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Abstract Three different models with increased complex-
ity to study the effects of hybridization on the tensile failure
of hybrid composites are proposed. The first model is a
model for dry bundles of fibres based on the statistics of fibre
strength.The second is amodel for compositematerials based
on the multiple fragmentation phenomenon. Lastly, a micro-
mechanical numerical model is developed that considers a
random distribution of fibres and takes into account the sto-
chastic nature of fibre strength. This study aims to understand
the controlling factors that lead to pseudo-ductility, as well
as establish the sequence of failure mechanisms in hybrid
composites under tensile loadings.

Keywords Hybrid composites · Pseudo-ductility ·
Analytical modelling · Numerical modelling

1 Introduction

Composite materials, in particular fibre-reinforced compos-
ites, play an important role in structural applications, however
their use is partly hampered due to the low toughness they
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exhibit. Fibre hybridisation is a strategy that can lead to
improved composite properties and performance, as it not
only changes the material properties but also changes the
damage propagationmechanisms leading to final failure [21].

The objective of this work is to study the effects of fibre
hybridization on the tensile failure of unidirectional hybrid
composites. Taking into account that fibre-reinforced com-
posites are complex materials with multiple constituents it is
hard to assess the effects that each of the constituent’s proper-
ties have on the behaviour of composite materials, therefore,
reliable models for the tensile failure of hybrid composites
are essential. The first author tomodel hybrid compositeswas
Zweben in 1997 [29] using an extended shear lag model for
hybrid composites. In this model the composite is modelled
as one dimensional arrangement of alternating low elonga-
tion (LE) and high elongation (HE) fibres and it was used to
determine the hybrid effect as a function of the fibres’ proper-
ties. Later Fukuda [8] assessed some of the shortcomings of
Zweben’s model and developed a different one dimensional
model, with an improved expression for the stress concen-
trations in hybrid composites.

More recently, Mishnaevsky and Dai [10] developed a 2D
numerical fibre bundle model with a random fibre packing.
Using Monte-Carlo method, random properties are given to
the fibres according to a Weibull distribution. The authors
also developed a 3D finite element model that was used to
validate the fibre bundle model. Swolfs et al. [23] developed
a model using the chain of bundles approach with a modified
Weibull distribution under very local load sharing assump-
tions that was used to characterize the cluster development in
carbon/glass hybrid composites, concluding that the critical
cluster size is around 20 fibres and varies with the hybrid
volume fraction.

Several simplified Global Load Sharing (GLS) models
have been developed and used to do parametric studies on the
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Fig. 1 Schematic stress–strain diagrams for: a non-hybrid composites, b typical hybrid composites and c pseudo-ductile hybrid composites

effects of fibre hybridization in composite materials. Rajan
andCurtin [16] developed aGLS theory to guide the design of
fibre reinforced hybrid composites with superior mechanical
properties to non-hybrid composites. The authors concluded
that for hybrid composites with a low volume fraction of LE
fibres it is possible to increase the composite’s stiffness and
pullout stress without compromising the tensile strength and
strain of thematerial. Swolfs et al. [22] also developed a GLS
model that was used for a parametric study on carbon/glass
hybrid composites and achieved similar results for the hybrid
effect as the ones reported in the literature.

Usually composite materials undergo catastrophic failure
with a stress–strain diagramas presented in Fig. 1a.Hybridiz-
ing the composite material changes the failure process which
results in stress–strain diagrams similar to Fig. 1b, where the
two load drops correspond, respectively, to the failure of the
LE fibres and the HE fibres. The objective of this work is to
model the tensile failure of hybrid composites and to under-
stand the mechanism and failure sequence in these materials.
By understanding the controlling factors in the behaviour of
hybrid composite materials it is possible to design a material
with either an hybrid effect (Fig. 1b) or with a pseudo-ductile
behaviour (Fig. 1c). Three different models are presented,
with increasing levels of complexity. Firstly, a model for dry
bundles of fibres, that does not take into account the presence
of the matrix, and that is used to understand the effects of the
fibre strength distribution parameters in the failure of tows of
fibres is proposed. Secondly, a model based on the fragmen-
tation of a single fibre is developed for hybrid composites.
Finally, a computational micromechanical model is devel-
oped to understand the mechanisms that control the failure
of hybrid composites.

2 Analytical models for hybrid response

2.1 Model for dry bundles of fibres

Failure of UD composites under tensile loading is a fibre
dominated process, i.e. fibres and fibre tows are funda-

mental entities in composite materials. As hybridization
implies interaction between fibres that present different ten-
sile strength distributions, the study of hybrid dry bundles
is important to understand the interaction phenomena that
may occur due to the interaction between both fibre strength
distributions.

2.1.1 Model development

The model considers a bundle of Nt = Nt1 + Nt2 fibres of
two types, 1 and 2, with a length L , whose tensile strength
follows a Weibull [28] distribution:

P (σ ) = 1 − exp

[
− L

L0

(
σ

σ0

)m]
, (1)

where P (σ ) is the cumulative failure probability of a fibre
with a length L at a stress σ , σ0 and m the Weibull scale and
shape parameters at the characteristic length L0, respectively.
By generating a random number between 0 and 1, represent-
ing the cumulative failure probability (P (σ )) of each fibre,
the tensile strength of the fibre is determined. As the object
of study are hybrid composites, two strength distributions,
one for each fibre type, need to be generated, based on each
fibre’s tensile strength properties. As the volume fraction of
each fibre is an important factor on the tensile response of
the bundles it is defined for each fibre type, 1 and 2, a volume
fraction such as V f 1 + V f 2 = 1.

The model assumes GLS, hence it is considered that there
is no interaction between the fibres. Strain-controlled con-
ditions are also assumed and the strain is incremented from
zerowith a pre-defined value�ε. In each increment the stress
(σi ) in each fibre is calculated by considering the fibres as
linear elastic:

σi = E f iε, (2)

where E f i is the Young’s modulus of each fibre type and ε

is the applied strain. When the tensile strength of a fibre is
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Table 1 Fibre properties for the
analytical models

Fibre R f (μm) E f (GPa) σ0 (MPa) m l0 (mm)

AS4 carbon [5] 234 3.5 4275 10.7 12.7

T300 carbon [5] 232 3.5 3170 5.1 25

M50S carbon [25] 480 2.65 4600 9 10

AR glass [7] 70 7 1363 9.6 60

reached, the number of broken fibres of each type (Nbi ) is
incremented. As it is possible to have bundles with fibres of
different radii the stress in the bundle is determined as:

σ̄ = (Nt1 − Nb1) S f 1E f 1 + (Nt2 − Nb2) S f 2E f 2

Nt
(
S f 1V f 1 + S f 2V f 2

) ε, (3)

where S f i = πR2
f i is the section area and Nti the total num-

ber of a fibres of type i .
The tows considered in the following analysis are com-

posed of 500 fibres with a gauge length of 75 mm. The
volume fraction of each fibre type is varied by changing the
number of fibres of each type in the bundle, maintaining the
number of fibres in the bundle equal to 500.

