth is so larger than its
relaxation time scale. Hence in practice no residual stresses
remains inside the biofilm and it is fully relaxed like a vis-
cous fluid [21]. It should be noted that the residual stresses
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are generally an inevitable resultant of biological soft tissues
growth when they are assumed to behave like a viscoelastic
solid. This has been extensively studied by researchers in a
robust continuum framework [22-26].

The third and the least understood mechanism is the one
occurring at the interface of fluid and biofilm [27]. The fluid
flow exerts forces to the biofilm and erodes or sloughs it
which change its architecture significantly. This process is of
great importance since it contributes to biofilm development
in an opposite way in comparison to biological growth. Thus
itresults in material removal and in some cases a final balance
between detachment and growth process is reached which
keeps the overall biofilm architecture more or less constant
[28]. Although the induced stresses and deformation and even
triggered small vibrations in biofilm are not an important
factor in its shape, it is necessary to do a stress analysis
embedded in a fluid-structure interaction (FSI) analysis in
order to correctly capture failure and detachment process in
biofilms [29,30]. Furthermore, the effect of detached mater-
ial forming streamers and also its oscillation characteristics,
has been taken into account by some authors [32,33]. In gen-
eral, the biofilm response to external forces has been modeled
using FEM in conjunction with a fluid flow solver [31]. How-
ever some researchers preferred to use particle based methods
such as discrete breakable spring-damper elements to sim-
ulate biofilm interaction with the fluid flow [34] and also
dissipative particle hydrodynamics (DPD) as a Lagrangian
stochastic approach [35]. Besides these approaches some
models are relied on empirical or semi analytical detachment
description inspired from a 1D biofilm model in which the
detachment rate is propositional to 4> where h is the local
biofilm thickness. Of course this method introduce some
unknown parameters that need to be identified for each prob-
lem [36]. It is noteworthy that in iDynoMiCS, the fluid flow
is not resolved and a constant boundary layer for nutrient
diffusion in fluid along with such detachment functions has
been implemented, instead [17].

Regardless of the method, the presence of moving bound-
aries in biofilm-fluid interface and how to handle it is a
complex task-especially in 3D- in grid based schemes and
needs to be dealt with in an accurate and efficient way. In
[37] this issue has been addressed using level set methods in
the extended finite element framework (XFEM).

The aim of this paper is to develop and present a uni-
fied computational approach for biofilm formation modeling
based fully on the SPH method. SPH was firstly introduced
in [38] and [39] for astrophysical application and nowadays
has been applied to simulate several physical processes such
as diffusion—advection [40-42], fluid flow [43,44], hydraulic
terrain erosion [45], reactive transport and precipitation [46],
solid deformation [47,48] and FSI analysis [50]. Although
most of these process are conceptually involved in biofilm
formation, to the best of author’s literature surveying, this
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Fig. 1 Schematics of experimental set up and subdomains of RVE

work is the first one in which biofilm formation as a multi-
physics phenomenon has been modeled using a fully SPH
based method. Furthermore, a novel SPH expression for bio-
logical growth inspired by astrophysical gravitational wind
accertion [51] was developed based on soft tissue growth
mechanics [52]. Considering the superiority of SPH in terms
of handling the before-mentioned issues due to its meshless
Lagrangian adaptive nature and also its attractive capacity
for parallel computation, a computational FORTRAN code
in SPH framework was developed by the author from scratch.
Furthermore, parallelized computation was realized using
OpenMP to benefit from multi-thread execution.

2 Mathematical framework and model description
2.1 Spatial domain and geometry

In this study, The predictions based on the developed SPH
method fro biofilm growth will be validated by experimental
results. The main part of experimental set-up conducted by
colleagues of the medical school is a flow chamber which
is fed with a peristaltic pump. At the center of it, there is
titan plate where the biofilm can form. The size of the titan
plate is 12 x 12 mm. See Fig. 1. Due to computational costs
of resolving the full macro scale, the simulation is limited to
several hundred microns in each spatial direction which could
be considered as a representative volume element (RVE) at
micro-scale. In practice, the modeled domain is expected
to be equal to the zooming in Fig. 1 area where the experi-
mental data are gathered using scanning electron microscopy
(SEM). The spatial whole domain in the RVE is divided into
two subdomains (compartments) i.e the fluid compartment
£2F and biofilm compartment §2p. The interface between

these two I'rp is the surface where the field variables are
coupled. Unknown field variables in 2f are velocity and
nutrient concentration and in §2p are the geometrical profile
due to growth phenomena and nutrient concentration.

An order of magnitude argument has been made related to
the different time scales associated with processes occurring
in biofilm formation [30,53]. This leads to the assumption
that all fast process (smaller time scales) such as fluid flow
and nutrient diffusion reach their steady state(temporally
homogenized) value when a slower process (large time scale)
such as biofilm growth is taking place. In fact it is the main
idea of temporal homogenization [54] and consequently dif-
ferent process could by solved efficiently in a staggered
nested manner.

2.2 SPH discretization

In SPH an arbitrary function f is expressed as an integral
interpolation

fr) = / FaHW( —r)dr’ ey

The integral reproduces f exactly if W is delta function.
In SPH, W is called kernel function mimicking the delta
function; it has a maximum value at point r’ and gradually
goes to zero within a compact support. In this work, a cubic
spline [55] kernel was chosen. The discrete notation of the
above integral leads to the following expression which is the
starting point of all SPH based methods:

fo=>" %f(rb)w(rb —ra.h) )

b

myp, and pp, represent the mass and density at point b. h is
the kernel support length which determines the maximum
neighborhood radius. Consequently it describes if two par-
ticles interact with each other or not. In general 7 must be
slightly larger but in the order of particle average distance
[57] for convergence purposes. In this work it is taken to be
1.5 times the average particle distance (h = 1.5A).

