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Abstract Sandwich constructions have been widely used
during the last few decades in various practical applications,
especially thanks to the attractive compromise between a
lightweight and high mechanical properties. Nevertheless,
despite the advances achieved to date, buckling still remains
a major failure mode for sandwich materials which often
fatally leads to collapse. Recently, one of the authors derived
closed-form analytical solutions for the buckling analy-
sis of sandwich beam-columns under compression or pure
bending. These solutions are based on a specific hybrid for-
mulation where the faces are represented by Euler–Bernoulli
beams and the core layer is described as a 2D continuous
medium. When considering more complex loadings or non-
trivial boundary conditions, closed-form solutions are no
more available and one must resort to numerical models.
Instead of using a 2D computationally expensive model, the
present paper aims at developing an original enriched beam
finite element. It is based on the previous analytical formu-
lation, insofar as the skin layers are modeled by Timoshenko
beams whereas the displacement fields in the core layer are
described by means of hyperbolic functions, in accordance
with the modal displacement fields obtained analytically. By
using this 1D finite element, linearized buckling analyses are
performed for various loading cases, whose results are con-
fronted to either analytical or numerical reference solutions,
for validation purposes.
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1 Introduction

Nowadays, numerous advanced industrial applications
involve sandwich composites, taking advantage of their inter-
esting combined mechanical, electrical, thermal and optical
properties, amongothers. Suchmaterials are commonly com-
posed of two thin and stiff metallic or composite skins,
separated by a thicker andmuch softer foam core. The result-
ing structure combines thus both an extreme lightweight due
to the low density core material, and strongmechanical prop-
erties coming from the skins and their distance to the middle
surface of the composite. In spite of all these benefits, sand-
wichmaterials suffer fromsomeweaknesses,mostly inherent
to their heterogeneous structure. Among them, the buckling
phenomenon is known to be one of the major causes for the
final collapse of such materials and therefore it has been the
subject of numerous studies in the last few decades.

A significant amount of the existing numerical contri-
butions on sandwich buckling rely on laminated compos-
ite displacement-based theories which are formulated on
the basis of conventional assumptions for homogeneous
beams/plates. In this respect, the most elementary bend-
ing models are based upon Euler–Bernoulli/Love-Kirchhoff
hypotheses, stating that cross-sections initially perpendicu-
lar to the neutral axis/plane of the beam/plate remain straight
and normal to the mid-axis/plane after deformation. As the
transverse shear deformation effects are not included, these
assumptions are no more valid when dealing with moder-
ately thick structures. In order to overcome this shortcoming,
first-order shear deformation theories (FSDT, also referred to
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as Timoshenko/Reissner-Mindlin theory for beams/plates)
have emerged. They maintain that the deformed cross-
sections remain plane, but not necessarily perpendicular to
the deformed neutral axis/plane (see Timoshenko [1] and
Reissner [2], for instance). The resulting shear strain distrib-
ution is uniform through the thickness (rather than parabolic
in the case of a homogeneous structure) and thus, use is made
of a shear correction factor to accurately assess the transverse
shear force. The determination of this factor is usually not
an easy task as it depends on many parameters such as the
geometry, loading and boundary conditions (see Dong et al.
[3] for further details). Therefore, as an alternative, higher-
order shear deformation theories (HSDT) and refined shear
deformation theories (RSDT) have been developed, which
enable a more realistic description of the shear strain distri-
bution (without any correction), thanks to the introduction
of non-linear terms in the displacement fields. The enrich-
ment functions (for the longitudinal/in-plane displacements)
may range from polynomials (among many other authors,
Ambartsumian [4] and Reddy [5] illustrated the well-known
case of third-order kinematics) and trigonometric functions
(for instance, ordinary and hyperbolic sine/cosine functions
were respectively used in Touratier [6] and Soldatos [7])
to exponential functions (see, for example, Sayyad [8]).
Besides, it would be worth-mentioning that the transverse
deflection is in almost all cases assumed to be constant along
the thickness direction.

The main benefit of such approaches lies in their greater
efficiency when compared to onerous 2D/3D models. Deal-
ing with laminated composites, one can distinguish between
two main approaches, namely the equivalent single-layer
(ESL) and layer-wise (LW) theories, according towhether the
kinematic fields are described in a global or discrete way. The
maindifferences between these twoapproaches are schemati-
cally represented in Fig. 1, in the case of a sandwich structure.

In ESL theories, the displacement field is assumed to
be represented by a unique expression across the whole

thickness of the composite structure. Thismay lead to accept-
able global stress distributions but completely inappropriate
results regarding the interlaminar stresses, and increasing the
order of the displacement field is not supposed to fix the prob-
lem [10]. For a detailed literature review on the use of the
existing ESL theories in the general case of laminated com-
posites, the interested reader may refer to Reddy [11] and
Carrera [12], for instance.

In contrast, LW theories rely on piecewise displacement
fields, which offer a more realistic representation of the com-
posite through-thickness kinematics. Discrete LW theories
assume independent displacement fields within each layer,
thus making the number of kinematic variables dependent
on the number of layers. The displacement continuity condi-
tions at the interfaces between adjacent layers enable then the
total number of degrees of freedom to be reduced [13,14].
In order to minimize the computational cost of the discrete
LW class models, one can resort to the well-known zig-zag
theory, initially introducedbyDiSciuva [15]. In zig-zagmod-
els, the in-plane displacements are first defined in a global
way (generally using a first-order representation) and then
supplemented by piecewise zig-zag functions which ensure
the continuity of displacements but also transverse stresses
at each interface between successive layers (an overview on
zig-zag and refined zig-zag models is available in Tessler et
al. [16]).Advanced solutions such as those based onCarrera’s
unified formulation (CUF)or generalizedunified formulation
(GUF) have emerged recently. Further details on these meth-
ods may be found for instance in Carrera [17] and Demasi
[9], and benchmark analyses ofmany theories andmodels are
gathered in the review articles by Ghugal and Shimpi [18],
Zhen and Wanji [19] and Hu et al. [20].

