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Abstract The material identification problem addressed
consists of determining the constitutive parameters distri-
bution of a linear elastic solid using displacement mea-
surements. This problem has been considered in important
applications such as the design of methodologies for breast
cancer diagnosis. Since the resolution of real life problems
involves high computational costs, there is great interest in
the development of efficient methods. In this paper two new
efficient formulations of the problem are presented. The first
formulation leads to a second-order cone optimization prob-
lem, and the second one leads to a quadratic optimization
problem, both allowing the resolution of the problem with
high efficiency and precision.Numerical examples are solved
using synthetic input data with error. A regularization tech-
nique is applied using the Morozov criterion along with an
automatic selection strategy of the regularization parame-
ter. The proposed formulations present great advantages in
terms of efficiency, when compared to other formulations
that require the application of general nonlinear optimiza-
tion algorithms.

Keywords Identification · Inverse problems · Kinematic
field measurements · Second-order cone programming

1 Introduction

The direct linear elasticity problem of solid mechanics con-
sists of obtaining the displacement, strain and stress fields
inside an elastic body. External loads, supports and the mate-
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rial properties of the elastic body are considered known.
However, in certain important applications the material
properties are unknown, and must be estimated from mea-
surements of displacements, strains and stresses caused by a
known external action, i.e. a material identification problem
(MIP)must be formulated and solved. The readermay find an
extensive survey about the theoretical aspects and practical
solution strategies for the MIP and other inverse problems in
Elasticity in [9].

One of the applications where MIPs are formulated is in
structural damage identification [29,38,41]. The MIPs are
also formulated in the development of new techniques for
diagnosis of diseases, in situations where the tissue health
can be inferred from its constitutive material properties [15,
23,42]. Motivated by these important applications, several
groups of researchers in the scientific community have made
a great effort in the development of new methods for the
solution of the MIP. This article contributes with two new
formulations for theMIP, alongwith their respective efficient
solution methodologies.

The MIP, like other inverse problems, is an ill-posed
problem, i.e. the solution does not satisfy all the Hadamard
conditions: existence, uniqueness and continuous depen-
dence on the given data [27]. There have been some recent
results about the existence and uniqueness of the solution in
certainMIPs, such as sufficient conditions for an incompress-
ible solid [6], and for a compressible solid under dynamical
tests using complete displacement information [33]. How-
ever, one of the main challenges of the MIPs, as well as other
ill-posed inverse problems in engineering, is the high sen-
sitivity of the solution with respect to measurement errors
in the given data, which are invariably present. On the other
hand, large scale real life problems are still challenging for
the most frequently used MIP methods, and the high compu-
tational costs associated to practical applications have fueled
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intense research on new efficient methods of solution. Since
the contribution made by Ophir et al. where Elastography is
presented [35] to the recent results in [23], there has been an
important advance in the development of new techniques for
one of the most important applications: breast cancer diag-
nosis.

A brief bibliographical review of the historical develop-
ment ofMIP resolutionmethods is presented in the following.
The papers [12,26] are among the first references dealing
with mechanical parameters identification problems where
optimization problems are formulated and solved. In [35]
the Elastography is presented as a technique that allows the
estimation of material properties, using data obtained by
applying ultrasound technology. In [16,25] the identification
of mechanical properties of tissues is performed by formu-
lating and solving an optimization problem. In this kind of
formulation the design variables are values of themechanical
properties of each part of certain partition of the solid and
the objective functional is a measure of the distance between
the experimentallymeasured displacements and the displace-
ments provided by a numerical model, i.e. if the vector x
represents the set of n unknown mechanical parameters, the
optimization problem is:

min
x∈Rn

‖U(x) − Um‖2, (1)

where Um is the vector of measured displacements andU(x)
is the vector of the same displacements computed by cer-
tain numerical method. An iterative optimization algorithm
is used to find an optimal solution. A survey of iterative
methods for general material identification is presented in
[15]. Gradient-based techniques [32] are usually applied, as
in [11,14] where the authors identify the Young modulus in
arteries. In other material identification articles derivative-
free algorithms are used [38]. A previous analysis must be
done to determinewhich type of algorithm should be used for
each application, taking into account the differences between
the diverse optimization strategies available [1].

A particular case of MIP arises when complete informa-
tion of the displacement field of the body is at hand. The
full-field measurement (FFM) methods were developed in
the last decades for this case. In these methods the displace-
ments of all the nodes in a given mesh are assumed known.
Since the development of new image processing techniques
and the availability of equipments at accessible prices, the use
of FFM-based methods has increased. Avril et al. [3] present
an extensive overview of FFMmethods. These methods have
been applied to the characterization of several materials,
such as alloy plates [3], PVC plates [37], and even Bio-
mechanics applications [2,23]. In this article we will focus
on the development of numerical methods based on FFM
data.

Our goal is to propose new formulations capable to obtain
an important reduction of the time required by the MIP res-
olution without losing precision in the solution. In order to
achieve this goal, the formulations should admit the use of
known efficient optimization algorithms, and the application
of effective regularization techniques.

Unidimensional example

In order to look for efficient formulations we start with a
simple question: What norms are the most appropriate for
the problem formulated in Eq. (1)? A simple unidimensional
example is considered here to illustrate the importance of
using a convenient formulation of the MIP.

Let us consider a bar with length � and constant cross-
sectional area A. The left section of the bar is fixed and a
load P = 1 N is applied on the right section. The direct
elasticity problem is solved numerically using a discretiza-
tion of nE = 20 finite elements with equal size and with a
known Young modulus Ei at each element i . In this case,
given the nodal displacements, the MIP consists of obtaining
the Young modulus at each element. The reference displace-
ments Ur are computed as the solution of the direct problem
using the Young modulus distribution Er , which is given by:
E = 1 Pa for the first 10 elements and E = 2 Pa for the
following 10 elements (from left to right).

The inverse problem is formulated as the following opti-
mization problem:

min
E∈RnE

‖U(E) − Um‖2 + αR(E), (2)

where Um are the measured displacements (which can differ
from Ur due to the presence of errors) , R(E) is a regu-
larization term and α is the regularization parameter that
determines the weight of the regularization term in the cost
functional. We also consider that each Young modulus Ei

belongs to the known interval IE = [0.5, 2.5].
Let us start with a reformulation of Problem (2) in the

following equivalent way:

(FU)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
E,U

‖U − Um‖2 + αR(E)

s.t.
K(E)U = F
E ∈ InEE U ∈ R

nU ,

(3)

where K and F are the stiffness matrix and external load
vector, respectively, obtained through the application of the
finite element discretization, and nU is the number of degrees
of freedom (in this example nE = nU = 20). An alternative
formulation is given by the following expression:
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(FR)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

min
E,R

‖R‖2 + αR(E)

s.t.
K(E)Um = F + R
E ∈ InEE R ∈ R

nU ,

(4)

where R is a residual load vector introduced to eliminate the
U variable. In both formulations ‖ · ‖ represents a norm in
R
nU . In this example we will see the advantages and dis-

advantages of each formulation when the euclidean norm is
considered, comments will be made about the use of other
norms in the following section.

The formulation FU is equivalent to the one given by
Eq. (2), and using the euclidean norm it is one of the most
used formulations of the literature.Note that the equality con-
straints of FU are nonlinear and define a nonconvex feasible
set. Hence, in spite of the simplicity of the formulation, gen-
eral algorithms for nonlinear optimization problems must be
used to solve it, and the solution found could be a local min-
imum, i.e. a bad-quality solution far away from the global
minimum.

The formulation FRhas a convex quadratic cost functional
(for euclidean norm) and its constraints are linear, thus the
optimization problem is a convex quadratic programming
problem. For these problems there exist very efficient algo-
rithms for obtaining a global minimum [8].

