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Abstract Two-dimensional (2D) in-plane mixed-mode
fracture mechanics problems are analyzed employing an
efficient meshfree Galerkin method based on stabilized con-
forming nodal integration (SCNI). In this setting, the repro-
ducing kernel function asmeshfree interpolant is taken,while
employing the SCNI for numerical integration of stiffness
matrix in the Galerkin formulation. The strain components
are smoothed and stabilized employing Gauss divergence
theorem.Thepath-independent integral (J -integral) is solved
based on the nodal integration by summing the smoothed
physical quantities and the segments of the contour inte-
grals. In addition, mixed-mode stress intensity factors (SIFs)
are extracted from the J -integral by decomposing the dis-
placement and stress fields into symmetric and antisymmetric
parts. The advantages and features of the present formu-
lation and discretization in evaluation of the J -integral of
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in-plane 2D fracture problems are demonstrated through sev-
eral representative numerical examples. The mixed-mode
SIFs are evaluated and compared with reference solutions.
The obtained results reveal high accuracy and good perfor-
mance of the proposed meshfree method in the analysis of
2D fracture problems.
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1 Introduction

Faithfully reproducing the displacement discontinuity across
the crack faces and the stress singularity at the crack tip
when solving linear fracture mechanics problems often
requires effective numerical methods. The same require-
ment is also mandatory in modeling fast cracking problems.
Meshfree/Meshless methods, e.g., the element free Galerkin
method [1], the reproducing kernel (RK) particle method [2]
and the meshless local Petrov-Galerkin method [3] provide
advantages in analyzing crack problems. A cracked body
is discretized using distributed nodes, and the deformation
is approximated by meshfree interpolation functions based
upon the nodes. It offers a flexible means in modeling cracks
by usingmeshfreemethods. Alternatively, the extended finite
elementmethod (X-FEM)was also introduced in [4] to effec-
tively model cracks by adding appropriate enrichment func-
tions into the standard finite element approximation space in
terms of the partition of unity concept [5]. Researchers have
employed and developed several other numericalmethods for
crack problems, e.g., see [6–13]. Tanaka et al. [14–16] ana-
lyzed two-dimensional (2D) fracture mechanics problems
by combining X-FEM and a spline-based wavelet Galerkin
method [17].
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The present paper describes an effective meshfree
Galerkin formulation for analyzing 2D in-planemixed-mode
fracture mechanics problems. In the Galerkin formulation,
the RK function serving as basis functions is employed.With
the RK approximation, the continuous stress and strain com-
ponents can be obtained over the entire analysis domain. In
addition, the stabilized conforming nodal integration (SCNI)
[18] is applied to numerically integrate the stiffness matrix.
The strain components are smoothed by a divergence the-
orem, and a linear exactness can be satisfied by imposing
an integration constraint in the meshfree formulation. High
accuracy and stabilized solutions are obtained without taking
derivatives of the RKs. To date, the meshfree discretization
has been adopted for a large deformation problems by Chen
et al. [19]; Wang and Chen [20,21] analyzed beam and plate
bending problems. Wang and Sun [22] and Sadamoto et
al. [23] solved geometrical nonlinear problems of a shear
deformable plate based on the meshfree formulation. In the
present formulation, a diffraction method and a visibility cri-
terion [24,25] are included to represent the displacement
discontinuity along the crack segments. An enriched basis
[26] is also introduced in the RKs to effectively represent the
stress singularity around the crack tip.

A nodal integration technique is applied here to evaluate
the path-independent integral (J -integral). Previously, the J -
integral was often analyzed in domain-integral form, and an
interaction integral technique was used to extract the 2D in-
plane mixed-mode stress intensity factors (SIFs) from the
J -integral, e.g., Fleming et al. [6], Rao and Rahman [27],
and Tanaka et al. [14]. In the proposed technique, a contour
integral is numerically analyzed based on the nodal integra-
tion. The J -value is calculated by summing the smoothed
physical quantities and segments of the contour. To enhance
the accuracy of the crack analysis and J -integral evalua-
tion, sub-domain stabilized conforming integration (SSCI)
[28–31] is thus adopted. In addition, mixed-mode SIFs are
extracted from the J -integral by decomposing the displace-
ment and stress fields into symmetric and antisymmetric parts
[32,33]. The J -integral evaluation is simple. The SIFs can
be calculated by employing smoothed physical values and
segments of the contour in post-processing of the meshfree
analysis. Gauss quadrature is not required. In our previ-
ous study [34], we showed that the moment intensity factor
and path-independent property obtained for a cracked shear
deformable plate are highly accurate. In this paper, the accu-
racyof themixed-modeSIFs and the path-independent nature
are examined through several numerical examples for 2D
in-plane crack problems. Because we developed a flat shell
formulation in [23], a cracked shell problems can be analyzed
when the in-plane fracture analysis is coupled with a plate
bending formulation.