It must be noted that in equation (2) the % replaced dr’ in
the integral which is nothing else that volume element. In fact
the value of f at point a is estimated using the values of its
neighborhood. Differentiating the equation (2) with respect
to r provides an estimation for the derivative of f

Vi) = ’%’f(erW(rb —ra h) 3)

b

For the second derivative of f,instead of twice differentiating
the integral interpolant a much better approach was proposed
by [38]
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in which € is a small parameter to avoid singularity. Consid-
ering that the maximum order of derivative in most physical
phenomenon is two, higher order derivatives are not required
in practice.

2.2.1 Symmetrization of discretized mathematical operators
in SPH

In its discretized form, Eq. (3) looses even the zeroth order
consistency especially near the boundaries. This situation is
worse if the distribution of the particles is irregular. It means
that the Eq. (3) can not properly reproduce the derivative of a
constant field, which must be equal to zero. Furthermore, the
equation is not symmetric. This is important from the physi-
cal point of view. The SPH discretized equation are translated
finally into inter-particle interactions. If it is intended to
model a system of particles, any interaction between two
particle must not violate the third law of Newton. otherwise,
the total angular or linear momentum is not conserved, see
[57]. In order to make the derivative operator symmetrized
and exactly zero order consistent, one can use a differen-
tiable test function ¢ in constructing the first derivative of
the function f. Starting with the identity

1
Vf= E(V@f) —fVe) &)

If now the Eq. (3) is applied to the both terms of the right
hand side of Eq. (5), one can obtain

1
Vi) = > L rn) — ) Va Wty — ra h)
Pa b Pb

(6)

The Eq. (6) vanishes if f is a constant function. Choosing
¢ =1 gives

Vi) = ’%’(f(rb) — fEDIVaW(ry —Taih) (D)

b

The Eq. (7) is the practical and final version of the first deriv-
ative which is symmetric and exactly zero order consistent.
It is obvious that in this equation, the effect of particle a
on b is the same as that of b on a but in opposite direc-
tion. Comparing Eqs. (7) and (3) one can notice that they
are slightly different. In fact, the Eq. (7) has an extra term
(Zb mp f (rq)V Wp,) which is identical to zero in continuum,
provided that the support of kernel is complete. Assuming a
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single phase material with negligible density fluctuation, the
extra term can be approximated as follows

f(ra)pa Z ?VW},(; ~ f(ra)pa Z %Vwba (8)

b b

where Wy, := VW (rp — ra, k). It is obvious that the sum-
mation in right hand side of Eq. (8) is zero. It is in fact the
discretized form of kernel gradient integral over the kernel
support. It is zero if the support is complete (far from the
boundaries), see [48]. In the Sects. (2.3.1) and (2.3.4) the Eq.
(7) is applied to discretize the continuity equation in which
f =

Assuming ¢ = }—), one can find

v ,;(ra) _ Zmb(f(rb) . f(ga))vuw(rb_ra,h) )
a b

o7 02

This equation is utilized in Sect. (2.3.2) for discretization
of momentum equation in which the aim is to discretize the
expression %.

2.3 Governing equations
2.3.1 Mass balance (continuity)

Recalling from continuum mechanics, the local form of the
mass balance equation of a regular body not undergoing
growth is

ap

5y T V) =0 (10)

where p and v are the density and the velocity field, respec-
tively. When it comes to a biological body which may
experience growth, the mass balance equation needs to be
modified and indeed the right hand side of equation (10) is
replaced by a source term y accounting for mass generation
due to growth [21]. ¥ could be in general a function of other
field variables. Here it is assumed that y is only a function of
the nutrient concentration according to Monod kinematic [1].

K\ C
K,+C

y=Y (1D
where Y is the true yield of bacterial mass per unit of nutri-
ent consumption, K1 and K» are biological constants related
to the type of bacteria species and C is the concentration of
nutrient. In general adding a scalar source term into conti-
nuity equation is not sufficient to capture inhomogeneous
growth which generally results in residual stresses and it
is required to start from a multiplicative decomposition of
deformation in a tensorial sense. But here, due to the fact,



Comput Mech (2016) 58:619-633

623

that the focus is on time periods whose order of magnitude is
larger than biological growth time scale, the biofilm behaves
like a viscous fluid and all internal stresses are released
[21,22] and hence the scalar source term in the continuity
equation is sufficient.

