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Abstract This paper presents a combined continuous–
discontinuous modeling technique for the dynamic ductile
fracture analysis using an interactive particle enrichment
algorithm and a strain-morphed nonlocal meshfree method.
The strain-morphed nonlocal meshfree method is a nodel-
integrated meshfree method which was recently proposed
for the analysis of elastic-damage induced strain localization
problems. In this paper, the strain-morphed nonlocal mesh-
free formulation is extended to the elastic–plastic-damage
materials for the ductile fracture analysis. When the ductile
material is fully degraded, the interactive particle enrichment
scheme is introduced in the strain-morphed nonlocal mesh-
free formulation that permits a continuous-to-discontinuous
failure modeling. The essence of the interactive particle
enrichment algorithm is a particle insertion–deletion scheme
that produces a visibility criterion for the description of a
traction-free crack and leads to a better presentation of the
ductile fracture process. Several numerical benchmarks are
examined using the explicit dynamics analysis to demon-
strate the effectiveness and accuracy of the proposedmethod.
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1 Introduction

While modern multiscale and multiresolution techniques
are able to [1–4] offer reproduction and estimation of
some complex phenomena of ductile fracture in metals,
the development of an efficient and easy-to-use approach
for macroscopic modeling is also very important for many
large-scale industrial applications. In macroscopic analysis,
continuum damage models [5,6] are often considered effec-
tive to describe the degradation ofmaterials as a consequence
of the growth of microstructural defects such as micro-voids
and micro-cracks. Mathematically the strain-softening in the
local form of continuum damage model leads to the ill-posed
boundary value problem [7,8], and the numerical results suf-
fer from the pathological localization of deformation. Several
integral-type and gradient-type of nonlocal damage mod-
els [9,10] were developed for finite element methods to
regularize the non-unique solution and minimize the mesh
dependence in strain localization problem. The numerical
methods utilizing those nonlocal damage models are known
to best suit for modeling diffuse micro-cracking and forma-
tion of the damage zone before a macro-crack is evident.
When the coalescence of some microstructural defects cre-
ates themacro-crack, the discrete fracture becomes dominant
in which fracture is regarded as the ultimate consequence
of the material degradation process [6]. Unfortunately, the
numerical methods based on a pure nonlocal damage model
are inadequate to describe such kinematic discontinuity of
the displacement field in a continuous setting. Without intro-
ducing an explicit failure surface to the numerical model,
excessive straining arises since the material across the dam-
age zone remains kinematically connected at almost zero
stress levels [11,12]. As a consequence, a spurious damage
growth [13,14] is often observed in the numerical solution
which strongly disagrees with the physical observation.
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The incorporation of a discontinuity in the displacement
field has shown to be the necessity to release the exces-
sive strain in the damage zone generated by the nonlocal
damage model employed on various numerical methods.
This has motivated the development of various combined
continuous–discontinuous approaches [11,14–17] to model
the entire fracture process, frommaterial degradation to crack
propagation in ductile as well as in brittle materials. While
the nonlocal damage model is used to describe the mater-
ial degradation, the discontinuous enrichment [18–20] and
remeshing technique [11] typically used in fracture mechan-
ics are considered to model the discrete crack. The transition
from continuous model to discontinuous model is an irre-
versible process. This transition process can be made either
at partial or complete local failure of the continuousmaterial.
In the case of partial local failure, the relationship between
the damage zone and themacro-crack ismade thermodynam-
ically [15,17,18] such that the energy dissipated due to the
damage is equivalent to the energy required to establish the
crack surface. In the complete local failure case, the transi-
tion from damage to crack is triggered when the material is
fully degraded. In other words, a traction-free crack [11,21]
is introduced to the numerical model as the damage vari-
able is close to one. Recent years, more sophisticated and
accurate simulations have been made within the finite ele-
ment framework for the combined continuous–discontinuous
failure analysis in the brittle [12,22,23] and ductile [24,25]
materials.

Compare with finite element methods, considerable suc-
cess also has been achieved in meshfree methods for damage
and fracture analyses. Simonsen and Li [26] first proposed
a meshfree simulation of crack growth in ductile materials.
In their method, the reproducing kernel (RK) approxima-
tion [27] is utilized to approximate the displacement field
which contains the cracks modelled by the visibility method
[28]. The method has been applied to the analysis of duc-
tile fracture in thermal–mechanical [29], high-speed [30]
and structural [31] problems. On the other hand, mesh-
free methods utilizing continuous damage model experience
the pathological localization problem [32] in deformation
similar to that in standard finite element methods. Several
meshfree regularization techniques have been developed to
overcome this numerical obstacle in modeling the mater-
ial damage using the continuous approach. Based on the
concept of nonlocal damage modeling techniques [9,10,33]
and RK approximation [27], Chen et al. [34] developed a
meshfree strain smoothing procedure to remedy the dis-
cretization sensitivity in damage-induced strain localization
problem. The relationship between the meshfree integral-
type and gradient-type of nonlocal damage models [35]
at the discrete level was established under their meshfree
regularization framework [34]. Subsequently, the meshfree
regularization procedure was applied to the stabilized con-

forming nodal integration (SCNI) method [36] leading to a
nodal-integrated smoothed strain field [37] for strain local-
ization problem. Both elastic-damage analysis [37] and
elasto-plastic damage analysis [38] have been conducted
using this nodal-integrated regularized meshfree method in
explicit dynamics simulation. Nevertheless, an implementa-
tion of those meshfree regularization procedures still relies
on the background integration cells which pose substantial
numerical challenges to model the discrete cracks in com-
bined continuous–discontinuous approach.