Let us compare the solutions of FU and FRwhen data with
error (Um) is used. The displacements Um are computed as
the solution of the direct problem using a Young modulus
distribution Em , different from Er . Em is given by: E = 1 Pa
for the first 10 elements, E = 3 Pa for the 11-th element and
E = 2 Pa for the following 9 elements. This distribution
has a 50% error in the 11-th element, therefore errors are
introduced in U. For both formulations the euclidean norm
was used. When the optimization problem is solved without
considering the regularization term (α = 0), we obtain the
results presented in Fig. 1a.

The figure shows that the constraint E11 ≤ 2.5 Pa
becomes active at the solution, and that the values obtained

for E in the elements around the 11-th element present a con-
siderable error. The effect of the active constraint is much
more negative for the formulation FR.

Let us consider now a regularization term given by the
total variation cost functional (TV) that will be discussed
later [see Eq. (39)]. To choose an appropriate regularization
parameter α, the Morozov criterion is applied in a similar
fashion as in [23]. The values obtained are α = 0.018 for the
FU formulation and α = 0.044 for the FR formulation, and
in both cases the respective Morozov parameter is M(α) =
0.99. TheMorozov parameter will be introduced in Sect. 2.4.

The results obtained are presented in Fig. 1b, where we
can see the effect of the regularization term in the solution.
The solution of FU is highly improved, providing for a correct
identification of the reference E . However, the regularization
does not produce a similar effect in the solution of FR. The
solution for the best value of α has almost the same error
in E11. A larger value of α can decrease the value of E11,
but decreases also the values of E in the elements 12–20,
producing an increase of the global error of the solution.

In short, there are three main aspects that can be used to
compare formulations FU and FR: convexity, computational
cost, and applicability of regularization. The formulation FR
is convex, so that it cannot present non-global local minima,
which represents an important advantage over FU. Another
important advantage of FR is that it admits the use of specific
very efficient optimization algorithms, whereas FU requires
the use of algorithms for general nonlinear optimizationprob-
lems. The last aspect presents a critical disadvantage of FR.
The results obtained show that the TV regularization cannot
be successfully applied to the FR formulation, so that the FR,
in its actual form, cannot be reliably used to solve the MIP.

In the comparison presented above the euclidean norm
was considered in the objective functional of both formu-
lations. This means the objective functionals were defined
after discretization, so that their values can strongly depend
on the particular mesh used, as well as the solution of the
optimization problem. To avoid a strong mesh dependence,

Fig. 1 Results unidimensional
example a results obtained
without regularization b results
obtained with regularization
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the identification formulation should be stated instead in the
continuous setting. In the search for new appropriate formu-
lations of the MIP we will try to get the following features:

– convexity: the optimization problem should be ideally
convex,

– continuum formulation: the formulation should be estab-
lished before the domain discretization to avoid a strong
mesh dependence of the solution,

– efficiency: the solution should be obtained efficiently.
Then, known efficient algorithm of solution for large
scale problems should be available,

– regularization: the formulation should admit a regular-
ization technique to reduce the effect of the error in the
data over the solution.

In the following section new formulations satisfying the
above requirements are presented. In Sect. 3 numerical
results are presented showing the efficiency of the proposed
formulations and conclusions are presented in Sect. 4.

2 Formulations of the material identification
problem

In this section we describe several known formulations of the
MIP and also introduce new formulations taking into consid-
eration the desired features listed above. The formulations
are stated for the two-dimensional case, but admit straight-
forward generalizations for three-dimensional problems. We
start by describing the linear elasticity problem (LEP), which
will be our direct problem. Then the MIP formulations are
presented as optimization problems in a continuous domain
with their respective discrete versions.

2.1 Linear elasticity problem: direct problem

Let us consider a linear elastic solid occupying the region
� with boundary ∂�. The boundary is a disjoint union of
�t and �u, i.e. ∂� = �u ∪ �t and �u ∩ �t = ∅. In �t the
surface loads are given by the known vector field t̂, whilst in
�u the displacements are given by û. A plane strain state is
assumed, with zero external volume loads.

2.1.1 Strong formulation

In the strong formulation of the LEP, the symmetric Cauchy
stress tensor σ must satisfy the equilibrium equations given
by Eq. (5a) and the boundary conditions given by Eq. (5d).
The solid is formed by a linear elastic heterogeneous mater-
ial, therefore the strain-stress relation is given by the known
fourth-order tensor field C and the constitutive Eq. (5b),
where ε is the infinitesimal strain tensor. The tensor ε must

also satisfy the strain-displacement relation given by Eq. (5c)
and umust satisfy the boundary conditions given by Eq. (5e).
These equations define the LEP in its strong form, which
consists of finding the displacements field u : � → V 2, the
stress field σ : � → Sym and the strain field ε : � → Sym,
that satisfy:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · σ = 0 in �

σ = C[ε] in �

ε = ∇u + ∇Tu
2

in �

σ [n] = t̂ on �t

u = û on �u,

(5a)

(5b)

(5c)

(5d)

(5e)

where V 2 is the space of two-dimensional vectors and Sym
is the space of second-order symmetric tensors.

2.1.2 Weak formulation

The LEP can also be formulated in its weak form. Consider-
ing all the hypothesis of the last section for the solid �, the
weak formulation consists of finding u ∈ U satisfying:

aC(u, v) = �(v) ∀v ∈ V , (6)

where the bilinear operator aC(u, v), given by:

aC(u, v) =
∫

�

C[ε(u)] : ε(v) dV (u, v) ∈ U × V , (7)

represents the internal virtualwork,whilst �(v) is the external
virtual work:

�(v) =
∫

�t

v · t̂ d� v ∈ V . (8)

U is the set of the kinematically admissible displacements:

U =
{
u ∈ H1(�)2 : u = û on �u

}
, (9)

and V is the set of the virtual displacements:

V =
{
v ∈ H1(�)2 : v = 0 on �u

}
. (10)

2.2 Material identification problem: continuum
formulations

Let us consider now that instead of knowing the field ofmate-
rial propertiesC, we know the displacement field of the solid.
This displacement field is measured at each point of the solid
and denoted as um . Then the general MIP consists of deter-
mining the field C ∈ C which characterizes the material that
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forms the solid,whereC is the set of constitutive tensor fields,
defined as in [21]:

C =
{
C ∈ (L∞(�))3×3;C = C

T,C[ε] : ε ≥ γ |ε|2
γ > 0 ∀ε, C[ε] : ε′ ≤ ξ |ε||ε′| ξ > 0 ∀(ε, ε′)

}
, (11)

where L∞(�) is the space of real measurable bounded func-
tions in �.

The characterization problem in the continuum can be
written as an optimization problem in the following manner

min
C∈C

J (u(C) − um), (12)

where u(C) is the solution of the direct problem of Eq. (6)
for the field C.

As it was seen in the unidimensional example, the qual-
ity of the MIP solution obtained depends on the formulation
used. In the following section we will describe two of the
most used formulations at the moment as well as intro-
duce new proposals. We will show that the new proposed
formulations have the recommended features listed in the
introduction, producing results with high computational effi-
ciency.