The above-mentioned theories have been so far widely
applied to investigate the behavior of sandwich structures,
which can be viewed as special laminated composites.
However, dealing with classical sandwich structures, with
typically uniform thick and soft core materials compared to

Fig. 1 Illustration of a displacement field in a sandwich beam in the context of ESL and LW theories [9]
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the skins, the above model classes are still not appropriate
tools to accurately describe the complex behavior of the core
layer, especially when the faces are intended to wrinkle.

Phan et al. [21] have shown that considering linear axial
strain distribution in the core layer may lead to erroneous
results, even for moderately thick cores. A few years ear-
lier, Hu et al. [22] built on a specific formulation so as to
develop a 1D beam-like finite element model, wherein the
skins are represented by an Euler–Bernoulli beam model
while the transverse and axial displacements in the core
layer are second- and third-order polynomial functions of the
thickness coordinate, respectively. Despite these non-linear
displacement fields used in the kinematic description, the
critical buckling loads obtained with their model differ from
2D numerical simulation results as soon as wrinkle modes
are concerned.

Therefore, the present study aims at developing a new
specific 1D finite element model devoted to the analysis of
sandwich beams. Such a 1D model is meant to be an effi-
cient numerical tool compared to a classical 2Dfinite element
model, where both the skin and core layers are represented as
2D continuous media and discretized using solid elements.
Moreover, in the interest of accuracy, a particular emphasis
is given to the through-thickness kinematics. While the skins
are typically modeled by Timoshenko beams, the displace-
ment fields in the core layer are not chosen arbitrarily but
defined in accordance with analytical solutions which were
derived by the authors in the context of buckling analyses of
sandwich beam-columns and plates under various loadings,
without presupposing any kinematic assumption [23,24].

The original finite element formulation is implemented in
a home-made program whose main objective is to analyze

the global and local buckling behavior of sandwich beam-
columns. For this purpose, linearized buckling analyses are
performed within a total Lagrangian framework. Numerical
results are compared with the analytical solutions from Dou-
ville andLeGrognec [23] and reference results from2Dfinite
element computations performed for validation purposes.

2 Theoretical formulation

2.1 Problem statement

This study focuses on classical symmetric sandwich beam-
columns (with identical skins). As in Douville and Le
Grognec [23], the sandwich structure is of length L , thick-
nesses 2hs and 2hc (for the skin and core layers, respectively)
andunit depth.Both skin and corematerials are assumed to be
homogeneous and isotropic with a linear elastic constitutive
law (use is made of the Young’s moduli E and the Pois-
son’s ratios ν but also of the Lamé constants � and μ where
� = Eν

(1+ν)(1−2ν)
and μ = E

2(1+ν)
stands for the shear modu-

lus). The final objective is to define a ’sandwich beam’model
in order to investigate the global but also local behavior of
such a composite structure in an efficient way. The buckling
response of the sandwich structure is of special interest, since
it particularly involves multi-scale phenomena. Among the
loading conditions giving rise to global or local instabilities
(see Fig. 2), the cases of compression and pure bending have
already been solved analytically in Douville and Le Grognec
[23]. In particular, the analytical modal deformation shapes
of the core layer, obtained without the use of any kinematic
assumption, have shown to be very similar for both loading

Fig. 2 Two-dimensional representation of a sandwich beam-column under various loading conditions. a sandwich column under compression,
b sandwich beam under pure bending, c sandwich beam under simple bending
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conditions, and they will thus serve as a basis for the defini-
tion of the 1D enriched numerical model.

2.2 General overview of the prior analytical results

In Douville and Le Grognec [23], the facings are assumed to
behave like Euler–Bernoulli beams, whereas the foam core is
modeled by a 2D continuous solid satisfying the plane stress
hypothesis. The left and right end sections of the sandwich
column are respectively subjected to zero and non-zero dis-
placement boundary conditions in the longitudinal direction
(as depicted in Figs. 2a, b, in the compression and pure bend-
ing cases, respectively), what leads to buckling. The critical
displacements λcr and the associated bifurcation modes are
obtained by solving the so-called bifurcation equation in a
3D framework, following a total Lagrangian formulation.

Introducing the proper kinematics in each layer and with
the help of a few simplifying assumptions, the bifurcation
equation turns into a set of partial differential equations
and associated natural boundary conditions, after integration
by parts. Thanks to the additional displacement continuity
and boundary conditions, the resulting system can be solved
for the two considered loading cases (see Douville and Le
Grognec [23] for more details on the derivation of the gov-
erning equations).

In both cases, the following expressions can be used for
the skin components of the bifurcationmode by extrapolating
the classical buckling modes of a single beam with the same
boundary conditions:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Ua = α sin nπX
L

Ub = β sin nπX
L

Va = δ cos nπX
L

Vb = cos nπX
L

(1)

whereUi andVi (with i = a or b depending on the considered
skin) represent the longitudinal and transverse displacements
of the neutral axis, according to the Euler–Bernoulli kine-
matics, n is an arbitrary half-wave number and α, β, δ are
unknown amplitudes.

On one hand, dealing with the axial compression case, the
same unit amplitude is retained for the transverse deflection
of both faces, due to the symmetry of the problem. However,
two cases should be considered, depending on the relative
sign of the two fields Va and Vb. The bifurcation mode of
the sandwich column may thus be antisymmetric (δ = 1,
Va = Vb) or symmetric (δ = −1, Va = −Vb).

