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Abstract This paper proposes a new output-only element-
level system identification and input estimation technique,
towards the simultaneous identification of modal parame-
ters, input excitation time history and structural features at
the element-level by adopting earthquake-induced structural
response signals. The method, named Full Dynamic Com-
pound Inverse Method (FDCIM), releases strong assump-
tions of earlier element-level techniques, by working with
a two-stage iterative algorithm. Jointly, a Statistical Average
technique, a modification process and a parameter projection
strategy are adopted at each stage to achieve stronger con-
vergence for the identified estimates. The proposed method
works in a deterministic way and is completely developed in
State-Space form. Further, it does not require continuous- to
discrete-time transformations and does not depend on initial-
ization conditions. Synthetic earthquake-induced response
signals from different shear-type buildings are generated
to validate the implemented procedure, also with noise-
corrupted cases. The achieved results provide a necessary
condition to demonstrate the effectiveness of the proposed
identification method.
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1 Introduction

The identification of structural dynamics properties appears
fundamental in several engineering branches, and concerning
specific technical-scientific contexts and practical applica-
tions within them. The field of earthquake engineering is
considered here as a main target of interest, in particu-
lar as connected to potential Structural Health Monitoring
approaches. These are devoted to the assessment of current
structural properties and to the evaluation of potential dam-
ages that may occur in civil structures, due to the action of
strong ground motion excitations.

In the past decades, the identification of structural dynam-
ics properties at seismic input has been the subject of
several researches, either within Experimental Modal Analy-
sis (EMA) (e.g. [2,3,7,16,18,23]) where the excitation input
is known and/or controlled, or within Operational Modal
Analysis (OMA) (e.g. [17,20,31,35,44,45]), where the input
action is unknown (output-only techniques). In these works,
specifically-developed strategies have been developed to
identify the modal parameters from earthquake-induced
structural response signals.

In the branch of OMA methods, most common algo-
rithms rely on the assumption of stationary white noise input.
Then, the use of strong ground motion excitations has been
attempted by a limited number of works, either in the Time
Domain (e.g. [17,31,44,46,48]) or in the Frequency Domain
(e.g. [25,34,35,49]).

Concerning output-only techniques in the Frequency
Domain, a refined Frequency Domain Decomposition (rFDD)
approach, Pioldi et al. [39,40], has been recently developed
for the estimation of strong ground motion modal parameters,
also at concomitant heavy damping, by addressing typical
shortcomings of classical FDD [6] in this framework [49].
In both works, Pioldi et al. [39,40], synthetic response sig-
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nals have been adopted as a necessary validation condition.
Then, in Pioldi et al. [41], systematic trials with real earth-
quake response signals have been effectively performed, by
addressing also damage scenarios, retrofit stages and Soil
Structure Interaction (SSI) effects. SSI effects have been also
investigated in Pioldi et al. [43]. Finally, the rFDD technique
has been improved by a coupled Chebyshev Type II filters
procedure and a time-frequency Wavelets analysis, as out-
lined in Pioldi and Rizzi [42]. In such a research context,
the present work makes a step forward, towards the develop-
ment of an innovative parametric OMA algorithm in the Time
Domain, devoted to assess not only the modal properties but
also the earthquake input excitation and the unknown struc-
tural parameters of mass, damping and stiffness, as discussed
below.

Indeed, even though modal parameters shall be considered
as representative of the global dynamic properties of a given
structure, referring to its mass, damping and stiffness char-
acteristics, their usefulness may be insufficient in practical
cases, in order to quantify the amount of damage that may
have occurred within individual structural elements [19]. In
fact, structural degradations will be reflected in modifications
of the global structural behaviour. As a consequence, these
damages are dependent on changes that may be detected in
individual structural elements, i.e. at the so-called “element-
level”, specifically in terms of time variations of stiffness and
damping structural characteristics (assuming time-invariant
systems in terms of mass). Also, nearly all of the available
techniques for modal dynamic identification and damage
detection at seismic input pertain to EMA methods, i.e. they
need the knowledge (or the acquisition) of the input ground
motion (i.e. the knowledge of the external action) too.

At this stage, current OMA (output-only) methods may be
viewed on different levels of sophistication. The first level
appears to be the lower one: it leads to the estimation of
structural modal properties only, i.e. of natural frequencies,
mode shapes and modal damping ratios (and, in case of para-
metric algorithms, also of “realizations”, in terms of a set
of State-Space structural matrices referred to a given input-
output behaviour [15]). The second level of detail pertains
to the estimation of the “input excitation” acting on the sys-
tem, specifically here of the shaking ground motion, which
induces the structural response recorded from the available
instrumentation. The third level of focus, finally, refers to
the further refinement of mass, damping and stiffness matrix
estimation. The aim is to target each of their characteris-
tic parameters, i.e. to achieve the so-called “identification
at the element-level”. Thus, the simultaneous identification
of modal parameters, excitation input and structural features
at the element-level still appears to be rather challenging
in the present dedicated OMA literature [12,30,51], and
specifically in the earthquake engineering context, which
constitutes a main target of the present work.

By using output-only acquisitions of the structural
response, during the past years several identification tech-
niques have been proposed to jointly estimate the structural
parameters and the unknown seismic input at the base. On
that, a literature overview on fundamental contributions is
reported below, as an underlying framework for the innova-
tive steps and approaches put forward later in the body of the
present paper.

In 1989, Toki et al. [47], proposed that the “coda” of the
response time history (i.e. the tail, namely the last seconds
of the acquisition following the end of the earthquake exci-
tation) may be representative of the free vibration response
of the structural system. Their assumption was that the coda
is not affected by the input ground motion, and then the ratio
between mass and stiffness or damping coefficients shall be
constant from this part of the record on. So, modal parameters
may be identified by Extended Kalman Filtering (EKF), see
Hoshiya and Sutoh [21]. Also, they improved the method
to estimate the input ground motion by the Kalman Filter
estimation error [36].

In 1994, Benedetti and Gentile [5], suggested a Frequency
Domain algorithm, which worked in two stages, to identify
the properties of structures subjected to input ground motion.
With this method, the responses at two different locations of
the structure were assumed to be available, while the require-
ments for the input excitation were avoided, by using the ratio
between the Fourier amplitude transforms of the two acquired
response signals. However, the input time history could not
be determined by that identification procedure.

In the same year (1994) Wang and Haldar [51], pro-
posed an iterative Finite Element-based procedure in the
Time Domain to evaluate both stiffness and damping matri-
ces at the element-level, jointly with the input force excitation
(which could be a generic force or seismic loading). Only a
small number of observation time points was required for the
development of the algorithm, where the solicitations were
assumed to be initially zero for the starting of the iterative
Least-Squares (LS) procedure, and then were updated step-
by-step, until convergence was reached. Finally, the complete
input time history could be evaluated by using the estimated
stiffness and damping parameters and the full-length mea-
sured structural responses.

In 1995, Hoshiya and Sutoh [22], suggested a method
to identify both the input and the stiffness and damping
matrix coefficients for shear-type frames. A combination of a
smoothing algorithm on the input ground excitation and of an
Extended Kalman Filtering was formulated, by adopting the
coda of the system responses. They used a Weighted Global
Iteration (WGI) procedure to obtain fast convergence to the
optimum solution and to achieve stability, as previously out-
lined by Hoshiya and Sutoh [21]. A problem related to these
methods concerned how to choose the coda of the response
time history, i.e. the exact start of the free response part of the
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acquisition, without a prior knowledge of the input ground
motion excitation.

Afterwards, in 1997, Haldar et al. [19], expanded their pre-
vious work to cases with limited response measurements (or
limited observations), i.e. when the structure was monitored
only at few dynamic degrees of freedom. They combined
their former iterative LS algorithm with a Weighted Global
Iteration procedure applied to an Extended Kalman Filter
technique.

In 2000, Li and Chen [29], proposed an iterative Time
Domain method for solving hybrid inverse problems. Struc-
tural parameters and inverse time history of input excitation
were simultaneously estimated, by relying on structural
response signals only. In that work, additional conditions
were set on the input force, by relying on its mechanical
characteristics. Then, a Statistical Average (SA) algorithm
was developed in terms of a properly-defined transfer coef-
ficient. The computational steps of the algorithm relied on
their previous work, Li and Chen [28].

In the same year (2000), Cho and Paik [10], refined
the algorithm by Wang and Haldar [51], by proposing
an improved LS method based on Multiple models QR
Decomposition (MQRD). This method enhanced the LS con-
vergence and allowed for a more accurate identification of
structural elements and potential damages.