2.2.1 Quadratic error in displacements

Oneof themost used formulations is the onewe call quadratic
error in displacements. This is a widely used formulation
defined in the continuum [5,22,23] or in the discretized
domain as in the formulation FU [11,16,18]. Let us consider
the error defined in the continuous domain as:

J2(C) = 1

2

∥
∥u(C) − um

∥
∥2
L2(�)2

, (13)

where ‖ · ‖L2(�)2 is the norm given by

‖u‖L2(�)2 =
√∫

�

|u|2 dV . (14)

2.2.2 Error in constitutive equation

In [28] Ladeveze and Leguillon presented a procedure for
efficient refinement of FEMmeshes using a functional based
on a quadratic error in the constitutive law. After that, similar
functionals where proposed and used to obtain newMIP for-
mulations, producing a new class of functionals called error
in constitutive equation (ECE). One of the most remarkable
functionals is the one called constitutive equation gap (CEG),
given by:

Ẽ (w, σ ,C)= 1

2

∫

�

(σ −C[ε(w)]) : C−1 [σ −C[ε(w)]] dV .

(15)

beingw ∈ U a kinematically admissible displacement field,
σ ∈ 	 a statically admissible stress field and C ∈ C the
constitutive tensor field.

In order to use this functional to solve the MIP, the
measured displacement information um must be taken into
account.One of theways to do that is to imposew = um . This
variant is called constitutive equation gap method (CEGM)
[17,36], and consists basically of solving the following opti-
mization problem:

min
C∈C

JCEG(C) JCEG(C) = min
σ∈	

E (σ ,C), (16)

where the functional E is obtained by substitution in the
definition of Ẽ :

E (σ ,C)= 1

2

∫

�

(
σ −C[ε(um)]) : C−1 [

σ −C[ε(um)]] dV

(17)

and 	 is the set of statically admissible Cauchy stress tensor
fields. In our case this is equivalent to:

	 =
{
σ ∈ Hdiv(�) : ∇ · σ = 0 in �, σ [n] = t̂ on �t

}
,

(18)

where Hdiv(�) is:

Hdiv(�) = {σ ∈ (L2(�))4 : σ = σT, ∇ · σ ∈ (L2(�))2}.
(19)

In accordance with the results described in [3] it can be
said that this is one of themost appropriate functionals for the
MIP resolution by themoment. In the last years other variants
of methods inspired in the CEGM have been presented, as
in [43], however there are still aspects to improve. The func-
tional E presents important properties for theMIP resolution
such as convexity [21], however, we have not seen in the lit-
erature formulations of the problem where efficient convex
optimization algorithms [8] were applied. That is why in this
article we present formulations for addressing this issue.

The resolution of Problem (16) is equivalent to solve the
following problem:

min
(σ ,C)∈	×C

E (σ ,C). (20)

One of the challenges of these kind of methods is the con-
struction of the set 	, particularly when high-order finite
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elements are used. Using the virtual work principle we can
rewrite the problem as:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
σ ,C

E (σ ,C)

s.t.∫

�

σ : ε(v) dV = l(v) ∀v ∈ V

C ∈ C σ ∈ Hdiv(�)

(21)

This form of the problem allow us to introduce amodification
which will be presented in the following section.

2.2.3 Quadratic error in constitutive equation

Now let us present a new formulation that can be solved using
efficient algorithms as it was done using the formulation FR,
maintaining some of the good features of the CEGM. This
formulation was not seen by the authors during the research
of the literature.

Let us consider the problem where the functional is given
by Eq. (17) and let us consider C−1 as a known tensor field
(C(k))−1. We obtain the modified functional:

E (k)
q (σ ,C) = 1

2

∫

�

(
σ − C[ε(um)]) :

(
C

(k)
)−1

× [
σ − C[ε(um)]] dV . (22)

Now let us apply the change of variables s = σ −C[ε(um)] ∈
S . Rewriting the problem of Eq. (21) we obtain:
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
C,s

1

2

∫

�

s :
(
C

(k)
)−1 [s] dV

s.t.∫

�

C
[
ε(um)

] : ε(v) dV +
∫

�

s : ε(v) dV = l(v) ∀v ∈ V

C ∈ C s ∈ S ,

(23)

The formulation above is an optimization problem with a
convex quadratic objective functional and linear constraints,
i.e. a convex quadratic programming problem. This enables
to use efficient algorithms for convex quadratic programming
as in the case of the formulation FR. Comments about its
relation with formulations FU and FR will be made later. It
will be shown that this formulation provides solutions which
are similar to those given by the other formulations described.

2.3 Material identification problem: discrete
formulations

From now on we establish an hypothesis about the consti-
tutive model assumed for the solid. We will assume that
the material is isotropic and that the Poisson ratio ν is
known, therefore the constitutive tensor field can be written

asC(x) = E(x)C1 for any point x ∈ �, beingC1 the consti-
tutive tensor corresponding to a material with unitary Young
modulus. The inverse problem now consists of finding the
Young modulus scalar field E : � → R

+. This hypothesis
is valid in many MIP applications, and was applied in recent
numerical studies of mechanical properties characterization
in carotid arteries [18,19].

In order to obtain numerical solutions of the optimization
problems it is necessary to apply a discretization procedure
to define unknowns in a finite-dimensional space. We will
apply the FEM and discretize the domain using nE triangu-
lar elements with linear interpolation functions. The Young
modulus is approximated by a constant function within each
element, thus the Young scalar function E is defined by a
vector E with nE entries. Admissible intervals are consid-
ered for the Young modulus values as in [11], which define
the following entry-by-entry inequalities Emin ≤ E ≤ Emax.

The FEM equation for the LEP is:

K(E)U = F (24)

where K(E) is the stiffness matrix of the structure, F is the
vector of external equivalent nodal loads and U is the vec-
tor of nodal displacements. From now on U(E) will denote
the (unique) solution of the linear system of Eq. (24) for
the mechanical properties E. The stiffness matrix depends
linearly on E by:

K(E) =
nE∑

i=1

EiKi , (25)

whereKi is the stiffnessmatrix of the i-th element for unitary
Young modulus. For ease of notation the element matrices
are in their extended form, i.e.,Ki is obtained by assembling
the usual element matrix in a larger null matrix.

2.3.1 Formulation NPQED

Applying the FEM to the functional of Eq. (13) the following
formulation is obtained:

(NPQED)

⎧
⎪⎪⎨

⎪⎪⎩

min
E

1

2

∥
∥U(E) − Um

∥
∥2
Mu

s.t.
Emin ≤ E ≤ Emax,

(26)

whereMu is a positive definite symmetric matrix, Um is the
vector of measured nodal displacements and the norm ‖·‖Mu

is defined as:

‖U‖Mu =
√
UTMuU U ∈ R

nU . (27)

Since U(E) is a nonlinear nonconvex function of E, the
objective functional is nonlinear as well, thus a general
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algorithm for nonlinear nonconvex optimization (nonlinear
programming) problems must be used. That is why this for-
mulation will be called nonlinear programming quadratic
error in displacement (NPQED). The gradient of the func-
tional can be easily calculated, therefore gradient-based
algorithms should be used and eventually the Hessian matrix
can be calculated for convergence improvement. However,
this formulation does not fully exploit the sparse structure of
K(E) so that the time needed for the identification procedure
tends to be high and depends strongly on the initial point
used.

Note that NPQED would be obtained if the norm
‖ · ‖Mu is considered in the formulation FU or if the norm
‖ · ‖K(E)−1MuK(E)−1 is used in the formulation FR, although
the positive features of FR are lost.