Concerning themodal displacement field in the foam core,
a separation of variables is performed and the following
forms are presupposed, according to Eq. (1):

{
Uc = ζ(Y ) sin nπX

L

Vc = ξ(Y ) cos nπX
L

(2)

Solving first the two partial differential equations related
to the core region, one gets the following expressions for
functions ζ and ξ in the case of an antisymmetric mode:
{

ζ(Y ) = k1 sinh nπY
L + k2Y cosh nπY

L

ξ(Y ) = k3 cosh nπY
L + k4Y sinh nπY

L

(3)

where k1, k2, k3 and k4 are constants which depend on α and
β. These two amplitudes are easily determined by solving
two of the remaining partial differential equations derived
in the upper and lower skins and turn out to be opposite
from each other. The last two equations can be finally solved
separately and both lead to the same closed-form expression
for the critical displacement (see Eq. (33) in Appendix A).
The same procedure is used in the case of a symmetric mode
and gives rise to somewhat different expressions, in which
the roles of functions ζ and ξ are reversed (see Eq. (34) for
the new expression of the critical displacement).

On the other hand, in the pure bending case, the lower
skin undergoes tensile stresses and is not subjected to any
instability phenomenon. Nevertheless, it also deforms in a
sine wave pattern, induced by the sinusoidal buckled shape
of the compressed upper skin, but with a smaller amplitude
of deflection (δ < 1) and also a different amplitude of lon-
gitudinal displacement. The displacement field in the core
layer is, however, split similarly as in Eq. (2). The solution
procedure is finally analogous to the one described above.
The only difference occurs when solving the last two par-
tial differential equations, which are no more redundant, due
to the different signs of the pre-critical stresses in the two
facings. Here, these two equations allow one to derive both
expressions of the critical displacement λcr and the ampli-
tude δ (these closed-form expressions are not reported herein
as they are quite bulky). What is important is that the same
combinations of hyperbolic sine and cosine functions are
established again for ζ and ξ .

In the sequel, the closed-form expressions obtained for
the modal displacements in the core layer (functions ζ and
ξ ) will inspire the kinematics of the 1D enriched formulation
to be defined. Besides, the previous analytical critical values
will serve as reference solutions for future validation of the
finite element model developed in this study.

2.3 1D formulation

The ’sandwich beam’ model further developed relies on spe-
cific kinematic assumptions for each layer (skins and core) so
as to properly describe the through-thickness distribution of
strains and stresses, including when local instabilities occur
in the sandwich.
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2.3.1 Skin layers

For convenience purposes, the skin layers are represented by
a Timoshenko beam model accounting for transverse shear
effects, what allows one to deal with all kinds of sandwich
beam-columns, including short ones.

Let (eX , eY , eZ ) be a fixed orthonormal basis, where eX
is the neutral axis of the beam in hand and eY represents the
thickness direction. The displacement field in each face may
thus be expressed as follows, in the associated coordinate
system:

U(X,Y ) =
∣
∣
∣
∣
∣
∣

U (X) − Y θ(X)

V (X)

0
(4)

whereU (X) and V (X) are respectively the longitudinal and
transverse displacements of the centroid axis of the beam,
and θ(X) represents the rotation of the cross-section about
the eZ axis, in accordance with Timoshenko kinematics.

The Green-Lagrange strain tensor writes then:

E = 1

2
(∇U + ∇TU + ∇TU · ∇U) (5)

where the displacement gradient tensor∇U takes the follow-
ing form in the orthonormal basis (eX , eY , eZ ):

∇U =
⎡

⎣
U,X − Y θ,X −θ 0

V,X 0 0
0 0 0

⎤

⎦ (6)

Hence, neglecting higher-order terms, the remaining non-
zero strain-displacement relations may be expressed as
follows:

{
EXX = U,X + 1

2V
2
,X

2EXY = V,X − (1 +U,X )θ
(7)

In the general case of an isotropic linear elastic mater-
ial, the Green-Lagrange strain tensor is related to the second
Piola-Kirchhoff stress tensor by the Saint-Venant-Kirchhoff
law:

� = D : E = �tr(E)I + 2μE (8)

where I stands for the second-order unit tensor. Here, only
the following non-zero stress components will be involved
in the subsequent developments:

{
�XX = Es EXX

�XY = 2μs EXY
(9)

2.3.2 Core layer

According to the preceding analytical developments, special
kinematic expressions are introduced so as to describe the
actual behavior of the homogeneous foam core.

The enriched displacement field in the core layer is written
as follows:

Uc(X,Y ) =
∣
∣
∣
∣
∣

Uc
0 (X) +Uc

1 (X) sinh(π
L Y ) + F(X,Y )

V c
0 (X) cosh(π

L Y ) + V c
1 (X)Y + G(X, Y )

(10)

where Y stands for the thickness coordinate relative to the
mid-axis of the core layer.

The enrichment functions F and G are devoted to the
description of the local effects that are likely to happen in the
core layer. They are thus defined, in accordance with the ana-
lytical expressions of the buckling modes, as the following
combinations of hyperbolic sine and cosine functions:

⎧
⎪⎪⎨

⎪⎪⎩

F(X,Y ) = φ1(X) cosh(αY ) + φ2(X) sinh(αY )

+φ3(X)Y cosh(αY ) + φ4(X)Y sinh(αY )

G(X,Y ) = φ5(X) cosh(αY ) + φ6(X) sinh(αY )

+φ7(X)Y cosh(αY ) + φ8(X)Y sinh(αY )

(11)

A unique value of parameter α (replacing nπ
L in the analyt-

ical expressions) will be retained in the sequel, as it only
depends on the wavelength L

n which has proved to change
practically very little when varying the geometric and mater-
ial properties, as far as the first local mode is concerned. The
amplitudes φ2(X), φ3(X), φ5(X) and φ8(X) are connected
to the shape functions associated to the antisymmetric modes
and, conversely, φ1(X), φ4(X), φ6(X) and φ7(X) are related
to symmetric modes. In order to also represent the contri-
bution of the global mode, similar functions are used (with
amplitudes Uc

1 (X) and V c
0 (X)) where α is replaced by π

L
(considering n = 1 in the analytical expressions). The func-
tions Y cosh(πY

L ) and Y sinh(πY
L ) are not introduced here

as they would give rise to singularities due to redundancy.
Indeed, since Y << L , these functions are far too close
to the previous ones, sinh(πY

L ) and cosh(πY
L ), respectively.