On the other hand, the characteristics of discretization
flexibility and customized approximation have made mesh-
free methods favorable [28] for modeling the discrete cracks
in brittle fracture analysis. The discontinuous approach in
meshfree methods describes the discontinuity of displace-
ment field by either the modification of kernel (weight)
function or the enrichment of discontinuous function. The
representatives of the first technique include the visibility
method [28], diffraction method [39], transparency method
[39] and other improved methods based on geometric infor-
mation and different screening effects [40,41]. Among them,
the visibility method is considered the earliest and easiest
approach to model the propagation of arbitrary cracks [42].
The second technique incorporates the enrichment functions
with meshfree approximations either intrinsically or extrin-
sically [43–45] to describe the discontinuous and singular
fields of the crack problem. Regardless the ability to avoid
complex remeshing operations and to minimize the sensi-
tivity of mesh alignment, meshfree methods based on the
background integration cells make them difficult to integrate
the strain regularization techniques with meshfree discontin-
uous approaches for the ductile fracture analysis. In principle,
this demands the development of a nodal-integrated mesh-
free framework for the combined continuous–discontinuous
approach.

Meshfree methods based on a direct nodal integration
scheme exhibit poor performance [46] in modeling solid
mechanics problems. This poor performance is well-known
as the spurious deformationmodes caused by rank instability
of the meshfree discrete system [47]. A pioneering approach
to circumvent this numerical instability using stabilization
procedure was demonstrated by Beissel and Belytschko
[48]. This stabilization method reconstructs the Galerkin
weak form consisting of the residual of equilibrium equa-
tion to stabilize the solution. The stabilized meshfree method
[47] is closely related to the Galerkin/Least-Squares (GLS)
method [49] and the Galerkin methods equipped with bub-
ble functions [50]. Nevertheless, the main drawback of this
residual stabilization approach is the contradictory demands
on the stabilization control parameter placed by accuracy
requirement. The SCNI [36] method is a meshfree nodal
integration method that bypasses the need of stabilization
control parameter. The central to this method is the “integra-
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tion constraint” in which a strain-smoothing algorithm was
developed to meet this integration constraint and served as
a stabilization process for meshfree nodal integration. Over
the past decade, the SCNI scheme has undergone extensive
developments [51,52] and led to widespread meshfree appli-
cations [38] in engineering. A recent meshfree stabilization
method is the approach based on the strain gradient stabiliza-
tion (SGS) scheme [53,54]. The idea is to use a second-order
penalty term derived based on the decomposed strain field
from the meshfree displacement smoothing [55,56] as a
means of stabilizing the meshfree method. While the SCNI
scheme uses single stress point per node for the background
cell integration, the SGS scheme uses dual stress points [57]
at each node for the direct nodal integration. With the SGS
scheme, a strain-morphed nonlocal meshfree method [58]
was recently presented to couple the locality and non-locality
of the decomposed strain field for the stabilized and regular-
ized analyses of elastic-damage induced strain localization
problem. A unique property of the resultant strain-morphed
nonlocalmeshfree formulation is it does not require the back-
ground cells for the domain integration.

The main goal of this paper is to develop a combined
meshfree continuous–discontinuous technique that supports
arbitrary crack initiation and propagation in ductile fracture
simulation, while avoiding many of the stability prob-
lems in traditional meshfree techniques. This new modeling
technique concerns the strain-morphed nonlocal meshfree
method that models the degradation of ductile materials and
an interactive particle enrichment algorithm that describes
the formation of macro-cracks. The rest of the paper is orga-
nized as follows. In the next section, the strain-morphed
nonlocal meshfree method is reviewed in the context of con-
tinuum damage mechanics for dynamic problems. In Sect. 3,
an interactive particle enrichment algorithm for crack ini-
tiation and propagation is introduced. The corresponding
variational formulation and discrete equations are given in

Sect. 4. Three numerical examples are presented in Sect. 5
to illustrate the robustness and accuracy of the proposed
method. Section 6 concludes with a brief summary.

2 The strain-morphed nonlocal meshfree method

Consider a two-dimensional body �0 containing an initial
crack �0

f which is defined in the reference configuration

as shown in Fig. 1. The image of �0is the current domain
denoted by �, and the motion Φ is described by x =
Φ (X, t), where t ∈ [0, T ] is the time, X and x are material
and spatial coordinates, respectively. The strong form of the
dynamic problem can be stated by the following [59,60]:

σi j, j + ρbi = ρüi in � (1)

ui = gi on �g (2)

σi j n j = hi on �h (3)

σi j n j = tci ([[ui ]]) on � f (4)

where σi j is the Cauchy stress tensor, ρ is material density,
bi is the component of body force, ui is the displacement
component, gi is the prescribed boundary displacement, ni
is the unit outward normal vector, hi is the traction imposed
on Neumann boundary, and tci is cohesive traction applied on
the discontinuity line � f . Notation [[u]] represents the dis-
placement jump across the discontinuity line � f . Within the
framework of continuum damagemechanics, we can decom-
pose the problem domain into two non-overlapping zones, an
undamaged zone �b and a damage zone �c, as follows:

�̄ = �̄b ∪ �̄c (5)

�d = �̄b ∩ �̄c (6)

�b = {x ∈ � |d (x) = 0 } ⊂ � (7)

�c = {x ∈ � |0 < d (x) < 1 } ⊂ � (8)

Fig. 1 The strain-morphed
nonlocal meshfree model for
local and non-local strain
approximations
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where d (x) ∈ [0, 1] is a scalar that stands for the damage
variable in the isotropic continuum damage model [5,6]. We
note that the discontinuity line� f is amoving interfacewhich
travels with the evolution of monotone non-decreasing dam-
age d. We also note that ∂� = �g ∪�h ∪� f , �g ∩∂� f = ∅

and �h ∩ ∂� f = ∅.
Without the consideration of discontinuous approach for

the crack propagation problem, we have to limit the damage
variable to be bonded by d < 1 for the weak-discontinuity
approach such that the fully damage (d = 1) does not occur.
Under this condition, the strain field in the strain-morphed
nonlocal meshfree method [58] can be established by cou-
pling the decomposed strain fields from a meshfree strain
smoothing technique [58] in the following form