In 2002, Chen et al. [8], took the element-level Time
Domain method developed by Wang and Haldar [51] and
implemented a refinement, which looked to identify both
the earthquake excitation and the structural parameters (at
the element-level) by using a combination of an iterative LS
technique and of a specifically-developed Statistical Average
method. They named the algorithm as Dynamic Compound
Inverse Method (DCIM), label which has been kept here as
a base for the subsequent developments put forward in the
present work.

Along the same line, in 2003, Li and Chen [30], published
in the Computational Mechanics journal an improved version
of their previous work Li and Chen [29], by improving the
Statistical Average algorithm for the solution of the DCIM.
The adopted solicitations spread from ambient to seismic
ground motion, acting on different structures. In 2004, Chen
and Li [9], again in Computational Mechanics, proposed a
further implementation, which took into account the use of
Rayleigh proportional damping C = αM + βK, instead
of general viscous damping used until then. The unknown
damping coefficients α and β and the stiffness parameters of
matrix K were coupled to each other, leading the classical
MDOF equations of motion to constitute a set of non-linear
identification equations in terms of the unknown structural
parameters. Then, by relying on their previous algorithm,
they developed a two-stage iterative method to avoid the non-
linear identification problem. An inner modification process
was applied between each iterative step, to convert the spa-

tial information of the external excitation into mathematical
conditions for the iterative algorithm. In that work, the focus
was on possible forced vibration surveys of the system, i.e. on
cases where the structure was excited by actuators installed
at several locations of the building. No ground motions
or ambient vibrations were considered at that stage. The
present paper relies much on the two contributions above,
and attempts to provide a more general and robust analysis,
as it is going to be outlined below, towards achieving a full
identification approach (Full Dynamic Compound Inverse
Method-FDCIM).

Still in 2004, Ling and Haldar [32], developed a further
approach to take into account the possible use of Rayleigh
proportionally-damped systems. They proposed a modified
Iterative LS method with Unknown Input (ILS-UI) to iden-
tify such types of systems at the element-level. They used
Taylor series approximations to transform the non-linear set
of identification equations (arising from the equations of
motion with Rayleigh damping) into a set of linear equa-
tions. Again, no ground motions or ambient vibrations were
considered.

In 2006, Zhao et al. [54], demonstrated that the structural
parameters and the earthquake ground motion could not be
uniquely identified when absolute structural response sig-
nals were used, instead of relative ones. Then, they proposed
a hybrid identification method to tackle the problem. First,
that algorithm identified the structural parameters above the
first-floor of a multi-storey shear-type building, by using LS.
Later, the minimum modal information was introduced to
find out the first floor parameters and to avoid the shortcom-
ing of non-uniqueness. After that, all structural parameters
were identified. The unknown earthquake ground motion was
estimated by solving a first-order differential equation.

In 2008, Perry and Koh [38], proposed an element-level
parameter and input estimation with a non-classical approach
based on a Genetic Algorithm (GA). They made use of a mod-
ified GA-based method, to adopt the strategy of the Search
Space Reduction Method, Perry et al. [37]. This method was
revised by Perry and Koh [38] through a modification of the
numerical integration scheme, and was allowed to be used
also for output-only identification. Still in 2008, Wang and
Cui [52], suggested a two-step method, which generalized
the work of Chen et al. [8], apt to identify both element-level
structural parameters and input time history.

Concerning the intelligent monitoring of multi-storey
buildings by a wireless sensor network, in 2012, Lei et al.
[27], suggested an element-level and input ground motion
identification algorithm based on a two-stage Kalman Fil-
ter estimator. That method worked with absolute coordinates
through the use of sub-structuring methods. Still in 2012,
Lourens et al. [33], proposed an extension of an existing joint
input-state estimation Kalman Filter, which was derived by
using a linear minimum-variance unbiased estimation. The
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novelty consisted in the use of an optimal estimate in place
of the true value of the input for the Kalman Filter steps.

Then, in 2014, Ding et al. [14], developed a method which
could be used to identify structural parameters and input time
history, either for linear or non-linear hysteretic frames with
limited observations. With this method, they decomposed
the structural excitation by orthogonal approximation and
then applied an Extended Kalman Filter for the identification.
Only forces acting on the floors of the frames were considered
at that stage.

Recently, Bayesian methods also started to be applied
for OMA input and element-level identification. Relevant
examples may be found in Behmanesh et al. [4], where a
probabilistic Finite Element (FE) model updating technique
based on Hierarchical Bayesian modelling was proposed for
the identification of civil structural systems under changing
ambient/environmental conditions. Further, the works of Au
and Zhang [1] and Zhang and Au [53], suggested the adoption
of a modified two-stage Bayesian identification approach,
towards the estimation of modal properties and structural
parameters.

Still in 2015, Concha et al. [12], suggested an adap-
tive observer which simultaneously estimated the damp-
ing/mass and the stiffness/mass ratios, as well as the state
of seismically-excited shear buildings. Their work started
from the research of Jiménez and Icaza [24], where the
parametrization of a shear-type frame equipped with a
Magneto-Rheological Damper (MRD) had been consid-
ered; the assumptions were the knowledge of the structural
parameters (at a first approximation, accounting for some
uncertainties) and of the seismic ground acceleration, the
accelerations of each floor and the MRD damper force (direct
measurement). Similar assumptions were assumed in Con-
cha et al. [12], where the identification scheme relied on the
knowledge (i.e. on the measurement) of ground and floor
accelerations and of the first floor mass m1. This method
achieved the estimation of a reduced-order model, if some
floors only may be equipped with available instrumentation.
Computationally, the algorithm relied on LS and on a Luen-
berger state estimator for the estimation process.

A crucial common denominator between all the aforemen-
tioned works is the fact that they take the full mass matrix
to be given for granted, both in its matrix structure and in
its mass parameters. Then, despite the output-only feature of
the algorithms, the knowledge of structural responses only
(either in terms of accelerations, velocities or displacements)
is not sufficient for their functioning. A slight exception
comes from the work of Concha et al. [12], where the first
floor mass m1 and the seismic ground acceleration has been
considered to be known, to return the element-level identifi-
cations for all the stiffness, damping and mass matrices.

In this framework, the present paper proposes a new,
complete element-level system identification and input esti-

mation algorithm, hereafter named Full Dynamic Compound
Inverse Method (FDCIM), following the terminology intro-
duced in Computational Mechanics by Chen et al. [8]. This
is specifically developed to operate with earthquake-induced
response signals, collected from seismically-excited MDOF
shear-type frames. The method releases strong assump-
tions implied by earlier techniques, especially the required
knowledge of the full mass matrix (or at least of its spe-
cific elements), to provide an effective identification of the
modal parameters of the system, i.e. natural frequencies,
mode shapes and modal damping ratios, of the excitation
input and of a realization of the state matrices. In fact, the
present FDCIM algorithm requires the knowledge of struc-
tural response signals only, while mass, damping (handled
here as general viscous damping; thus, an independent fea-
ture to be identified) and stiffness matrices, and obviously
the exciting earthquake input, may be completely unknown.
Accurate estimations of the input ground motion time history
and of the states at the element-level are provided through a
two-stage iterative algorithm. This method works jointly with
a Statistical Average technique, a modification process and
a parameter projection strategy, which are adopted at each
iteration to provide correct and stronger constraints for the
estimates, allowing for faster and much reliable convergence.

Moreover, the proposed FDCIM method (as opposed to
other methods operating in the stochastic framework) appears
to be completely deterministic and it is fully developed in
State-Space form. It does not require transformations from
continuous-time to discrete-time and it does not depend on
the adopted initial conditions or on the state estimation, in
order to identify the modal parameters and the input ground
motion. Further, all structural features as element-level mass,
damping and stiffness matrices, may be accurately identified
merely by knowing any single component of one of these
matrices, or even by relying on an estimate of a global struc-
tural parameter, like for instance the total mass of the build-
ing. Then, the adopted formulation is suitable for integration
or support to other common output-only methods working
with State-Space parametric Time Domain frameworks.

Presentation of the paper is structured as follows. Sub-
sequent Sect. 2 presents the mathematical model, the basic
governing equations and the derivation and theoretical frame-
work of the present Full Dynamic Compound Inverse
Method. The case of general viscous damping is detailed
as well, in all its formulations. Section 3 presents a first
validation of the developed algorithm with simulated data
from a 3-storey frame, by describing results for the estimated
modal parameters and input ground motion excitation and for
the accurate element-level identification, as a function of the
adopted number of record points. Section 4 outlines compre-
hensive results on the application of the FDCIM approach to
noise-corrupted earthquake-induced synthetic response sig-
nals, coming from the same examples adopted in Sect. 3.
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Various levels of added noise have been considered, by aim-
ing at getting closer to real conditions, i.e. resembling those
that may be encountered in practice for real seismic response
recordings. Then, further demonstrative analyses on a chal-
lenging 10-storey realistic structure from the literature are
additionally produced and reported in Sect. 5, where results
are considered again as a function of the adopted number
of record points and by taking into account noise-corrupted
signals. In the end, main conclusions are gathered in Sect. 6.