This paper is organized as follows. A 2D fracture mechan-
ics analysis employing the proposed meshfree formulation
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Fig. 1 Boundary value problem and the meshfree discretization: a A
2D cracked elastic body with a hole, b A meshfree discretization with
Voronoi cell diagram

and the discretization is described in Sect. 2. The J -integral
evaluation and a mode splitting technique of the J -integral
are presented in Sect. 3. Numerical examples for several 2D
mixed-mode crack problems are considered and the obtained
results are then presented in Sect. 4. Concluding remarks are
presented in Sect. 5.

2 Meshfree Galerkin formulation

2.1 Boundary value problem for 2D cracked elastic
solids

Let us consider a 2D cracked solid as schematically depicted
in Fig. 1a. The material being considered is assumed to be
elastic and small strain. The analysis domain is denoted by
Ω , and its boundary by Γ . Γc represents a crack segment. A
traction force t̄ is applied on the traction boundary Γt , while
a prescribed displacement ū is imposed on the displacement
boundary Γu .

The principle of virtual work for the elastostatic bodywith
zero body force can be written as:

∫
Ω

ε(δu) : D : ε(u)dΩ − δW = 0,

δW =
∫

Γu

δu · t̄ dΓ,

ui (x) = ūi on Γu, (1)

where u is a displacement vector and δu is the variation. δW
is the external virtual work. The symmetric part of the strain
components ε(u)(= εi j ) are written as,

εi j = 1

2

(
∂ui
∂x j

+ ∂u j

∂xi

)
. (2)

The elastic constant matrix D for the plane stress condition
is
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D = E

1 − ν2

⎡
⎣ 1 ν 0

ν 1 0
0 0 1−ν

2

⎤
⎦ , (3)

and for plane strain condition

D = (1 − ν)E

(1 + ν)(1 − 2ν)

⎡
⎢⎣

1 ν
(1−ν)

0
ν

(1−ν)
1 0

0 0 1−2ν
2(1−ν)

⎤
⎥⎦ , (4)

with E and ν being the Young’s modulus and the Poisson’s
ratio, respectively.

2.2 Meshfree discretization

A meshfree discretization for the cracked elastic body
including a hole is schematically depicted in Fig. 1b. The
nodes (x1, . . . , x I , . . . , xNP) are distributed across the entire
analysis domain, and Voronoi cells are used to establish sub-
domains (Ω1, . . . ,ΩI , . . . ,ΩNP) around each node. NP is
the total number of nodes. The external and hole boundaries
are represented by nodes and Voronoi cells. The crack tip
is located on a node, and the crack segment is defined by
an assembly of nodes. RK is adopted as the meshfree inter-
polant.

The RKs are defined at each node, and a physical value
within the function support is approximated as shown in
Fig. 1b. There are two degrees of freedom per node. A phys-
ical value at point x is approximated using the RKs, and is
written

dh(x) =
NP∑
I=1

ΨI (x)d I , (5)

where dh(x) = {dh1 (x) dh2 (x)}T (I = 1, . . ., NP) is a vector
of the approximated value. ΨI (x) is the RK of the I -th node
and d I = {dI1 dI2}T is their coefficient vector. The RKs are
constructed using the sumof the original kernels by imposing
a so-called consistency condition

ΨI (x) = HT (x I − x)b(x)φaI (x I − x), (6)

where H(x I − x) is a basis vector, and b(x) is the coeffi-
cient vector required to construct the RKs. When employing
a linear basis vector, it is expressed as

H(x) = {1 x1 x2}, (7)

whereas for the quadratic basis vector

H(x) = {1 x1 x2 x21 x1x2 x22 }. (8)

xK
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: Boundary of domainΓK ΩK

ΩK

Fig. 2 Schematic outlining nodal integration of a Voronoi cell with
SCNI [18]

φaI (x) in Eq. (6) is an original kernel. Cubic spline function
is employed, as:

φaI (x I − x, h) = 10

7πh2

⎧⎪⎪⎨
⎪⎪⎩

1 − 3
2 s

2 + 3
4 s

3 (0 ≤ s ≤ 1)

1
4 (2 − s)3 (1 ≤ s ≤ 2) ,

0 (2 ≤ s)

(9)

where s = (||x I − x||/h) is a normalized distance from the
center of the kernel, and h is a parameter that determines the
function support. The RKs are modified so as to generate the
crack effectively. Meshfree crack modeling is presented in
Sect. 2.3.

The deformation u(x) of the elastic body is approximated
by the RKs, and it is written using the vector d I in matrix
form

uh(x) =
NP∑
I=1

N I d I , N I =
[

ΨI 0
0 ΨI

]
, (10)

where uh(x) = {uh1(x) uh2(x)}T denotes the approximate
values of the displacements in the xi (i = 1, 2) direction and
N I is a matrix of the RKs. The strain is thus expressed as

εh(x) =
NP∑
I=1

B I d I , B I =
⎡
⎣ΨI,1 0

0 ΨI,2

ΨI,2 ΨI,1

⎤
⎦ , (11)

where εh(x) = {εh11(x) εh22(x) 2εh12(x)}T is the approxi-
mated strain vector. ΨI,i is the partial derivative of the RKs,
and B I is the displacement-strain matrix.