Taking the source term into account and applying the Eq.
(7), SPH discretization of mass balance equation follows
aﬁzzm (Va — Vb).VW(ra — rp, h) + (12)

ar - b(Va b)- a b> Ya

In this study, another version of continuity equation which

is equivalent to Eq. (12) has been implemented [48], for the
growth process. It will be discussed in Sect. (2.4).

pa =D mpW(ry —rp, h) (13)
b

Both Egs., (12) and (13) are equivalent and theoretically gives
identical results except at boundaries. It can be shown that
the Eq. (12) is the rate form of Eq. (13). Taking derivative
from Eq. (13) with respect to time and using the chain rule
(% = % . %) in the right hand side, the Eq. (13) is achieved.
Recalling the Sect. (2.2.1) it should be noted that a zero term
needs to be added to the right hand side in order to have
zeroth order consistency and symmetric discretized gradient
operator. For further, detail the interested readers may refer

to [48].
2.3.2 Momentum balance

In general, every mass source stemming from growth phe-
nomena is an inherent momentum source as well. This makes
both the linear and angular momentum equation compli-
cated. In such cases the Cauchy stress tensor is not symmetric
anymore owing to a source term in the angular momentum
equation. However, under certain assumptions these effects
could be neglected and introducing the growth effect in the
continuity equation suffices. The fundamental assumption is
that the momentum of the newly deposited material is equal
to that of the existing material and this is the case for bio-
logical slow growth [56] and hence the linear momentum
equation has the regular and well-known structure.

pv = V.o + pb (14)
in which o and b are the Cauchy stress and body force,
respectively. The angular momentum leads to symmetricity

of Cauchy stress. Using equation (9) SPH approximation of
equation (25) is obtained, see [48], as

Dv¥ af - sob
D—f=—2mf( et T VW (1s)
b

g,
Pa 2 Pb

IWpa
3x,'f ’

where W, g is an abbreviation for Wy, g =

2.3.3 Diffusion—advection-reaction

In the biofilm domain (£2, the nutrient concentration C is
an unknown field variable and is computed using diffusion—
advection-reaction equation (Eq. 20).

9
9C L vev =DV c-%

P (16)

where D is the diffusivity coefficient and % is the consump-
tion term expressed in Eq. 11. Since the SPH is based on a
Lagrangian description, in the discretized form the advection
term(V C.v) does not exist explicitly.

DC — Vw —Ta, h
a _ ZzD@(Cb —-C,) (rp —ra) (21'b Ta, h)
Dt > b [rp —ral® +€
+y—;. 17)

2.3.4 Constitutive equations

Fluid flow Ttis common that the stress tensor can be decom-
posed into isotropic(pressure) P and deviatoric S parts
according to the following equation

oij = —Pdij + Sij (18)

where §;; is the Kronecker tensor. Assuming a Newtonian
fluid, the deviatoric stress is proportional to the deviatoric
strain rate.

Sij =2puye€ij (19)

where 1 ¢ is the fluid dynamic viscosity and

1 [ dv; n v 1 8vk8 20)
cgi==——+—)—=——6;
) ox; 0X; 3 0xg Y

in which Einstein’s summation rule has been applied for
index k and v is the velocity field.

Elastic solid As mentioned before, biofilm behaves like a
fluid in the growth process, but in short time scales it acts
like a solid [34]. In other words, it is necessary to model
biofilm as a deformable solid if its interaction with the sur-
rounding fluid is considered. Due to the nature of SPH, it
is more convenient to use hypo-elastic approach instead of
hyper-elastic one when dealing with deformable solid. In this
approach rate constitutive equations are used to reflect the
material behavior. Such constitutive laws are similar to Egs.
(18)—(20) with the modification that the stress rate is propor-
tional to the strain rate and p y is replaced by jus representing
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the shear modulus of the solid. The important point is that
the stress rate must be objective to fulfill frame indifference.
The Jaumann rate is the most widely adopted [47,48]

Sij — Sikwjk — Wi Skj = 2Us€if (21)

recalling Einstein summation notation and material time
derivative ('), the whole left hand side is indeed the Jaumann
stress rate and the tensor w;; is called spin tensor and it is
calculated

1 [ dv; v
L= 2 22
@i Z(BXJ' 3)6,‘) 22)

All equations are finally translated into the first derivative of
the velocity field and hence can be calculated using an SPH
approximation according to Eq. (7).

Remark The application of such rate constitutive equations
while assuming spatially constant coefficient, is quite ques-
tionable and in fact incompatible with elasticity when large
deformation and especially severe volume change takes place
[49]. Nevertheless, in this paper with the assumption of mod-
erate deformations, this effect has been neglected.

Equation of state In the standard SPH which is also called
weakly compressible SPH (WCSPH) the pressure is com-
puted from the density using a thermodynamically consistent
equation of state. Such approach enjoys the benefit of decou-
pled pressure and velocity field but suffers from a small time
step that is conversely propositional to the sound velocity in
the material due to the CFL (Courant, Friedrichs and Levy
1928) stability condition. Here the following equation for the
pressure is used

2 Y
p = S ((ﬁ) _ 1) (23)
vy \\ro

where ¢ and pg are sound velocity and rest density of the bulk
material. The parameter y is set to be “7” for the fluid and
and “1” the solid. It should be emphasized that the value of
co for the fluid is in fact a penalty parameter rather than a true
physical sound speed and hence it can be selected in a way
that is large enough to insure density fluctuation less than 0.01
and keep the Mach number less than 0.1, and small enough to
avoid unnecessary small time steps [57]. In practice, if cq is
taken at least 10 times the maximum velocity, it is sufficient
[60]. Nevertheless, for the solid it is a real material constant
related to the bulk modulus(K') and density(p) according to

(24)

K
co=,—
P
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Since here SPH is applied to solid deformation using rate-
based constitutive equation, this is in the spirit equivalent to
the method of explicit dynamic relaxation in finite element
(FE) discretizations. In terms of computational cost using
SPH for FSI problems is justified if the elastic modulus of
the solid is in the order as the assumed fluid bulk modulus . It
means that applying SPH to FSI problems is computationally
efficient if the characterized time scale of fluid and solid are
of the same order, otherwise use of SPH is not recommended
because a much smaller time step is associated with the stiff
solid and hence rules the whole process. In this paper, fortu-
nately the biofilm is a soft material with elastic modulus in
the order of several Pa and Poisson ratio not close to 0.5 [31].