2 Full Dynamic Compound Inverse Method

2.1 Basic mathematical model

The response of a linear MDOF shear-type building subjected
to earthquake base excitation, characterized by ground accel-
eration üg(t), is governed by the following classical set of
second-order time-differential equations:

Mü(t) + Cu̇(t) + Ku(t) = f(t) = −Müg(t) = −Mrüg(t)

(1)

where M, C and K ∈ Rn×n are the mass, damping and
stiffness matrices of the structural system, respectively, with
the following classical definitions:

M =

⎡
⎢⎢⎢⎢⎢⎣

m1 0 0 . . . 0
0 m2 0 . . . 0
0 0 m3 . . . 0
...

...
...

. . .
...

0 0 0 . . . mn

⎤
⎥⎥⎥⎥⎥⎦

[kg],

C =

⎡
⎢⎢⎢⎢⎢⎣

c1 + c2 −c2 0 . . . 0
−c2 c2 + c3 −c3 . . . 0
0 −c3 c3 + c4 . . . 0
...

...
...

. . .
...

0 0 0 . . . cn

⎤
⎥⎥⎥⎥⎥⎦

[Ns/m] (2)

K =

⎡
⎢⎢⎢⎢⎢⎣

k1 + k2 −k2 0 . . . 0
−k2 k2 + k3 −k3 . . . 0
0 −k3 k3 + k4 . . . 0
...

...
...

. . .
...

0 0 0 . . . kn

⎤
⎥⎥⎥⎥⎥⎦

[N/m]

where n is the number of floors, mi are the floor masses,
ci and ki (i = 1, . . . , n) are the lateral column damp-
ing and stiffness coefficients, respectively, between the i th
and the (i − 1)th floor. Matrix M is diagonal and matri-
ces C, K share a tridiagonal (symmetric) structure. Vector
u = [u1 u2 u3 . . . , un]T ∈ Rn×1 gathers the absolute (rela-
tive to the ground) displacements of each floor. Consistently,
vectors u̇ and ü represent absolute (relative to the ground)
velocities and accelerations. Finally, the input force vector
f(t) ∈ Rn×1 is the vector containing the acting excitation
input, here coming from the ground acceleration. It is defined
as f(t) = −Müg = −Mrüg , where r = [1 1 1 . . . 1]T ∈
Rn×1 is the influence coefficient (rigid body motion) vector
for the analysed case and üg = rüg is the ground acceleration
vector. Figure 1 sketches the initial geometry, the lumped-
mass scheme and the displacements of the adopted shear-type
model, where hi represent the relative floor heights.

By switching to State-Space form, the n second-order dif-
ferential equations of motion in Eq. (1) can be rewritten into
2n first-order differential equations, in terms of state equa-

Fig. 1 Lumped mass structural
model of the adopted shear-type
frame subjected to ground
motion base excitation üg
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tion ẋ(t) and observer equation y(t), by sticking to classical
literature definitions (see e.g. [15]):

{
ẋ(t) = Ax(t) + Bf(t)

y(t) = Cox(t) + Df(t)
(3)

where x(t) = [u(t) u̇(t)]T ∈ R2n×1 is the state vector and
ẋ(t) is its derivative, while y(t) ∈ Rn×1 is the output vector.
Moreover, A ∈ R2n×2n is the state matrix, B ∈ R2n×n the
input matrix, Co ∈ Rn×2n the output matrix and D ∈ Rn×n

the feed-through matrix, which can be defined as follows:

A =
[
0n×n In×n

−M−1K −M−1C

]
, B =

[
0n×n

M−1

]

Co = [−M−1K −M−1C
]
, D = M−1

(4)

Matrix terms 0n×n and In×n ∈ Rn×n indicate zero and iden-
tity matrices of the specified dimensions, respectively.

In the present identification implementation, the known
quantities are only the dynamic responses, i.e. x(t) and ẋ(t)
state vectors, while state matrices (i.e. A, B, Co and D matri-
ces) and input vector f(t) are the unknown variables to be
identified. Accordingly, by switching back to physical space,
the parameters which will be estimated are the modal char-
acteristics, the seismic ground acceleration üg and the mass,
damping and stiffness matrices (i.e. their coefficients).

Thus, while typically Eqs. (1) or (3) are conceived to be
formed and solved for the unknown structural responses, in
the present identification process the role of given infor-
mation and unknown variables is reversed and effective
algebraic rewriting of the equations of motion, leading to
appropriate identification equations, is sought, in view of
expressing the new role of the unknown variables (the iden-
tification variables). This is pursued next.

It can be noticed that the estimation problem, by taking
into account the desired unknowns, turns out to be unde-
termined, in the sense that is going to be revealed in the
following. In order to handle this issue, from Eq. (1) it is
possible to write the two following concatenated relations,
namely the two basic equations on which the present recur-
sive algorithm is built:

Cu̇(t) + Ku(t) = −M
(
ü(t) + üg(t)

)
(5)

M−1
(
Cu̇(t) + Ku(t)

)
= −ü(t) − üg(t) (6)

where Eq. (6) may be derived directly from Eq. (5), by M−1

pre-multiplication. Notice that mass matrix M can always be
inverted, since it is taken as a diagonal, non-singular matrix.
The switching of Eqs. (5) and (6) to State-Space representa-
tion is immediate, and leads to the following formulations:

Gckx(t) = Nck ẋ(t) + Lckf(t) = Nck ẋ(t) − LckMüg(t) (7)

Gmx(t) = −ẋ(t) − Lm üg(t) (8)

where Gck ∈ R2n×2n , Nck ∈ R2n×2n , Lck ∈ R2n×n , Gm ∈
R2n×2n and Lm ∈ R2n×n are matrices to be specifically
assembled, defined as follows:

Gck =
[
0n×n In×n

K C

]
, Nck =

[
In×n 0n×n

0n×n −M

]

Lck =
[
0n×n

In×n

]
(9a)

Gm =
[
0n×n −In×n

M−1K M−1C

]
, Lm =

[
0n×n

In×n .

]
(9b)

Then, Eq. (7) can be rewritten, with the purpose of a first-
stage identification (described in subsequent Sect. 2.2), in the
following form (see [30]):

Hck(t)θck = Pck(t)

⇒
[
H1

ck(t) 0n×2n

0n×n H2
ck(t)

]

︸ ︷︷ ︸
2n×3n

{
θ1
ck

θ2
ck

}

︸ ︷︷ ︸
3n×1

=
{
P1
ck(t)

P2
ck(t)

}

︸ ︷︷ ︸
2n×1

(10)

Last Eq. (10) is defined for every time instant t = ti ,
i = 1, . . . , L , being L the total number of points of the
acquired input signals, i.e. the length of the signal. By col-
lecting together all the sampling time instants, the subsequent
formulation can be reached:

Hck︸︷︷︸
(L×2n)×3n

θck︸︷︷︸
3n×1

= Pck︸︷︷︸
(L×2n)×1

(11)

where:

Hck = [Hck (t1) Hck (t2) . . . Hck (tL )]T (12a)

θck = { 1 1 1 . . . 1︸ ︷︷ ︸
1×n

, c1 c2 c3 . . . ci . . . cn︸ ︷︷ ︸
1×n

, k1 k2 k3 . . . ki . . . kn︸ ︷︷ ︸
1×n

}T

(12b)

Pck = {Pck (t1) Pck (t2) . . . Pck (tL )}T (12c)

Then, Hck(t) is a matrix containing the (known) velocity
and displacement responses, θck is a vector containing all
the (unknown, to be identified) damping and stiffness para-
meters and Pck(t) is a vector related to the (unknown) mass
terms, containing both (known) acceleration responses and
(unknown) input ground motion excitation. Their elements
can be computed, at the generic time instant ti , as:
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H1
ck(ti ) =

⎡
⎢⎢⎢⎢⎢⎣

u̇1 0 0 · · · 0
0 u̇2 0 · · · 0
0 0 u̇3 · · · 0
...

...
...

. . .
...

0 0 0 · · · u̇n

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
n×n

, θ1
ck =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
1
1
...

1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
︸︷︷ ︸
n×1

,

P1
ck(ti ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u̇1

u̇2

u̇3
...

u̇n

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
n×1

(13)

H2
ck(ti ) =

⎡
⎢⎢⎢⎢⎢⎣

u̇1 u̇1 − u̇2 0 · · · 0 u1 u1 − u2 0 · · · 0
0 u̇2 − u̇1 u̇2 − u̇3 · · · 0 0 u2 − u1 u2 − u3 · · · 0
0 0 u̇3 − u̇2 · · · 0 0 0 u3 − u2 · · · 0
...