The fibre properties used for both analytical models are
shown in Table 1.

2.1.2 Results for carbon/carbon hybridization

In this section we focus our attention on the hybridization of
bundles with two types of carbon fibres. It is usual in hybrid
composites to distinguish the two types of fibres as HE and
LE, according to the failure strain they exhibit.

Considering the hybridization between the AS4 carbon
fibres [5] and the T300 carbon fibres [5], whose properties
are shown in Table 1. In this hybridization the T300 are the
LE fibres and the AS4 the HE fibres.

The stress–strain diagrams for the tensile response of the
different tows with different volume fractions of each fibre
are shown in Fig. 2. Analysing this figure it is possible to see
that responses achieved due to hybridization are not pseudo-
ductile, for either hybrid volume fractions, and that adding
T300 carbon fibres to the AS4 carbon bundle reduces both
the tensile strength and failure strain of the tow. Furthermore,
no hybrid effect is observed.

Since the desired pseudo-ductile behavior was not
achieved with this hybridization, another type of hybridiza-
tion was tested, maintaining the AS4 carbon fibres as the HE
fibres and using as LE fibres the M50S carbon fibres [25].
The stress–strain diagrams for this hybridization are shown
in Fig. 3.

Analysing this figure it is possible to conclude that for a
low volume fraction of LE fibres (VLE = 0.125 and VLE =
0.25) it is possible to see what can be described as pseudo-
ductility of the hybrid tow. The hybridization leads to an

Fig. 2 Stress–strain diagrams at various hybrid volume fractions for
AS4/T300 hybridization. (Color figure online)

Fig. 3 Stress–strain diagrams at various hybrid volume fractions for
AS4/M50S hybridization. (Color figure online)

increase in ductility in relation to the non-hybrid LE tow,
however this comes at the cost of strength and stiffness.

2.1.3 Results for carbon/glass hybridization

To improve the range of available properties in hybrid com-
posites, the hybridization between carbon and glass fibres is
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Fig. 4 Stress–strain diagrams at various hybrid volume fractions for
M50S carbon/AR glass hybridization. (Color figure online)

also analysed. The hybridization between the M50S carbon
[5] fibres and the Akali Resistant (AR) glass fibres [7] results
in the stress–strain diagrams shown in Fig. 4.

It is observed that there is a significant difference between
the behaviours of the non-hybrid tows: the M50S carbon is
stiffer and stronger while the AR glass has a lower stiff-
ness but increased ductility. This difference in stiffness of the
fibres leads to a large reduction of the hybrid tows’ stiffness
with the addition of the glass fibres but it also potentiates the
pseudo-ductile response. For a volume fraction of 0.125 of
carbon fibres (LE fibres) the tow’s response shows a pro-
nounced pseudo-ductile effect, at the expense of a lower
overall strength of the tow.

The abovementioned reduction of tow strength can bemit-
igated by selecting a different LE fibre. Replacing the M50S
carbon fibres by T300 carbon fibres, presented in Sect. 2, it
is possible to obtain the tensile response of tows shown in
Fig. 5.

With this hybridization it is possible to achieve a progres-
sive failure of the bundle of fibres for a volume fraction of
T300 carbon fibres equal to 0.125 and there is no load drop
due to the failure of the LE fibres, as usual in hybrid com-
posites. The pseudo-ductility is accompanied by a reduction
in strength in relation to both non-hybrid, LE and HE, tows.

2.1.4 Discussion

The model for the failure of dry bundles of fibres enables to
study of the effects of hybridizing tows with different types
of fibres. This allows to have bundles of fibreswith properties
finely tuned to reach hybrid effects or pseudo-ductility.

From the analysis presented herein and from others
performed using realistic fibre distributions is that the pseud-

Fig. 5 Stress–strain diagrams at various hybrid volume fractions for
T300 carbon/AR glass hybridization. (Color figure online)

Fig. 6 Failure strain distributions for all hybridized fibres in the fibre
bundle model. (Color figure online)

ductile behavior can be achieved when there is continuity
between the failure of LE and HE fibres. In other words,
failure of the HE fibres should start when failure of most,
but not all, LE fibres already occurred. If this occurs then it
is possible to achieve a progressive failure and, therefore, a
pseudo-ductile behaviour. The failure strain distribution for
the different analysed fibres are shown in Fig. 6. Analysing
the hybridization between the AS4 and T300 carbon fibres,
curves in blue and red, respectively, it is possible to note that
the failure distributions do not allow the fibres to fail progres-
sively. This is, the HE fibres fail with similar failure strains as
the LE fibres and, therefore, no pseudo-ductility is reached.
Analysing the hybridization between the AS4 andM50S car-
bon, curves in blue andgreen, respectively, it is possible to see
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that the HE fibres begin to fail after the LE fibres have failed,
which leads to the pseudo-ductile behaviour shown in Fig. 4.
The same behaviour can be seen for other hybridizations,
leading to the conclusion that there needs to be a continu-
ity between the failure of the LE fibres and the HE fibres to
achieve a pseudo-ductile or hybrid behaviours.

2.2 Progressive damage model for hybrid composites

The previous model focused on the effects of the fibre
strength properties on the tensile failure of fibre bundles.
However, a special interest exists on the effects of hybridiza-
tion in composite materials where the presence of the matrix
constituent and the interface between matrix and fibres
change the overall behaviour of the material. The model pro-
posed here is an extension of the model developed by Turon
et al. [26] for hybrid composites and is based on the fact that
the multiple fragmentation phenomena that occurs in single
fibre fragmentation tests also occurs in multiple fibre com-
posite materials.