ε̄ (x)=
{

ε̄b (x) = ε (x) + ε̃ (x) ∀x ∈ �b

ε̄c (x) = ε (x) + ε̃ (x) + π (x) ˜̃ε (x) ∀x ∈ �c

(9)

where ε (x) is the nodal value of local strain field approx-
imated by the standard meshfree shape functions. The
decomposed strain field ε̃ contains the first-order strain gra-
dient term for stabilization and is defined by [58]

ε̃ = ∇ε (x) · λb (x) (10)

λb (x) =
∫

�

Ψ̃ b (x; x − ξ) (ξ − x) dΩ (11)

where Ψ̃ b is the strain smoothing function for stabiliza-
tion in meshfree nodal integration method, Ψ̃ b (r) > 0 for
‖r‖ < b, Ψ̃ b (r) = 0 for ‖r‖ ≥ b, and subscript b denotes
the radius of influence domain for the strain smoothing func-
tion. Another decomposed strain field ˜̃ε is a non-local strain
field that contains the second-order strain gradient term for
regularization and is defined by [58]

˜̃ε (x) = ∇(2)ε (x) ·(2) ηc (x) (12)

ηc (x) = 1

2!
∫

�

Ψ̃ c (x; x − ξ) (ξ − x)(2) dΩ (13)

where ∇(2) denotes the 2nd order gradient operator and .(2)

denotes the 2nd order inner product. Analogously, Ψ̃ c is
the strain smoothing function for regularization in meshfree
nodal integration method. The radius size c of Ψ̃ c (x) is a
material length parameter which can be related to the scale
of the microstructure [33] in damage-induced strain localiza-
tion problem. A simple choice of morphing function π (x)

in Eq. (9) is given by [58]

π (x) = d (x) ∀x ∈ �c (14)

which is introduced to couple the locality and non-locality of
the decomposed strain fields such that the following continu-

ity condition in the coupled strain field will be met under the
Galerkin meshfree framework using the direct nodal integra-
tion scheme.

[[ε̄]]�d = ε̄b (x) − ε̄c (x) = 0 for x ∈ �d (15)

In original strain-morphed nonlocal meshfree method [58],
the stabilization strain field ε̃ is introduced to the standard
variational formulation through a penalty approach. It leads
to a dual stress point integration scheme [57,58] for the eval-
uation of stress/strain fields. In other words, the evaluation
of Eq. (9) involves two stress (strain) points at each mesh-
free node, one for nodal stress with regularization effect and
the other for the stabilization. This dual stress point integra-
tion scheme will be discussed in Sect. 4 for the combined
continuous–discontinuous approach.

3 The interactive particle enrichment algorithm
for crack propagation

When the damage variable is close to one, the material is
considered fully degraded, and the transition from damage
to crack will be triggered in the combined continuous–
discontinuous approach. Theoretically the precise location
of crack initiation is a natural outcome of the damage evo-
lution process and thus no initial crack needs to be defined
in priori [11]. In practice, this crack usually initiates at the
domain boundary. For most mesh-based numerical methods,
this implies that crack should initiate at the integration point
based on the Gaussian quadrature rule used for the domain
integration. Therefore, an extrapolation scheme [11] is often
needed to obtain the position of initial crack on the domain
boundary for the associated element cutting in crack propa-
gation simulation. In contrast to the existing discontinuous
approaches in mesh-based numerical methods, an interactive
particle enrichment algorithm is introduced to the strain-
morphed nonlocal meshfree method [58] for the initiation
and propagation of the crack, as described below.

First, an initial crack is defined on the original configu-
ration by inserting an enriched particle at the midpoint of
two regular particles in nearest neighbor as shown in Fig. 2,
whenever their averaged damage value reaches 0.8. Sub-
sequently, a simple averaging scheme is performed as an
interpolation step using these two regular particles to obtain
the averaged velocity, current position and internal variables
for the enriched particle. This numerical interpolation step
follows by a reconstruction of the meshfree approximation
for the displacement field based on the insertion of enriched
particle. Consequently, the strain-morphed nonlocal strain
field is approximated and the computation proceeds. This
initial crack will not propagate until the damage value of the
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Fig. 2 The interactive particle
enrichment of a cracked body
defined in the un-deformed
configuration
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enriched particle is approaching to one (or numerically 0.95
in this study).

As soon as the initial crack starts to propagate, the exten-
sion of discontinuity needs to be made which requires
the determination of crack propagation direction. Several
approaches have been proposed for the determination of
crack propagation direction in ductile fracture analysis [11,
24]. In this paper we follow the approach of [24] and assume
that no crack branching occurs in ductile fracture process.
At first, a damage center p in front of the initial crack is
determined in the reference configuration by

p =
∑
I∈GK

X I exp (d (X I ))∑
J∈GK

exp (d (X J ))
(16)

where the Gk is a node set that collects all the candidates of
particles within the first half of the domain of influence in

strain smoothing function Ψ̃ c (X) as shown in Fig. 3. In other
words, the damage value is weighted with the exponential
function in Eq. (16) for the determination of the damage cen-
ter p. With the defined damage center, the crack is assumed
to advance in a direction given by

v =
∑
I∈GK

(X I − p) exp (d (X I ))∑
J∈GK

exp (d (X J ))
(17)