...
...

. . .
...

...
...

...
. . .

...

0 0 0 · · · u̇n − u̇n−1 0 0 0 · · · un − un−1

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
n×2n

(14a)

θ2
ck = { c1 c2 c3 . . . ci . . . cn, k1 k2 k3 . . . ki . . . kn︸ ︷︷ ︸

1×2n

}T (14b)

P2
ck(ti ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−m1(ü1 + üg)
−m2(ü2 + üg)
−m3(ü3 + üg)

...

−mn(ün + üg)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
n×1

(14c)

Finally, the θck parameters may be estimated by applying
a LS technique to previous Eq. (11):

θck = H†
ckPck =

( [
HT

ckHck

]−1
HT

ck

)
Pck (15)

where superscript symbol † indicates the Moore-Penrose
pseudo-inverse.

Similarly, for a second identification stage (see Sect. 2.2),
Eq. (8) can be rewritten, for every time instant t = ti , i =
1, . . . , L , as:

Hm(t)θm = Pm(t)

⇒
[
H1

m(t) 0n×n

0n×n H2
m(t)

]

︸ ︷︷ ︸
2n×2n

{
θ1
m

θ2
m

}

︸ ︷︷ ︸
2n×1

=
{
P1
m(t)

P2
m(t)

}

︸ ︷︷ ︸
2n×1

(16)

By collecting all the sampling time instants together one
has:

Hm︸︷︷︸
(L×2n)×2n

θm︸︷︷︸
2n×1

= Pm︸︷︷︸
(L×2n)×1

(17)

where:
Hm = [Hm(t1) Hm(t2) . . . Hm(tL )]T (18a)

θm = { 1 1 1 . . . 1︸ ︷︷ ︸
1×n

, 1/m1 1/m2 1/m3 . . . 1/mi . . . 1/mn︸ ︷︷ ︸
1×n

}T (18b)

Pm = {Pm(t1) Pm(t2) . . . Pm(tL )}T (18c)

So, Hm(t) is again a matrix containing the (known) veloc-
ity and displacement responses, θm is a vector containing all
the inverse of the (unknown, to be identified) mass parame-
ters and Pm(t) is a vector collecting the (known) acceleration

responses and the (unknown) input ground motion excita-
tion. By considering a generic time instant ti , each of their
elements can be calculated as:

H1
m(ti ) = −

⎡
⎢⎢⎢⎢⎢⎣

u̇1 0 0 · · · 0
0 u̇2 0 · · · 0
0 0 u̇3 · · · 0
...

...
...

. . .
...

0 0 0 · · · u̇n

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
n×n

, θ1
m =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
1
1
...

1

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
︸︷︷ ︸
n×1

,

P1
ck(ti ) = −

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u̇1

u̇2

u̇3
...

u̇n

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
n×1

(19)
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H2
m(ti ) = K

⎡
⎢⎢⎢⎢⎢⎣

u1 0 0 · · · 0
0 u2 0 · · · 0
0 0 u3 · · · 0
...

...
...

. . .
...

0 0 0 · · · un

⎤
⎥⎥⎥⎥⎥⎦

+ C

⎡
⎢⎢⎢⎢⎢⎣

u̇1 0 0 · · · 0
0 u̇2 0 · · · 0
0 0 u̇3 · · · 0
...

...
...

. . .
...

0 0 0 · · · u̇n

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
n×n

(20a)

θ2
m = { 1/m1 1/m2 1/m3 . . . 1/mi . . . 1/mn︸ ︷︷ ︸

1×n

}T

(20b)

P2
m(ti ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−(ü1 + üg)
−(ü2 + üg)
−(ü3 + üg)

...

−(ün + üg)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
n×1

(20c)

As seen in Eq. (15), the mass parameters collected in θm
can be estimated by applying a LS technique to Eq. (17):

θm = H†
mPm =

( [
HT

mHm

]−1
HT

m

)
Pm (21)

Notice that, as commented earlier right after Eq. (4),
the achieved algebraic representations in Eqs. (11) and (17)
invert the role of unknown parameters and given quantities,
as in Eqs. (1) and (3), so as to allow solving for the identi-
fication process in the unknown quantities to be identified,
for a total number of 3n unknown structural parameters and
unknown input ground motion signal.

By summarizing the introduced problem and its formula-
tion so far, it can be noted that it does not look one of a simple
solution, since unknown quantities are collected inside Pck

and Hm . Then, a two-stage iterative solution provided by the
present Full Dynamic Compound Inverse Method (FDCIM)
is innovatively developed below, to deal with the present
identification inverse problem, as it is presented in the next
section.

2.2 Two-stage identification algorithm

The developed Full Dynamic Compound Inverse Method
(FDCIM) is an algorithm that, by working with a State-Space
representation, allows for the estimation, in series, of modal
parameters, input ground motion and structural characteris-
tics at the element-level. This is possible through a two-stage
iterative algorithm, which consists of a LS optimization tech-
nique for parameter identification, Lawson and Hanson [26],
and of a Statistical Average (SA) method, Chen et al. [8],
which make the estimated input excitation to comply with
the dynamic equilibrium of the considered frame, at each

time instant, and rely on a modification process, allowing for
faster convergence.

The only known quantities are the time histories acquired
from the building responses; especially, only acceleration
responses may be known, since velocities and displacements
may be integrated numerically from accelerations, see [12].
Then, the development of the FDCIM algorithm, divided in
two subsequent stages, may be summarized in the computa-
tional steps outlined below.

• First stage (realization of stiffness and damping para-
meters):

1.1 For the first iteration, since both θck , θm and üg are
unknown quantities, each parameter vector must be
assigned to an arbitrary initial value, for example 0θck =
{1 1 1 . . . 1}T, 0θm = {1 1 1 . . . 1}T, where left apex
symbol 0 stays for initial starting value. For the sub-
sequent recursions, a similar left apex i denotes the
current iteration. Notice that the performance of the
method is not sensitive to these initial values, which
may be whatever between, say, 10−6 and 106. Then,
initial matrices 0M, 0C, 0K (through Eqs. (2)) and 0Hck

(through Eq. (12a)) can be computed.
1.2 An estimate of vector Pck can be calculated by using the

terms of Step 1, from Eq. (11), getting 0P̃ck = 0Hck
0θck .

Overmarking symbol ∼ stays here for estimated value.
1.3 By using 0P̃ck , matrix Gck can be estimated from the

following LS expression:

0G̃ck = 0P̃ckX† = 0P̃ck

( [
XTX
]−1

XT
)
, (22)

where X = {x(t1) x(t2) . . . x(tL)}T ∈ R(L×2n)×1

is the global state matrix, accounting for all L time
instants.

1.4 Knowing 0θm , 0Ñck can be reconstructed from Eq. (9a).
1.5 Starting from Eq. (7), an estimate of the input ground

motion vector 0üg,k(t) can be obtained:

0 ˜̈ug,k(t) = −
(
Lck

0M
)†(

0G̃ckx(t) − 0Ñck ẋ(t)
)
,

(23)

where 0 ˜̈ug,k(t) = {0 ˜̈u(1)
g,k(t)

0 ˜̈u(2)
g,k(t)

0 ˜̈u(3)
g,k(t) . . .

0 ˜̈u(i)
g,k(t) . . . 0 ˜̈u(n)

g,k(t)}T contains the estimate of the
input ground motion relative to each storey i = 1, . . . , n
and for every time instant t = t j , j = 1, . . . , L .