2.2.1 Single fibre fragmentation

The fibre fragmentation model proposed by Turon et al. [26]
is generalized to include more than one type of fibre. In the
following, the main aspects of the model are described.

Considering that the fracture probability of a fibre of
length L is described by a Weibull distribution (Eq. 1), it
is possible to show that the average number of breaks in a
fibre follows a Poisson distribution, and the average number
of breaks (〈N 〉) is established, as a function of the applied
stress (σ ) [26]:

〈N 〉 = L

L0

(
σ

σ0

)m

. (4)

This equation is an approximation as it does not consider
that some defects are located in the stress recovery region
of a fibre where the stress is lower than the applied stress.
Following Turon et al. [26], if the number of breaks follows
a Poisson distribution then the distance between breaks can
be described by an exponential law:

f (x) = Λe−Λx , (5)

where Λ is the number of breaks in a fibre per unit length

Λ = 〈N 〉
L

= 1

L0

(
σ

σ0

)m

. (6)

Considering that the stress profile of a fragment of length
x is similar to that shown in Fig. 7, the fibre has a recovery
region of length lex where it is not fully able to carry the
applied stress [11]:

Efε

σm

lex
x

Fig. 7 Stress profile in a fibre with multiple fractures, according to the
shear-lag model

lex = R f

τ

E f ε

2
. (7)

Taking into account the stress profile shown in Fig. 7 it is
possible to define the average stress in a fragment of length
x as:

Σ (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E f ε
x

4lex
, x ≤ 2lex , (8a)

E f ε

(
1 − lex

x

)
, 2lex ≤ x ≤ L , (8b)

E f ε, x ≥ L . (8c)

The average stress in a fragmented fibre (σm) can be deter-
mined by integrating the axial stress in all fibre fragments
within a fibre of length L:

σm = 〈N 〉 1
L

∫
xΣ (x) f (x) dx . (9)

The analytical solution for this integral gives the average
stress in a fragmented fibre as a function of the applied strain
(ε):

σm (ε) = E f ε

(
1 − e−2lexΛ

2lexΛ
+ Λlex e

−LΛ

)
. (10)

2.2.2 Composite damage model

To develop the damage model for the composite materials it
is necessary to define how a fibre failure affects the stresses
in the remaining intact fibres and to assemble the mechanical
behaviour of the constituents in the composite material. As
the goal of this model is to have a simple analytical model to
analyse the effects of the different parameters on the tensile
failure of hybrid composites a GLS model is considered.
The damage model is developed in the framework of the
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thermodynamics of irreversible processes. The free energy
of the model is defined by adding the free energy of the
constituents:

ψ = (
1 − d f 1

)
ψ0

f 1

(
ε f 1

)
V f 1 + (

1 − d f 2
)
ψ0

f 2

(
ε f 2

)
V f 2

+ (1 − dm) ψ0
m (εm) Vm, (11)

where di is the damage variable, Vi the volume fraction and
εi the strain of the constituent i , with i equal to f 1, f 2 or m
depending on the constituent (type one fibre, type two fibre
or matrix). The variable ψ0

i represents the free energy of the
undamaged constituent, which is given by:

ψ0
i = 1

2
εii jC

i
i jklε

i
kl , (12)

where Ci
i jkl is the constitutive tensor of the constituent i .

To define the composite behaviour it is necessary to define
the relations between the deformation of the composite (εkl )
and that of the constituents (εikl ). That can be done by
resorting to the influence tensors (T i

i jkl ) considering a serial-
parallel behaviour [12,26]. Using Eq. (12) it is possible to
define the free energy of the constituents as a function of the
composite strains:

ψ0
i = 1

2
εmnT

i
mni jC

i
i jkl T

i
klopεop. (13)

The rate of dissipation Ξ can be written as:

Ξ = σi j ε̇i j − ψ̇ =
(

σi j − ∂ψ

∂εi j

)
˙εi j −

∑ ∂ψ

∂dN
˙dN ≥ 0,

(14)

that can be simplified using the derivatives of the free energy
with respect to the damage variable an the strains to

Ξ = V f 1ψ
0
f 1ḋ f 1 + V f 2ψ

0
f 2ḋ f 2 + Vmψ0

mḋm ≥ 0. (15)

To ensure the thermodynamic consistency the derivatives
of the damage variables must be positive: ḋ f 2 ≥ 0, ḋ f 2 ≥ 0
and ḋm ≥ 0. The constitutive equation for the damage model
can be written as:

σmn = ∂ψ

∂εmn
=

[∑
(1 − di ) T

i
mni jC

i
i jkl T

i
klop

]
εop. (16)

As the focus of this analysis is the longitudinal failure of
unidirectional hybrid composites themodel can be simplified
to:

σ (ε) =
(∑

(1 − di )EiVi
)

ε. (17)

Taking into account that the tensile failure of composite
materials is mainly a fibre dominated process the damage
in the matrix is not considered, meaning that the damage
variable for the matrix (dm) is zero for all applied strains.
The damage variable for the fibres is determined from the
fragmentation model (Eq. 10) as:

d f = 1 −
(
1 − e−2lexΛ

2lexΛ
+ Λlex e

−LΛ

)
. (18)

2.2.3 Results for carbon/carbon hybridization

Similarly to Sect. 2.1.1 the results from the hybridization
using two different types of carbon fibres are shown. In this
section we consider the composite material to have an over-
all fibre volume fraction of 60% and the matrix Young’s
modulus (Em) to be 4.6 GPa. The interfacial shear strength
between the fibre and the matrix (τ ), necessary to determine
the ineffective length (Eq. 7), was considered to be equal in
both fibres and equal to 50 MPa.

The first case to be analysed is the hybridization between
the AS4 and the T300 carbon fibres, whose stress–strain
curves are shown in Fig. 8.