Themain reason of obtaining the crack propagation direc-
tion in the reference configuration is same as that for most
discontinuous approaches in fracture analysis [21,25]. That
is to avoid the reformulation of theweak form problem due to
the moving discontinuities. The second reason is to abstain
from the tensile instability when the meshfree Lagrangian
kernel is adopted to approximate the weak form solution,
and this will be elaborated in the next section.
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While the direction of discontinuity line is determined
in the crack propagation step, the location of discontinuity
front remains to be predicted. Numerically, the discontinuity
front is defined to service as the location for next enriched
particle. In this paper, the location of discontinuity front
is determined by the intersection of the extension of dis-
continuity line and the edge of finite element ahead of the
current enriched particle as shown in Fig. 2. Once the dis-
continuity front is determined and new particle is enriched,
the old enriched particle is deactivated from the computa-
tion to respect the stress-free condition when the material
is fully degraded. Under this scenario, the deactivated par-
ticle behaves like a crack tip that defines a transition point
from continuous description to discontinuous description in
the crack propagation step. Different from the crack tip in
discrete approach that is aimed to approximate the near-
singular stress fields for brittle fracture analysis, the crack
tip in this combined continuous–discontinuous approach is
in stress-free condition which is a natural outcome of the
degrading constitutive response in the ductile materials. In
other words, the need of an approximation for strain sin-
gularity at the crack tip can be inherently bypassed. As
a result, the compatibility between the continuum damage
mechanics and the bonded strain field continues to sustain.
In essence, a finite size damage process zone is always
formed ahead of the crack tip. It is worthwhile to remark
that without the introduction of strain non-locality to the
damage process zone, the damage growth rate will tend to
become infinite at the crack tip, resulting in a prompt frac-
ture as in the brittle material when the discretized model
is continuously refined. This type of discretization sensitiv-
ity phenomenon in the combined continuous–discontinuous
approach can be tackled down by the strain-morphed non-
local strain method [58] and will be demonstrated in the
numerical examples.

Subsequently, the interpolation step using the meshfree
shape functions is taken to obtain the independent and depen-
dent field variables for the newly enriched particle. By
connecting the traction-free piecewise-continuous line of dis-
continuity as shown in Fig. 4, the visibility criteria [28] can
be pursued to construct the new approximation for the dis-
placement field as well as the strain-morphed nonlocal strain
field in the cracked body. Same numerical procedure as that
in the initial crack situation repeats for whole crack propa-
gation steps till the end of simulation. A high-level overview
of the interactive particle enrichment algorithm is provided
in Fig. 5.

4 Variational formulation and discrete equations

To introduce the stabilization and regularization strain fields
into the Galerkin method for the combined continuous–

Line of discontinuity Modified support generated 
by visibility criterion 

Fig. 4 The modified particle support produced by the visibility crite-
rion

discontinuous approach, we follow closely the works in
[53,58]. For simplicity, we assume the homogenousDirichlet
problem in the following variational derivation. The admis-
sible space for the displacement fields is defined by

V h (�) =
{
v : v

∣∣∣� ∈ H1 (�) , v = 0 on ∂�
}

(18)

For a particle distribution denoted by an index set ZI =
{x I }N P

I=1, we approximate the displacement field using the
meshfree approximation to give

uh (x) =
N P∑
I=1

φa
I (x) ũI ≡ û (x)∀x ∈ � (19)

where NP is the total number of particles in discretization.
φa
I (x), I=1,…NP can be considered as the shape functions

of the meshfree approximation for displacement field uh (x).
Note that the radius size a of φa

I (x) is a numerical length
parameter in meshfree displacement approximation. In this
study a = b (for stabilization) is used for all numerical
investigations. In general, ũI is not the physical particle
displacement and is often referred to as the “generalized dis-
placement” [61] of particle I in Galerkin meshfree method.
As a result, special essential boundary condition treatment is
needed. To simplify the enforcement of essential boundary
condition in this study, a first-order meshfree convex approx-
imation [62] is considered. They are constructed by the
Generalized Meshfree Approximation (GMF) method (see
[62] for detail mathematical derivation and [63] for the non-
linear formulations in general solid mechanics applications).
With the meshfree convex approximation, we can define the
H1

0-conforming subspace for the approximation of displace-
ment field to be

V h := span
{
φa
I

∣∣∣(supp φa
I

)0 ⊂ Ω, I ∈ ZI

}
(20)

Using the defined approximation space, the weak form for
the given problem in Sect. 2 can be obtained based on the
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Fig. 5 The high-level overview of the interactive particle enrichment algorithm

penalized variational formulation [57] through an updated
Lagrangian approachwith reference to the current configura-
tion in the elastic–plastic-damage analysis to find û (x) ∈ V h

∫
�\� f

δû · ρ ¨̂ud� =
∫

�b

δ
(
ε

(
û
))T : σd�

+
∫

�c

δ
(
ε

(
û
) + π (x)∇(2)ε

(
û
) ·(2) ηc (x)

)T : σd�

+
∫

�\� f

δ
(
∇ε

(
û
) · λb (x)

)T : σ̃d�

−
∫

�d

δ
[[
û
]] · tcd� − lext

(
û
)
, ∀δû ∈ V h (21)

lext
(
û
) =

∫
�\� f

δû · ρbd� +
∫

�h

δû · hd� (22)

where σ is the Cauchy stress obtained by direct nodal inte-
gration scheme. The update of Cauchy stress σ using the
non-local elastic–plastic-damage model follows closely the
existing literature [64,65] and is summarized in the Appen-
dix. λb and ηc are coefficient matrices for stabilization
and regularization shown in Eq. (11) and Eq. (13), respec-
tively. The penalty term in Eq. (21) contains an enhanced
stress field σ̃ for stabilization. Note that stress quantities
in Eq. (21) are defined in the current configuration �. The
enhanced stress field used for stabilization in the nonlin-
ear analysis is formulated using a material response tensor
(elasto-plastic tangent modulus) Cσ and damage variable d
as [58]

σ̃ = (1 − d)Cσ :
(
∇ε

(
û
) · λb

)
(23)

For simplicity, it is assumed that no contact acts on the
crack surfaces. Using the zero cohesive traction condi-
tion on the discontinuity line � f from the interactive
particle enrichment algorithm, Eq. (21) and (22) can be
reduced to

∫
�\� f

δû · ρ ¨̂ud� =
∫

�b

δ
(
ε

(
û
))T : σd�

+
∫

�c

δ
(
ε

(
û
) + π (x) ∇(2)ε

(
û
) ·(2) ηc (x)