1.6 Then, a Statistical Average (SA) process is introduced
in the algorithm, since the nth ground accelerations
0 ˜̈u(i)

g,k(t) obtained from previous Eq. (23) should be the
same for every storey, at each time instant t = t j . Actu-
ally, this is not true because of the difference between
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the assumed initial values 0θck , 0θm and their true val-
ues. So, the SA method can be applied as follows, by
computing the average (mean value) 0 ¯̈ug,k(t j ) between

the n different 0 ˜̈u(i)
g,k(t j ), at each time instant t = t j :

0 ¯̈ug,k(t j ) = 1

n

n∑
i=1

0 ˜̈u(i)
g,k(t j ), j = 1, . . . , L (24)

1.7 After the computation of the average ground motion
0 ¯̈ug,k(t), a modified version of vector Pck(t) may be
reconstructed, by using the following modification pro-
cedure:

0P̂ck(t) = 0Ñck ẋ(t) − Lck
0Mr 0 ¯̈ug,k(t) (25)

where superscript ∧ means modified value.
1.8 Finally, an improved estimation of the θck parameters

can be computed by the use of the modified 0P̂ck vector,
leading to estimates of damping and stiffness parameters
at iteration 1 as follows:

1θck = 0H†
ck

0P̃ck =
( [

0HT
ck

0Hck

]−1
0HT

ck

)
0P̃ck

(26)

1.9 On the latter LS formulation, a parameter projection
technique is adopted, in order to arrive at strictly-
positive estimates of

(
1θck
)
i j parameters, i.e. of ci and

ki terms, when i = j (i.e. for the diagonal terms of
the damping and stiffness matrices), without the need
of solving constrained LS problems:

(1θck
)
i j = sgn

[(1θck
)
i j

](1θck
)
i j , ∀i, j = 1, . . . , n

(27)

where sgn[. . . ] represents the sign function, that is the
odd mathematical function which extracts the sign of
the real number in its argument.
Then, from the estimate of 1θck , updated estimates 1C
and 1K of the damping and stiffness matrices can be
computed.

• Second stage (realization of mass parameters):
Similarly to what seen for the first stage, the second stage
will be outlined by the following computational steps.

2.1 The first iteration of the second identification stage starts
from the achieved estimates of 1θck , 1C and 1K, aiming
at the computation of the 0Hm matrix, through Eq. (18a).

2.2 Vector Pm can be estimated by using the terms of
Step 2.1, from Eq. (17) to 0P̃m = 0Hm

0θm , where 0θm
was defined in previous Step 1.1.

2.3 Matrix Gm can be estimated, through the estimated
value of 0P̃m , from the LS problem:

0G̃m = 0P̃mx† = 0P̃m

( [
xTx
]−1

xT
)

(28)

Notice that from matrix Gm , an estimate of state matrix
A can be directly computed, leading to 0Ã (see Eq. (9b)
for more details).

2.4 Input ground motion vector 0üg,c(t) can be again esti-
mated, by taking into account previous Eq. (8), as:

0 ˜̈ug,c(t) = −L†
m

(
0G̃mx(t) − ẋ(t)

)
(29)

where, again, vector 0 ˜̈ug,c(t) holds the input ground
motion estimates for each storey i = 1, . . . , n and for
every time instant t = t j , j = 1, . . . , L .

2.5 As in previous Step 1.6, the Statistical Average method
is applied, at each time instant t = t j , to the n different
0 ˜̈u(i)

g,c(t j ) ground motion accelerations:

0 ¯̈ug,c(t j ) = 1

n

n∑
i=1

0 ˜̈u(i)
g,c(t j ), j = 1, . . . , L (30)

2.6 Through the following modification procedure, the
modified version of vector Pm(t) can be reconstructed
as:

0P̂m(t) = −ẋ(t) − Lckr 0 ¯̈ug,c(t) (31)

2.7 Then, through the use of modified vector 0P̂m , the
improved estimation of θm can be computed, by giv-
ing rise to iteration 1 for the second identification stage:

1θm = 0H†
m

0P̃m =
( [

0HT
m

0Hm

]−1
0HT

m

)
Pm (32)

2.8 As before, on previous Eq. (32) the parameter projection
technique is implemented, towards getting strictly-
positive estimations of the

(
1θm
)
i j parameters ∀i, j =

1, . . . , n (since mass matrix elements must be all
strictly-positive), without the use of constrained LS
problems:

(1θm
)
i j = sgn

[(1θm
)
i j

](1θm
)
i j ∀i, j = 1, . . . , n

(33)

Then, from the 1θm estimate, the updated estimate of
mass matrix 1M can be computed.

2.9 In the end, 0M, 0C, 0K, 0θck and 0θm can be replaced
by updated parameters 1M, 1C, 1K, 1θck and 1θm in
Step 1.1.
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The two-stage recursive algorithm iterates then from
Step 1.2 to Step 2.8, until the following convergence
criteria are met:

max

∣∣∣∣
iθck(p) − i−1θck(p)

iθck(p)

∣∣∣∣ < εθ ,

max

∣∣∣∣
iθm(q) − i−1θm(q)

iθm(q)

∣∣∣∣ < εθ (34a)

max

∥∥∥∥
i ˜̈u(r)

g,k(t j ) − i ¯̈ug,k(t j )
i ¯̈ug,k(t j )

∥∥∥∥ < εg,

max

∥∥∥∥
i ˜̈u(r)

g,c(t j ) − i ¯̈ug,c(t j )
i ¯̈ug,c(t j )

∥∥∥∥ < εg (34b)

where left superscript i indicates the current iteration
step (and i − 1 the previous one), and p and q are the
pth and qth elements of vectors θck and θm , respec-
tively. Superscript r is the r th DOF of the estimated
ground motion, while j indicates the j th time instant
of interest. Finally, εθ and εg represent the selected tol-
erances, which generally can be chosen to be between
10−4 and 10−6. Of course, εθ refers to a convergence
criterion on the structural parameters, while εg refers to
a convergence criterion on the estimated input ground
motion.

For the analyses presented here, convergence tolerances
have been generally set to εθ = 10−6 and εg = 10−4. For
the ground motion, a lower convergence level is selected,
since the estimation error is “diluted” over a considerable
greater amount of values, with respect to that for the vector
parameters. A stopping criteria is set if after 2000 iterations
the convergence criteria have not reached at least εθ = 10−4

and εg = 10−2. Then, the algorithm definitively stops if
after 5000 iterations convergence has not been reached,
or if any of the θi identified parameters go to zero or to
infinity.

Once the iterations made on the two stages of the algorithm
go to convergence, the final θck and θm render realizations of
the final mass, damping and stiffness matrices, jointly with
realizations of state matrix A and output matrix C0, which
can be directly derived from Gm . At a glance, a realization
of the State-Space model can be reconstructed from these
matrices. Then, the averaged value ¯̈ug,c(t) obtained from
Step 2.5 represents the estimated time history of the ground
motion.

2.3 Element-level identification procedure

As previously explained, from the FDCIM, estimates of the
modal parameters, of the input ground motion excitation and
of the structural (mass, damping and stiffness) matrices at
the element-level can be achieved. These matrices, as well

as the identified State-Space matrices (A, B, C0 and D), rep-
resent a realization of the system under investigation, i.e. a
possible combination of matrices which is able to reconstruct
the acquired structural responses u(t), u̇(t) and ü(t), known
the input ground motion excitation üg(t). The latter can be
estimated from Step 2.5, as exposed earlier.

Then, from the estimated realization of state and output
matrices (A and C0) or, equivalently, of mass, damping and
stiffness matrices, the modal properties (natural frequencies,
mode shapes and modal damping ratios) can be obtained in
a straight-forward manner [11,13].

The last issue concerns the accurate identification of the
element-level values, since by this iterative procedure matri-
ces M, C and K are identified correctly, unless for a real
positive multiplying parameter δ, hereafter called Fixing Fac-
tor. This means that the proper orders of magnitude between
each element are preserved, and only a multiplying para-
meter δ is required to restore the real amount of each mass,
damping and stiffness element. In other words, different real-
izations of matrix M, C and K differ only for an unknown
proportionality factor.

The Fixing Factor δ can be computed through the knowl-
edge (or at least, an evaluation) of a single structural
parameter, allowing then for rescaling the realizations. For
instance, the total mass of the building under exam may be
known or estimated, or any other single parameter of one
of three matrices M, C and K (namely any single parameter
amongmi , ci and ki ). Basically, one of these comparison val-
ues P comes from its knowledge (or estimation) from the real
building (Preal ), while the other is taken from the estimated
model (Pest ). So, the Fixing Factor can be simply computed
as the ratio between them:

δ = Preal
Pest

, being P = mtot , mi , ci or ki . (35)

Then, by multiplying the estimated mass, damping and
stiffness matrices by the Fixing Factor, the real value of the
element-level identified parameters is achieved. In Sects. 3
and 4, the element-level estimates achieved from the analysed
cases will be presented, by adopting always P = mtot as
rescaling parameter (a parameter that may be judged in prac-
tical cases, based on several types of information that may
be known for the building).

3 Identification outcomes

The effectiveness of the further developed Full Dynamic
Compound Inverse Method is now presented through numer-
ical examples, generated from synthetic earthquake-induced
response signals. The adopted structure is a three-storey
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Table 1 Structural properties of the adopted three-storey shear-type
frame [8]

Floor 1 2 3

Stiffness ki (×106 [kN/m]) 4728.40 315.23 157.61

Damping ci (×103 [kN s/m]) 4369.00 291.30 145.60

Mass mi (×103 [kg]) 350.25 262.29 175.13

shear-type frame, taken from the work of Chen et al. [8],
whose characteristics are reported in Table 1.