It is worth mentioning that the two functions sinh(πY
L ) and

cosh(πY
L ) are almost linear and constant, respectively, in the

range of the considered values, so that they can reproduce
properly the deformation state of the core layer under pure
or simple bending. Lastly, a constant componentUc

0 (X) and
a linear one V c

1 (X)Y have been added in the expressions of
the longitudinal and transverse displacements, respectively,
so as to reproduce also the deformation state under pure com-
pression.

Then, the in-plane terms of theGreen-Lagrange strain ten-
sor may be expressed as follows:
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⎧
⎪⎨

⎪⎩

Ec
XX = Hc

X X + 1
2

(
(Hc

X X )2 + (Hc
Y X )2

)

Ec
YY = Hc

YY + 1
2

(
(Hc

YY )2 + (Hc
XY )2

)

2Ec
XY = Hc

XY + Hc
Y X + Hc

X XHc
XY + Hc

YYHc
Y X

(12)

where the components of the displacement gradient tensor
Hc are given in Eq. (35) (see Appendix B).

The facings are supposed to be perfectly bound to the core
layer and ad hoc relationships are thus added so as to account
for the continuity of the displacements at the top and bottom
interfaces, bringing the total number of kinematic unknowns
to 14:

• at the upper skin/core interface:

Ub(X,−hs) = Uc(X, hc)

�⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ub + hsθb = Uc
0 +Uc

1 sinh(
π
L hc)

+φ1 cosh(αhc) + φ2 sinh(αhc)

+φ3hc cosh(αhc) + φ4hc sinh(αhc)

V b = V c
0 cosh(π

L hc) + V c
1 hc

+φ5 cosh(αhc) + φ6 sinh(αhc)

+φ7hc cosh(αhc) + φ8hc sinh(αhc)

(13)

• at the lower skin/core interface:

Ua(X, hs) = Uc(X,−hc)

�⇒

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ua − hsθa = Uc
0 −Uc

1 sinh(
π
L hc)

+φ1 cosh(αhc) − φ2 sinh(αhc)

−φ3hc cosh(αhc) + φ4hc sinh(αhc)

V a = V c
0 cosh(π

L hc) − V c
1 hc

+φ5 cosh(αhc) − φ6 sinh(αhc)

−φ7hc cosh(αhc) + φ8hc sinh(αhc)

(14)

where the superscripts •a and •b designate the bottom and
top skin layers, respectively.

Taking into consideration the aforementioned displace-
ment continuity constraints, one can rewrite φ1, φ2, φ5 and
φ6 in terms of the remaining unknowns as follows:

φ1 = 1

cosh(αhc)

(
1

2
(Ub +Ua) + hs

2
(θb − θa)

−Uc
0 − φ4hc sinh(αhc)

)

φ2 = 1

sinh(αhc)

(
1

2
(Ub −Ua) + hs

2
(θb + θa)

−Uc
1 sinh(

π

L
hc) − φ3hc cosh(αhc)

)

φ5 = 1

cosh(αhc)

(
1

2
(V b + V a) − V c

0 cosh(
π

L
hc)

−φ8hc sinh(αhc)

)

φ6 = 1

sinh(αhc)

(
1

2
(V b − V a)−V c

1 hc−φ7hc cosh(αhc)

)

(15)

Thereafter, the plane stress hypothesis is adopted so that
the stress-strain constitutive law in the foam core writes:

⎧
⎨

⎩

�c
X X

�c
YY

�c
XY

⎫
⎬

⎭
=

⎡

⎣
�∗

c + 2μc �∗
c 0

�∗
c �∗

c + 2μc 0
0 0 μc

⎤

⎦

⎧
⎨

⎩

Ec
XX

Ec
YY

2Ec
XY

⎫
⎬

⎭

(16)

where �∗
c = 2�cμc

�c+2μc
.

3 Numerical implementation

3.1 Finite element model

The governing equations of the problem are derived from the
principle of virtual work within a total Lagrangian frame-
work. The following relation holds for any kinematically
admissible displacement variation δU:

δWint (δU) + δWext (δU) = 0 (17)

On one hand, the virtual internal work δWint takes the
following form:

δWint = −
∑

i=a,b,c

∫

�i

�i : δEi dVi

= −
∫ L

0

(∫ hs

−hs

(
�a

X X δEa
XX + 2�a

XY δEa
XY

)
dY

+
∫ hc

−hc

(
�c

X X δEc
XX +�c

YY δEc
YY +2�c

XY δEc
XY

)
dY

+
∫ hs

−hs

(
�b

X X δEb
XX + 2�b

XY δEb
XY

)
dY

)

dX (18)

Let us introduce the generalized strain vector γ =
〈
Ea
XX 2Ea

XY Ec
XX Ec

YY 2Ec
XY Eb

XX 2Eb
XY

〉T
and stress vec-

tor s = 〈
�a

X X �a
XY �c

X X �c
YY �c

XY �b
X X �b

XY

〉T
.

Then, one may define the following vector of generalized
displacements:
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q =
〈
Ub Ua Ub

,X
Ua

,X
V b V a V b

,X
V a

,X
θb θa θb,X θa,X Uc

1

Uc
1,X V c

0 V c
0,X φ3 φ4 φ7 φ8 φ3,X φ4,X φ7,X φ8,X

Uc
0 Uc

0,X V c
1 V c

1,X

〉T

(19)

where the functions φ1, φ2, φ5, φ6 and their derivatives have
been discarded, since they are related to the other variables
through the continuity conditions (see Eq. (36) in Appendix
B for the corresponding expressions of the derivatives).