)T : σd�

+
∫

�\� f

δ
(
∇ε

(
û
)·λb (x)

)T : σ̃d�−lext
(
û
)
, ∀δû ∈ V h

(24)

lext
(
û
) =

∫
�\� f

δû · ρbd� +
∫

�h

δû · hd� (25)

Considering that the Lagrangian meshfree shape function
[61,66], the gradients of displacement and strain approxi-
mations are defined in the reference configuration to avoid
the tensile instability, the variation equations of Eqs. (24) and
(25) are transformed from the current configuration � to the
reference configuration �0 as∫

�0\�0
f

δû · ρ0 ¨̂ud� =
∫

�0
b

δ
(
F−1ε

(
û
))T : σ J 0d�

+
∫

�0
c

δ
(
F−1

(
ε

(
û
)+π (X)∇(2)ε

(
û
)·ηc (X)

))T : σ J 0d�

+
∫

�0\�0
f

δ
(
F−1

(
∇ε

(
û
) · λb (X)

))T : σ̃ J 0d� − lext
(
û
)

(26)

lext
(
û
) =

∫
�0\�0

f

δû · ρ0bd� +
∫

�0
t

δû · h0d� (27)

Fi j (X) = ∂xi (X)

∂X j
=

N P∑
I=1

∂φα(X)

∂X j
xI i (28)

where F is the deformation gradient, xI i denotes the i-
component of current position at node I , and X = [X, Y ]T
is a position vector defined in the reference configuration. J 0

is the determinant of the deformation gradient.
Using the first-order meshfree convex approximation

[58,62] for φa (X) and zero-order strain smoothing func-
tion for Ψ̃ b (X) and Ψ̃ c (X) lead to the following discrete
form of momentum equation to be solved by the combined
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continuous–discontinuous approach for explicit dynamics
analysis in damage-induced strain localization problem:

Mlump ¨̂U = f ext − f intb − f intc − f̃
stab

(29)

Mlump
I =

N P∑
N=1

ρ0φa
I (XN ) V 0

N I [2×2] (30)

where f ext is standard external force matrix, ¨̂U is the matrix
contains nodal accelerations. V 0

K is the initial nodal volume

of node K , and Mlump
I is the lumped nodal mass matrix.

Two internal force matrices are computed by the direct nodal
integration scheme as

f intbI =
∫

�0
b

BT
I σ J 0d�

DN I=
N P∑
N=1

BT
I (XN ) σ (XN ) J 0V 0

N

(31)

B I (X) =
⎡
⎣ bI1 (X) 0
bI2 (X) bI1 (X)

0 bI2 (X)

⎤
⎦ (32)

bI1 (X) = φa
I,x (X) and bI2 (X) = φa

I,y (X) (33)

f intcI =
∫

�0
c

(
B I + d (X)

˜̃B I

)T

× σ J 0d�
DN I=

N P∑
N=1

(
B I (XN ) + d (XN )

˜̃B I

)T

× σ (XN ) J 0V 0
N (34)

˜̃B I (X) =

⎡
⎢⎢⎣

˜̃bI1 (X) 0
˜̃bI2 (X)

˜̃bI1 (X)

0 ˜̃bI2 (X)

⎤
⎥⎥⎦ (35)

˜̃bI1 (X) = αxx (X) φa
I,xxx (X) + 2αxyφ

a
I,xxy (X)

+ αyy (X) φa
I,xyy (X) (36)

˜̃bI2 (X) = αxx (X) φa
I,yxx (X) + 2αxyφ

a
I,yxy (X)

+ αyy (X) φa
I,yyy (X) (37)

αxx (X) = 1

2

N P∑
J=1

Ψ̃ c
J (X) (X J − X)2 (38)

αxy (X) = 1

2

N P∑
J=1

Ψ̃ c
J (X) (X J − X) (YJ − Y ) (39)

αyy (X) = 1

2

N P∑
J=1

Ψ̃ c
J (X) (YJ − Y )2 (40)

Finally, the stabilized force matrix is also computed by the
direct nodal integration scheme as

f̃
stab
I =

∫
�0

B̃
T
I σ̃ J 0d�

DN I=
N P∑
N=1

B̃
T
I (XN ) σ̃ (XN ) J 0V 0

N

(41)

The first-order strain-gradient matrix B̃ I in Eq. (41) is given
by

B̃ I (X) =
⎡
⎣ b̃I1 (X) 0
b̃I2 (X) b̃I1 (X)

0 b̃I2 (X)

⎤
⎦ (42)

The components of the first-order strain-gradient matrix B̃I

are

b̃I1 (X) = βx (X) φa
I,xx (X) + βy (X) φa

I,xy (X) (43)

b̃I2 (X) = βx (X) φa
I,yx (X) + βy (X) φa

I,yy (X) (44)

βx (X) =
N P∑
J=1

Ψ̃ b
J (X) (X J − X) (45)

βy (X) =
N P∑
J=1

Ψ̃ b
I (X) (YJ − Y ) (46)

σ̃ T = (σ̃11, σ̃12, σ̃22) is a vector containing the component
of Cauchy stress associated with the stabilization. Since the
numerical evaluation of stabilized stress vector using Eq.
(23) is computationally unfeasible [57] in explicit dynam-
ics analysis, the nodal stabilized stress vector is updated
using the incremental stabilized stress vector suggested by
Belytschko and Lee [67] as follows

σ̃ n+1 = σ̃ n + �σ̃ n+1 = σ̃ n + 2G̃ (1 − d)
(
B̃dev

)
�un+1

(47)

where G̃ is called the “modified shear modulus” [67] which
is computed by

2G̃ =
√

H�τ

H�e
(48)

H�τ = 1

2

2∑
i=1

2∑
j=1

�τi j�τi j , H�e = 1

2

2∑
i=1

2∑
i=1

�ei j�ei j

(49)

�τi j and �ei j are the components of deviatoric part of the
stress and strain increments, respectively. they are obtained
from the regularized nodal stress and strain computation.
B̃dev is the deviatoric part of first-order strain-gradientmatrix
B̃.