2.3.2 Formulation NPCEG

Let us consider the formulation CEGM given by Eq. (21). In
order to eliminate the stress tensor as a variable we apply a
procedure suggested in [36] which consists of assuming that
the stress field σ derives from a certain displacement fieldw,
i.e. σ = C[ε(w)]. By applying the FEM discretization we
obtain:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
E,W

1

2

∥
∥W − Um

∥
∥2
K(E)

s.t.
K(E)W = F
Emin ≤ E ≤ Emax

W ∈ R
nU ,

(28)

Finally we can use the constraint to eliminate the variableW
to obtain:

(NPCEG)

⎧
⎪⎪⎨

⎪⎪⎩

min
E

1

2

∥
∥U(E) − Um

∥
∥2
K(E)

s.t.
Emin ≤ E ≤ Emax,

(29)

As in the formulation NPQED, a general nonlinear pro-
gramming algorithm must be applied to solve this formu-
lation and that is why this formulation is called nonlinear
programming constitutive equation gap (NPCEG). Although
the functional is nonlinear, it is convex, hence each local
minimum is a global solutions of the optimization problem.
This property is very important, particularly when gradient-
based algorithms are used, as it is done in many articles in
the literature [17–19]. This formulation will be solved using
a gradient-based algorithm.

It is seen that NPCEG would be obtained if the norm
‖ · ‖K(E) is used in the formulation FU, or if the norm
‖ · ‖K(E)−1 is used in the formulation FR. Once again, the
positive features of FR are lost.

2.3.3 Formulation CPCEG

In this section we introduce a new formulation that presents
strong advantages in computational efficiency compared to
the ones described above.The formulation consists of aConic
Programming problem and it was not seen by the authors in
the literature.

Let us consider the functional of the formulation NPCEG.
Using that K(E)U(E) = F with K(E) symmetric, we have

1

2

∥
∥U(E) − Um

∥
∥2
K(E)

= 1

2
FTK−1(E)F − (Um)TF

+1

2
(Um)TK(E)Um . (30)

Since (Um)TF does not depend on E, the NPCEG can be
expressed as:

⎧
⎪⎨

⎪⎩

min
E

1
2 (U

m)TK(E)Um + 1
2F

TK−1(E)F

s.t.
Emin ≤ E ≤ Emax.

(31)

The problem above can be expressed equivalently as:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
E,τU ,τF

1
2τU + 1

2τF

s.t.
(Um)T K(E)Um ≤ τU
FTK(E)−1 F ≤ τF
Emin ≤ E ≤ Emax.

(32)

The stiffness matrix can be written in the following way:

K(E) =
nE∑

i=1

Ei BT
i C1Bi �i t =

nE∑

i=1

Ei B̃T
i B̃i , (33)

whereBi is thematrix of interpolation function derivatives of

the i-th element in its extended form, and B̃T
i = √

�i t BT
i C

1
2
1 ,

t is the thickness of the solid and �i is the area of the i-th
element. Using the procedure described in [7] the nonlinear
constraint FTK(E)−1 F ≤ τF is replaced by a set of linear
constraints and a set of second-order cone constraints. The
final formulation has the following expression:

(CPCEG)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
E,τU ,τF ,e,σ̃

1
2 τU + 1

2 τF

s.t.
(Um)T K(E)Um ≤ τU∑nE

i=1 ei ≤ τF∑nE
i=1 B̃T

i σ̃ i = F
‖σ̃ i‖2 ≤ Ei ei i = 1, . . . , nE
Emin ≤ E ≤ Emax,

(34)

where e = (e1, . . . , enE ) ∈ R
nE and σ̃ i ∈ R

3nE with
(i = 1, . . . , nE ) are auxiliary variables. At the solution, the
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vector σ̃ i is directly related with the statically admissible

stress, i.e., σ = √
�t C

1
2
1 σ̃ . The vectors are presented in the

extended form. The tensor field σ is the stress obtained when
the LEP is solved using the solution mechanical parameters.
Let us remark that this formulation can also be obtained from
Eq. (21).

The formulation obtained is a second-order cone pro-
gramming problem. We will call this formulation Conic
Programming Constitutive Equation Gap (CPCEG). There
exist efficient algorithms for the resolution of this kind of
problems [8]. Moreover, since the obtained formulation is
equivalent to the NPCEG, it inherits the listed positive theo-
retical properties.

2.3.4 Formulation QPCEG

In this section we apply the discretization to the formulation
given by Eq. (23). The tensor field s leads to an internal
auxiliary stress vector S ∈ R

3nE , and Si is a vector with the
respective entries of the i-th element. The following equality
is obtained for isotropic material with constant Poisson ratio:

1

2

∫

�

s : (C(k))−1[s] dV =
nE∑

i=1

1

E (k)
i

(Si )TC
−1
1 (Si )�i t.

(35)

To simplify the notation, let us define the matrixM(k)

M(k) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

M(k)
1 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0

0 . . . 0 M(k)
nE

⎤

⎥
⎥
⎥
⎥
⎥
⎦

M(k)
i = t�i

E (k)
i

C
−1
1 . (36)

Using these expressions and applying the discretization to
Eq. (23) we obtain:

(QPCEG)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
E,S

1
2S

TM(k) S

s.t.
K(E)Um + BTS = F
Emin ≤ E ≤ Emax

E ∈ R
nE , S ∈ R

3nE ,

(37)

whereB is the assemble matrix of the derivatives of the inter-
polation functions BT = [

BT
1 . . .BT

nE

]
.

The optimization problem has a convex quadratic objec-
tive functional, nU linear constraints, 2nE box constraints
and 4nE variables, thus it is a convex quadratic program-
ming optimization problem, and we call the formulation
quadratic programming constitutive equation gap (QPCEG).
This enables us to use efficient quadratic programming algo-
rithms, as in the formulation FR, maintaining the convexity

feature. It will be seen that this formulation is appropriate for
the application of regularization techniques.

2.4 Regularization term

Since experimental measurements always have error, every
identification formulation needs the application of certain
regularization technique. The application of regularization
techniques reduces the numerical instability of the solution
of an ill-posed problem. In order to use these techniques some
information or assumption about the real material distribu-
tion must be considered. One of the most used approaches,
specially when optimization formulations are used, is the
addition of a regularization term to the objective functional
[40]:

Fα(E) = J (E) + αR(E), (38)

whereR(E) is the regularization term, which depends on the
unknown field, and α is a regularization factor that controls
how much the solution is regularized.

In theMIP formulations considered in this article the Total
Variation (TV) regularization will be considered:

R(E) = ‖∇E‖L1(�)2 =
∫

�

|∇E | d�. (39)

This functional penalizes distributions presenting high gradi-
ents in �, such as highly oscillating distributions. However,
this functional does not penalizes excessively high gradi-
ents concentrated in sets of zero measure, such as surfaces
or curves. Therefore the TV is considered appropriate when
the solutions are expected to be piecewise smooth distribu-
tions [40].

One important disadvantage of the TV is that it is a non-
differentiable function of E . This feature may impede the
use of gradient-based optimization algorithms. To avoid this
issue, in [40] Vogel recommends the use of themodified term
‖√|∇E |2 + β2‖L1(�) instead of R, where β is a real para-
meter. The requirement of an additional parameter β, which
requires an effective tuning strategy, represents a disadvan-
tage of the methodology, however it can be applied as in
[22,23]. In this paper an equivalent differentiable form the
discrete version of the optimization problem is used, hence
the original TV is used and the parameter β is not needed.

If the finite element mesh contains nseg interior segments,
where eachone separates twoelements, it canbe easily shown
that the TV of Eq. (39), can be computed as:
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R(E) =
nseg∑

m=1

|PmE| = ‖PE‖1 , (40)

where P is a nseg × nE matrix having Pm as its m-th row. If
the segment m separates the elements p and q, with p < q,
the matrix P is given by:

Pmj =
⎧
⎨

⎩

�m if j = p
−�m if j = q
0 if j �= q and j �= p,

(41)

where �m is the length of the segment m.
This regularization term is nonlinear andnon-differentiable

thus the following equivalence is considered:

‖PE‖1 ≡

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min
Z

1TnsegZ

s.t.
PE − Z ≤ 0
−PE − Z ≤ 0
Z ∈ R

nseg ,

(42)

where 1Tnseg = (1, . . . , 1) ∈ R
nseg . Using the expression

presented above, an optimization problem defined by dif-
ferentiable functions is obtained.