When analyzing the weak form in Eq. (1), SCNI [18]
is introduced as the numerical integration technique for the
stiffnessmatrix. TheSCNI satisfies the integration constraint,
which is a necessary condition for a linear exactness in the
meshfree Galerkin methods. Numerical instabilities due to a
spurious mode of the stiffness matrix can be excluded by a
direct nodal integration.

An illustration of SCNI for a Voronoi cell is presented in
Fig. 2. The strain components are evaluated by a line integra-
tion of the RKs, and are smoothed by employing the Gauss
divergence theorem. Equation (11) can be rewritten
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Fig. 3 Crack modeling by the meshfree method: a diffraction method, b visibility criterion and polar coordinate system around the crack tip, c
SSCI [28]

ε̃h(x) =
NP∑
I=1

B̃ I d I , B̃ I =
⎡
⎣ b̃I1 0

0 b̃I2
b̃I2 b̃I1

⎤
⎦ , (12)

b̃I j (xK ) = 1

AK

∫
ΓK

ΨI n j dΓK , (13)

where n j ( j = 1, 2) denotes the x j -component of the normal
vector n and AK is the area of domainΩK . A line integration
in Eq. (13) is employed along the Voronoi cell boundary ΓK

shown in Fig. 2. The smoothed strain ε̃(x) is evaluated for
each node of the Voronoi cell. Five Gauss quadrature points
are applied for the numerical integration of each segment.

A penalty formulation is introduced to impose the essen-
tial boundary conditions. The principle of virtual work can
be written as
∫

Ω

ε(δu) : D : ε(u)dΩ

+ α

∫
Γu

δu · (u − ū)dΓ =
∫

Γt

δu · t̄ dΓ, (14)

where α is a penalty parameter and ū is an enforced value
vector along the essential boundaries Γu . Displacements,
smoothed strains and elastic constantmatrix are introduced in
Eq. (14), and a set of linear simultaneous equations derived.
There are no derivative of the RKs in themeshfree discretiza-
tion.

2.3 Crack modeling

To analyze 2D in-plane fracture mechanics problems in the
meshfree formulation, a diffraction method and a visibility
criterion [24,25] are adopted to represent displacement dis-
continuities across the crack segment.Also, an enriched basis
[26] is introduced to effectively represent strong stress con-
centration around the crack tip. Crack modeling is employed
to analyze a bending cracked plate as well in [34]. The adap-
tation to the 2D in-plane crack problems is briefly reviewed.

A diffractionmethod is introduced to represent a displace-
ment discontinuitywhen a crack tip partially cut themeshfree
functions. A schematic illustration is presented in Fig. 3a.
When a crack tip is located in the function support of a RK,
the support is modified so as to wrap around the crack tip.
The normalized distance in Eq. (9) is then corrected

s =
(
s1 + s2(x)

s0(x)

)λ s0(x)

h
, (15)

where s0(x) = ||x−x I ||, s1 = ||xc−x I || and s2(x) = ||x−
xc||. The shape factor λ is chosen as unity. The modifications
of the meshfree functions are employed for the displacement
matrix N I in Eq. (10).

The visibility criterion is employed to represent a displace-
ment discontinuity of the crack segment. When a meshfree
function crosses the segment, double nodes are made on the
segment. The numerical integration of the stiffness matrix
is partially performed for either one or the other sides of the
RKs (see Fig. 3b). In addition, an enriched term is introduced
in the basis vector H(x) in Eqs. (7) and (8) to effectively rep-
resent a strong stress concentration near the crack tip. For the
linear basis,

H(x) = {1 x1 x2
√
r ′ sin(θ ′/2)}, (16)

and for the quadratic basis,

H(x) = {1 x1 x2 x21 x1x2 x22
√
r ′ sin(θ ′/2)}, (17)

where r ′ and θ ′ are local polar coordinates at the crack tip
(Fig. 3b). The enriched basis is adopted around the crack
tip. This is an effective and convenient way to capture the
1/

√
r ′ stress-singularity around the crack tip in the meshfree

discretization.
To accurately integrate the stiffness matrix including a

visibility criterion, a diffractionmethod and an enriched basis
vector, SSCI [28] is introduced. In crackmodeling, a Voronoi
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cell is partially/completely cut by a segment (Fig. 3b). A
Voronoi cell is further divided into a number of triangles, and
SCNI is adopted on each triangle. An illustration of SSCI is
sketched in Fig. 3c. A Voronoi cell ΩK is composed of a
number of triangles, and the components of the smoothed
B-matrix B̃ I in Eq. (13) is defined on each triangleΩKi , and
is written as

b̃I j (xKi ) = 1

AKi

∫
ΓKi

ΨI n j dΓKi , (18)

where ΓKi is the boundary of a surface ΩKi , and n j ( j =
1, 2) denotes the x j component of the normal vector to the
boundaryΓKi in Fig. 3c. The strain and stress components are
stabilized in the triangles ΩKi . The smoothed strain ε̃(x) in
Eq. (12) is evaluated at the center of gravity of each triangle.