In order to establish more convenient expressions, vector
γ (along with s) may be split into a linear part and a quadratic
one with respect to vector q:

⎧
⎪⎪⎨

⎪⎪⎩

γ =
(

H + 1

2
A(q)

)

q

s =L
(

H + 1

2
A(q)

)

q
(20)

whereH,A ∈ R
7×28, while the constitutive matrixL ∈ R

7×7

(the corresponding formulae are given in Appendix C except
from the components of matrixAwhich are not reported due
to their bulky size).

Hence, Eq. (18) takes the following vector form:

δWint = −
∫ L

0

(∫ hk

−hk
δγ T s dY

)

dX

= −
∫ L

0

(∫ hk

−hk
δqT (HT + AT (q))L

(

H + 1

2
A(q)

)

q dY

)

dX

(21)

in which the index k = s or c, depending on the region in
which the through-thickness integration is performed.

On the other hand, the only applied forces that will be
considered in the sequel are localized at the two ends of the
sandwich beam-column. The external virtual work δWext

can thus be written as follows:

δWext = δqT (0)�0 + δqT (L)�L (22)

In Eq. (22), �0 and �L represent vectors of generalized
forces. Since in practice only the facings will be involved
with the applied forces, the last 16 components of �0 and
�L , associated to the core generalized displacements, will
always be zero.

It should be mentioned that the integration of Eq. (21)
with respect to the Y -coordinate is performed analytically
through the thickness of the skins, while a numerical inte-
gration using Gaussian quadratures is carried out through
the core thickness as it involves more complex hyperbolic
functions. The resulting shear quantities in the skin layers
(
∫ hs
−hs

2δEa
XY�a

XY dY and
∫ hs
−hs

2δEb
XY�b

XY dY ) are further

ξ = −1

1

ξ = 0

2

ξ = 1

3

N1(ξ) = 1
2ξ(ξ − 1)

N2(ξ) = 1− ξ2

N3(ξ) = 1
2ξ(ξ + 1)

Fig. 3 Graphic representation of the interpolation functions of the 3-
node reference 1D element

multiplied by a correction factor of 5
6 , as for homogeneous

beams according to the Timoshenko beam theory.
The problem is now discretized using 3-node isoparamet-

ric elements with quadratic shape functions (see Fig. 3).
In view of the kinematic assumptions and continuity

conditions, there remain 14 fundamental unknowns which
can be brought together in a unique vector d(X) =〈
Ub(X) Ua(X) V b(X) V a(X) θb(X) θa(X) Uc

1 (X) V c
0 (X)

φ3(X) φ4(X) φ7(X) φ8(X) Uc
0 (X) V c

1 (X)
〉T .

Within a given finite element e, all the components of
vector d are interpolated in the same way, introducing the
elementary nodal displacement vector de composed of the 42
degrees of freedom of the given element and the associated
interpolation matrix N:

d = Nde (23)

with de =
〈
de

T

1 de
T

2 de
T

3

〉T
, where dei � d(Xi ) =

〈
Ub Ua V b V a θb θa Uc

1 V c
0 φ3 φ4 φ7 φ8 Uc

0 V c
1

〉T
i contains

the 14 degrees of freedom of the i-th node of element e.
Finally, the generalized displacement vector q may be

expressed in terms of d (by means of a transformation matrix
T including differential operators) and subsequently in terms
of de as follows:

q = Td = TNde � Gde (24)

According to all these definitions, Eq. (17) canbe rewritten
in its discretized form in the following way:

∑

e

∫ 1

−1
δde

T
(∫ hk

−hk
(BL +BNL (d))T L

(

BL + 1

2
BNL (d)

)

dY

)

de
Le

2
dξ

= δdT (0)TT �0 + δdT (L)TT �L (25)

where:
{
BL = HG

BNL = AG
(k = s or c) (26)

and the integration over a real element is replaced by the
integration over the reference element, by means of the fol-

123



894 Comput Mech (2016) 57:887–900

lowing variable change: dX = Le
2 dξ . A reduced numerical

integration scheme (with 2 Gaussian points by element) is
employed for the calculation of integrals in Eq. (25) so as to
prevent from any shear-locking problem.

3.2 Derivation of the eigenproblem

The equilibrium equation (25) may be rewritten in the more
concise following form:

�(D) = F (27)

where � and F designate the global internal and external
force vectors, respectively, associated to the global nodal dis-
placement vector D.

Differentiating Eq. (27) allows one to compute the tangent
stiffness matrix:

KT = ∂�(D)

∂D
(28)

and to solve the bifurcation problem in hand by finding its
eigenvalues and corresponding eigenvectors. This matrix is
classically decomposed as follows:

KT = K0 + KNL + Kσ (29)

where K0, KNL and Kσ denote the small-strain, large-
displacement and geometric stiffness matrices, respectively,
whose expressions are given by:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K0 =
∑

e

∫ 1

−1

(∫ hk

−hk
BT
LLBL dY

)
Le

2
dξ

KNL =
∑

e

∫ 1

−1

(∫ hk

−hk

(
BT
LLBNL + BT

NLLBL + BT
NLLBNL

)
dY

)
Le

2
dξ

KσdD =
∑

e

∫ 1

−1

(∫ hk

−hk
dBT

NLs dY
)

Le

2
dξ

(30)

In the case of small pre-buckling deformations, the non-
linear eigenvalue problem comes down to the following
linearized generalized eigenvalue problem:

(K0 + λKσ ) dD = 0 (31)

where Kσ is here the geometric stiffness matrix related to a
unit reference load.

The critical loadings λ (eigenvalues) and the correspond-
ing buckling modes dD (eigenvectors) are then determined

using theQZ algorithm implemented in standard Fortran sub-
routines from the EISPACK package [25].