The modal characteristics of the building can be computed
through classical modal analysis, as reported in Table 2.

The adopted input ground motion excitation is the El Cen-
tro 1940 earthquake, as also used by Toki et al. [47], Li and
Chen [30], Perry and Koh [38], Lei et al. [27], whose main
features are recalled in Table 3.

The time duration is 40 s, sampled at 100 Hz, resulting in
a total number of 4000 signal points. The response of the
building, in terms of absolute displacements, velocities and
accelerations is computed via numerical integration of the
equations of motions by Newmark’s method, see e.g. [11].
These responses are taken as the only known quantities in the
identification process. Of course, if only accelerations results
were known (as usual, from the acquisitions out of the moni-
tored structure), specifically-developed integration schemes
may be implemented, to obtain also velocities and displace-
ments (e.g. like the ones presented in Concha et al. [12]).

Then, the so-obtained structural responses are taken as
input, i.e. as known quantities, for the application of the
present FDCIM technique. The performance of the method
has been assessed with several different initial values of vec-
tors 0θck and 0θm , between 10−6 and 106. No measurable
differences have been found among the attempted values,
both in terms of achievable estimates (� < 0.00001%) and
number of iterations (� < 5%), which turn out to be exactly

Table 2 Modal characteristics of the adopted three-storey shear-type
frame [8]

Mode 1 2 3

Natural frequencies (Hz) 3.448 7.376 19.16

Modal damping ratios (%) 1.00 % 2.14 % 5.56 %

Mode shapes 0.0279 0.0595 0.9955

0.4315 0.8096 −0.0946

0.9017 −0.5839 0.0063

the same for all the examined cases. So, the developed iden-
tification method can be considered to be insensitive on the
adopted initial values, which have been finally chosen as
0θck = {1 1 1 . . . 1}T and 0θm = {1 1 1 . . . 1}T.

The same with regards to the estimated Fixing Factor δ.
Attempts with mtot and any single parameter mi , ci and ki
have been performed, and confirmed that the achievable esti-
mates of the rescaling factor do not result sensitive with the
assumed known structural parameter (the differences among
deviations calculated from the achieved estimates, as a func-
tion of the adopted Pi , are less than 5%). Here, only results
from the use of P = mtot are presented. Moreover, differ-
ent number of points of the signals are used for the present
analysis, starting from the initial time instant, namely from
a minimum of 50 points (equal to a duration of 0.5 s) to a
maximum of 4000 points for the entire signal (correspond-
ing to the total duration of 40 s). Tolerance levels are set as
εθ = 10−6 and εg = 10−4.

Sample, characteristic results are presented in Tables 4
and 5, for the length of 100, 200, 500 and 1000 sampling
points, while the deviations of the estimates for all the exam-
ined cases are summarized in Figs. 2 and 3. For the natural
frequencies, the maximum percentage deviation, calculated
as ( fi,id − fi,targ)/ fi,targ ·100, is 0.0049% (100 points case),
while for the modal damping ratios is 0.0115% (50 points
case). The mode shapes are always identified in an extremely
effective way, since they always lead to unitary Modal Assur-
ance Criterion (MAC) indexes, for every considered case. For
the identified element-level parameters, the maximum devi-
ations are: 0.0105% (50 points case) for ki ; 0.0179% (100
points case) for ci ; 0.0181% (100 points case) for mi . It can
be seen that, despite the very poor number of adopted points,
all estimates result very effective.

As it is visible in Fig. 2 and likely to be expected, devia-
tions go to lower magnitudes (better estimates) for the natural
frequencies with respect to the modal damping ratios. In
Fig. 3 this applies to the stiffness estimates, which go to
lower magnitudes for the second mode. Otherwise, results
for mi , ci and ki appear quite similar, and not much sensitive
on the adopted number of points.

Then, considering the acquisitions (4000 points) and con-
cerning the identified input ground motion excitation, the
deviations between real and estimated peak ground accel-
eration (PGA) and between real and estimated Root Mean
Square (RMS) value are only 0.0041 and 0.0026 %, respec-
tively (see results later shown in Sect. 4). This confirms
the goodness of the achieved estimates of the input ground

Table 3 Main characteristics of the adopted earthquake (El Centro, 1940)

Earthquake Date Station Duration (s) fs (Hz) M Comp. PGA (m/s2) RMS (m/s2)

El Centro (EC) 18/05/1940 0117 40 100 7.1 NS 3.069 0.5158
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Table 4 Identified natural frequencies fi , modal damping ratios ζi and calculated Modal Assurance Criterion indexes MACi for the three-storey
frame, as a function of adopted number of points; mtot Fixing Factor parameter; general viscous damping; El Centro earthquake

Case Target Estimated �% Estimated �% Estimated �% Estimated �%
(100 pts.) (200 pts.) (500 pts.) (1000 pts.)

Natural frequencies (Hz)

f1 3.448 3.448 0.0049 3.448 0.0018 3.448 0.0018 3.448 0.0019

f2 7.376 7.376 0.0001 7.376 0.0000 7.376 0.0001 7.376 0.0001

f3 19.16 19.16 0.0016 19.16 0.0007 19.16 0.0004 19.16 0.0005

Modal damping ratios (%)

ζ1 1.00 % 1.00 % 0.0102 1.00 % 0.0059 1.00 % 0.0037 1.00 % 0.0040

ζ2 2.14 % 2.14 % 0.0048 2.14 % 0.0035 2.14 % 0.0018 2.14 % 0.0020

ζ3 5.56 % 5.56 % 0.0080 5.56 % 0.0049 5.56 % 0.0025 5.56 % 0.0029

Modal assurance criteria

MAC1 − 1.000 − 1.000 − 1.000 − 1.000 −
MAC2 − 1.000 − 1.000 − 1.000 − 1.000 −
MAC3 − 1.000 − 1.000 − 1.000 − 1.000 −

Table 5 Identified stiffness ki , damping ci and mass mi parameters for the three-storey frame as a function of adopted number of points; mtot
Fixing Factor parameter; general viscous damping; El Centro earthquake

Case Target Estimated �% Estimated �% Estimated �% Estimated �%
(100 pts.) (200 pts.) (500 pts.) (1000 pts.)

Mass parameters (×103 [kg])
m1 350.25 350.21 0.0107 350.24 0.0041 350.24 0.0037 350.24 0.0040

m2 262.29 262.30 0.0021 262.29 0.0010 262.29 0.0008 262.29 0.0009

m3 175.13 175.16 0.0181 175.14 0.0066 175.14 0.0061 175.14 0.0066

Damping parameters (×103 [kN s/m])
c1 4369.00 4368.22 0.0179 4368.63 0.0085 4368.74 0.0061 4368.71 0.0067

c2 291.30 291.29 0.0050 291.29 0.0046 291.29 0.0022 291.29 0.0023

c3 145.60 145.61 0.0063 145.60 0.0013 145.60 0.0020 145.60 0.0022

Stiffness parameters (×106 [kN/m])
k1 4728.40 4728.02 0.0080 4728.27 0.0028 4728.25 0.0031 4728.24 0.0033

k2 315.23 315.23 0.0006 315.23 0.0004 315.23 0.0000 315.23 0.0000

k3 157.61 157.63 0.0105 157.62 0.0040 157.62 0.0035 157.62 0.0038

Number of iterations (εθ = 10−6, εg = 10−4)

N − 1690 − 768 − 648 − 738 −

motion, which is effectively reconstructed by the present
FDCIM technique and proves to be nearly the same as the
original one. Some plots concerning the achieved estimates
of the input ground motion excitations are also going to be
presented in Sect. 4, for further illustration.