2.4.1 Regularization factor analysis

One of the most important aspects of the regularization tech-
nique is the selection of the regularization factor α. In this
article the Morozov criterion is considered for the selection
of α [40], as it is done in some examples of the literature
[22]. In this methodology it is established that α should be
the largest value such that M(α) ≤ Mobj , where M(α) is the
Morozov coefficient defined as:

M(α) =
∥
∥u∗

α − um
∥
∥
L2(�)2

δe
, (43)

where δe is an estimated error level and u∗
α is the displace-

ment field obtained using the solution of the MIP with the
regularization factor α. In real life problems the error level
δe should be defined taking into account the precision of the
instruments, the error level introduced by the image process-
ing methods used to obtain um , etc. In the examples solved
in this article we set

δe = β
∥
∥ur − um

∥
∥
L2(�)2

. (44)

For the automatic selection of α the bisection method in a
logarithmic scalewas applied. The targetMorozov parameter
Mobj = 0.95 should be reached within the tolerance 0.05.
Note that the bisection method implies an iteration where

each step requires the complete solution of one optimization
problem.

3 Numerical results

In order to compare the performance of the described formu-
lations, in this sectionwe solve four numerical examples. The
problems are similar to the most used in the recent material
identification literature. In all the numerical examples solved,
errors are introduced in the data in order to avoid committing
an inverse crime [24].

3.1 About the software used

To solve the optimization problems of the formulations
NPQED andNPCEG theMATLAB fmincon function is used
with the following options: Algorithm: interior-point, Tol-
Fun: 10−9 , TolX: 10−9. Function derivatives provided to
fmincon are computed by evaluating the analytical expres-
sions. The second order cone programming problemCPCEG
is solved using Sedumi v1.30 [39] in MATLAB. The for-
mulation QPCEG is solved using the MATLAB function
quadprog. For the elasticity problem a FEM code imple-
mented by the first author was used, using GMSH as mesh
generator [20] and Paraview for the visualization [4]. All the
examples were solved using an Intel Core i7, 8 GB RAM
computer. The optimization algorithms always succeeded to
obtain a solution satisfying the stopping criteria, unless oth-
erwise indicated.

3.2 Error measurements

To measure the error of the obtained solutions in each exam-
ple we use different norms of the relative error �E and the
norms L1(�) and L2(�) as follows:

δEL p = ‖�E‖L p(�)

‖1‖L p(�)

p = 1, 2 �E = |E∗ − Er |
Er

,

(45)

where Er is the reference or solution Young modulus field
and E∗ is the Young modulus obtained using the identifi-
cation method. We will also use the sup norm as follows:

δE∞ = ‖�E‖L∞(�)

‖1‖L∞(�)

= sup
x∈�

�E . (46)

3.3 Example 1

The aim of this example is to obtain a first performance com-
parison of the formulations described. This is done through
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Fig. 2 Example 1 geometry, boundary conditions and mesh with 200
elements

the resolution of a reference problem widely used in the
literature [17,31,34]. In particular we are interested in the
numerical confirmation of the equivalence between the for-
mulations CPCEG and NPCEG, and the evaluation of the
effectiveness of the TV-based regularization technique with
the proposed formulations.

The problem consists of a solid occupying a square region
with side � = 0.01m and unitary thickness, formed by a
linear elastic material and submitted to a plane strain state.
The Poisson ratio is ν = 0.3 and the Young modulus is
defined in two regions as it is seen in Fig. 2, with the reference
values Er

1 = 1MPa and Er
2 = 2MPa.

The applied load is q = 1MPa. In the articles cited, this
example is used to perform identification of Poisson and
Young parameters, but no regularization is applied. In this
case we will identify the Young modulus only and apply the
described regularization technique to reduce the effect of the
data error over the solution obtained.

In order to emulate the experimentallymeasured displace-
ments error is added to the reference displacements as it is
done in numerous articles in the literature. In this example
two different sets of synthetic data will be used, considering
two different sources of error: random error in the reference
Young modulus and error produced by interpolation of the
displacements between different meshes. A justification for
the mesh interpolation error is presented later.

Since one of the goals is to compare the formulations
NPQEDandNPCEG, the same stopping criterion parameters
shall be used. In both formulations the functional is scaled
using the norm of the functional gradient at the initial point.
The initial point is the uniform distribution E(x) = 1.5MPa.
The identification for α(k+1) is done using as initial point
the Young modulus values obtained as solution using α(k).
For the formulation CPCEG no initial point is provided (the

Fig. 3 Example 1 reference displacements, scale factor 0.3

algorithm does not require it) and the options used for the
Sedumi are pars.eps=0 and pars.bigeps=10−30. The
formulation QPCEG is solved with the quadprog MAT-
LAB function. It does not require an initial point, but the
uniform value E(x) = 1.5MPa was used as E(k) in the func-
tional of Eq. (37). In the case of the formulation QPCEG
the E∗ obtained for each α value is used as E(k) for the
identification using the next α defined by the strategy used
for the α selection. For the initialization of the bisection
process it is considered the initial interval [αle f t , αright ]with
αle f t = 10−40 and αright = 105.

3.3.1 Results for random error in E

In this case the error is obtained by introducing random error
in the reference Young modulus, this methodology is similar
to the procedure applied in [10].

The reference Young modulus and the structured mesh
of 200 linear triangular elements shown in Fig. 2 are used
to solve the direct problem and to generate the reference
displacements Ur . The reference displacements are shown
in Fig. 3.

Then, errors are added to the referencematerial parameters
Er obtaining noisy parameters Em , which are used to calcu-
late the measured displacements Um by solving the direct
problem with the same mesh of 200 elements.

TheYoung reference value of each element Er
i ismodified

adding a normal distributed random value dEi as follows:

Em
i = Er

i (1 + dEi ) i = 1, . . . , nE , (47)

where the standard deviation is set such that the introduced
error level ηE is independent of the mesh. The E error level
ηE is defined as follows:
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Table 1 Example 1 results for
synthetic data obtained applying
error in E

Form ηE = 0.01 ηE = 0.05 ηE = 0.1

δEL1 δE∞ Time (s) δEL1 δE∞ Time (s) δEL1 δE∞ Time (s)

NPQED 1.096 19.544 23252.9 3.753 39.662 19992.7 6.373 37.996 18643.0

NPCEG 0.510 5.139 15067.0 2.485 14.556 14676.6 4.737 27.488 12740.0

CPCEG 0.510 5.096 29.4 2.485 14.501 27.4 4.737 27.486 24.4

QPCEG 0.525 6.120 7.6 2.321 15.920 8.2 4.511 29.913 7.7

CPCEGNR 1.344 5.906 2.7 4.530 16.959 2.8 10.289 48.388 2.7

Table 2 Example 1 results for
synthetic data obtained applying
error in U

Form δEL1 δE∞ α M(α) Time (s) Its Time/its (s)

NPQED 5.613 40.59 2.690 0.957 24115 7 3445

NPCEG 0.747 3.811 20.35 0.962 15622 8 1953

CPCEG 0.747 3.811 20.35 0.962 21 8 2.7

QPCEG 0.559 3.386 4.5 × 10−12 0.916 7 8 0.9

CPCEGNR 39.32 110.4 0 − 2.8 1 2.8

ηE = ‖dE‖L1(�)

‖1‖L1(�)

=

∥
∥
∥

|Em−Er |
Er

∥
∥
∥
L1(�)

|�| , (48)

where |�| represents the area of the domain �.
If all the elements have approximately the same area, then

the quantitydEi |�i | can be considered as a normal distributed
random variable X ∼ N (0, σ 2

E ). Substituting this in the
definition of ηE and using the properties of the expected
value, it can be shown that the standard deviation should be

σE = ηE

√
π

2

|�|
nE

, (49)

in order to obtain a Young modulus distribution with error
level ηE .