3 SIFs evaluation

A path-independent integral is adopted to calculate SIFs in
the meshfree method. An energetic contour integral is ana-
lyzed. When evaluating fracture mechanics parameters in
2D in-plane mixed-mode crack problems, it is necessary to
separate the J -value into crack opening and in-plane shear
modes. Amethod of decomposition [32,33,35] is introduced
to evaluate the mixed-mode SIFs KI and KI I by splitting
the displacement and stress fields into symmetric and anti-
symmetric parts. The contour integral is evaluated by the
smoothed values in post-processing of themeshfree analysis.
A special subroutine for the Gauss quadrature is not required
in the discretization.

3.1 J-integral review

A schematic illustration of a crack tip region, and the J -
integral evaluation is shown in Fig. 4a. A surface traction on
the crack face is not considered. ΓJint denotes the contour
surrounding the crack tip and n′ denotes the normal vector
to the ΓJint. x1 and x2 are global coordinates, while x ′

1 and
x ′
2 are local coordinates at the crack tip. The x ′

1 direction is
defined as being parallel to the crack segment. θ ′ and r ′ are
the local polar coordinates with origin centered on the crack
tip. Proposed by Rice [36], the J -integral is written as

J =
∫

ΓJint

(
Wn′

1 − σ ′
i j

∂u′
i

∂x ′
1
n′
j

)
dΓJint, (19)

where n′
j ( j = 1, 2) are the components of the normal vector

and W is the strain energy density, which is given by

W =
∫

σ ′
i j dε′

i j . (20)
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When a linear elastic solid is considered, the J -value cor-
responds to the energy release rate G. It is noted that the
J -value is path-independent.

3.2 A decomposition method for J-integral mode
separation

In mixed-mode crack problems, it is necessary to separate
the energy release rate G into opening mode GI and shear
mode GI I components to evaluate the mixed-mode SIFs KI

and KI I , i.e., G = GI+GI I . A method of decomposition is
chosen in the contour integral discretization. The SIFs can be
evaluated in the line integral also by separating the displace-
ment/stress components into symmetric and antisymmetric
parts.

A close-up view of the crack tip region is depicted in
Fig. 4b. The point Q(x ′

1,−x ′
2) is line symmetric to point

P(x ′
1, x

′
2) across the crack segment. The components of dis-

placement u′ and stress σ ′ are then decomposed using points
P(x ′

1, x
′
2) and Q(x ′

1,−x ′
2), respectively. For example, the

displacements u′
P and stress components σ ′

P at P(x ′
1, x

′
2)

are represented as

u′
P = (u′

P )I + (u′
P )I I

= 1

2

{
u′
1P + u′

1Q
u′
2P − u′

2Q

}
+ 1

2

{
u′
1P − u′

1Q
u′
2P + u′

2Q

}
, (21)

σ ′
P = (σ ′

P )I + (σ ′
P )I I

= 1

2

⎧⎪⎨
⎪⎩

σ ′
11P + σ ′

11Q
σ ′
22P + σ ′

22Q
σ ′
12P − σ ′

12Q

⎫⎪⎬
⎪⎭ + 1

2

⎧⎪⎨
⎪⎩

σ ′
11P − σ ′

11Q
σ ′
22P − σ ′

22Q
σ ′
12P + σ ′

12Q

⎫⎪⎬
⎪⎭ , (22)

where (u′)k and (σ ′)k (k = I, I I ) are the displacement and
stress components formode-I and -I I , respectively. ( )P and
( )Q are the components at points P(x ′

1, x
′
2) andQ(x ′

1,−x ′
2),

respectively.
Employing the displacement (u′)k and stress components

(σ ′)k for mode-I and -I I in Eqs. (21) and (22), the mixed-
mode energy release rates Gk are evaluated as
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Gk =
∫

ΓJint

(
Wkn

′
1 − (σ ′

i j )
k ∂(u′

i )
k

∂x ′
1

n′
j

)
dΓJint, (23)

whereWk (k = I, I I ) is the strain energy density of mode-k,
which is calculated by the separated strain (ε′)k and stress
(σ ′)k components employing Eq. (20). The separated energy
release rates Gk also have a path-independent nature.

