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Abstract In this work, a micro-crack informed stochas-
tic damage analysis is performed to consider the failures of
material with stochasticmicrostructure. The derivation of the
damage evolution law is based on the Helmholtz free energy
equivalence between cracked microstructure and homoge-
nized continuum. The damage model is constructed under
the stochastic representative volume element (SRVE) frame-
work. The characteristics of SRVE used in the construction
of the stochastic damage model have been investigated based
on the principle of the minimum potential energy. The mesh
dependency issue has been addressed by introducing a scal-
ing law into the damage evolution equation. The proposed
methods are then validated through the comparison between
numerical simulations and experimental observations of a
high strength concrete. It is observed that the standard devia-
tion of porosity in the microstructures has stronger effect on
the damage states and the peak stresses than its effect on the
Young’s and shear moduli in the macro-scale responses.
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1 Introduction

In continuum mechanics, the mathematical description of
material inelastic behavior such as plasticity and damage
models are typically phenomenological, and connection to
the underlined physics at smaller length scale is lacking. In
recent years, multi-scale modeling has been introduced into
the mechanics of inelasticity, such as plasticity and damage
mechanics. Hill [1] defined the concept of stochastic repre-
sentative volume element (SRVE) methods as a microscopic
cell containing sufficient micro-scale features while possess-
ing statistical homogeneity and ergodic properties. Hazanov
[2] discussed the role of Hill’s principle and its applications
in micromechanics of composite materials, where Hill con-
dition was generalized for arbitrary materials, in particular
for nonlinear inelastic composites with imperfect interfaces.
Huget [3,4] derived the upper and lower bounds of the
effective moduli and compliance tensors by partitioning the
domain of microstructure, named partition theorem. As the
domain of consideration is smaller than the size of RVE,
the maximum error of the approximated effective modulus
can be estimated. Similar to the partition theorem, Ostoja-
Starzewski [5] proposed a technique of scale separation to
define a RVE, where the meso-scale over which the homog-
enization is carried out separates the microscale from the
macroscale (RVE). Two hierarchies of bounds under Dirich-
let and Neumann boundary conditions as the mesoscale
grows were derived. Xu and Graham-Brady [6] developed a
stochastic computational method to evaluate global effective
properties and local probabilistic behavior of random elas-
tic media based on the stochastic decomposition of random
field.

In the area of multi-scale damage modeling, Lee et al. [7]
proposed a hierarchical multi-scale model to relate the evo-
lution of damages at the macro- and micro- scales. Fish et
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al. [8] developed a non-local theory for describing damage
phenomena based on two-scale asymptotic expansion.Due to
the high computational cost in solving the characteristic func-
tions in the asymptotic expansion type approach, Dascalu et
al. [9] constructed damage laws based on micro-mechanical
energy balance on representative elementary volume with
evolving micro-cracks. Ren and Chen et al. [10] proposed
micro-cracks informed damage models based on an energy
bridging method, in which damage evolution is treated as a
consequence of micro-crack propagation.

The randomness of microstructures has been considered
in the material model construction. The early work in the
stochastic micro-mechanical modeling is the parallel ele-
ment model [11,12]. This model was proposed to describe
the progressive damage evolution of a brittle rod subjected
to uniaxial loading. Sfantos and Aliabadi [13] developed
a multi-scale damage model for a polycrystalline brittle
material where the randomly oriented anisotropic grains are
considered. Thematerial degradation is assumed to be caused
by the initiation, propagation and coalescence of cracks on
the grain boundaries. Wriggers and Moftah [14] considered
a geometrical multi-scale model of concrete, where the ran-
dom distribution of aggregate sizes follows the Fuller curve
[15], while the locations of the aggregates are subjected
to a uniform probability distribution. Xia and Curtin [16]
introduced the multi-scale technique to model the failure of
fiber-reinforced aluminum composites using a Green’s func-
tion method to calculate the load transferred from broken to
unbroken fibers.

In the literature, the concepts of SRVE have been widely
discussed. For elastic materials, the existence of RVE has
been clearly defined. However, the fundamental study on
material failure under the SRVE framework is limited. In
this paper, material degradation caused by the formation
of micro-cracks is studied under the framework of SRVE.
The hierarchies of the homogenized damage evolutions with
respect to different RVE sizes are derived, where the damage
evolutions are evaluated based on the fracture mechanics.
Furthermore, a two-parameter stochastic damage model is
developed. This model contains volumetric and deviatoric
failures with the consideration of the statistical variations of
micro-voids and the associated crack evolution. The damage
evolution law is obtained based on the Helmholtz free energy
equivalence between cracked microstructure and homog-
enized continuum. The characteristic length scale in the
proposed stochastic damage model is also investigated under
the framework of the SRVE. The proposed micro-crack
informed stochastic damage analysis is applied to modeling
of the high strength concrete structures.