Analysing the response it is possible to see that the T300
carbon composite has a higher failure strain and strength than
theAS4 carbon composite. These results are not in agreement
to what is expected from the model for dry bundles (Sect.
2.1.2) as the T300 fibres are the LE fibres while the AS4 are
the HE fibres. Closely analysing the model it is possible to
understand that the controlling parameter of the failure strain
of the composite is a parameter that can be defined as critical
strain (εc), determined based on the fibre reference strength
[4], given by:

Fig. 8 Stress–strain diagrams at various hybrid volume fractions for
AS4/T300 hybridization. (Color figure online)
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Fig. 9 Stress–strain diagrams at various hybrid volume fractions for
AS4/M50S hybridization. (Color figure online)

εc = 1

E f

(
σm
0 τ l0
R f

) 1
1+m

. (19)

This parameter not only depends on thefibre strength para-
meters (σ0 and m) but also the matrix–fibre interfacial shear
strength (τ ) and the fibre radius (R f ). As the critical strain of
the T300 carbon fibres is equal to 2.86 while that of the AS4
carbon is equal to 2.47 the failure strain of the non-hybrid
T300 composite is greater than that of the AS4 composite.
The initial elastic modulus of all composites with different
volume fraction is very similar as both fibre types have sim-
ilar Young’s moduli. Similarly to what was shown in Sect.
2.1.2 this type of hybridization does not result in a pseudo-
ductile response for any hybrid volume fraction.

The second carbon/carbon hybridization analysed with
the tow model was the hybridization of the AS4 and M50S
carbon fibres. Recall that this hybridization showed a clear
pseudo-ductile effect for the dry bundle, so now remains the
question if the matrix and interface influence the compos-
ite response significantly. Figure 9 presents the results for
the composite model, where it is possible to see that for a
volume fraction of M50S (LE) fibres equal to 0.25, the com-
posite has a clear pseudo-ductile response, however, this does
not occur for higher hybrid volume fractions.

2.2.4 Results for carbon/glass hybridization

Similarly to what was done with the previous model,
the hybridization between carbon and glass fibres is also
analysed. The first hybridization shown is the hybridiza-
tion between the M50S carbon fibres (LE fibres) and the
Akali Resistance (AR) glass fibres (HE fibres), whose stress–
strain curves for several hybrid volume fractions are shown
in Fig. 10.

Fig. 10 Stress–strain diagrams at various hybrid volume fractions for
M50S carbon/AR glass hybridization. (Color figure online)

Fig. 11 Stress–strain diagrams at various hybrid volume fractions for
T300 carbon/AR glass hybridization. (Color figure online)

The results shown are in agreement with those from the
fibre bundle model (Sect. 2.1.3) and for a volume frac-
tion of LE fibres equal to 0.125 it is possible to achieve a
pseudo-ductile behaviour. Comparing the curve of the hybrid
composite with a volume fraction of LE fibres equal to 0.125
(in red) and the non-hybrid glass composite (in blue) it is
observed that the composite has an increased stiffness, due
to the introduction of the stiffer carbon fibres but has a similar
failure strain as the one of the non-hybrid glass composite.
This fact is accompanied only by a small decrease in tensile
strength, approximately 10%.

The hybridization between the T300 carbon and the AR
glassfibres lead to a pseudo-ductile response in the towmodel
(Sect. 2.1.3). The results for this hybridization, using the
proposed composite damage model, are shown in Fig. 11.
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The results for this type of hybridization are not in
accordance with the results for the fibre bundle model as
pseudo-ductile behaviour was not achieved. Analysing the
critical strains of both fibre types, it is seen that the value for
the T300 carbon fibres is 2.86 while that for the AR glass
fibres is 3.28. As these values are close, it is seen that the
failure strains of both non-hybrid composites are similar and,
therefore, hybridization does not lead to the desired pseudo-
ductile or hybrid behaviour.

2.2.5 Discussion

Analysing the same hybridizations as in Sect. 2.1 it is
observed that the results differ. Some materials present the
same pseudo-ductile behaviour seen in the fibre bundles.
However, this is not the case for all materials. It is con-
cluded that to achieve pseudo-ductility it is necessary that the
failure strains and, therefore, the critical strains (εc) of both
non-hybrid composites must be different from each other.
If this happens, the hybridization leads to a pseudo-ductile
or hybrid behaviours and a non-catastrophic failure of the
hybrid composite is achieved, usually, for low volume frac-
tions of LE fibres. The tensile strength and failure strain, as
well as the stiffness of the hybrid composite will depend on
the properties of both fibre types and on the hybrid volume
fraction.

3 Direct numerical simulation of longitudinal
tensile fracture of hybrid composites

The analytical models are useful to understand the effects
of some key parameters on the tensile failure of hybrid
composites, however they are still unable to capture all the
mechanisms of failure that occur in this type of composite
materials. To do so it is necessary to resort to direct numeri-
cal simulation, namelymicro-scale numericalmodels that are
able to distinguish the behaviour of the various components
and accurately represent the interaction between them.

In the micro-scale numerical models it is necessary to
develop a representative volume element (RVE) that is able
to represent the material response. Several authors [9,17,23]
have studied the development of clusters of broken fibres,
which are the main mechanism that trigger failure of unidi-
rectional composites loaded in the longitudinal direction. As
this cluster development needs to be captured in the RVE and
is usually considered to be composed of around 20 fibres, it
was decided that the RVEwould have in the fibre’s transverse
direction a length equal to 15 times the fibre radius. In the
longitudinal direction it is necessary that the RVE captures
the full extent of the ineffective length in a broken fibre. This
lead to the choice of a longitudinal size for theRVEalso equal
to 15 times the fibre radius. The fibre generation in the RVE

was done using a modified version of the random fibre gen-
erator developed by Melro et al. [13] to accurately represent
the real microstructure of a composite material. The gener-
ated RVEs have approximately 3 million elements and are
composed of Abaqus® C3D8R and C3D6R elements [19].

As there are different constituents in a composite material
it is necessary to define different damagemodels for each that
are able to accurately capture the response and failure of these
materials. These are described in the following subsections.