Remark In case of fully incompressible solid (for example
rubber like materials) whose Poisson ratio approaches the
limit 0.5, the bulk modulus tends to infinity and using this
approach is unjustifiable. but some authors have shown that
an artificial decrease in bulk modulus (or Poisson ratio) would
be a remedy for this issue while not affecting the results that
much [50]. In this case, the material is allowed to behave
nearly incompressible.

2.4 Growth modeling

It was found by the authors that the Eq. (13) is much more
suitable for the growth process rather than Eq. (12). In this
paper the growth process is handled incrementally. At the
beginning of each increment, the new mass is instantaneously
generated according to Eq. (11) once the diffusion-reaction
equation is solved. It should be clarified that the new mass
is added to the existing particles and no new particle is gen-
erated. This results in a density increase and consequently
a pressure field according to Egs. (13) and (23). Then the
expansion process (growth) starts and the relaxation of accu-
mulated density takes place . As a result, the biofilm expands
and this expansion in particle distribution is reflected in more
relative distances between the particles and that is exactly the
spirit of Eq. (13) which is explicitly a function of particle dis-
tribution rather than particle velocity. This is the reason why
Eq. (13) has been adopted.

Three important remarks about the growth process need
to be clarified. First, the growth process is governed by mass
and momentum balance equation in each increment. The only
point is that it is driven by internal local density accumula-
tion rather than external forces. Second, the internal energy
associated to the initial density accumulation at the begin-
ning of each increment is entirely dissipated by the artificial
viscosity at the end of the increment. Third, the relaxation
occurring in growth process is not of our primary interest,
but rather the final configuration at the end of each increment
in which the internal pressure is released is important. It is
obvious that the magnitude of dissipative force determines
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Fig. 2 Pressure and velocity extrapolation through interface particles

how fast the energy is dissipated and the equilibrium state
is reached. It should be highlighted that this approach was
inspired by a seemingly irrelevant work to this research [51]
in which astrophysical gravitational wind accertion has been
simulated using SPH method with particles whose masses
were varying.

2.5 Boundary conditions and interface modeling
2.5.1 Boundary conditions

The treatment of boundary conditions in SPH is still a con-
troversial issue and not fully solved. The reason stems from
the nature of SPH as a collocational method based on the
strong form of the governing equations. The completeness
condition which means consistency of the method fails at
boundaries where the kernel of smoothing function is trun-
cated [58]. Several techniques have been proposed which
are based on one of three basic concepts. First using some
imaginary particles at the boundary, second using predefined
repulsive forces and the third deriving corrective formula for
kernel and kernel gradient at free boundaries [57,59]. The
aim of this paper is not to discuss these methods in detail,
however it should be expressed that the method presented
in [60] has been implemented in this paper for fluid-solid
interface interaction. This method has been appreciated as a
plausible, accurate and stable method by Monaghan, one of
the first developer and pioneers of SPH [62].

The main essence of this approach is to consider three
layers of solid particle to be dummy (wall) particles through
which the pressure and velocity fields of the fluid are extrap-
olated, see Fig. 2

f
2ben ¢ b

- (25)
Zbeﬂf Wb‘l

Uy = 205 —

where vy, v,{ and vy are wall (dummy), fluid and solid
particle velocities, respectively. It can be said that each inter-
face particle has two identities, the real and dummy one.
Although interface particle are solid particles in reality and
contribute to the computation of solid phase with the real
values such as vy, they convey dummy values (vy,, py) as
well. An interface particle with dummy value contributes to
the fluid domain computation in order to enforce the interface
compatibility conditions. It needs to be stressed that a no-slip
condition (velocity compatibility) is implied in Eq. (25) via
an approximate mirror projection, see [60] . In addition to
the velocity compatibility, an accurate coupling of traction
is also required. The novelty of this method is the incorpo-
ration of the wall acceleration into the pressure calculation
of the dummy particles. It should be noted that it is not an
ad hoc formula but it comes from the momentum balance at
the interface, see [60]. To do this, we start with the Navier
Stockes equation for the fluid close to the solid boundaries
(dummy particles), neglecting the viscous term:

dvy VP

=—-——+¢ (26)

a =
v dt 0

in which a,, is the acceleration of a dummy fluid particles
at the interface or boundary. The key assumption is that we
have a no-slip boundary condition and it means that that the
acceleration of a dummy fluid particle is equal to that of
solid wall at the boundary (a,, = ay). Rearranging the Eq.
(26), one can find an estimation for pressure gradient near
the interface. Applying a Taylor series for pressure, yields

pw=pf+Vpryr=pr+pr(g— aw)rus 27

where ryy = ry — 1y, see Fig. 2. Taking all the neighbors
contribution into account for the Eq. (27) using SPH dis-
cretization, one can find the final formula for computing the
pressure in dummy particles

Zbegf P[{ Wha + (8 — aw). Zbeﬂf berbaWba
Zbeszf Wea

Pw =
(28)

Here p,, and pg are wall (dummy) and fluid pressure, respec-
tively.