The computation of Eq. (29) involves two coinciding
stress points at each meshfree node, one for nodal stress
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Ix

Jxb
IΨ

~ Ω0

Line of discontinuity

Ix

Support of         for stabilizationb
IΨ

~

Support of          for regularizationc
IΨ

~

a=b

c

Fig. 6 Illustration of dual stress points and the modified supports of two influence functions in present method

σ with regularization effect and the other for the enhanced
nodal stress σ̃ for the necessary stabilization. This dual stress
point integration scheme is illustrated in a cracked body as
shown inFig. 6 using the interactive particle enrichment algo-
rithm. Finally, the critical time step for the central difference
time integration in the explicit dynamics analysis is gov-
erned by the Courant–Friedrichs–Lewy (CFL) condition and
is determined from the development in [57] for the numer-
ical study. It is worthwhile to note that the meshfree time
steps in the explicit dynamics analysis are controlled implic-
itly [68] by the radius size a of φa

I (x) in the displacement
approximation instead of the closet nodal distance or ele-
ment size in finite element method; therefore they will not
be cut down abruptly due to an insertion of the discontinu-
ity.

5 Numerical examples

In this section, three benchmark examples are analyzed
to study the performance of present method in the duc-
tile fracture analysis. Plain stress condition is assumed in
two-dimensional problems. Unless otherwise specified, a
normalized nodal support size of 2.0 is used for the radius size
of meshfree shape functions φa and strain smoothing func-
tion Ψ̃ b for stabilization. In all test cases, we have used the
first-order meshfree convex approximations [62] for mesh-
free shape functions φa in the displacement approximation
to simplify the enforcement of boundary conditions. The
Shepard function [62] is considered for the strain smooth-
ing function Ψ̃ b and Ψ̃ c in this study.

A simple damage law is taken [34,58] in the following
form for the demonstration purpose.

d = g (κ) (50)

g(κ) =
{

κc(κ−κi )
κ(κc−κi )

if κi ≤ κ ≤ κc

0.99 if κ > κc
(51)

where κi and κc denote the initial and critical values of effec-
tive plastic strainκ , respectively. In otherwords, it is assumed
that failure occurs mainly due to plastic straining. The devel-
opment of a physical-based damage law for the combined
continuous–discontinuous approach may include the effect
of the hydrostatic stress which is material dependent and is
not within the scope of the paper. However it will be con-
sidered in the future study together with the experimental
validation.

5.1 A tension mode test

In this example, a plate with two notches in a mode-I ductile
fracture is analyzed as shown in Fig. 7. The notched plate is
fixed on the bottom and is pulled in tension on the other end
under the displacement control at speed of 1.0 mm/sec. Only
half of the model is considered in simulation due to the sym-
metry of the geometry and boundary conditions. Thematerial

50 mm

5 mm

20 mm0.5 mm4.642 mm

Fig. 7 The notched plate for tension mode ductile fracture simulation
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Fig. 8 Three types of discretization in the notched problem. a Coarse model (1938 nodes). b non-uniform model (2015 nodes), c locally refined
model (2821 nodes)

Fig. 9 The sensitivity study on mesh orientation using non-uniform
discretization model. a Standard FEM with element erosion. b The
present method

has an initial densityρ0 = 7800 kg/m3 .The strain-hardening
elastic-plastic material properties are: Young’s modulus E =
180206.0 MPa, Poisson’s ratio v = 0.3, and an isotropic
hardening rule σy (ē p) = σ 0

y (1 + αē p)β with coefficients
β = 0.0513825, σ 0

y = 1400.0 MPa, and α = 2.5e4.
σy (ē p) is the flow stress which is a scalar and increases
monotonically with the effective plastic strain ē p. The dam-
age parameters in Eq. (51) are: κi = 0.05, and κc = 0.1.
Three types of discretization consisting of the coarse, non-
uniform and locally refinedmodels as displayed in Fig. 8a–c,
respectively, are considered for the analysis. In the present
continuous–discontinuous approach, the radius size c of
Ψ̃ c(X) for regularization is taken to be 1.0 mm for all dis-
cretization models.

To illustrate the mesh orientation sensitivity problem in
the standard finite element method, a simulation using non-
uniform discretization in Fig. 8b with bi-linear elements and
element erosion technique is conducted. The crack propaga-
tion result displayed in Fig. 9a shows a strong dependence
of mesh orientation on the crack propagation path using
the standard finite element method. In contrast to the finite
element solution, a discretization-objective solution of the
proposed continuous–discontinuous approach is presented
in Fig. 9b using same non-uniform discretization model.

The importance of strain regularization in the ductile frac-
ture analysis is demonstrated in the next numerical study.

Same problem is analyzed using the present continuous–
discontinuous approach without an incorporation of regu-
larization in strains. This can be done by simply setting
the morphing function π (x) to become zero in Eq. (26).
Figure 10 displays the propagation of crack at t = 0.15 s
in different discretization. Although the crack propagation
path is not sensitive to the randomness and density of
nodal distribution, the results in Fig. 10 do indicate that
crack propagation speed is sensitive to the discretization.
The plot of crack tip position vs time is given in Fig. 11a
which confirms the discretization sensitivity results on the
crack propagation speed. As a result, the response of reac-
tion force varies dramatically in different discretization as
shown in Fig. 12a. The discretization-dependent results of
crack propagation speed and reaction force can be mini-
mized with the introduction of strain regularization in the
present continuous–discontinuous approach. As shown in
Fig. 13, the tension mode of ductile fracture is well-captured
with similar crack propagation speed in different discretiza-
tion models. The discretization-independent result using the
present continuous–discontinuous approach is also presented
in Figs. 11b and 12b for the growth of crack and the reaction
force response, respectively.