3.1 Fibre damage model

The fibres are considered to be linear elastic up to failure and
to have a transversely isotropic behaviour. The complemen-
tary free energy is defined as:

G f = σ 2
11

2E1
(
1 − d f

) + σ 2
22 + σ 2

33

2E2
(
1 − d f

)
− ν12

E1
(σ11σ22 + σ11σ33) − ν23

E2
σ22σ33

+ σ 2
12 + σ 2

13

2G12
(
1 − d f

) + σ 2
23

2G23
(
1 − d f

) ,

(20)

where E1 and E2 are the longitudinal and transverse Young’s
moduli, G12 and G23 the longitudinal and transverse shear
moduli and d f is the damage variable for the fibres. To ensure
that the damage process is irreversible it is necessary to
guarantee that the rate of change of the complementary free
energy density is greater than the externally applied stress:

Ġ f − σ̇ : εσ̇ : εσ̇ : ε =
(

∂G f

∂σσσ
− εεε

)
: σ̇σσ + ∂G f

∂d f
ḋ f ≥ 0. (21)

To ensure a positive dissipation of mechanical energy it
is necessary for the strain tensor to be equal to the derivative
of the complementary free energy density with respect to the
stress tensor,

εεε = ∂G f

∂σσσ
. (22)

The compliance tensor (H fH fH f ) can be defined as:

H fH fH f = ∂2G f

∂σσσ 2 . (23)

Inverting the compliance tensor results in the stiffness ten-
sor (C fC fC f ). The damage activation function can be defined as:

Fd
f = φd

f − r f ≤ 0, (24)
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where φd
f is the loading function

φd
f = σ̃11

Xt
f
, (25)

and r f the internal variable

r f = max
{
1, max

t→∞
{
φd
f,t

}}
. (26)

The loading function is function of the fibre tensile
strength (Xt

f ),whichhas a stochastic value andwill vary from
element to element. The loading function is also a function
of the effective longitudinal stress σ̃11, that is a component
of the effective stress tensor given by:

σ̃̃σ̃σ =
(
H0

fH0
fH0
f

)−1 : εεε, (27)

where H0
fH0
fH0
f is the compliance tensor of the undamaged mate-

rial.
To avoid mesh dependency problems and to control the

energy dissipated in the fracture process, Bažant’s crack band
model [2] was implemented. The dissipated energy for the
fibres is defined as:

Ψ f =
∫ ∞

0
Y f ḋ f dt =

∫ ∞

1

∂G f

∂d f

∂d f

∂r f
dr f = G f f

le
, (28)

where G f f is the fracture toughness of the fibres in mode
I, le the element’s characteristic length and Y f is the ther-
modynamic force associated with the variable d f . Using the
complementary free energy for the fibres, given by (20), it is
possible to define Y f as:

Y f = ∂G

∂d f
= 1(

1 − d f
)2

×
[

σ 2
11

2E1
+ σ 2

22 + σ 2
33

2E2
+ σ 2

12 + σ 2
13

2G12
+ σ 2

23

2G23

]
, (29)

that is always positive. The damage evolution law defined for
the fibres is given by:

d f = 1 − eA f (1−r f )

r f
, (30)

where A f is a parameter that must be computed for each
element of the mesh. The derivative of the damage law with
respect to r f is given by:

∂d f

∂r f
= eA f (1−r f )

r f

(
A f + 1

r f

)
. (31)

In order to solve Eq. (28) it is necessary to define the
relation between the real stress tensor and the effective stress
tensor. This is done by imposing the principle of strain equiv-
alence:

σσσ = C f : εC f : εC f : ε

σ̃̃σ̃σ = C0
f : εC0
f : εC0
f : ε

}
σσσ = C fC fC f :

(
C0

fC0
fC0
f

)−1 : σ̃̃σ̃σ = C fC fC f : H0
fH0
fH0
f : σ̃̃σ̃σ , (32)

where C0
fC0
fC0
f is the undamaged stiffness tensor.

If the particular case of uniaxial tensile loading is consid-
ered, the effective stress tensor (σ̃̃σ̃σ ) is given by:

σ̃̃σ̃σ =

⎡
⎢⎢⎢⎢⎢⎢⎣

σ̃11
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (33)

For this stress state the three normal components of the
real stress tensor are:

σ11 = 1 − d f

�

[
1 − β2 − 2γ (1 + β)

]
σ̃11, (34a)

σ22 = σ33 = −1 − d f

�
ν12 (1 + β) d f σ̃11, (34b)

where

β = ν23
(
1 − d f

)
, (35a)

γ = ν12ν21
(
1 − d f

)
, (35b)

� = (1 − β)
[
1 − β − 2γ

(
1 − d f

)]
. (35c)

The remaining shear components of the tress tensor are
equal to zero. Using Eq. (34) in Eq. (29) results in:

∂G

∂d f

UN

= (1 + β)2

2E1�2

[
(1 − β − 2γ )2 + 2ν12ν21d

2
f

]
σ̃ 2
11,

(36)

for the uniaxial tensile state. The damage activation function
for the uniaxial tensile state is given by:

Fd
f
UN = σ̃11

Xt
f

− r f ≤ 0, (37)

and for the damage to propagate, this equation needs to be
equal to zero. Solving this equation in order to the applied
effective stress results in

σ̃11 = Xt
f r f . (38)
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Using (36), (34) and (38) in (29) results:

∫ ∞

0

Xt
f
2r2f (1+β)2

2E1�

[
(1−β−2γ )2 + 2ν12ν21d

2
f

]∂d f

∂r f
dr f

= G f f

le
, (39)

which needs to be solved numerically along the damage
evolution law (Eq. 30) to determine the parameter A f , as
a function of the varying element’s length (le) and tensile
strength (Xt

f ).
As the tensile strength of the fibres is a stochastic para-

meter a random strength is assigned to each element that
represents the fibre. This is done by generating random
numbers (X ) in the range 0 to 1 and by using the Weibull
distribution (Eq. 1) it is possible to calculate the random ten-
sile strength:

Xt
f = σ0

[
− L0

L
ln (1 − X)

]1/m
. (40)

3.2 Matrix and fibre/matrix interface modelling

The matrix is modelled using the model proposed by Melro
et al. [14]. The matrix is considered to have a non-linear
behaviour controlled by a paraboloidal yield criterion, being
the yield surface defined as:

Φ (σσσ, σc, σt ) = 6J2 + 2I1 (σc − σt ) − 2σcσt , (41)

where σc and σt are, respectively, the compressive and ten-
sile yield strengths of the matrix material, J2 is the second
invariant of the deviatoric tensor and I1 the first invariant of
the stress tensor. The model considers a non-associative flow
rule to correctly define the volumetric deformation in plas-
ticity. The hardening laws have been defined using Fiedler
et al. [6] experimental data. The hardening laws are defined
as dependent of the equivalent plastic strain for the compres-
sive and tensile yield strengths, as these are the only strengths
needed to define the yield surface. A general return mapping
algorithm with an elastic predictor/plastic corrector strategy
is used for the numerical implementation of the model.