The displacements Um are obtained solving the direct
problem using the material parameters Em . Three levels of
error are considered: ηE = 0.01, 0.05 and 0.1.

To select the regularization parameter α, the procedure
described in the Sect. 2.4.1 is applied for all the formulations
using β = 1 in Eq. (44). Table 1 presents the results obtained
for the different error levels ηE .

In the table CPCEGNR means CPCEG without regular-
ization (α = 0) and ‘time’ means the total time required to
obtain the final solution.

The first important observation is that the results obtained
by the formulationsNPCEGandCPCEGare almost identical
in the error, confirming that these formulations are equiva-
lent. However theCPCEG requires nearly 500 times less time
than NPCEG, which represents an important advantage. It
can also be seen that the formulation NPQED requires a time
40% higher than that of NPCEG, obtaining a slightly higher
error in E . Finally we see that the formulation QPCEG pro-
vides, in this case, results which are comparable to those

given by NPCEG and CPCEG. Moreover, the time required
by QPCEG is a third of the time needed by the formulation
CPCEG.

3.3.2 Results for interpolation error in U

In this case the data with error is obtained through the inter-
polation between different meshes. This kind of error can
be present in real life problems when the data displacements
are measured in a set of points different to the nodes of the
FEM mesh used for the resolution of the inverse problem as
in [18].

The reference displacements are generated using the ref-
erence Young modulus and the structured mesh with 20,000
elements. After that, those displacements are interpolated to
themeshwith 200 elements used in the previous section. This
interpolation introduces an error level ηu = 1.77%, where
the error level is given by:

ηu = ‖um − ur‖L2(�)2

‖ur‖L2(�)2
. (50)

The error levels ηu obtained in the previous section were
ηU = 0.27, 0.94 and 2.4% which correspond to ηE = 0.01,
0.05 and 0.1 respectively. However it is important to remark
that this error has a different nature. Given Um with interpo-
lation error, it may not exist any field E solving exactly the
inverse problem.

In Table 2 we see the error of the solutions obtained as
well as the times required for the identifications.

In the table ‘time’ means the total time required to obtain
the final solution, ‘its’ represents the number of iterations
required by the bisection method, hence the value ‘time/its’
indicates the average time required by each formulation to
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Fig. 4 Example 1 results
obtained without regularization
for synthetic data obtained
applying error in U. a Properties
CPCEGNR, b Errors
CPCEGNR

Fig. 5 Example 1 Young
modulus results for synthetic
data obtained applying error in
U. a NPQED, b NPCEG, c
CPCEG, d QPCEG

perform the identification for a given value of α. The values
α and M(α) correspond to the last iteration of the bisection
method.

We note that the formulation NPQED requires a time
considerably higher than the other formulations, and pro-
vides a solution with a higher error. The formulation NPCEG
achieves a solutionwith lower error in less time that NPQED,
and this will be our reference formulation. The formula-
tion CPCEG provides results which are identical to that of
NPCEG in nearly 1000 times less time. The formulation
QPCEG obtained a solution with lower error than the other
formulations in one third of the time required by CPCEG.

To see the results graphically we present plots of mechan-
ical properties (blue color scale) and relative error maps (red-

yellow color scale). In Fig. 4 we start with the mechanical
properties and relative error plots obtained when the iden-
tification is performed without regularization (CPCEGNR)
using the data with error in U.

The plots presented in Fig. 5 represent the mechanical
properties obtained when the four formulations are applied
using data with error introduced in U.

In Fig. 6 the plots of the respectiveYoungmodulus relative
error can be seen.

Looking at the results obtained for the formulations
NPCEG and CPCEG we confirm what was expected: both
formulations are equivalent, and that is why they provide
almost identical Young modulus distributions. However, we
see that the formulation CPCEG is more efficient, since it
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Fig. 6 Example 1 Young
modulus relative errors results
for synthetic data obtained
applying error in U. a NPQED,
b NPCEG, c CPCEG, d QPCEG

requires a considerably lower time. This is why we will not
use the formulation NPCEG in the following examples, as
well as for the formulation NPQED.We also note that in this
example, the formulation QPCEG presents results as good as
those obtained by the formulation CPCEG, and lower times
were required. Analyzing the results obtained when no reg-
ularization is used, we conclude that it is needed to add a
regularization term to improve the quality of the E distribu-
tions obtained.

3.4 Example 2

This example is considered to obtain a more complete per-
formance comparison between the formulations CPCEG and
QPCEG. The geometry considered in this case also corre-
sponds to a problem usually used in the literature [5]. We
start by describing the problem, and after that, we present
the results obtained when different kinds of errors are intro-
duced in the data.

The geometry of the problem consists of a square domain
with side of length � = 0.1 m with two circular inclusions
with radius 0.0125 m and boundary conditions seen in Fig. 7.

The reference Young modulus considered are: Er
1 =

2.5MPa, Er
2 = 10MPa and Er

3 = 5MPa. The material
is assumed linear elastic and isotropic with known uniform

0.5�

E1

q

E2

0.25�

0.25�

�

E3

Fig. 7 Example 2 geometry, boundary conditions and mesh with 1552
elements

Poisson ratio ν = 0.2. A displacement field is generated
by solving the direct problem with an applied load q = 1
Mpa.
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Table 3 Example 2 results, error in E , ηE = 0.1

Form δEL1 δE∞ Time (s) Its Time/its (s)

CPCEG 3.705 23.405 667.5 8 83.4

QPCEG 3.612 23.819 53.0 9 5.9

3.4.1 Results for random error in E

We start introducing error in the Young modulus in the same
fashion as it was done in Sect. 3.3.1, using ηE = 0.1. As
it was done in the previous example, the bound values for
E considered are Emin = 10 Pa and Emax = 109 Pa. The
stopping criterion used for the algorithms are the same as
in the previous example. An unstructured mesh with 1078
triangular elements is used for the generation of the displace-
ments and the identification procedure. The selection of the
α is done automatically using the methodology described in
Sect. 2.4.1, with αle f t = 10−40 and αright = 105.

In Table 3 we see the results obtained when the formula-
tions CPCEG and QPCEG are applied.

We see that the Young modulus distributions obtained by
both formulations present similar errors, while the formula-
tion QPCEG requires less than a tenth of the time needed by
the CPCEG.

Let us see the results graphically, in Fig. 8 the Young
modulus values obtained are presented.

Wecan see that both formulations successfully identify the
geometry of the inclusions, however there exists a notorious
error in the Young modulus value in one of the inclusions.
This can be seen more clearly in Fig. 9 which shows the
relative error plots obtained with each formulation.

In these images we can see that in region 2 both formu-
lations obtain solutions with 23% of relative error, while in
region 3, the CPCEG produces a slightly lower error than the
QPCEG. However we conclude that for this example both
formulations allow a correct identification, being the formu-
lation QPCEG remarkably more efficient than CPCEG.

3.4.2 Results for interpolation error in U

In this case it is considered an error included directly in the
displacements vector by using the procedure applied in [5,
43]. The results obtained in this work and in the papers cited
are not directly comparable sincemore thanonedisplacement
field is used, thus a different MIP is solved.