4 Addition of noise

With the purpose of assessing the goodness of the present
FDCIM approach by getting closer to real operating con-
ditions, analyses with noise-corrupted earthquake-induced

synthetic response signals are also considered. Noise-
corrupted cases are generated by adding a zero-mean
Gaussian white noise time history to displacement, velocity
and acceleration structural response acquisitions. The noise
process is added to each single acquisition channel (i.e. at
every storey) in terms of percentage of the Root Mean Square
(RMS) ratio between the noise time history and the starting
response measurement (to be corrupted by noise). Different
levels of noise have been considered, starting from 0.5 %,
then going to 1, 3, 5 % and finally to heavy 10 and 20 %
noise cases.
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Fig. 2 Percentage deviations of identified natural frequencies fi and modal damping ratios ζi with respect to target parameters as a function of
adopted number of points; three-storey frame; mtot Fixing Factor parameter; general viscous damping; El Centro earthquake

Fig. 3 Percentage deviations of identified stiffness ki , damping ci and mass mi parameters with respect to target parameters as a function of
adopted number of points; three-storey frame; mtot Fixing Factor parameter; general viscous damping; El Centro earthquake

Table 6 Identified natural frequencies fi , modal damping ratios ζi and calculated Modal Assurance Criterion indexes MACi for the three-storey
frame, no-noise and noise-corrupted cases; 4000 points; mtot Fixing Factor parameter; general viscous damping; El Centro earthquake

Case Target Estimated �% Estimated �% Estimated �% Estimated �%
(No noise) (1 % noise) (5 % noise) (20 % noise)

Natural frequencies (Hz)

f1 3.448 3.448 0.0025 3.446 0.0684 3.447 0.0180 3.429 0.5544

f2 7.376 7.376 0.0001 7.376 0.0059 7.376 0.0038 7.390 0.1938

f3 19.16 19.16 0.0007 19.16 0.0389 19.13 0.1383 19.12 0.1677

Modal damping ratios (%)

ζ1 1.00 % 1.00 % 0.0054 1.00 % 0.5113 1.03 % 2.8104 0.97 % 2.9541

ζ2 2.14 % 2.14 % 0.0028 2.13 % 0.3863 2.20 % 2.6490 2.07 % 3.5408

ζ3 5.56 % 5.56 % 0.0043 5.50 % 1.0468 5.82 % 4.6298 5.89 % 5.8787

Modal assurance criteria (1)

MAC1 − 1.000 − 1.000 − 1.000 − 1.000 −
MAC2 − 1.000 − 1.000 − 1.000 − 1.000 −
MAC3 − 1.000 − 1.000 − 1.000 − 1.000 −
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Table 7 Identified stiffness ki , damping ci and mass mi parameters for the three-storey frame, no-noise and noise-corrupted cases; 4000 points;
mtot Fixing Factor parameter; general viscous damping; El Centro earthquake

Case Target Estimated �% Estimated �% Estimated �% Estimated �%
(No noise) (1 % noise) (5 % noise) (20 % noise)

Mass parameters (×103 [kg])
m1 350.25 350.23 0.0054 349.66 0.1672 351.14 0.2547 354.76 1.2874

m2 262.29 262.29 0.0013 262.44 0.0556 261.67 0.2372 256.48 2.2152

m3 175.13 175.15 0.0087 175.57 0.2512 174.86 0.1542 176.43 0.7428

Damping parameters (×103 [kN s/m])
c1 4369.00 4368.59 0.0094 4315.41 1.2266 4583.19 4.9025 4706.83 7.7325

c2 291.30 291.29 0.0030 289.85 0.4990 299.53 2.8245 286.69 1.5828

c3 145.60 145.60 0.0029 145.43 0.1143 148.60 2.0599 134.90 7.3515

Stiffness parameters (×106 [kN/m])
k1 4728.40 4728.20 0.0041 4723.82 0.0968 4727.86 0.0114 4780.55 1.1029

k2 315.23 315.23 0.0002 315.30 0.0199 314.59 0.2034 311.13 1.2999

k3 157.61 157.62 0.0051 157.84 0.1453 157.23 0.2423 155.93 1.0639

Estimated input ground motion-peak ground acceleration/root mean square ([m/s2])
PGA 3.069 3.069 0.0041 3.062 1.8276 3.138 4.3708 3.642 21.123

RMS 0.5158 0.5158 0.0026 0.5162 0.0752 0.5282 2.4119 0.7055 36.780

Fig. 4 Percentage deviations of identified natural frequencies fi and modal damping ratios ζi with respect to target parameters, no-noise and
noise-corrupted cases; three-storey frame, 4000 points; mtot Fixing Factor parameter; general viscous damping; El Centro earthquake

As before, sample, characteristic results are shown in
Tables 6 and 7, for no-noise, 1, 5 and 20 % noise-corrupted
cases, while all deviations for the examined cases are reported
in Figs. 4 and 5. The maximum percentage deviations are
1.1939 % (10 % noise case) and 5.8787 % (20 % noise case)
for the natural frequencies and modal damping ratios, respec-
tively. Again, mode shape estimates turn out to be very
effective, by showing always unitary MAC values, for all
the modes and examined cases. As concerning the esti-
mated element-level parameters, the maximum deviations
are 2.0262 % (10 % noise case), 7.7325 % (20 % noise case)
and 3.2652 % (10 % noise case) for ki , ci and mi , respec-
tively. So, although the heavy noise-corrupted adopted cases

(up to 20 % of noise), system identification keeps very much
effective.

By observing Figs. 4 and 5, it is visible that natural
frequencies are more accurate than modal damping ratios,
even if characterized by greater dispersions. Modal damp-
ing ratios, as well as damping parameters ci , seem to be less
sensitive to the amount of added noise. Element-level ki and
mi are slightly more accurate with respect to the damping
parameters, even though they are characterized by higher
dispersions.

Finally, the input ground motion excitation is still identi-
fied effectively, despite for the added noise. Fig. 6 represents
the trend of the deviations between real and estimated PGA
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Fig. 5 Percentage deviations of identified stiffness ki , damping ci and mass mi parameters with respect to target parameters, no-noise and noise-
corrupted cases; three-storey frame, 4000 points; mtot Fixing Factor parameter; general viscous damping; El Centro earthquake

Fig. 6 Percentage deviations of the Peak Ground Acceleration (PGA)
and Root Mean Square (RMS) values of the identified input ground
motion excitation with respect to target excitation, no-noise and noise-

corrupted cases; three-storey frame, 4000 points; mtot Fixing Factor
parameter; general viscous damping; El Centro earthquake

and RMS, respectively. The estimates are affected by slight
errors up to a 10 % noise level; only for the 20 % noise case
the deviations grow up to 21.123 and 36.780 %, for PGA
and RMS, respectively. Also, Fig. 7 represents the noise-
corrupted acceleration responses adopted for the analysis, at
different levels of added noise, with the comparison between
estimated and target input ground motion time histories üg . It
is clear that üg can be effectively estimated until the level of
10 % noise; only with a higher noise level of 20% its recon-
struction starts to get into troubles.

Nevertheless, a further careful observation of the estimates
of the input ground motion suggests that the acquisitions are
affected by a distributed noise, which can be largely removed
by post-filtering such obtained data. In fact, as it can be seen
in Fig. 8, data filtering can greatly improve the estimates.
The application of a Chebyshev Type II lowpass filter to the
identification data brings to: PGA = 3.0472 m/s2 (� =
0.7103 %) and RMS = 0.5077 m/s2 (� = 1.5704 %) for
the 10 % noise case; PGA = 3.0438 m/s2 (� = 0.82113 %)
and RMS = 0.5347 m/s2 (� = 3.6642 %) for the 20 %
noise case. That again confirms the goodness of the achieved
results, in getting closer to real scenarios.

5 Identification of a realistic ten-storey frame

In the present section, the effectiveness of the developed
Full Dynamic Compound Inverse Method is further demon-
strated through a rather realistic structure from the literature.
The building is a ten-storey RC frame taken from the work
of Villaverde and Koyama [50], whose characteristics are
reported in Table 8.

This building is characterized by close modes, with all
natural frequencies laying in about a 5 Hz interval. The modal
characteristics of the building are reported in Table 9. Mode
shapes are omitted here for brevity.

As before, the El Centro 1940 earthquake is taken as
benchmark ground motion base-excitation. Again, no vari-
ations were found in terms of achievable estimates (�
< 0.00001 %) and number of iterations (� < 5 %), as a
function of the adopted initial values of 0θck and 0θm vectors,
ranging from 10−6 to 106. Tolerances are set to εθ = 10−6

and εg = 10−4, with a Fixing Factor δ set on P = mtot .
Figures 9 and 10 display the deviations of the achiev-

able estimates, as a function of the adopted number of
points, starting from a minimum of 100 points (duration
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Fig. 7 Acceleration structural responses üi (t); estimated and target input ground motion excitation üg(t); no-noise and noise-corrupted cases;
three-storey frame, 4000 points; mtot Fixing Factor parameter; general viscous damping; El Centro earthquake
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Fig. 8 Estimated (with applied filtering) and target input ground motion excitation üg(t); 10 and 20 % noise-corrupted cases; three-storey frame,
4000 points; mtot Fixing Factor parameter; general viscous damping; El Centro earthquake

Table 8 Structural properties of the adopted ten-storey shear-type frame [50]

Floor 1 2 3 4 5 6 7 8 9 10

Stiffness ki (×106 [kN/m]) 62.47 59.26 56.14 53.02 49.91 46.79 43.7 40.55 37.43 34.31

Damping ci (×104 [kN s/m]) 31.90 28.94 27.42 25.90 24.38 22.85 21.33 19.81 18.28 16.76

Mass mi (×103 [kg]) 179 170 161 152 143 134 125 116 107 98

Table 9 Modal characteristics of the adopted ten-storey shear-type frame [50]

Mode 1 2 3 4 5 6 7 8 9 10

Natural frequencies (Hz) 0.500 1.326 2.151 2.934 3.653 4.292 4.836 5.272 5.590 5.787

Modal damping ratios (%) 0.77 % 2.05 % 3.33 % 4.53 % 5.64 % 6.61 % 7.44 % 8.10 % 8.59 % 8.88 %

of 1 s) to a maximum of 4000 points (entire response
signal).