Themodel also considers isotropic damage for the matrix,
using a single damage variable that affects the stiffness of the
material. The complementary free energy is defined as:

Gm = σ 2
11 + σ 2

22 + σ 2
33

2Em (1 − dm)
− νm

Em
(σ11σ22 + σ22σ33 + σ33σ11)

+ 1 + νm

Em (1 − dm)

(
σ 2
12 + σ 2

13 + σ 2
23

)
+ G

p
m , (42)

where dm is the damage variable, Em and νm are, respec-
tively, the Young’s modulus and Poisson coefficient of the

matrix. G p
m represents the contribution of the plastic flow to

the stored energy. The damage activation is controlled by
a paraboloidal surface similar to the one for yielding, but
considering the tensile (Xt

m) and compressive (Xc
m) failure

strengths instead of the yield strengths. The damage activa-
tion function is defined as:

Fd
m = φd

m − rm ≤ 0, (43)

where rm is an internal variable controlled by a damage evo-
lution law and φd

m is the loading function

φd
m = 3 J̃2

Xc
m Xt

m
+ Ĩ1

(
Xc
m − Xt

m

)
Xc
m Xt

m
, (44)

where J̃2 and Ĩ1 are the invariants of effective stress tensor
(σ̃̃σ̃σ ).

The damage evolution can be measured by the rate of
energy dissipation per unit volume:

Ξ = ∂Gm

∂dm
ḋm = Ymḋm ≥ 0, (45)

where Ym is the thermodynamic force that is always positive
from the definition of complementary free energy, therefore,
to guarantee the condition of irreversibility, the condition
ḋm ≥ 0 is sufficient. To distinguish loading and unloading
situations Kuhn–Tucker conditions must be applied, that can
be defined as function of the internal variable and damage
activation function.

To avoid mesh dependency issues, Bažant’s crack band
model [2]was implemented. The computed dissipated energy
is regularized by the element’s characteristic length (le):

Ψm =
∫ ∞

0
Ymḋm dt =

∫ ∞

1

∂Gm

∂dm

∂dm
∂rm

drm = G f m

le
, (46)

where G f m is the energy release rate of the matrix material.
The damage evolution law considered can be defined as,

dm = 1 − e
Am

(
3−√

7+2r2m
)

√
7 + 2r2m − 2

, (47)

where Am is a parameter that is computed by solving Eq.
(46) for each element as function of its characteristic length.

Both the model for the matrix and the one for the fibres
were implemented using Abaqus® VUMAT subroutine [19].

The fibre–matrix interface is modelled using Abaqus®

surface-based cohesive behaviour [19]. Mode dependent
cohesive strengths are considered, and the rate of damage
progression is controlled by the fracture toughness under
mode I, mode II, or mixed-mode, according to the BK
law [3].
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Table 2 Epoxy matrix properties from [1,6,15]

Material property Value

Young’s modulus

E1 (MPa) 3760

Poisson’s ratio

ν 0.39

Coefficient of thermal expansion

α (◦C−1) −58 × 10−6

Plastic Poissons ratio

νp 0.3

Critical energy release rate

Gm (N/mm) 0.09

Strengths

σYT (MPa) 94.9

σYC (MPa) 220

Table 3 Fibre–matrix interface properties from [1,15,27]

Material property Value

Interface maximum strengths

τ1 (MPa) 50

τ2 (MPa) 70

τ3 (MPa) 70

Interface critical energy release rates

GIc (N/mm) 0.002

GI Ic (N/mm) 0.006

GI I I c (N/mm) 0.006

Mixed-mode interaction parameter

η 1.45

The matrix and fibre–matrix interface properties used in
all the micromechanical simulations are the same and are
shown in Tables 2 and 3, respectively. The resin used was
Toho#113 characterized byFielder et al. [6]. The plastic Pois-
son coefficient considered is a standard for epoxy resins and
the fracture toughness is based on the values reported in the
literature [1,15].

The parameters for the cohesive behaviour of the fibre–
matrix interfaces are based on the experimental data [27] and
also on previousmicromechanical simulations [1,15] and are
shown in Table 3.

3.3 Results for the AS4 non-hybrid composite

This section is dedicated to the study of the tensile failure of
the non-hybrid composite composed of AS4 carbon fibres,
whose properties were determined based on the work of sev-
eral authors [5,20,25] and are shown in Table 4.

Table 4 AS4 carbon fibre properties from [5,20,25]

Material property Value

Fibre diameter

2R (mm) 0.007

Young’s moduli

E1 (MPa) 234000

E2 (MPa) 15000

Poisson’s ratio

ν12 0.2

Shear moduli

G12 (MPa) 15000

G23 (MPa) 7000

Coefficients of thermal expansion

α11 (◦C−1) −0.5 × 10−6

α22 (◦C−1) 15 × 10−6

Critical energy release rate

G f f (N/mm) 4 × 10−3

Weibull parameters

σ0 (MPa) 4275

m 10.7

l0 (mm) 12.7

The fibre strength determined for each element of the fibre
is function of the length (L) considered, i.e, the length of the
RVE in the fibre direction. To study the effect of the length
on both the fibre strength and in the failure mechanisms,
RVEs having the same fibre distribution but with different
lengths were generated. Another RVE, with a length equal
to 15 times the fibre radius, was generated without cohesive
surfaces between the fibres and the matrix and, therefore,
assuming a perfect bond between these. All these RVEs have
dimensions in the direction perpendicular to the fibres equal
to 15 times the fibre radius. The stress–strain curves of these
non-hybrid RVEs subjected to tensile loadings in the fibre
direction are shown in Fig. 12.

From the presented results it is observed that the stress–
strain curves are very similar for the RVEswith a length of 15
and 30 times the fibre radius. However, the RVEwith a length
of 45 times the fibre radius failed prematurely, which can be
related with random events in the generation of the tensile
strength of the elements. This leads to the conclusion that
using the length of the RVE as scaling factor for the Weibull
distribution is accurate as the RVEs with different length
have similar failure strengths. TheRVEmodelledwithout the
cohesive surfaces at the fibre–matrix interface shows similar
failure strength as those with cohesive surfaces, however,
using cohesive surfaces the decohesion of the fibre–matrix
interface is more realistically captured. In the RVEs with
cohesive surfaces, the decohesion is observed causing the
separation of the fibre from the matrix (Fig. 13d). For the
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Fig. 12 Comparison of the tensile behaviour of AS4 non-hybrid com-
posite for different RVE’s. (Color figure online)

(a)

(b)

(c)

(d)

Fig. 13 Failure process in an AS4 carbon fibre. a Distribution of fibre
strength. b Stress distribution prior to fibre failure. c Stress profile
after fibre failure. d Interfacial damage after fibre failure. (Color fig-
ure online)

RVEwithout the cohesive surfaces, the matrix that surrounds
a broken fibre is fully damaged, which creates a separation of
both constituents, as the elements that are fully damaged are
removed from the model. This, although leading to similar

results, is inaccurate as the separation of the fibre from the
matrix most often occurs not due to the cracking and failure
of the matrix but due to failure of the interfaces. In Fig. 13a
the strength distribution of an AS4 fibre is presented. It can
be observed that the tensile strength is randomly distributed
simulating the presence of initial flaws or defects.