It is true to say that interface modeling in a FSI problem is
crucial. It can affect the output significantly. The more accu-
rate the interface quantities are computed the more correct
the fluid-solid coupling is modeled and consequently more
realistic and physically sound results are achieved. Finally
the exerted force per unit mass on a solid particle Fy_, ¢ can
be evaluated using the extrapolated pressure. It should be
clarified that the viscous forces at the interface have been
neglected in spite of no-slip boundary condition [60].
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VP 1 mp
Feos=— ’ =— — P,V Wy, (29)
S

Here one of the most appealing features of SPH shows up. Itis
its automatically handling of the interface relations which can
not be achieved so easily e.g. in FEM. The pressure interface
force is always normal to deformed surface of biofilm (it is so-
called follower load) and due to updated Lagrangian nature
of SPH it is explicitly treated and there is no linearization
and computational challenge to encounter [61].

Note that in the solid phase, the above calculated force is
added explicitly to the right hand side of momentum equa-
tion (15) and the SPH summation is extended only to solid
particles, whereas in the fluid phase the SPH summation
includes dummy wall particles and no such explicit term
is added to momentum equation. In fact, the velocity and
pressure of dummy particles which in reality belong to solid
phase contribute to the reaction force applied to fluid from
solid. It means a two way coupling of fluid and solid in
which the kinematic and traction compatibility at the inter-
face is fulfilled in a collocational sense. In other words, the
continuity of traction and normal velocity holds true [50].
It should be reminded that the presented boundary treat-
ment has been applied to both deformable solid boundaries
(fluid-solid interface) and also rigid fix boundaries (essen-
tial boundary conditions). The only difference is that in fixed
boundaries the velocity and acceleration are identical to zero
(vs = ay =0).

2.5.2 Erosion (detachment)

The detachment process in biofilm formation has different
mechanisms such as erosion, sloughing, abrasion, predator
grazing and human intervention [30]. The ones which have
a hydrodynamical root are erosion and sloughing. In this
work, the focus is on interface erosion in which the bacteria
(particles) are gradually washed away because of the shear
forces of the flow. To avoid any ambiguity, some important
aspects of biofilm detachment need to be clarified.

First, the process is local and taking place at micro-scale
and it is almost impossible to have a real-time experimental
measurement from which a macroscopic balance of mass
could be deduced [30]. In practice, most experiments on
biofilm are solely measurement of average height in some
points of interests obtained during large time scales of order
hours and days. The outcome is indeed a resultant of all
processes contributing to biofilm formation and decompos-
ing the real portion of impact for these processes is not pos-
sible. In other words, the numerical erosion model of biofilm
could not be quantitatively verified through experiments that
have been conducted in this research. Nevertheless, it is still a
powerful tool to understand qualitatively the physics behind
the erosion process in biofilms and to predict detachment.
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Second, it has been assumed that the erosion is taking
place at the fluid-biofilm interface in the form of a single
particle removal when the shear stress induced by the fluid
exceeds a failure criteria based on biofilm strength

Tinterface = Ty (30)

Here Tiprer face Tepresents the shear stress induced by the fluid
flow and 7, is the shear yield stress in biofilm.

Third, It is well known that the biofilm is a heterogeneous
material and its cohesion strength varies from the order of
10 Pa in the base where it is attached to the substratum to the
order of 0.1 Pa near the interface [30]. Unfortunately, mea-
suring the mechanical properties of a biofilm which govern its
response is a very challenging issue and there is no unique
reference value for mechanical properties in the literature.
Thus a wide range of values has been reported. On the other
hand , it is obvious that the mechanical stress in the biofilm
must be higher at the substratum where it is cantilevered [31].
It means it is likely that sloughing as an another failure mode
in which a bunch of bacteria as a whole are detached, occurs
in addition to surface erosion especially in high Reynolds
flow. However, in this study the flow conditions are such that
the dominant detachment process is surface erosion and the
stresses near the substratum are less than the biofilm strength
there. Definitely, a continuum damage or crack propagation
model is required to be incorporated for capturing bulky fail-
ure modes within the biofilm and it could be the matter of
further future research.

Fourth, capturing the dynamically changing interface
accurately is of great importance because this is the region
where biofilm-fluid coupling is taking place. If the interface
is not recognized properly several artifacts might appear and
finally lead to a crash of the numerical method. Penetration
of the fluid into the biofilm, local non-physical tearing of the
biofilm due to abrupt change in the interface geometry and
forces are two common issues in case that the interface geom-
etry is naively tackled. In this work an algorithm so-called
“Alpha shape” has been employed to find the boundary parti-
cles in pre-processing stage of the analysis. This has proved
to be a robust method especially in case of a general irreg-
ular set of particles. This algorithm is based on Delauney
triangulation and circumscribed circles. It is available MAT-
LAB software. The input is an arbitrary point cloud and
a value corresponding to a rolling circle on the boundary
points. The out put is the boundary particles. Figure 4 illus-
trates how the algorithm works. The associated subroutine
has been invoked within our FORTRAN code. Furthermore,
a dynamic modification of the interface is performed. The
procedure of up-dating the interface had been depicted in
Fig. 3. Detached (eroded) particle are members of interface
(dummy) particles. As soon as a particle is detached, the
thickness of interface (about three layers of solid particles)
decreases and hence it needs to be updated. New solid par-
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Fig. 3 Interface modification due to erosion (fop) before erosion (bot-
tom) after erosion

ticles are added to the interface particles set to make up for
the detached ones.