The recorded maximum deviation is 0.000615 % (4000
points case) for the natural frequencies, while is 0.0049 %
(100 points case) for the modal damping ratios. The mode
shapes always lead to unitary MAC indexes, for every con-
sidered case. With regards to the identified element-level
parameters, the maximum deviations show to be: 0.0039 %
(4000 points case) for ki , 0.0295 % (100 points case) for
ci and 0.0051 % (4000 points case) for mi . The number of
required iterations is 3331, 329, 138, 281, 415 and 472 for
the 100, 200, 500, 1000, 2000 and 4000 points cases, respec-
tively. Despite the increase of the parameters to be estimated,
jointly with the increase of complexity of the adopted struc-
ture, the estimates show to be very effective. Even with very
short structural recordings (i.e. with a very poor number of
adopted points), the algorithm reveals to be able to effec-
tively converge, by rendering even better results than for the
simpler 3-storey frame. In a sense, it looks like that, with the
present 10-dofs system, namely with 10 available response
signals as input source to be fed to the FDCIM algorithm,
much information is available for the identification process
and, even though the identification problem becomes more
challenging, the inverse problem arrives at even better results.

As it can be seen in Figs. 9 and 10, the most effective
estimates can be traced for the natural frequencies and for
the stiffness parameters. In particular, the best estimates are
located between the 2nd and the 4th modes of vibration for
the natural frequencies and for the modal damping ratios (for
the latter, very good estimates can be found also on the last
modes of vibration). In parallel, the best estimates for mi , ci
and ki can be found between the 4th and the 6th modes of
vibration.

Further, some attempts with noise-corrupted signals are
considered again for validation purposes. As seen in Sect. 4,
the noise process is added to the response of each storey in
terms of percentage of the Root Mean Square (RMS) ratio
between the noise time history and the starting response mea-
surement (to be corrupted by noise). The considered noise
levels are 0.5, 1, 3, 5, 10, and 20 %.

All the achieved deviations for the examined cases are
reported in Figs. 11 and 12. The maximum deviations are
0.6657 and 5.7659 % (both for the 20% noise case) for
the natural frequencies and for the modal damping ratios,
respectively. Again, mode shapes return always unitary MAC
values, for all the modes and examined cases. As concerning
the estimated element-level parameters, the maximum devi-
ations are 3.9316, 6.5641 and 5.1500 % (both for the 20 %
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Fig. 9 Percentage deviations of identified natural frequencies fi and modal damping ratios ζi with respect to target parameters as a function of
adopted number of points; ten-storey frame; mtot Fixing Factor parameter; general viscous damping; El Centro earthquake

Fig. 10 Percentage deviations of identified stiffness ki , damping ci and mass mi parameters with respect to target parameters as a function of
adopted number of points; ten-storey frame; mtot Fixing Factor parameter; general viscous damping; El Centro earthquake

Fig. 11 Percentage deviations of identified natural frequencies fi and modal damping ratios ζi with respect to target parameters, no-noise and
noise-corrupted cases; ten-storey frame, 4000 points; mtot Fixing Factor parameter; general viscous damping; El Centro earthquake

noise case) for ki , ci and mi , respectively. So, despite the use
of heavy noise-corrupted cases, the identification keeps to be
very effective.

As before, from Figs. 11 and 12 that it can be noted the nat-
ural frequencies are more accurate with respect to the modal

damping ratios. The best estimates are located between the
2nd and the 4th modes of vibration, both for the natural fre-
quencies and for the modal damping ratios. Then, in general,
the element-level estimates ki and mi are slightly more accu-
rate with respect to the ci evaluations. More in detail, the best
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Fig. 12 Percentage deviations of identified stiffness ki , damping ci and mass mi parameters with respect to target parameters, no-noise and
noise-corrupted cases; ten-storey frame, 4000 points; mtot Fixing Factor parameter; general viscous damping; El Centro earthquake

estimates for mi , ci and ki can be found again between the
4th and the 6th modes of vibration.

Finally, the input ground motion excitation is still identi-
fied effectively, both with or without the added noise. For the
full acquisition (4000 points, without noise), the deviations
between real and estimated Peak Ground Acceleration (PGA)
and between real and estimated Root Mean Square (RMS)
value are only 3.61 × 10−4 and 7.29 × 10−5%, respectively.
Again, the deviations of those parameters are very limited
until a 10 % noise level. Only for the 20 % noise case the
deviations increase until 10.663 and 24.674 %, for PGA and
RMS values, respectively.

Then, by post-filtering the obtained input ground motions,
it is possible to improve the estimates, leading to PGA =
3.0637 m/s2 (� = 0.18547 %) and RMS = 0.5187 m/s2

(� = 0.57269 %) for the 20 % noise case. Those results
demonstrate again the effectiveness of the developed algo-
rithm, also by working with the present much challenging
ten-storey case.

6 Conclusions

The present work has demonstrated the effectiveness of
an innovative Time-Domain output-only modal dynamic
identification, input estimation and element-level system
identification technique, towards the simultaneous iden-
tification of modal characteristics, input excitation time
history and structural parameters at the element-level by
adopting earthquake-induced structural response data only.
Specifically, no information on the structural system is
required, for instance for the mass matrix, as typical from
previous attempts in the literature, if not for a single struc-
tural parameter (for instance the total mass of the building)
if a Fixing Factor shall be set to convert realizations into
element-level estimates. This technique has been named Full

Dynamic Compound Inverse Method (FDCIM), in order
of continuity with the earlier definition and formulation
in [8].

In the end, main outcomes and results on the development
and application of the present FDCIM approach, with spe-
cific reference to the seismic engineering context, may be
summarized as follows:

– The theoretical framework of the FDCIM technique has
been presented, starting from the underlying mathemat-
ical model and the basic governing equations, by aiming
at a complete and exhaustive description of the method.

– The developed FDCIM approach releases strong assump-
tions of earlier known element-level techniques, towards
the simultaneous identification of modal parameters,
input ground motion excitation and mass, damping and
stiffness matrices at the element-level through an innov-
ative two-stage iterative algorithm.

– A Statistical Average technique, a modification process
and a parameter projection strategy have been developed
within the iterative algorithm and adopted to provide
correct constraints and to achieve stronger and faster con-
vergence on the identification estimates.

– The proposed FDCIM method works in a completely-
deterministic way, it is fully developed in State-Space
form and it does not require continuous- to discrete-time
transformations. Further, it does not depend on computa-
tional initialization conditions or on the state estimation,
as it has been proven with the performed validation analy-
ses.

– Accurate estimates of all structural parameters have been
provided, such as element-level mass, damping and stiff-
ness matrices, by knowing only a single component of
one of these matrices, or even by relying on an estimate
of a global parameter of the structure, like for instance
the total mass of the building.
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– The algorithm has been validated first with simulated
data from a three-storey shear-type frame, by showing the
achieved estimates for modal parameters, input ground
motion excitation and element-level structural parame-
ters, as a function of the adopted number of signal points,
starting from the initial time instant. Effectiveness has
been proven by relying on a minimum of 50 points to a
maximum of 4000 points, i.e. on the entire signal.

– The FDCIM approach is then applied to noise-corrupted
earthquake-induced synthetic response signals, still on
the three-storey frame, by considering various levels of
added noise. The effective estimates coming out from the
analyses further validated and confirmed the goodness of
the present FDCIM identification approach, by aiming at
getting closer to real conditions.

– Finally, additional analyses with a more complex struc-
tural case, i.e. a realistic ten-storey frame from the
literature have been performed, as a function of the
adopted number of points and by using again noise-
corrupted signals. These further and fully confirmed the
results achieved from the present inverse analysis identi-
fication method.

Further on-going research will concern attempts with even
more complex structures and several seismic ground motion
excitations (synthetic signals), jointly with the later adoption
of real earthquake-induced response data. Then, integration
or support by the FDCIM to other common output-only
methods working with State-Space parametric Time Domain
frameworks will be addressed. Additional theoretical inves-
tigations on the FDCIM approach and on its possible further
improvement will be the target of future work.
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