To decompose the displacement/stress components in sep-
arating the J -integral into themixed-mode SIFs, a symmetric
contour across the crack segment is required. A rectangular
contour is chosen as shown in Fig. 5. The contour ΓJint is
divided into a number of segments, and the unit length is
dsm (m = 1, . . . , NSeg). NSeg is the total number of the seg-
ments. Equation (19) is discretized by adopting the Gauss
quadrature rule, as:

Gk =
NSeg∑
m=1

{
NGauss∑
l=1

(
Wkn

′
1 − (σ ′

i j )
k ∂(u′

i )
k

∂x ′
1

n′
j

)
ωl

}

m

dsm,

(24)

where NGauss is the number of Gauss points per a segment.
and ωl the weight of the Gauss quadrature.

Employing the energy release rates Gk , the SIFs can be
evaluated giving

KI =
√
E ′GI , KI I =

√
E ′GI I , (25)

where E ′ = E for plane stress condition, and E ′ = E/(1 −
ν2) for plane strain condition, respectively.

3.3 J-integral evaluation employing the nodal
integration techniques

In the present formulation, nodal integration techniques
SCNI/SSCI are employed to integrate the stiffness matrix
numerically. The SCNI/SSCI are also adopted for the J -
integral evaluation. In our previous study, amoment intensity

factor was calculated by employing the SCNI/SSCI in [34].
The nodal integration techniques are adopted and examined
for the 2D in-plane mixed-mode crack problems.

Rectangular contours are also adopted in nodal integra-
tions as shown in Fig. 5. In the meshfree discretization, the
contour integral in Eq. (24) includes a number of Voronoi
cells and triangular domains for SCNI/SSCI. The discretiza-
tion of the contour integral with SCNI and SSCI are shown
in Fig. 6a and b, respectively. The energy release rates are
smoothed G̃k , and are evaluated using smoothed physical
quantities,

G̃k =
NSCNI∑
m=1

(
W̃kn

′
1 − (σ̃ ′

i j )
k ∂(ũ′

i )
k

∂x ′
1

n′
j

)

m

dsm

+
NSSCI∑
m=1

(
W̃kn

′
1 − (σ̃ ′

i j )
k ∂(ũ′

i )
k

∂x ′
1

n′
j

)

m

dsm, (26)

where ( ˜ ) represents the smoothed physical values calcu-
lated by SCNI/SSCI, and dsm is the segment divided by a
Voronoi cell and a triangular domain for SCNI and SSCI, as
shown in Fig. 6a and b. NSCNI and NSSCI are the number of
segments for SCNI/SSCI used for the contour integral evalu-
ation. The physical quantities of SCNI are determined based
on nodes, and the values of SSCI are calculated at the center
of gravity for each triangle.

The physical values in the nodal integration form of the
J -integral is evaluated by the post-process of the meshfree
analysis. The smoothed displacements ũ can be calculated
by SCNI, as

ũ(xK ) =
NP∑
I=1

1

AK

∫
ΩK

ΨI d I dΩK , (27)

and for SSCI, as

ũ(xKi ) =
NP∑
I=1

1

AKi

∫
ΩKi

ΨI d I dΩKi , (28)

where d I is a solution vector evaluated by a linear simul-
taneous equation. Smoothed strain ε̃ and stress σ̃ (= Dε̃)
calculated by SCNI/SSCI are given by Eq. (12). The strain
energy density in Eq. (26) can de evaluated, as:

W̃k = 1

2
(σ̃ ′

i j )
k(ε̃′

i j )
k . (29)

Although a special subroutine for the Gauss quadrature is
needed for calculating Gk in Eq. (24), they can be evaluated
using the superposition of the physical quantities and seg-
ments of the contour employing Eq. (26). The accuracy and
the path-independence of the nodal integration techniques
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Fig. 6 Meshfree discretization of a contour integral employing nodal
integration techniques: a SCNI, b SSCI

for the SIFs are explored through several 2D mixed-mode
fracture problems.

4 Numerical examples

Several numerical examples for 2D in-plane fracturemechan-
ics problems are considered to examine the meshfree dis-
cretization and the J -integral evaluation. A plane stress
condition is assumed. Young’s modulus is E = 206 GPa,
and Poisson’s ratio is ν = 0.3. According to our numerical
test, an acceptable solution can be obtained when the penalty
parameter in Eq. (14) is chosen as α = 1.0 × 107, in all
the numerical examples. In adopting the enriched basis vec-
tors of Eqs. (16) and (17), an enriched term

√
r ′ sin(θ ′/2) is

introduced on the nodes when the function support includes
the crack tip.