Finally, the fact that the minimum size of detached mate-
rial at the interface is equal to the size of the particle might
be physically arguable. This is the case not only in mesh-
less method but also in element based methods when they
are applied to model damage and failure phenomena using
“death” of elements. Generally such mesh dependency of
material behavior, which is undesirable, is a matter of dis-
cussion when the equations are transformed from continuum
to discretization level. Nonetheless, here it can be argued that
the biofilm micro structure in reality is a composite made of
bacteria as inclusions being glued together with EPS as a
matrix and the damage always happens in the weaker com-
partment of this composite which is the matrix. It is implied
that a single bacteria is not torn apart but removed as a whole.
Consequently the minimum size of material removal is con-
fined to the size of a single bacteria. Since here the size of
mesh (particles) is the same as a single bacteria, this model-
ing of material erosion is justifiable.

Fig. 4 Recognizing boundary particles using alpha shape algorithm

2.6 Numerical remedies and integration method
2.6.1 Tensile instability

In spite of its robustness and simple appearance, SPH like any
other computational method has some shortcomings. A great
deal of literature has been dedicated to remedy such issues.
One of the most cumbersome instabilities in SPH is called
tensile instability. It manifests itself in particle clumping
when a body is in tension state of stress. Several techniques
have been proposed to circumvent this instability. Belytschko
[63] was the first who diagnosed this problem in a gen-
eral framework and found the root and cure of this disorder
although it had been already identified by earlier researchers.
In [63], it was discovered that the Eulerian nature of the SPH
kernel (in current configuration) is the main cause of this
instability. So if one uses a Lagrangian kernel (in reference
configuration), this instability is cured. Here it is not intended
to deeply go through such matters and the reader is referred
to a comprehensive review in [58]. In this paper, the method
of using artificial stress developed by Monaghan [64] has
been employed to deal with tensile instability. The main idea
is to introduce a certain amount of artificial stress into the
momentum equation in the direction of principal stress whose
amount is positive. This kind of stress perturbation removes
or at lease postpone the emergence of this instability while
not changing the physical behavior too much.

2.6.2 Artificial viscosity
in SPH an artificial viscosity term must be added to the

momentum equation in order to suppress unphysical oscil-
lation and stabilize the numerical scheme [65]. While in the
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fluid phase the intrinsic real viscosity of fluid is enough to
stabilize the solution, in solid phase an artificial viscosity
has to be be introduced. This dissipation term could be inter-
preted as inherent viscous behavior of the solid associated
with a certain relaxation time. The final momentum equation
including artificial stress and viscosity follows from equa-
tion (15)

B
Dvy a},"ﬁ GI‘: B
= — E — + 2 — Ipsdas + R 1%
Dt - mp ( ,Oaz ,0};2 baO%ap ba ab,p

€1y

where [1j,84p and RZf are artificial viscosity and artificial
stress terms, respectively. Artificial viscosity can be evalu-
ated, see [65], by

—UChaltba <
My = [—pba Vba.Tha < 0

0 Vba.Iba > 0

tha-rba

_ _ 32
[rpal? + 0.0142 (32)

Mba

where I'a = Ta — I, Vba = Va — Vb, Cha = 3(Ca + ),
Pba = %( Pa + pp) and « is a parameter in the order of unity.
The artificial stress is calculated using the formula

ij _ pij ij
Ry, = Ri + Ry
ol L

Réj _ —e% aé‘/ > 0,
0 aé] <0

E:=aorb (33)

Unlike in equation (31) the superscript i, j has been used
instead of , B in this equation. The reason is that the artificial
stress tensor is computed using the value of principal stresses
and directions(i, j) and afterward it is returned to the regular
basis «, B by a transformation matrix Q.

ap i i Wy —ral, h)\"
Rba = anll Rba Qba ( W(A) (34)
The parameter e = 0.3 and n = 4 were taken [64]. A denotes
the average particle spacing in the neighborhood of particle a.

2.6.3 Integration method

For the time integration a velocity verlet proposed by [60] was
selected and implemented. This integrator is explicit, second
order accurate (hence consistent with the SPH nature), sym-
plectic (conserves important quantities like momentum and
energy in long term and consequently it is reversible) and
efficient due to just one time force calculation per time step.
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AL (?)Vt) (35)
2 4 %v;‘*% (36)
Pt = p + At (?)p:)nﬁ 37)
it = r2+% + %vg-"% (38)
ot (?)V;‘)"H (39)

As mentioned before, to guarantee stability of the computa-
tional method the time step is determined by the CFL stability
condition in conjunction with extra viscous and force condi-
tions, see [60].

1
h h? h :

At =min 10.25————,0.125—,025{ 5——

Cmax T |Vmax| v |ﬁ;|max

(40)

Here v is the kinematic viscosity of the fluid. It should be
noted that in case of diffusion equation, the time step is sim-
ilar to viscous term above and is evaluated as follows

h2
At =0.125> @1)

in which D is diffusivity coefficient.

3 Numerical examples and discussion

In order to examine the validity of the developed code for the
fluid flow and biofilm deformation, first a conceptual example
presented in [34] is simulated. In the second example a 2D
deformable biofilm undergoing erosion is modeled and in the
third example the biological growth process of 3D biofilm is
computed and the results are compared with those measured
in experiments.