4 Results: validation, analysis and discussion

A home-made finite element program has been developed,
based on the previous 1D enriched finite element model. Lin-
earized buckling analyses are first performed in both cases
of axial compression and pure bending of the sandwich
beam-column. The numerical results are validated against
the analytical solutions from Douville and Le Grognec [23],
recalled at the beginning of this paper (see Sect. 2.2).

For conciseness purposes, no parametric analysis will be
addressed in the present paper. The interested reader may
refer to Douville and Le Grognec [23] for more details about
the influence of geometric and material parameters on the
buckling response of sandwich beam-columns.

The case of a cantilever sandwich beam with a concen-
trated transverse load at the free end is also investigated.
Since there is no reference solution available in the literature
for this loading case, the numerical results provided by the
present 1D enriched model will be compared with the solu-
tions obtained from full 2D computations performed using
Abaqus software.

The same mesh is maintained throughout this study, dis-
playing 100 elements along the length of the beam. A total
number of 12 Gaussian points is retained for the numerical

integration through the core thickness, according to a pre-
liminary convergence analysis.

4.1 Axial compression

The material and geometric parameters considered in this
case are given inTable 1 (with two possible core thicknesses).

The displacement boundary conditions defined in Dou-
ville and Le Grognec [23] and depicted in Fig. 2a are here
appropriately applied at both ends of the column and no
further loading is required. At the left end, the longitu-
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Table 1 Material and geometric parameters in axial compression

Es (MPa) Ec (MPa) νc L (mm) hs (mm) hc (mm)

50000 70 0.4 600 0.5 15-30

dinal displacement of both core and skin layers is fixed,
what corresponds to the following boundary conditions:
Ub(0) = Ua(0) = θb(0) = θa(0) = Uc

1 (0) = φ3(0) =
φ4(0) = Uc

0 (0) = 0. Conversely, at the right end, a uni-
form unit displacement is applied throughout the sandwich
thickness in the longitudinal direction, in order to generate
compressive stresses in the structure and induce a buck-
ling phenomenon: Ub(L) = Ua(L) = Uc

0 (L) = −1 and
θb(L) = θa(L) = Uc

1 (L) = φ3(L) = φ4(L) = 0. The
transverse displacement of an arbitrary point is also fixed so
as to prevent the column from rigid modes.

Based upon prior parametric analyses achieved for sev-
eral geometric and material configurations, parameter α is
definitively set to the following value:

α = π

20
mm−1 (32)

The 1D finite element model allows one to recover all
the buckling mode types for sandwich columns under axial
compression,whichwere identified in the previous analytical
study. In particular, the first buckling mode is found to be
a global mode when considering the lower core thickness
(hc = 15 mm) and either an antisymmetric or a symmetric
local mode with the thicker core layer (hc = 30 mm). Fig.
4 displays those three mode types, which were rebuilt from
1D simulation results.

In order to assess the accuracy of the 1D finite element
model, the obtained antisymmetric and symmetric criti-
cal values are finally plotted versus the half-wave number,
together with the analytical solutions provided by Eqs. (33)
and (34). The comparison illustrated in Figs. 5 and 6 shows a
fair agreement between the analytical and numerical results
(with less than 1% of relative error between the critical dis-
placements).

4.2 Pure bending

In the pure bending case, the sandwich beam is characterized
by the properties summarized in Table 2 with a varying core
modulus Ec.

(a)

(b)

(c)

Fig. 4 2D reconstitution of global and local buckling modes obtained with the 1Dmodel. a global mode, b antisymmetric local mode, c symmetric
local mode
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Fig. 5 Comparison between analytical and numerical (1D) critical displacements of a sandwich column with core thickness hc = 15 mm. a
antisymmetric modes, b symmetric modes
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Fig. 6 Comparison between analytical and numerical (1D) critical displacements of a sandwich column with core thickness hc = 30 mm. a
antisymmetric modes, b symmetric modes

Table 2 Material and geometric parameters in pure bending

Es (MPa) Ec (MPa) νc L (mm) hs (mm) hc (mm)

65600 10-50-100 0.3 800 0.5 9
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Fig. 7 Analytical and numerical critical displacements of a sandwich
beam under pure bending

The boundary conditions are partially the same as in the
preceding case, except for the right end of the sandwich
beam, where uniform compressive and tensile displacements

are applied on the top and bottom skins, respectively. The
new conditions can thus be expressed as follows: Ub(0) =
Ua(0) = θb(0) = θa(0) = Uc

1 (0) = φ3(0) = φ4(0) =
Uc
0 (0) = θb(L) = θa(L) = 0 and Ub(L) = −Ua(L) =

−1.
Figure 7 depicts the analytical and numerical critical dis-

placements corresponding to buckling modes with a large
range of half-wave numbers, for the three considered core
moduli. It reveals that the enriched numerical model is again
in excellent agreement with the analytical solution. Both the
critical values and buckling modes (half-wave numbers) are
accurately estimated (the relative error does not exceed 1%
in all cases).

The very first buckling mode (corresponding to the min-
imum critical displacement) of the sandwich beam with
Ec = 10 MPa is shown in Fig. 8, displaying 23 half-waves.
One can notice some deviations in the buckling mode shape
from the expected regular sinusoidal pattern. Owing to the
kinematics, the enforced displacements fatally lead here to a
pre-critical stress state that does not comply accurately with
the pure bending problem. In Douville and Le Grognec [23],
similar 2D numerical computations were performed with a
linear distribution of displacements throughout the sandwich
thickness, and the perfect analytical modes were thus cap-
tured. For verification purposes, a 2D numerical computation
has been performed here using Abaqus software with the
same imperfect boundary conditions, and the same modal
deformed shape was obtained (see Fig. 8).