To produce the “measured” displacements the direct prob-
lem is solved using the reference Young modulus and an
unstructuredmeshwith 12,312 elements. The nodal displace-
ments obtained are called reference displacements Ur and
random error is added as follows:

Um
i = Ur

i (1 + δUri ), (51)

Fig. 8 Example 2 Young
modulus results for synthetic
data obtained applying error in
E . a CPCEG, b QPCEG

Fig. 9 Example 2 Young
modulus relative errors results
for synthetic data obtained
applying error in E . a CPCEG,
b QPCEG
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Fig. 10 Example 2 measured displacements, scale factor 0.3

Table 4 Example 2 results, error in U, δU = 0.01

Form nE δEL1 δE∞ α Time (s)

CPCEG 1078 5.810 47.215 1.19 × 10−4 91.3

QPCEG 1078 7.499 47.502 2.15 × 10−14 7.8

CPCEG 1552 5.805 40.936 1.19 × 10−4 249.9

QPCEG 1552 8.161 45.972 9.43 × 10−15 9.6

QPCEG 3186 11.74 68.070 2.03 × 10−15 23.7

where ri is the i-th entry of a normal distributed random vec-
tor with zero mean and unitary variance, and δU = 0.01.
These nodal displacements are finally interpolated to the
mesh used for the identification, which have a lower number
of elements. In this example we will consider three meshes
with 1078, 1552 and 3186 elements, where the final error
levels ηU are: 0.59, 0.58 and 0.57 %, respectively. In Fig. 10
the interpolated displacements Um are shown for the mesh
with 1552 elements.

In Table 4 we see the results obtained after the identifica-
tion.Once againwe see that the formulationQPCEG requires
less time than CPCEG (10 times less), however in this case
the error obtained by the QPCEG is 30% higher. We also
see that as the mesh size increases the formulation CPCEG
slightly reduces the error obtained, which does not occurs for
the formulation QPCEG. The formulation CPCEG requires
higher memory resources, and this is why it could not be
applied for the mesh with 3186 elements. The formulation
QPCEG is able to solve this large problem due to the low
number of variables and the efficiency of the quadratic pro-
gramming algorithms used.

In Fig. 11 we see the Young modulus obtained for both
formulations using the mesh with 1552 elements. Both
formulations achieve an acceptable identification of the
inclusions, however the formulation CPCEGprovides results
with higher precision.

In Fig. 12 we see the relative errors obtained for both
formulations using the mesh with 1552 elements.

The results seen in this example establish a first clear dif-
ference between the formulations QPCEG and CPCEG: the
formulation CPCEG provides solutions with less error while
QPCEG provides results with acceptable error in less time.
Since the formulation CPCEG has shown to provide more
precise results, only this formulation will be used in the fol-
lowing example.

3.5 Example 3

In Biomechanics applications, the direct problem involves
nonlinear models, for instance in [23] a nonlinear elastic
model is considered for identification of themechanical prop-
erties of mammary tumors.

In this example we study the results obtained when
the simulated measures are obtained considering the non-
linearities of finite elasticity. In addition we assume that
there is no information about the internal interfaces, loca-
tion of inclusions, etc, therefore for the MIP resolution a
structured mesh is used. In particular we study an exam-
ple where the internal interfaces cannot be found as element
boundaries. In this example, the formulation CPCEG is
applied.

The problem considered consists of a square domain with
side of length � = 1m, with one circular inclusion of radius
0.25m and boundary conditions shown in Fig. 13. The hyper-
elastic behavior of the material is given by the Curnier model
[13], thus the strain-energy function is

�(L) = λ(J − log(J ) − 1) + μTr(L2), (52)

where J = det(I + ∇u), L = 1
2 (∇u + ∇Tu + ∇Tu∇u)

is the Lagrange deformation tensor and λ and μ are positive
parameters. It can be seen that λ and μ are the Lamé para-
meters of the linearized constitutive model. The reference
mechanical parameters are λ = 20/3Pa and μ = 4Pa for
the inclusion, while for the rest of the domain the parameters
are λ = 2/3Pa and μ = 0.4Pa. Then, if small strains are
considered, the linearized model has ν = 0.25 and E = 1Pa
for the square, and ν = 0.25 and E = 10Pa for the inclusion.

The applied load q = 0.12Pa produces the large deforma-
tions in the solid depicted in Fig. 14. The direct problem is
solved using an unstructuredmesh formed by 2254 triangular
elements. In Fig. 14 the deformed and undeformed meshes
are shown, aswell as themagnitude of the displacement field.
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Fig. 11 Example 2 Young
modulus results for synthetic
data obtained applying error in
U with δU = 0.01. a CPCEG, b
QPCEG

Fig. 12 Example 2 error results
for synthetic data obtained
applying error in U with
δU = 0.01. a CPCEG, b
QPCEG

0.5�0.25� 0.25�

0.5�
E2

E1

q

0.25�

0.25�

Fig. 13 Example 3geometry, boundary conditions andmeshwith 1250
elements

The displacements are interpolated to a regular grid of
26 × 26 points obtaining the measured displacements Um .
These points of the grid define a structured mesh of 1250
elements shown in Fig. 15. This mesh will be considered for
the inverse problem, therefore, the inclusion interfaces are
not represented by boundaries of the finite elements.

Fig. 14 Example 3 nonlinear behavior

The stopping criteria considered for the SeDuMi exe-
cutions are the same as in the previous examples. For the
bisection process αle f t = 10−10 and αright = 102 are con-
sidered, and β = 1.15 is used.

The result for α = 5.62 × 10−4 is shown in Fig. 15.
The figure shows that the inclusion boundary is adequately
identified. Moreover, although the measured displacements
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Fig. 15 Example 3 Young modulus results

correspond to a nonlinear model, the mechanical parameters
of the linearized model are correctly estimated.

The results shown let us conclude that the proposed
methodology allows to identify important information of the
constitutive model even when the solid is submitted to large
deformations. However, a formal extension of themethod for
identification of mechanical properties in nonlinear models
must be developed in future works.

3.6 Example 4

In this example we solve another problem seen in the litera-
ture, where the mechanical properties and loads considered
are in the order of those considered in the modeling of a
carotid artery cross section with a considerable stenosis. The
example is inspired in the analysis presented in [30], how-
ever the hypothesis that we will consider are similar to those
assumed in [18].

The geometry of the problem can be seen in Fig. 16, where
the domain is divided in 16 partitions. Two supports are con-
sidered so that rigidmovements are eliminated and a uniform
internal pressure q = 5 kPa is applied as can be seen in the
figure. The finite element mesh used to solve the inverse
problem is formed by 1492 triangular elements.

The considered mechanical properties correspond to three
materials associatedwith arterial wall components. The exte-
rior ring is considered as healthy tissue, or healthy artery
(HA) and its Young modulus value is EHA = 600 kPa, in the
figure this region corresponds to the partitions 1–6. Then,
in contact with this region we consider diseased tissue (DT)
with a slightly superior Young modulus EDT = 800 kPa, in
the region formed by the partitions 9–16. Finally we find a
lipidic core (LC) where a low Young modulus is considered
ELC = 10 kPa, in the partitions 7 and 8. As it is considered in
[18] a plane strain state is assumed. Since the FEM analysis

1

2

4

14

8

6

16

7
15

5

13

3

11
9

10

12

q

Fig. 16 Example 4 geometry, boundary conditions and mesh formed
by 1492 elements with 16 partitions

code solves compressible solid problems, the Poisson ratio
used is ν = 0.3 instead of 0.49.

The direct problem is solved using Er and a mesh with
12,770 elements and the displacements are interpolated to
the mesh with 1492 elements obtaining the reference dis-
placements Ur . The displacements obtained when the direct
problem is solved using themesh with 1492 elements and the
Er Young modulus, present a level of error ηU = 4.52%.