A meshfree model of a cracked plate is illustrated in
Fig. 7a. rd is a parameter determining the size of the rec-
tangular contour. To verify the accuracy and effectiveness
of modeling the crack, three kinds of numerical integration
domains with SCNI/SSCI, which are labeled as Types A, B
and C, respectively, are examined (Fig. 7b–d). In Type A,
the Voronoi cells are generated over the entire rectangular
domain for SCNI. Additionally, the Voronoi cells spanning

the crack segment are divided into triangular domains for
SSCI, in preparing for the diffraction method and visibil-
ity criterion. In Type B, the entire domain is divided into
triangular domains for SSCI. Type C has hybrid domains
of SCNI/SSCI. A Voronoi cell is chosen for the entire the
domain, and the triangular domains are partially employed
when the function support spans a crack segment and/or con-
tour. If a rectangular contour 2rd × 2rd is used for the
J -integral evaluation as shown in Fig. 7a, the shaded regions
in Fig. 7b–d are taken as the nodal integration domain.

The accuracy in the mixed-mode SIFs for the numerical
and reference solutions is examined. The error η% is defined
as

η = |KNum.
k − KRef.

k |
KRef.
k

× 100 [%], (30)

where KNum.
k and KRef.

k (k = I, I I ) are the numerical and
reference solutions, respectively.

4.1 An edge crack under uniform tensile loads

A rectangular plate with an edge crack of a = 5.0 mm as
depicted in Fig. 8a is considered. The plate width is b = 10.0
mm, and the height is c = 10.0 mm. A uniform pressure
σ22 = 1.0 MPa is applied to the top and bottom edges of
the plate. To verify the accuracy of the meshfree analysis,
21 × 21, 41× 41, 81 × 81 and 161 × 161 nodes models
are chosen. The function support of the RKs is set to be
h = 1.2h p, with h p being a characteristic length between the
nodes as shown in Fig. 7a. Three kinds of nodal integration
domains of Types A, B and C as defined above are examined.
For example, a computational model of 21 × 21 scattered
nodes (Type A) is sketched in Fig. 8b. The standard linear,
enriched linear, and enriched quadratic basis vectors H(x)

of Eqs. (7), (16), and (17) are employed to examine the per-
formance of the enriched basis vectors. KRef.

I = 11.93 MPa
mm1/2 [37] is presented as our reference solution.

(c) (d)(a) (b)

Crack

Path of J-integral

Support of a RK

rd

hp

Fig. 7 Three kinds of numerical integration domains with SCNI/SSCI for a cracked plate: a A meshfree model for a cracked plate, b Type A, c
Type B, d Type C
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Fig. 8 Edge crack in a rectangular plate, and meshfree modeling: a
Model to be analyzed, b 21 × 21 nodes meshfree model (Type A)
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Fig. 9 Comparison of SIF KI for different paths (A standard linear
basis vector): a Type A, b Type B

The numerical results KNum.
I of Type A are presented in

Fig. 9a. The horizontal axis is a parameter rd . The KNum.
I is

evaluated by varying the size of the rectangular contour. A
standard linear basis vector H(x) in Eq. (7) is applied. The
solid line is the reference solution KRef.

I . As the density of
the nodes increases, the accuracy in SIF KI is improved. In
contrast, an oscillation in KNum.

I can be observed dependent
on the size of the rectangular contour.

161x161 nodes

81x81 nodes

41x41 nodes

21x21 nodes

log hp [mm]

η  
[%

]

Linear basis vector
Enriched linear basis vector
Enriched quadratic basis vector

Fig. 10 Convergence for the edge crack problem with standard and
enriched basis vectors (Type B, rd = 2.5 mm)

To further examine the accuracy of the meshfree dis-
cretization, Type B is employed as the nodal integration
domain. The standard linear basis vector is employed, as in
Fig. 9a. The results are presented in Fig. 9b. Although the
convergence rate of KNum.

I in Type B is similar to that of
Type A, path-independency is found. Therefore, the SSCI is
effective for evaluating the J -integral in the meshfree crack
modeling.

It is found that KNum.
I uniformly converges in Type B, as

the density of the nodes increases (Fig. 9b). There is still a
difference between the numerical results and the reference
solutions even when a model with a set of 81 × 81 scat-
tered node is used. The standard linear, enriched linear, and
enriched quadratic basis vectors of Eqs. (7), (16), and (17)
are adopted. The error η % is evaluated using Eq. (30). Type
B is employed for the nodal integration domain. The size of
the contour is rd = 2.5 mm. The convergence rates for each
of the basis vectors are presented in Fig. 10a. All numeri-
cal results uniformly converge. Additionally, it is confirmed
that a high accuracy solution can be obtained in adopting the
enriched linear and quadratic basis vectors.

Although the use of Type B is effective for the nodal
integration domain, it takes considerable computation time
because the meshfree modeling uses only triangular domain
for the nodal integration. A hybrid nodal integration domain
of SCNI/SSCI (Type C) is taken to reduce the computational
time, while retaining the accuracy of the meshfree analy-
sis. The accuracy in SIF KNum.

I is presented in Fig. 11. An
enrichedquadratic basis vector is employed. From thenumer-
ical results, a high accuracy of the SIF and a path-independent
behavior are obtained for the SCNI/SSCI hybrid nodal inte-
gration domain.