5.2 Double-notched specimen in simple tension test

A tensile test on another double-notched specimen is studied
in this example. The geometry and boundary condition of the
problem are given in Fig. 14, where the two ends of the spec-
imen is subjected to a displacement control at speed of 0.5
mm/sec. Samematerial constants from example 1 are consid-
ered for the numerical analysis. Three levels of discretization
as shown in Fig. 15 are utilized to study the convergence of
the present method. The radius size c of Ψ̃ c(X) for regular-
ization in the present method is taken to be 1.60 mm for all
discretization models.

Theproblem isfirst analyzedusing thepresent continuous–
discontinuous approach without the incorporation of the
regularization in strains. As expected, the sensitive results in
crack length are observed in the convergence study as shown
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Fig. 10 The discretization sensitivity results of crack length and effective plastic strain contour at t = 0.15 s in three types of discretization model
using the local strain approximation. a Uniform model. b Non-uniform model. c Locally refined model

Fig. 11 Crack tip position-time history in the notched problem. a Local strain approximation. b Non-local approximation

Fig. 12 Reaction force response in the notched problem. a Local strain approximation. b Non-local approximation

in Fig. 16 at t = 0.18 s. Figure 17a gives the reaction force
response which indicates a strong pathological localization
using the local strain approximation. In contrast, the present
approach using the nonlocal strain approximation is able to
regularize the pathologically localized solution as shown in
Fig. 17b. The comparison of crack path displayed in the ref-
erence configuration is shown in Fig. 18. The convergence
of final crack paths in three discretization models is given in
Fig. 19, and a good correlation between two fine models is
achieved. The effective plastic strain contours are plotted in

the final deformed configuration as shown in Fig. 20a–c for
three discretization models. The results in Fig. 20 suggest
a comparable effective plastic strain distribution is obtained
in three discretization models using the present combined
continuous–discontinuous approach.

5.3 Double-notched specimen in bi-tension test

The ductile fracture under bi-tension effect is analyzed in this
example. Same numerical model in example 5.2 with differ-
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t=0.20 sec t=0.25 sec t=0.30 sec

Fig. 13 The convergent results of crack propagation and effective plastic strain contour in three types of discretization model using the present
strain-morphed nonlocal approximation

10 mm

10 mm

2.809 mm

2.315 mm

2.5 mm

2.0 mm

Fig. 14 The double-notched plate problem in simple tension test

ent boundary conditions is considered andgiven inFig. 21. To
study the difference of crack paths in bi-tension and simple
tests, two material imperfections are initiated at same crack
initiation position of example 5.2. The initial imperfection is
defined to have a 30 % reduction of strength in the Young’s
modulus as that in theweak-discontinuity approach [58]. The
specimen is subjected to a bi-axial displacement control at
speed of 0.5mm/s. Analogously three levels of discretization
shown in Fig. 15 are utilized to study the convergence of the
present method in bi-tension test.

Without the incorporation of strain regularization, the
crack paths show strong discretization sensitivity as dis-
played in Fig. 22a–c for the coarse, fine and most fined
models, respectively. The corresponding time-reaction force
curves are plotted in Fig. 23a reflecting the non-convergent
problem in the strain localization model. Superior per-
formance of the present method is demonstrated in the
convergence result of the crack paths in Fig. 24 and reaction
force responses in Fig. 23b. Figure 25 compares the final
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Fig. 15 Three types of discretization displayed in finite element mesh are adopted for the double-notched problem. a Coarse model (231 nodes).
b Refined model (861 nodes). cMost refined model (3321 nodes)

Fig. 16 The discretization sensitivity results of crack length at t= 0.18 s in three types of discretization model using the local strain approximation.
a Coarse model. b Fine model. cMost refined model

Fig. 17 Reaction force response in the notched problem. a Local strain approximation. b Non-local approximation

crack paths in three discretization models using the present
continuous–discontinuous approach. Similar to the conver-
gent result in the simple tension test, the crack path result
in the bi-tension test does not exhibit strong discretization
sensitivity. The final crack paths are plotted together with
effective plastic strain contour as shown in Fig. 26a–c for
the coarse, fine and most fined models, respectively. The pat-
terns of crack path and effective plastic strain contour in two
refined models are in good agreements.

6 Conclusions

In the combined continuous–discontinuous approach, duc-
tile damage and fracture are considered within the same
physical processes. Under this argument the continuous dam-
age mechanics is utilized to macroscopically describe the
degradation of ductile materials subjected to the evolution of
micro-voids andmicro-cracks in the average sense, while the
displacement discontinuity is employed to provide a means
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Fig. 18 The crack path at t = 0.24 s in three types of discretization model using the present strain-morphed nonlocal approximation. a Coarse
model. b Fine model. cMost refined model

Coarse model

Two fine models

Fig. 19 The convergence of final crack paths in three discretization
models using the present method

to mimic the macro-cracks in the final stage of continuous
material failure when the damage field becomes critical. In
this study the meshfree continuous–discontinuous approach
is introduced to analyze this physical process. The present

10 mm

10 mm

2.809 mm

2.315 mm

2.5 mm

2.0 mm

1.03 mm

1.06 mm

Fig. 21 The double-notched plate problem in bi-tension test

method combines the strain-morphed nonlocal meshfree
method and the interactive particle enrichment algorithm
to model the entire ductile fracture process from dam-
age growth to crack propagation. Numerically, the present

Fig. 20 The final crack path and effective plastic strain contour in three discretization models using the present method. a Coarse model. b Fine
model. cMost refined model
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Fig. 22 The discretization sensitivity results of crack length at t= 0.17 s in three types of discretization model using the local strain approximation.
a Coarse model. b Fine model. cMost refined model

Fig. 23 Reaction force response in the bi-tension notched problem. a local strain approximation. b non-local approximation

Fig. 24 The crack path at t = 0.17 s in three types of discretization model using the present strain-morphed nonlocal approximation. a Coarse
model. b Fine model. cMost refined model

method improves the intrinsic implementation difficulties in
existing meshfree regularization methods based on the back-
ground cells for domain integration. In comparison to the
standard meshfree and finite element methods, the present
method avoids some of the stability problems such as the
spurious energymode, pathological localization in the defor-
mation and unrealistic damage growth. Since the present

meshfree method is a pure nodal integration method, the
abrupt drop of the explicit dynamic time steps due to the
abnormal cut of elements in the mesh-based discontinuity
enrichment approach can be effectively suppressed.