3.1 Fluid-biofilm interaction

In this example an artificially shaped 2D biofilm in the form
of arectangular block is deformed as a result of its interaction
with the surrounding fluid. The fluid condition, material con-
stants and geometric dimensions can be found in Table 1. The
upper plate velocity was set to V and its motion moves the
bulk fluid around the biofilm. It exerts forces on the biofilm
structure and finally causes it to deform until a final steady
state is reached. Figure 5 depicts the normalized hydrosta-
tic pressure profile prior to applying the horizontal velocity.
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Table 1 Model parameters and constants [34] Biomm(l\DniisgI:n‘;emem F'E'n'/ﬁc‘ﬁ'n‘ﬁi”

Parameter Symbol Value Unit
Biofilm height H 150 mm
Biofilm width W 50 mm
Biofilm Poisson ratio E 0.5 -
Biofilm shear modulus nw 1 Pa
Fluid density ) 1000 Kg/m?
Fluid viscosity % 1.002E-3 Pa.s
Top plate velocity v 1.00 s
Particle size A 3.0 mm

Normalized Pressure

o
3
o

0.25

mmxmmo;mmxlxmm_‘
pd :

0.000

Fig. 5 The initial configuration of a rectangular biofilm in fluid flow
under hydrostatic condition

The reference pressure for normalization is the one com-
puted analytically at the bottom of the domain, namely
Prep =prgH.

The results which are based on a fully continuum approach
show good agreement with those achieved in [34] in which
discrete mass-spring elements have been used to model the
biofilm deformation. Figure 6 illustrates the final (steady
state) configuration of the deformable biofilm in the fluid
flow as well as the flow streamlines. It should be noted that
the real time having been simulated is much less than charac-
teristic growth time of biofilm and in fact no growth occurs
in this test case.

3.2 Biofilm erosion and streamer formation

Two dimensional simulation has been performed in the sec-
ond example to show the process of biofilm erosion due to
induced shear forces at the biofilm surface. Table 2 contains
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Fig. 6 The steady state configuration of a rectangular biofilm in fluid
flow

Table 2 Model parameters and constants (Material property from [31])

Parameter Symbol Value Unit
Biofilm initial height H 30.0 Micron
Biofilm initial

maximum width w 20.0 Micron
Biofilm Young modulus E 10 Pa
Biofilm Poisson ratio v 0.3 -
Biofilm interface strength Ty 0.1 Pa
Biofilm density Ob 30.0 Kg/m?
Fluid density of 1000 Kg/m?
Fluid viscosity " 1.002E-3 Pa.s
Particle (bacteria) size A 1.0 Micron

material properties, constants and parameters required for
this case.

In this case an initial single biofilm hump is considered
which is located at the center of flow chamber. It is exposed
to the fluid flow. For the sake of simplicity in visualization,
the 2D results (plane stress assumption) are presented. It
is observed that the biofilm colony looses gradually some
bacteria at the interface where the interfacial shear stress
exceeds the biofilm cohesion strength. The detached bacteria
are washed away by the fluid forces and form a filamen-
tous streamer-like tail floating in the fluid flow downstream.
In some cases, especially when the biofilm is too soft, this
streamer formation may happen even prior to detachment
and in fact the biofilm is highly deformed and elongated.
Such phenomena have been repeatedly reported in the litera-
ture, see [32,36,66,67]. An animation of this process can be
viewed in the supplementary online materials.

It should be noted that the time has been non-dimension
alized using t,.y = %. Two important points can be
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Fig. 7 Biofilm erosion a initial velocity profile b velocity profile and
eroded bacteria after T = 1500 ¢ mechanical stress development in not
eroded biofilm during time

extracted from Fig. 7. First, before the horizontal fluid veloc-
ity is applied and consequently the erosion starts (at time

7 = - = 10), the biofilm is in a tension state of stress.

tr

The reaelfson is that in a hydrostatic equilibrium an effective
upward buoyancy force, originating from density difference
between fluid and biofilm, tends to lift up the biofilm. Once
the fluid moves, the effective drag force on the biofilm bends
it and changes the stress state. As it is expected the mechan-
ical stress has the maximum value at the lower part of the
biofilm where it is anchored to the substratum. However the
value of stress is less than biofilm strength in this region
and no sloughing happens. In Fig. 8 it can be seen that the
biofilm experiences a vibrational micro-motion in the fluid
flow direction. This is due to continuous erosion which results
in sequential impulses on the biofilm structure and triggering
the first vibration mode of biofilm structure. It means that the
biofilm response to the fluid flow is dynamic during erosion
process. It is expected that such movements are gradually
suppressed when the erosion process stops due to the reduc-
tion of shear forces once enough material is washed out and
the fluid velocity decreases in the vicinity of biofilm.