For the AS4 composite, as the fibres have higher fail-
ure strain than the matrix,damage development in the matrix
prior to the first fibre failure is observed. This causes some
stress concentrations in the fibres in the locations where
the matrix is damaged which increases the failure probabil-
ity in these locations, as represented in Fig. 13b. However,
analysing the failure locations in multiple simulations, it is
observed that the main factor controlling the location of fibre
failure is not stress concentrations but the location of the
defects, that are simulated as elements with lower failure
strength. This is seen not only to dominate first fibre failure
but also the subsequent failures.

It has been observed that when a fibre fails, the fibre
unloads suddenly causing a dynamic effect. The propagation
of the stress wave after a fibre break can induce compression
stresses in the fibres, which is captured by the model. This
makes the fibre lose the load carrying capacity in some of its
length, the ineffective length. This effect is captured by the
model, as shown in Fig. 13. After a fibre breaks a crack in the
matrix surrounding this broken fibre can appear, as shown in
Fig. 14. The crack progression is hampered by the intact sur-
rounding fibres, that are affected by stress concentrations as
shown in Fig. 15. These stress concentrations act in a small
region surrounding the broken fibre.

The first fibre failure is proceeded by the failure of other
fibres. As previously stated, the break location is determined
by flaws in the fibres. From the performed analysis it is seen
that the majority of the fibres did not fail in the same plane,

Fig. 14 Matrix crack surrounding a broken fibre (red regions with
SDV3 equal to 1). (Color figure online)
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Fig. 15 Stress concentrations in intact fibres surrounding a broken one
(in black). (Color figure online)

Fig. 16 Location of fibre breaks after the failure of the composite:
fracture zones represented in black

leading to the formation of a disperse cluster instead of a
co-planar one. This type of cluster development has been
reported previously in the literature [18,24]. The locations of
fibre breaks are represented in Fig. 16 and it can be observed
that many fibres are broken in multiple locations.

From the shown analysis it is argued that the model cap-
tures the main failure mechanisms of polymer composites in
longitudinal tension reported in the literature.

3.4 Results for the AS4-M50S carbon hybridization

This section focuses on the study of the hybridization
between the AS4 and M50S carbon fibres previously
addressed using the analytical models. The properties of the
AS4 carbon fibres are shown in Table 4. For theM50S carbon
fibres, due to lack of information, the same fibre properties

Table 5 M50S carbon fibre
properties from [25]

Material property Value

Fibre diameter

2R (mm) 0.0053

Young’s moduli

E1 (MPa) 480000

Weibull parameters

σ0 (MPa) 4600

m 9

l0 (mm) 10

were used, with the exception of the longitudinal Young’s
modulus, Weibull parameters and fibre radius [25] shown in
Table 5.

Several RVEs were generated to study this hybridization.
The tensile stress–strain curves are shown in Fig. 17. All the
RVEs studied had dimensions 15 times the radius of the fibre
with higher diameter, leading to an RVE with a size equal to
52.5 μm. To study the effect of the fibre radius two types of
RVEs were generated. The first consider both the AS4 and
the M50S carbon fibres to have the same radius, equal to
3.5 μm; the corresponding results are shown in solid lines
in Fig. 17. The second type of RVEs considered the fibres
to have the real fibre radii and, therefore, the AS4 and the
M50S were modelled with different radii. The results for
these RVEs are shown in Fig. 17 in dashed lines. In this fig-
ure it is shown the tensile behaviour for hybrid composites
with different volume fraction of each fibre type. Those with
the same volume fraction of each fibre type are presented
with the same colour. Comparing the results for the RVE’s
with the same radii (solid line) and different radii (dashed
line) it is observed that considering of the M50S to be equal
to 2.65 μm, higher tensile strength is obtained, for all the
hybrid volume fractions analysed. Varying the volume frac-
tion of each fibre type drastically changes the response of the
composite material. In all cases, there is no interaction in the
failure of both fibre types, this is, all the LE fibres fail prior
to the failure of any HE fibres. This causes the first load drop
seen for all hybrid composites. However, as we increase the
volume content of HE fibres the load drop is reduced, being
minimum for a volume fraction of M50S fibres equal to 0.25
(curves in red).

The stress–strain curves for the hybrid composite with
a volume fraction of M50S fibres equal to 0.25 are again
shown in Fig. 18 alongside the microstructure of the RVE,
where the circles in full represent broken fibres while the
others represent intact fibres. Analysing the microstructures
it is possible to note that all the LE fibres (M50S fibres) fail
prior to the failure of a single HE fibre. This failure causes the
first load drop seen in the curves. After the first load drop,
as the HE fibres are still intact, the material is still able to
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Fig. 17 Stress–strain diagrams
for AS4-M50S hybrid
composites with various hybrid
volume fractions: full RVEs
with all fibres with radius equal
to 3.5 μm; dashed RVE’s with
the M50S with radius equal to
2.65 μm. (Color figure online)

Fig. 18 Stress–strain curves and microstructures for the hybrid com-
posite with a volume fraction of M50S carbon fibres equal to 0.25:
circles in full represent broken fibres

carry stress which causes the increase in load after the first
drop. At the second load peak, the failure strain of the HE
has been reached which causes their failure and the failure of
the material. Between both load peaks it is seen that, usually,
the LE fibres keep on fracturing leading to the fragmentation
of these fibres in multiple locations, which is responsible for
the non-linearities seen between the failure of the LE and HE
fibres. The tensile response for this hybridization is close to
what is described as pseudo-ductility, for a volume fraction
of M50S fibres equal to 0.25, however, there is a small load
drop after the failure of the LE fibres and prior to the failure
of the HE fibres, typical of hybrid composites.