In [18] a variable E is considered for each material region
of the wall, this means that three variables are considered
for the identification of the whole domain. In this article we
consider the same three groups considered in the paper cited
and also consider 16 element groups defined by the partitions
in Fig. 16. Finally we will consider one Young modulus vari-
able for each element of the mesh. In the first two cases no
regularizationwill be applied, since the grouping of elements
might produce a regularization effect. In a real life applica-
tion this grouping of elementsmight be justified by a previous
appropriate image segmentation, where different structures
could be recognized. In the following we present the results
obtained when the identification is performed using each one
of these three element grouping. The identifications are per-
formed using Sedumi with the same parameters as in the
previous examples.

3.6.1 Identification with three groups

Let us consider now that the elements are grouped as follows:
HA includes the elements in the partitions 1–6, LC includes
the elements in the partitions 7 and 8, and DT includes the
partitions 9–16. The identification is performed using the for-
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Table 5 Example 4 results with 3 element groups

Region Er (kPa) E∗ (kPa) δE (%)

HA 600 581.66 3.06

LC 10 8.90 11.00

DT 800 764.82 4.40

Table 6 Example 4 results using 16 elements groups

Region Er (kPa) E∗ (kPa) δE (%)

1 600 568.41 5.27

2 600 568.39 5.27

3 600 560.06 6.66

4 600 559.96 6.67

5 600 568.65 5.22

6 600 568.63 5.23

7 10 8.42 15.76

8 10 8.42 15.76

9 800 773.22 3.35

10 800 773.34 3.33

11 800 764.63 4.42

12 800 764.63 4.42

13 800 629.80 21.28

14 800 629.89 21.26

15 800 728.04 8.99

16 800 728.00 9.00

mulation CPCEG without regularization term, the minimum
and maximum Young modulus values are Emin = 10 Pa and
Emax = 109 Pa. One variable E is considered for each group,
it means that three values E will be identified.

In Table 5 the identification results are presented, where
the Young modulus obtained are E∗ and the relative error is
calculated as δE = |E∗−Er |

Er .
We can see that the error obtained in the values E is accept-

able, thus we confirm that the grouping of elements produce
a regularization effect.

3.6.2 Identification with 16 element groups

Let us now consider that each one of the partitions shown
in Fig.16 will have one Young modulus variable to identify.
Once again the identification is performed with the same
parameters as above.

In Table 6 we see the results obtained for each group of
elements. In this case we obtain slightly higher errors than in
the previous case. In Fig. 17a the plots of the Young modulus
obtained after the identification are presented. In Fig. 17b the
plots of the absolute value of the relative error are presented.
We see that the partitions with higher error are the 13 and
14, and in second place we see the 7 and 8. Although errors

are present in the solutions, we remark that the stiffness rela-
tions between different partitions is conserved, providing a
reasonable identification.

3.6.3 Identification without groups

Finally in this case the identification is performedconsidering
one Young modulus variable per each element, which means
that no grouping is applied. In this case regularization must
be applied.

In this case the methodology presented does not provide a
solution forwhich the interfaces to the right of the domain can
be correctly identified. In order to see if the low quality of the
solution is related to the Morozov criterion, solutions were
obtained for α in a wide range of values. The results obtained
show that in this example there is no value α for which all the
material interfaces can be identified. In Fig. 18b a solution
obtained using a relatively large value α is shown. In this case
only the interfaces located to the left of the domain can be
detected. As the value α decreases the solutions become sim-
ilar to the material distribution shown in Fig. 18a. The error
plots are presented in Fig. 19. It is observed that the solution
looses regularity (the field E presents large oscillations) to
the left of the domain. This loss of regularity occurs before
the interfaces to the right can be identified. Therefore, with
the error introduced in the measurements and the regulariza-
tion considered, there is no value α such that all the interfaces
of the reference solution can be adequately identified.

Looking at the results we can say that this example
represents a challenge for identification methods with the
regularization technique applied. The authors have not seen
this example solved using one variable E per element in the
literature.

3.6.4 Execution times

In Table 7 we see the times required for each identification
grouping scheme.

Since the software and computers used for this article are
not the same as those used in [18] it is not possible to do
a direct comparison of the times of execution. However, we
can consider as a reference the time required to solve the
direct problem (FEM analysis), and look at the relation with
the identification time. In the table tI /tA represents the time
required for identification over the time required for analysis.
The direct problem solved in [18] involves higher complexity
due to the constitutive model, the finer mesh and the order of
the elements used. However, the time required for each FEM
analysis is similar to the time required by the code used in this
paper, showing that the tools used in thiswork provide a lower
performance. Taking this into account we can reinforce the
conclusion about the efficiency of the formulation CPCEG.
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Fig. 17 Example 4 results for
16 element groups. a Young
modulus, b Relative errors

Fig. 18 Example 4 Young
modulus results without groups
of elements. a Youngs obtained
with a = 10−7, b Youngs
obtained with a = 3.0 × 10−6

Fig. 19 Example 4 relative
errors results without groups. a
Errors for a = 10−7, b Errors
for a = 3.0 × 10−6

Table 7 Example 3
identification times

Scheme Time (s) tI /tA

Analysis 0.56 −
3 groups 26.1 46.6

16 groups 29.7 53.0

No groups 276.1 493.0

4 Conclusions

Two new formulations of the material identification problem
using full-field displacement measurements were presented.

The first one, called CPCEG, defines a second order cone
optimization problem, while the second one, called QPCEG,
defines a convex quadratic programming problem. The-
fore, both formulations are based on convex optimization
problems which can be solved using efficient interior-point
algorithms. It was shown that the use of these approaches
leads to a considerable reduction in the time of resolution
when compared against other currently used formulations.
In addition, it was shown how the TV regularization tech-
nique can be applied without losing the key features of the
proposed formulations. The Morozov criterion was applied
to define a suitable value for the regularization parameter.
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The proposed formulation CPCEG is based in the CEGM
and, since they are both equivalent, theoretical results support
the application of the CPCEG. The QPCEG was obtained as
a modified formulation of the CEGM and although there are
no theoretical results supporting its use, the numerical results
obtained in Example 1 show that this formulation produces
solutions of similar quality to those provided by the CPCEG,
requiring even lower execution times.

It was shown that the formulations CPCEG and QPCEG
can obtain solutions for the MIP appropriate for material
identification even when the measurements have random
and interpolation error. Although both formulations are able
to solve large problems, the QPCEG requires less compu-
tational resources, therefore if low memory resources are
available theQPCEGmight be a good alternative. It is impor-
tant to remark that a solution with a slightly higher error
was obtained when using QPCEG. In short, the formulation
QPCEG showed promising results in terms of precision and
computational costs. However, theoretical aspects of this for-
mulation must be addressed in future studies.

In Example 3 it was shown that the proposed method
allows to identify important features of the solution even
when the solid is submitted to large deformations. An exten-
sion of themethod for identification ofmechanical properties
of nonlinear models must be developed in future works.

The results obtained forExample 4 show that the geometry
and the values of material properties of the stenosed arter-
ial cross section are very difficult to identify correctly, even
when a low error is considered. The grouping of elements
leads to a better identification, but such technique is possible
only if a priori information is available, e.g. a reliable image
segmentation.

Since Example 4 is inspired in a cardiovascular disease
diagnosis problem, the search formore effective formulations
must be continued in futureworks. For instance, the proposed
formulations could be generalized to consider several load
cases. Extensions for the identification of material properties
of anisotropic elastic or viscoelastic materials must be also
studied in future works.
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