In addition, accuracy in SIF KI is examined when the
diffraction method or visibility criterion is adopted at the
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Fig. 11 Comparison of SIF KI for different paths (TypeC, an enriched
quadratic basis vector)
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Fig. 12 Comparison of SIF KI for diffraction method and visibility
criterion at the crack tip (Type C, an enriched quadratic basis vector)

crack tip. The numerical results are presented in Fig. 12. The
quadratic basis vector is employed. From the convergence
study, the accuracy is improved when diffraction method
is employed. We thus employ the diffraction method at the
crack tip.

A meshfree analysis for cracked plate bending problems
was analyzed in [34] employing the crack modeling and the
J -integral evaluation. A similar trend in accuracy and path-
independency nature was found for a pure-KI problem. This
thus confirms that meshfree modeling is effective for both
the 2D in-plane and plate bending problems.

4.2 An edge crack under shear loads

A cracked rectangular plate under shear loads is analyzed
to check the accuracy and the path-independent nature of
the mixed-mode crack problem. The model is presented in
Fig. 13a. The parameter settings for the cracked rectangular
plate are a/b = 1/2 and c/b = 16/7 to the plate breadth
b = 7.0 mm. A uniform shear stress τ = 1.0 MPa is

x

x2

1

(b)(a)

a

b

c

τ

Fig. 13 Rectangular plate with an edge crack under shear loads: a
Model for analysis, b 15 × 33 nodes meshfree model (Type A)
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Fig. 14 Convergence results for the mixed-mode SIFs employing the
enriched linear and quadratic basis vectors (Type C, rd = 1.75 mm): a
KI , b KI I
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Fig. 15 SIFs for different rectangular paths (An enriched quadratic basis vector): a KI (Type A), b KI I (Type A), c KI (Type C), d KI I (Type C)

applied to the top of the plate, whereas the bottom of the
plate is fully clamped. Different sets of 15 × 33, 29× 65,
43 × 97 and 71 × 161 nodes meshfree models are succes-
sively employed. A meshfree model with a set of 15 × 33
discretized nodes (Type A) is visualized in Fig. 13b. As ref-
erence SIFs, KRef.

I = 34.0 MPa mm1/2 and KRef.
I I = 4.55

MPa mm1/2 are available in the literature [39]. The function
support of the RKs is set to h = 1.2h p.

A convergence study was performed to examine the accu-
racy of the enriched basis vectors for the mixed-mode crack
problem. The linear and quadratic basis vectors of Eqs. (16)
and (17), respectively, are used. Type C is employed as a
nodal integration domain. The convergence of KNum.

I and
KNum.

I I are then depicted in Fig. 14a and b. The size of the
contour rd = 1.75 mm is taken. It is interesting to see that all
the numerical results are uniformly converged. The accuracy
in KI and KI I is improved using the enriched basis vectors.
Also, the accuracy of the quadratic basis vector is superior
in the mixed-mode crack problem.

To further examine the mixed-mode crack problem, path-
independency in KI and KI I is investigated. Also, Types A

and C are adopted for the nodal integration domains. The
obtained numerical of Type A are presented in Fig. 15a
and b, for KI and KI I respectively, and the results of
Type C are in Fig. 15c and d. As well as the pure-KI

problem in Sect. 4.1, path-independency can be seen when
Type C is employed for the nodal integration domain. It
can also be confirmed that the evaluation of the energy
release rates using SCNI/SSCI of Eq. (26), and Type C
for the nodal integration domain are effective in the mixed-
mode crack problems in separating the J -value into KI and
KI I . In the following numerical examples, the quadratic
basis vector and Type C are used in the meshfree model-
ing.

To effectively analyze several 2D in-plane mixed-mode
crack problems, we derived an equation relating the crack
length a and the characteristic length between the nodes
h p in the uniform refinement models. From the results of
convergence studies plotted in Fig. 14a and b for KI and
KI I , we infer that the solutions of SIFs have converged suf-
ficiently and possessed a path-independency if a/h p >15 is
adopted.
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Fig. 16 Rectangular platewith a slant edge crack problem: a themodel
analyzed, b close-up view of the crack tip region in 41 × 101 nodes
meshfree model (Type A)

4.3 A slanted edge crack under uniform tensile loads

A rectangular plate with a slanted edge crack as schemati-
cally shown in Fig. 16a is analyzed. The dimensions of the
model are b = 10.0 mm and c1 = c2 = 10.0 mm. The
crack length is varied a = 2.0, 3.0, 4.0, and 5.0 mm, respec-
tively, and crack angles θ = 30 and 45 deg. are chosen.
A meshfree model with a set of 41 × 101 scattered nodes
is used. Fig. 16b shows a close-up view near the crack tip.
Notice that, unlike the two previous examples, an irregu-
lar nodal discretization is applied to this domain, showing
the capability of the method in dealing with irregular dis-
tribution of the nodes. The function support of the RKs is
set to h = 1.2h p. For the inclined crack problem, nodes
on uniform grid are placed around the crack tip to separate
the mixed-mode SIFs. The region is smoothly connected to
the external area using meshfree modeling. Additionally, G̃k

of Eq. (26) is evaluated for a rectangular contour within the
grid (Fig. 16b). The SIFs were normalized, and the computed
numerical results compared with reference solutions given
in [37]. The results are also compared with those obtained
by using a commercial FEM software [38] with a very fine
mesh.