Having analysed the results from the micromechanical
model for the hybridization between the AS4 and the M50S
fibres it is useful to make the comparison between these
results and the ones obtained with the composite damage
model presented in Sect. 2.2. This comparison can be seen

Fig. 19 Comparison of the results from the micromechanical model
(dashed lines) with the composite damage model (solid lines) for the
AS4 and M50S hybridization. (Color figure online)

in Fig. 19 for both AS4 and M50S non-hybrid composites
and the hybrid composite with a volume fraction of M50S
fibres equal to 0.25. From the presented results it is possible
to conclude that the composite damage model clearly over
predicts the results from the micromechanical model. These
results are expected as it is seen that the global load sharing
models, such as the one presented in Sect. 2.2, over predict
the experimental results, as what drives the failure are local
effects.

3.5 Results for the AS4-T300 carbon hybridization

The tensile response for the hybridization of the AS4 carbon
fibres and the T300 carbon fibres [5,20], whose properties
are shown in Table 6, is studied.
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Table 6 T300 carbon fibre properties from [5,20]

Material property Value

Fibre diameter

2R (mm) 0.007

Young’s moduli

E1 (MPa) 232000

E2 (MPa) 15000

Poisson’s ratio

ν12 0.2

Shear moduli

G12 (MPa) 15000

G23 (MPa) 7000

Coefficients of thermal expansion

α11 (◦C−1) −0.7 × 10−6

α22 (◦C−1) 12 × 10−6

Critical energy release rate

G f f (N/mm) 4 × 10−3

Weibull parameters

σ0 (MPa) 3170

m 5.1

l0 (mm) 25

The T300 carbon fibres have a lower Weibull modulus
and therefore a higher variability in fibre strength. Further-
more, the failure strain distribution of the T300 carbon fibres
is closer to that of the AS4 carbon fibres than that of the
M50S fibres (Fig. 6), which can reduce the load drop seen
for the AS4-M50S hybrids. The same RVE’s generated for
the previous hybridization with all fibres with radius equal
to 3.5 μm were used for this hybridization, leading to the
results shown in Fig. 20.

Analysing this figure it is possible to see that the results for
the AS4-T300 hybridization are quite different from those
obtained using AS4-M50S hybridization. This is in agree-
ment with the results obtained from the analytical models
previously described. The more interesting results are for
the hybrid composites with a volume fraction of T300 fibres
equal to 0.5 and 0.75. For these hybrids there is a delay in
first fibre failure in comparison to the non-hybrid T300 com-
posite, which occurs at a strain equal to 0.7%. This can be
attributed to the reduction of the volume of T300 carbon
fibres by replacing them with AS4 fibres, which reduces the
probability of existence of a very severe defect in a fibre,
causing the delay in first fibre failure. It is also possible to
see there is no major stress drop due to the failure of the LE
fibres in these hybrids. This is attributed to the higher disper-
sion in fibre strength of the T300 carbon fibres, which causes
them to fail at different strains, resulting in a more gradual
failure. This can be seen in the microstructures shown in Fig.
21 for the hybrid composite with a volume fraction of T300

Fig. 20 Stress–strain diagrams for AS4-T300 hybrid composites with
various hybrid volume fractions. (Color figure online)

Fig. 21 Stress–strain curve and microstructures for the hybrid com-
posite with a volume fraction of T300 carbon fibres equal to 0.5: circles
in full represent broken fibres

fibres equal to 0.5. It is also possible to see that not all LE
(T300) fibres fail before the HE (AS4) fibres start to fail,
which leads to the gradual failure response shown. However,
it should be noted that the fact that the increased strength
dispersion of the T300 fibres increases the dispersion in the
results, as they are quite dependent on the location and exten-
sion of the defects in the fibres.

Similar results are seen for the hybrid composite with a
volume fraction of T300 carbon fibres equal to 0.75. The
microstructures and stress–strain curves are shown in Fig. 22.
It is possible to see that the failure strain of the LE fibres
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Fig. 22 Stress–strain curve andmicrostructures for the hybrid compos-
ite with a volume fraction of T300 carbon fibres equal to 0.75: circles
in full represent broken fibres

differs from fibre to fibre due to the low Weibull modulus
and high strength dispersion. Once again, there is the failure
of HE fibres prior to the complete failure of the LE fibres,
which might be key to the achievement of pseudo-ductility.

It is possible to conclude that the fibre strength distrib-
utions play a big role to achieve pseudo-ductility and the
interaction between the failure of the LE and HE fibres is the
key point for achieving pseudo-ductility.

4 Conclusion

An extensive analytical and numerical study on the effects
of hybridization on the tensile failure of composite materials
has been presented. Three different models with increasing
complexity were developed. A model for dry tow failure,
based on the statistics of fibre strength, identifies the effects
of the fibres’ statistical properties on the tensile response of
non-interacting groups of fibres. From this model it was con-
cluded that to achieve a progressive tow failure a continuity in
the strength distributions of both fibre types is needed. Other-
wise, sudden load drops, usually seen in hybrid composites,
occur after the failure of the LE fibres.

An analytical model for composite materials was devel-
oped with the objective of bridging the gap between the
model for dry tows and composite materials. This model
is based on the single fibre fragmentation phenomenon and
takes into account the presence of the matrix phase in the
composite. It was observed that the matrix, namely, the
matrix–fibre interface plays an important role in the tensile
response of composite materials and that the results obtained

for dry tows cannot be directly extrapolated for composite
materials.

The last model developed was a micromechanical model
that takes into account the fibre strength variability, and it
is able to capture the main failure mechanisms in unidirec-
tional composite materials. From this model it was possible
to establish the failure sequence in unidirectional composites,
which was seen to be similar to what was previously reported
in the literature. For hybrid composites it was possible to
determine the complete tensile response of the composite,
including the load drop after the failure of the LE fibres and
the second load drop due to the failure of the HE fibres. It
was concluded that the Weibull modulus plays a critical role
in the catastrophic failure of composites. A lower Weibull
modulus, higher strength variability, leads to a more gradual
failure, that in conjunction with the failure of the HE fibres
prior to the complete failure of the LE fibres are the key
parameters to achieve pseudo-ductility.
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