3.3 Biofilm growth

The material properties and parameters are listed in Table
3 for this example. The biological growth process of a 3D
biofilm was simulated in this case study. It is assumed that
an initial semi spherical colony of bacteria exists on the sur-
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Fig. 8 Displacement of the biofilm center in time during the erosion
process

Table 3 Model parameters and constants (material property from [31])

Parameter Symbol Value Unit
Biofilm initial height H 30.0 Micron
Biofilm initial
Maximum width A\ 20.0 Micron
Biofilm density Db 30.0 Kg/m?
Reaction Constant

in Monod law K 0.12 1/h
Reaction Constant

in Monod law K> 4.0E-18 gr/Micron®
Nutrient Concentration

in Bulk fluid Cr 3.0E-18 gr/Micron?
Yield Constant

in Monod law Y 1.0 gr/gr
Particle (bacteria) size A 1.0 Micron

face and it starts to grow. In other words, the initial condition
is a priori because this is due to the fact that the initial colo-
nization of a surface by the microorganism is a very complex
process, taking place in much smaller length scale in the
order of molecules size. It is still a not truly understood phe-
nomenon and rare computational modeling could be found in
literature, nevertheless some researchers employed theories
like DVLO (Derjaguin Landau VerweyOverbeek) incorpo-
rating Van der Waals and electrostatic forces to simulate
initial adherence of bacteria [68].

Although in reality bacteria need several nutritional sub-
strates, for the sake of simplicity it is assumed that the
growth process is limited and affected by the concentra-
tion of just one type of nutrient and the other components
are unlimitedly supplied. It implies that there is only one
diffusion—advection-reaction equation in the computational
method corresponding to this substrate [4,35].

Figure 9 illustrates the biofilm growth and the nutrient nor-
malized (non-dimensionelized) concentration during 24 h.
The reference concentration is that of the bulk fluid (Cy)
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Fig. 9 Biofilm growth and nutrient concentration a after T=6h b after
T=12h c after T=24h

which is in fact the maximum available nutrient concentra-
tion. It is a common assumption that the fluid is well mixed
due to the dominancy of advection transport mechanism and
the nutrient concentration is a prescribed variable in bulk
fluid but it is computed in the biofilm using the diffusion-

consumption equation. It should be noted that the RVE has
a periodic boundary condition at all lateral sides and that
is why the biofilm can take the whole spaces around itself
as it grows up. Figure 6¢ reveals that the more the biofilm
grows the less nutrient is available inside. Of course there
is always a nutrient flux from fluid to biofilm through the
interface via the diffusion mechanism. This makes up for the
consumed nutrient by the bacteria, however as the biofilm
expands spatially the overall nutrient amount in lower region
of biofilm decreases. It means that the biofilm has a larger
growth rate at the interface and a slower rate in the interior
region. In some cases the shortage of nutrient may result in
death of bacteria. They form an inactive region in the biofilm
which even shrinks because of chemical decay instead of
growing. Presence of inactive biomass has been reported in
biological observation and was detected by our experimental
colleagues as well. In this research the effect of inert bio-
mass shrinkage was neglected because it was found that the
portion of inactive biomass is much less than the total active
biomass especially in small time period of order 1 day. Some
researchers who use individual based methods have intro-
duced this consolidation effect in their model [17]. But it
seems that it is much more challenging to incorporate this
phenomenon in a continuum based framework. In Fig. 10 the
average height of the biofilm has been plotted after 24 h which
reflects the biofilm growth. The experiments were repeated 3
times and the data were collected from several point of inter-
est. It can bee seen that the relatively large standard deviation
implies how nondeterministic the process is. Additionally
the portion of inert (dead) biofilm is so small that it could
be neglected at least in small time period simulation that was
assumed here for the numerical modeling. The computational
results are satisfactorily in comparison with those measured
in experiments. It is obvious that the parameters of the prob-
lem could be calibrated using the experimental results in such
a way that the experimental and numerical results fit better.
However it does not necessarily mean that such calibrated
parameters can be applicable to different environmental con-
ditions other than that of this experiment, because the process
has an intrinsic stochasticity.

It should be stressed out that the induced fluid velocity
from biofilm growth is so small (of order one micron per
hour, Fig. 11) that the fluid flow is not disturbed in practice.
It means that it is not required to explicitly resolve the fluid
flow field variable as a function of growing. In other words,
capturing the interface is sufficient to update the geometrical
domain of the fluid flow. That is why some researchers who
focus just on the biofilm growth, never deal with the Navier
Stokes equation at all [17] and they assume to have a pre-
known boundary layer as the fluid-biofilm interface. These
are fundamental assumptions in biofilm simulation due to
separation of several time-scales corresponding to different
phenomena and need to be thoroughly understood.
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Fig. 10 Experimental results versus numerical simulation of 3D
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Fig. 11 Streamline of biofilm growth after T=12h

4 Conclusion

In this article a fully continuum based numerical scheme
for biofilm formation was presented in the SPH framework.
The method was motivated by the goal to benefit from the
Lagrangian and meshless features of SPH in order to han-
dle several complexities in the problem due to geometrical
and physical coupling between the biofilm and the surround-
ing fluid. The biofilm was modeled in small time scales as a
deformable solid submerged in the fluid flow and experienced
mechanical deformations and surface erosion due to the
forces from the fluid. Furthermore, assuming a viscous fluid,
biofilm growth was simulated in large time scales and the
results were verified by experiments, conducted by our part-
ners in medical school. It was found that the hydrodynamical
conditions of the fluid flow have a significant impact on how
biofilm grows and its geometry changes as a result of envi-
ronmental conditions. The authors believe that the developed
computational tool is robust. It can be extended in order to
incorporate other aspects and determinant factors of biofilm
formation such as a multi species colony of bacteria, shrink-
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age of biofilm due to bacteria decay in the long term, other
detachment processes, different non-linearity in material
behavior, turbulent flow around biofilm, to benefit from GPU
implementation and more parallelization concepts like MPI.
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