The results obtained for SIFs with θ = 30 and 45 deg.
are presented in Tables 1 and 2 for different ratios of a/b;
rd = a/3 mm is adopted. The FNum.

k , FFEM
k and FRef.

k
(k = I, I I ) are results of the meshfree, FEM and refer-
ence solutions, respectively. As expected, they are in good
agreement between each other. Additionally, differences in
the SIFs between the meshfree and FEM results are less
than 1 %.

Table 1 Normalized SIFs FI and FI I for θ = 30◦

a/b FNum.
I FFEM

I FRef.
I [37]

0.2 1.0777 1.0723 1.11

0.3 1.2633 1.2554 1.28

0.4 1.5388 1.5275 1.55

0.5 1.9457 1.9265 1.98

a/b FNum.
I I FFEM

I I FRef.
I I [37]

0.2 0.3557 0.3546 0.36

0.3 0.4066 0.4054 0.41

0.4 0.4746 0.4742 0.48

0.5 0.5669 0.5620 0.58

An enriched quadratic basis vector, Type C

Table 2 Normalized SIFs FI and FI I for θ = 45◦

a/b FNum.
I FFEM

I FRef.
I [37]

0.2 0.7894 0.7844 0.80

0.3 0.8899 0.8833 0.90

0.4 1.0394 1.0314 1.02

0.5 1.2579 1.2473 1.27

a/b FNum.
I I FFEM

I I FRef.
I I [37]

0.2 0.4073 0.4075 0.41

0.3 0.4505 0.4515 0.45

0.4 0.5059 0.5074 0.50

0.5 0.5725 0.5712 0.58

An enriched quadratic basis vector, Type C

4.4 A semi-circular specimen with a slant crack

The final numerical example deals with a slanted edge crack
in a semi-circular specimen. The model configuration is pre-
sented in Fig. 17a. The radius of the semi-circular plate is
R = 100 mm, the crack length a = 50 mm, and the plate
thickness t = 1.0 mm. The specimen is fixed by pins, and
a point load P is applied on top of the specimen. The width
between the supports is s. Three ratios s/R = 0.5, 0.61, and
0.67 are chosen in the meshfree modeling, by changing the
crack angle θ from 0 to 60◦. Themeshfreemodel is generated
so that the characteristic length h p is 2.5 mm. For example, a
meshfree model with s/R = 0.5 and θ = 30 deg. is given in
Fig. 17b. The function support of RKs is set to h = 1.25h p .
The SIFs are normalized by

Fk = 2RtKk

P
√

πa
, (k = I, I I ) (31)

where Fk denotes the normalized SIFs. As reference solu-
tions, the SIFs in [40] is digitized and employed. Also, a
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Fig. 17 Edge crack in a semi-circular specimen: a Analysis model, b
Meshfree modeling for θ = 30 deg. and s/R = 0.5 (Type A), c FEM
model

very fine FEM model as shown in Fig. 17c is used for our
comparison purpose [38].

The numerical results of the normalized SIFs FNum.
k (k =

I , I I ) are respectively presented in Fig. 18a–c, for s/R =
0.5, 0.61, and 0.67. In the meshfree modeling, rd = 10.0
mm is chosen. FFEM

k and FRef.
k are also presented. In all

cases, the results are in good agreement with each other,
thereby confirming that the meshfee modeling is effective in
analyzing the 2D in-plane mixed-mode crack problems.

5 Conclusion

We have presented an effective meshfree Galerkin formula-
tion based on SCNI for modeling 2D in-plane mixed-mode
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Fig. 18 Comparison of normalized SIFs FI and FI I (An enriched
quadratic basis vector, Type C): a s/R = 0.5. b s/R = 0.61. c
s/R = 0.67

crack problems. The J -integral is discretized in terms of the
SCNI/SSCI, and a special technique to separate the mixed-
mode SIFs is described. The accuracy, performance and the
path-independency of the proposed meshfree method are
analyzed and demonstrated through a series of representa-
tive numerical examples. The computed numerical results are
verified rigorously by comparing the obtained results with
respect to the reference solutions. The comparison reveals
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one important thing that, as expected, high accuracy on the
SIFs derived from the proposed formulation is obtained. It is
also found from our numerical investigations that the present
formulation is very effective in modeling crack problems.
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