Three numerical benchmarks are studied to examine the
effectiveness of the present approach. The numerical results
in this study suggest that the present approach is able to
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Coarse model

Two fine models

Coarse model

Fig. 25 The convergence of final crack paths in three discretization
models using the present method

deliver stable, discretization-objective and convergent crack
propagating solutions in the analysis of ductile fracture
process. In particular, the patterns of the cracks in differ-
ent discretization models are in good agreements throughout
the simulation.

It is worthwhile to mention the regularization size of the
present method in ductile fracture analysis for metals is con-
sidered a numerical parameter rather than a physical-based
parameter, although many researchers [33,65] claim that
the size of this parameter is related to the size of fracture
process zone or maximum aggregate size in some materials
such as concrete. From the phenomenological and compu-
tational view point, this numerical parameter is introduced
in mathematical formulation such that the numerical solu-
tion tends to converge to a physically meaningful solution
upon model refinement [65]. In other words, the nonlocal
damage approach is motivated by experimental results with
its numerical parameter calibrated from numerical simula-
tions.

The incorporation of physical-based damage laws and dif-
ferent crack propagation criterion is material dependent and
requires the experimental validation. Further results will be
discussed in the near future. The applications of the present
method to severe deformation problems and shell structures
are under investigation. The extension of the present method
to the three-dimensional explicit dynamics analysis will also
be considered in the future.

Finally, the incorporation of the physical-based length
scale for regularization in macroscopic analysis demands
a multiscale or multiresolution computation since ductile
fracture in metals depends strongly on the extreme val-
ues of microstructural characteristics. Recent multiscale and
multiresolution approaches utilizing “simulation driven by
experiments” technique [3,4] seem to be attractive for the
analysis of non-uniform microstructures in heterogeneous
alloys. Such approach becomes beneficial to the industrial
applications if it can be cast within an efficient multiscale
computational scheme.
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Appendix

The combinations of isotropic damage and plasticity are
widely used for ductile as well as semi-brittle fracture analy-
ses. In this study, we follow a common approach [69–71] that
combines the plasticity formulated on the effective stress σ̄

[5,6,9,33] with the strain-based damage.
For isotropic damage, the effective stress tensor σ̄ is

related to Cauchy stress tensor σ by [5,6,9,33]

σ̄ = σ

(1 − d)
= Ce : εe = Ce : (

ε − ε p) (52)

Fig. 26 The final crack path and effective plastic strain contour in three discretization models using the present method. a Coarse model. b Fine
model. cMost refined model
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where Ce is the fourth order elastic stiffness tensor, εe is the
elastic strain, ε is the total strain, ε p is the plastic strain and
d is the scale damage valuable. Note in engineering prac-
tice, the evolution equations for international valuable d and
ε p are phenomenological and material dependent. The algo-
rithm for the stress update in Eq. (52) is divided into two
stages [64,65,71]. First, the update of effective stress for the
plastic part is carried out by an implicit algorithm; then, the
damage part is evaluated from the plastic strain increment
obtained in the first stage.

In the first stage, the yield function is also defined in the
effective stress space as [64,65]

φ̄ p (
τ̄ , ep

) = ‖τ̄‖ −
√
2

3
σ y

(
ep

)
(53)

where τ̄ is the effective or undamageddeviatoric stress tensor,
and σy is the flow stress. The local effective plastic strain ep

is defined as usual by

ep =
∫ t

0

√
2

3

∥∥ε̇ p (s)
∥∥ ds (54)

with the classical flow rule of associative plasticity given by

ε̇ p = γ̇
∂φ̄ p

∂ σ̄
= γ̇

τ̄

‖τ̄‖ (55)

where ε̇ p is the rate of plastic strain tensor and γ̇ is the plas-
tic multiplier which is consistent with the loading/unloading
conditions by γ̇ ≥ 0, φ̄ p ≤ 0 and γ̇ φ̄ p = 0.

In the damage stage, the loading function is given by [64,
65]

φ̄d (
ep

) = ē p − κ (56)

with the loading/unloading conditions by κ̇ ≥ 0, φ̄d ≤ 0
and κ̇φ̄d = 0. In this study, a simple damage law is given in
Eq. (50), and the nonlocal effective plastic strain ē p [64,65]
is obtained using the meshfree strain smoothing procedure
[34,58] by

ē p =
∫

�

Ψ̃ c (X; X − ξ) epdΩ (57)

where Ψ̃ c is the strain smoothing function for regularization
defined in Sect. 2. Note the strain smoothing function Ψ̃ c

is defined in the reference configuration and is subjected to
visibility criterion described in Sect. 3 using the interactive
particle enrichment algorithm. Accordingly, the rate of the
nonlocal effective plastic strain ˙̄ep is computed by

˙̄ep =
∫

�

Ψ̃ c (X; X − ξ) ė pdΩ (58)

with

ė p =
√
2

3
γ̇ (59)

Finally, the Cauchy stress tensor σ for the evaluation of
internal force in Eq. (31) is computed by [64,65]

σ = (
1 − d

(
ē p

))
σ̄ (60)

In this study, Eqs. (52)–(60) are utilized in the regular
return mapping algorithm for explicit dynamics analysis.
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