(a)

(b)

Fig. 8 Typical buckling mode of a sandwich beam under pure bending. a buckling mode obtained with the 1D model, b buckling mode obtained
with Abaqus
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Fig. 9 Comparison between 1D and 2D numerical critical values of
sandwich beams subjected to simple bending

4.3 Simple bending

One considers finally a sandwich beam under simple bending
so as to demonstrate the wide range of applications of the
present model. The left end of the sandwich beam is clamped
whereas transverse concentrated forces are applied on the
right end of the top and bottom faces (the core layer being
load-free).

In the absence of analytical solutions, 2D finite element
computations are performed here using Abaqus software,
for validation purposes. The associated finite element mesh
is made up of 8-node quadrangular elements with reduced
integration. It displays 100 elements along the beam length,
8 elements in the thickness of the foam core and a unique
element in the thickness of each skin.

The two different configurations whose geometric and
material properties are listed in Table 1 are considered again
(namely a relatively thin and thick beam, respectively). The
results from the two numerical 1D and 2D approaches are

Table 3 Summary of theminimumcritical values and related half-wave
numbers

Loading Case λ1Dcr /n λ
re f
cr /n

Compression hc = 15 mm 2.174/1 2.178/1

hc = 30 mm 4.29/32 4.31/32

Pure bending Ec = 10 MPa 1.474/23 1.47/23

Ec = 50 MPa 4.027/37 4.03/37

Ec = 100 MPa 6.349/45 6.35/45

Simple bending hc = 15 mm 206.62/- 207.09/-

hc = 30 mm 408.39/- 408.01/-

confronted for the first 10 buckling modes, and it can be
clearly seen from Fig. 9 that the critical values are once more
in very good accordance (with less than 0.5%of relative error
in the worst cases).

The typical buckling mode shape in this loading case is
characterized by the appearance of wrinkles at the lower skin
near the left end (where the axial compressive stresses are at
their maximum). As depicted in Fig. 10, the 2D and rebuilt
1D buckling modes are also very similar (only the first mode
of the thicker beam is displayed, for illustrative purposes).

Eventually, the critical values and related half-wave num-
bers obtained with the 1D present model are summed up in
Table 3 together with the reference solutions (either analyti-
cal in the compression and pure bending cases or numerical
in the simple bending case) for the very first buckling mode
(the critical values are given in mm for the compression and
pure bending cases and in N for the simple bending case).

It is worth mentioning that a unique value of parameter α

has been retained throughout all the calculations, for which
satisfactory results have been systematically obtained.

5 Conclusions

In this paper, an original beam-like model has been formu-
lated and implemented for the purpose of investigating the

(a)

(b)

Fig. 10 Comparison of the 1D and 2D first buckling modes of the sandwich beam with hc/hs = 60 under simple bending. a buckling mode
obtained with the 1D model, b buckling mode obtained with Abaqus
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buckling behavior of sandwich beam-columns. In thismodel,
the skins are classically represented by Timoshenko beams
whereas special hyperbolic functions are employed so as to
describe the displacement profiles along the core thickness.
This kinematics is perfectly suited as it is based on previous
analytical investigations where both global and local buck-
ling modes are naturally described by the same hyperbolic
functions (with variable half-wave numbers).

The problem is discretized using 3-node Lagrangian 1D
elements with 14 degrees of freedom per node. The computa-
tion of the initial and geometric stiffnessmatrices is specially
performed in order to solve the generalized eigenproblem
encountered in linearized buckling analyses.

The numerical solutions provided by the present model
are shown to be in very good agreement with reference
analytical and numerical results, regardless of the loading
conditions. This new 1D model appears thus to be a robust
and computationally efficient tool for the general study of
sandwich beam-columns in the presence of local effects. It
has been successfully applied to buckling analyses and may
be further employed in the context of post-buckling or vibra-
tion/dynamic problems.

Acknowledgments The authors are grateful to theNord-Pas-de-Calais
Regional Council (France) for its financial support.

AppendixA.Closed-formexpressions for the critical
displacements of a sandwich column

The critical displacements are given by the following expres-
sions in the antisymmetric and symmetric cases, respectively:

λA
cr =

(

4Es EcnπL2hs
[
4n2π2h2s + 3L2

]
cosh2

nπhc
L

+
[
3E2

c L
5 + 12Es Ecn

2π2L3h2s (1 − νc)

+ 4E2
s n

4π4Lh4s
(
3 + 2νc − ν2c

)]

cosh
nπhc
L

sinh
nπhc
L

− 3EcnπL4 [4Eshs + Echc]

+ 12Es Ecn
3π3L2h2s hc [1 + νc]

+ 4E2
s n

5π5h4s hc [1 + νc]
2
)

/
(

12EsnπLhs

[

EcL
2 cosh2

nπhc
L

+ Esnπhs L
(
3 + 2νc − ν2c

)
cosh

nπhc
L

sinh
nπhc
L

+ Esn
2π2hshc (1 + νc)

2
])

(33)

λS
cr =

(

4Es EcnπL2hs
[
[4n2π2h2s + 3L2

]
cosh2

nπhc
L

+
[
3E2

c L
5 + 12Es Ecn

2π2L3h2s (1 − νc)

+ 4E2
s n

4π4Lh4s
(
3 + 2νc − ν2c

)]

× cosh
nπhc
L

sinh
nπhc
L

+ 3E2
c nπL4hc

− 16Es Ecn
3π3L2h3s

− 12Es Ecn
3π3L2h2s hc [1 + νc]

− 4E2
s n

5π5h4s hc [1 + νc]
2
)

/
(

12EsnπLhs

[

EcL
2 cosh2

nπhc
L

+ Esnπhs L
(
3 + 2νc − ν2c

)
cosh

nπhc
L

sinh
nπhc
L

− EcL
2 − Esn

2π2hshc (1 + νc)
2
])

(34)

Appendix B. Useful expressions in the core layer

The displacement gradient tensor components in the foam
core write:

Hc
X X = Uc

0,X +Uc
1,X sinh

(π

L
Y

)
+ φ1,X cosh(αY )

+φ2,X sinh(αY )

+φ3,X Y cosh(αY ) + φ4,X Y sinh(αY )

Hc
XY = Uc

1
π

L
cosh

(π

L
Y

)
+ φ1α sinh(αY ) + φ2α cosh(αY )

+φ3[cosh(αY ) + Yα sinh(αY )]
+φ4[sinh(αY ) + Yα cosh(αY )]

Hc
Y X = V c

0,X cosh
(π

L
Y

)
+ V c

1,X Y + φ5,X cosh(αY )

+φ6,X sinh(αY ) + φ7,X Y cosh(αY )

+φ8,X Y sinh(αY )

Hc
YY = V c

0
π

L
sinh

(π

L
Y

)
+ V c

1 + φ5α sinh(αY )

+φ6α cosh(αY ) + φ7[cosh(αY ) + Yα sinh(αY )]
+φ8[sinh(αY ) + Yα cosh(αY )] (35)

Taking into account the displacement continuity con-
straints at the interfaces, φ1,X , φ2,X , φ5,X and φ6,X can be
given by the following expressions:

φ1,X = 1

cosh(αhc)

(
1

2
(Ub

,X
+Ua

,X
) + hs

2
(θb,X − θa,X )

−Uc
0,X − φ4,X hc sinh(αhc)

)

φ2,X = 1

sinh(αhc)

(
1

2
(Ub

,X
−Ua

,X
) + hs

2
(θb,X + θa,X )

−Uc
1,X sinh(

π

L
hc) − φ3,X hc cosh(αhc)

)
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φ5,X = 1

cosh(αhc)

(
1

2
(V b

,X
+V a

,X
) − V c

0,X cosh(
π

L
hc)

−φ8,X hc sinh(αhc)

)

φ6,X = 1

sinh(αhc)

(
1

2
(V b

,X
− V a

,X
) − V c

1,X hc

−φ7,X hc cosh(αhc)

)

(36)

Appendix C. Useful matrices

The non-zero components of matrix H are:

H(1, 4) = 1 H(1, 12) = −Y

H(2, 8) = 1 H(2, 10) = −1

H(3, 3) = cosh(αY )

2 cosh(αhc)
+ sinh(αY )

2 sinh(αhc)

H(3, 4) = cosh(αY )

2 cosh(αhc)
− sinh(αY )

2 sinh(αhc)

H(3, 11) = hs cosh(αY )

2 cosh(αhc)
+ hs sinh(αY )

2 sinh(αhc)

H(3, 12) = hs sinh(αY )

2 sinh(αhc)
− hs cosh(αY )

2 cosh(αhc)

H(3, 14) = sinh
(π

L
Y

)
− sinh(αY ) sinh(π

L hc)

sinh(αhc)

H(3, 21) = Y cosh(αY ) − hc sinh(αY )

tanh(αhc)

H(3, 22) = Y sinh(αY ) − hc tanh(αhc) cosh(αY )

H(3, 26) = 1 − cosh(αY )

cosh(αhc)

H(4, 5) = α sinh(αY )

2 cosh(αhc)
+ α cosh(αY )

2 sinh(αhc)

H(4, 6) = α sinh(αY )

2 cosh(αhc)
− α cosh(αY )

2 sinh(αhc)

H(4, 15) = π

L
sinh

(π

L
Y

)
− α sinh(αY ) cosh(π

L hc)

cosh(αhc)

H(4, 19) = cosh(αY ) + Yα sinh(αY ) − hcα cosh(αY )

tanh(αhc)

H(4, 20) = sinh(αY ) + Yα cosh(αY )

− hc tanh(αhc)α sinh(αY )

H(4, 27) = 1 − hcα cosh(αY )

sinh(αhc)

H(5, 1) = α sinh(αY )

2 cosh(αhc)
+ α cosh(αY )

2 sinh(αhc)

H(5, 2) = α sinh(αY )

2 cosh(αhc)
− α cosh(αY )

2 sinh(αhc)

H(5, 7) = sinh(αY )

2 sinh(αhc)
+ cosh(αY )

2 cosh(αhc)

H(5, 8) = cosh(αY )

2 cosh(αhc)
− sinh(αY )

2 sinh(αhc)

H(5, 9) = hsα sinh(αY )

2 cosh(αhc)
+ hsα cosh(αY )

2 sinh(αhc)

H(5, 10) = hsα cosh(αY )

2 sinh(αhc)
− hsα sinh(αY )

2 cosh(αhc)

H(5, 13) = π

L
cosh

(π

L
Y

)
− α sinh(π

L hc) cosh(αY )

sinh(αhc)

H(5, 16) = cosh
(π

L
Y

)
− cosh(π

L hc) cosh(αY )

cosh(αhc)

H(5, 17) = cosh(αY ) + Yα sinh(αY ) − hcα cosh(αY )

tanh(αhc)

H(5, 18) = sinh(αY ) + Yα cosh(αY )

− hcα tanh(αhc) sinh(αY )

H(5, 23) = Y cosh(αY ) − hc sinh(αY )

tanh(αhc)

H(5, 24) = Y sinh(αY ) − hc tanh(αhc) cosh(αY )

H(5, 25) = − sinh(αY )

cosh(αhc)

H(5, 28) = Y − hc sinh(αY )

sinh(αhc)

H(6, 3) = 1 H(6, 11) = −Y

H(7, 7) = 1 H(7, 9) = −1

(37)

The constitutive matrixL is defined by the following non-
zero components:

L(1, 1)=Es, L(2, 2)=μs, L(3, 3)=�∗
c+2μc

L(3, 4) = L(4, 3) = �∗
c , L(4, 4) = �∗

c + 2μc,

L(5, 5) = μc, L(6, 6) = Es, L(7, 7) = μs

(38)
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