This paper is organized as follows. In Sect. 2, the frame-
work of SRVE is reviewed and an energy-bridging homoge-
nization method is introduced to determine the micro-crack
informed damage evolution. In Sect. 3, the issue of size effect

is addressed under the framework of SRVE and a scaling law
is introduced to the damage evolution function to resolve
the mesh-dependency deficiency. In Sect. 4, a volumetric-
deviatoric decoupled stochastic damage model is proposed
and then the proposed stochastic damage model is demon-
strated via an implementation of the stochastic damage laws
into the Advanced Fundamental Concrete (AFC) model. In
Sect. 5, numerical triaxial compression tests are conducted
to validate the proposed stochastic damage analysis. Conclu-
sions are made in Sect. 6.

2 Stochastic representative volume element
(SRVE)

The definition of SRVE given by Hill [1] is: (a) “entirely typ-
ical of the whole mixture on average” and (b) the one that
“contains a sufficient number of inclusions for the overall
moduli to be effectively independent of the surface values
of traction and displacement, so long as these values are
macroscopically uniform”. The statement of (a) is about
the material’s statistical nature, while (b) describes that the
effective material moduli should be independent of the pre-
scribed boundary conditions in theRVE.Generally speaking,
the following conditions are required for the SRVE to exist
[1,5,17,18]:

(1) The micro-structure is periodic in a random sense.
(2) The given micro-structure is sufficiently large so that the

RVE is statistically representative for the entire micro-
structure.

(3) The spatial correlation lengths in the micro-structure are
small enough with respect to the dimension of themacro-
structure.

To describe the characteristics of SRVE, three conditions are
considered, the Hill condition, ergodicity and the principle of
the minimum potential energy [5]. The first two are require-
ments for SRVE, and the last one is the nature of continuum
mechanics.

Hill [1] defined the following condition for heterogeneous
elastic materials:

σ : ε = σ̄ : ε̄ (1)

where σ ≡ σ (x) and ε ≡ ε (x) are stresses and strains, and
the overbar “−” denotes the spatial average operator defined
as :

f̄ = 1

V

∫
�

f (x)d� (2)
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in which � is the occupied domain, V is the volume of the
occupied domain.

There are two types of boundary conditions that satisfy
the Hill condition in (1): the pure Dirichlet and the pure Neu-
mann boundary conditions with zero body forces. The pure
Dirichlet boundary condition corresponds to prescribing dis-
placements uD

� on the entire boundary ∂� of themicroscopic
cell as expressed in the following form:

uD
� = ε0 · x on ∂� (3)

where ε0 is the homogenized strain tensor and x is the spatial
coordinates. Note that the homogenized strain is equal to the
spatially averaged strain over the domain � if there is no
internal crack in the body:

ε̄D� = 1

V

∫
�

εD�d� = 1

2V

∫
∂�

(
uD

� ⊗ n + n ⊗ uD
�

)
d� = ε0

(4)

With the above definitions, it can be easily shown

U = 1

2
σD

� : εD
� = 1

2
σ̄D

� : ε̄D� (5)

To describe random material properties via specific sam-
ples, one needs to consider the concept of ergodicity. A
random process in an SRVE is said to be ergodic if the spatial
average is the same as the ensemble average of the sequence
of the events:

f̄ = lim
V→∞

1

V

∫
�

f (x, θ)d�=
∫

�

f (x, θ)ρ (θ) dθ = 〈 f 〉
(6)

where θ is the random variable in the probability space,
〈•〉 denotes the operator of the ensemble average, � is the
concerned domain in the probability space and ρ (θ) is the
probability density function. The above definition implies
that the occupied domain of the microscopic cell should be
very large (mathematically infinite) compared with the size
of micro-scale features, such that the microscopic cell can be
considered as the SRVE, which is statistically representative
for the entire micro-structure.

In themicrostructures, if thefluctuations of themechanical
fields are finite and the concerned spatial and probabilistic
domains are sufficiently large, these fields (such as averaged
stress or strain field) are ergodic. This is because that the
average of the fluctuations vanishes over infinite domains. If
the microstructure possesses the ergodic property as shown
in (6), it can be shown that the stress and strain fields are
statistically uncorrelated:

U = 1

2
σD

� : εD
� = 1

2
σ̄D

� : ε̄D�

= 1

2

〈
σD

� : εD�

〉
= 1

2

〈
σD

�

〉
:
〈
εD�

〉
(7)

Alternatively, one can apply the pure Neumann boundary
condition on the entire boundary of the microscopic cell:

tN� = σ0 · n on ∂� (8)

where σ0 is a constant homogenized stress tensor. Under this
type of boundary condition, a similar result can be obtained
for the case of pure Neumann boundary condition [3]:

U = 1

2
σN

� : εN
� = 1

2
σ̄N

� : ε̄N� = 1

2

〈
σN

� : εN�

〉
= 1

2

〈
σN

�

〉
:
〈
εN�

〉

(9)

where

σ̄N
� = 1

V

∫
�

σN
� d� = 1

V

∫
∂�

σ0 · n ⊗ x d� = σ0 (10)

As the Hill condition is fulfilled and the microstructure
possesses the ergodic property, one can further derive the
hierarchies ofmesoscale bounds for linear elasticmicrostruc-
tures [3–5]. Under the pure boundary conditions (3) and
(8), the strain energy density of a linear problem can be
obtained through the calculation of average strains and
stresses. The relationships between the average strains and
average stresses resulting from the Dirichlet boundary con-
dition can be defined as:

σ̄D
� = C̃D

� : ε̄D� (11)

where C̃D
� is the effective stiffness tensor under the Dirichlet

boundary condition.
By substituting (11) into (5), the strain energy density can

be rewritten as

U = 1

2
ε̄D� : C̃D

� : ε̄D� (12)

In this section, we introduce the free energy as the basis
in constructing stochastic damage model from the cracked
microstructure. Ren and Chen et al. [10] introduced the
Helmholtz free energy relationship between cracked
microstructure and damage continuum (Fig. 1) as follows

�̃D
�y

= 1

Vy

(∫
�y

�D
�y

d� +
∫

�c

1

2
hD

�y
· uD

�y
d�

)
(13)

where �y is the domain of the microstructural RVE with
volume Vy, �c is the crack surface, hD

�y
is the cohesive
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Fig. 1 Homogenization of a
microscopic cell

,  σ ε

traction on the crack surface, �D
�y

= (1/2)σD
�y

: εD�y
is

the Helmholtz free energy density in the cracked RVE, the
tilde “∼” denotes the homogenized quantities with �̃D

�y
the

homogenized Helmholtz free energy density

�̃D
�y

= 1

2
σ̃D

�y
: ε̃D�y

(14)

Here σ̃D
�y

and ε̃D�y
are the homogenized stress and strain

tensors, respectively, defined as:

σ̃D
�y

= 1

Vy

∫
∂�y

tD�y
⊗ x d� = 1

Vy

∫
∂�y

σD
�y

· n ⊗ x d�

(15)

ε̃D�y
= 1

2Vy

∫
∂�y

(
uD

�y
⊗ n + n ⊗ uD

�y

)
d� (16)

Note that the homogenized stresses and strains are related to
the averaged stresses and strains as follows

σ̄D
�y

= σ̃D
�y

(17)

ε̄D�y
= 1

Vy

∫
�y

εD�y
d� = ε̃D�y

− 1

Vy

∫
�c

(
n ⊗ uD�y

+ uD�y
⊗ n

)
d�

(18)

With the right hand side of (13) computed in the crackedRVE,
it is utilized as the Helmholtz free energy of the damaged
continuum [10]. For example, the isotropic damage model
can be defined as:

�̃D
�y

= (1 − dD
�y

)�̃D
0_�y

(19)

where dD
�y is the damage parameter and �̃D

�y_0
is the

Helmholtz free energy of the undamaged continuum with
moduli C̃D

0_�y
:

�̃D
0_�y

= 1

2
ẽD�y

: C̃D
0_�y

: ẽD�y
(20)

Fig. 2 Partitions of a
microscopic cell in domain �y

As such, the damage evolution function is obtained as dD
�y

=
1 − �̃D

�y
/�̃D

0_�y
.

3 Size effect of micro-crack informed damage
modeling

3.1 The cause of size effect

Consider a 2-D square domain partitioned into 4 equal-size
sub-squares as shown in Fig. 2. Each sub-domain is defined
as �i

y with volume V i
y = Vy/4, and ∪4

i=1�
i
y = �y . The

subscript ’y’ denotes the coordinate system in the micro-
scale. A consistent Dirichlet boundary condition is imposed
to the boundary of each sub-domain as:

uD
�i

y
= ε0 · x ∀x ∈ ∂�i

y, i = 1, . . . , 4 (21)

The fields of the sub-domains are denoted as uD
�i

y
, σD

�i
y
,

and εD
�i

y
, which are kinematically admissible, and the fields

of the entire domain are denoted as uD
�y

, σD
�y

, and εD
�y

. Note
that the averaged strains of the sub-domains are the same as
the overall averaged strains of the entire domain when the
consistent Dirichlet boundary condition is imposed:

ε̄D
�i

y
= ε0 = ε̄D�y

(22)

To investigate the size effect for the micro-crack informed
(MCI) damage modeling, we first introduce the principle of
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minimum total potential energy. Let û be the perturbation
from the equilibrated displacement field u, and consider a
positive functional F

(
u, û

)
as follows:

F
(
u, û

) = 1

2

∫
�y

(
ε − ε̂

) : C : (
ε − ε̂

)
d�

+1

2

∫
lc

([u] − [û]) k′ ([u] − [û])dS ≥ 0 (23)

where [u] and [û] are displacement jumps across the crack
surface. Considering the RVE of uniform thickness, we then
denote lc the length of fracture process zone, k′ (≥ 0) the
coefficient of cohesive law, i.e. k′ = ft/[u] − k for linear
cohesive law, in which ft is the material tensile strength and
k a constant denoting the slope of the cohesive law.

Using (23), the principle of minimum total potential
energy can be expressed as:

1

2

∫
�y

σ : εd� + 1

2

∫
lc

[u]k′[u] ds −
∫

∂�y

u · t d�

≤ 1

2

∫
�y

σ̂ : ε̂d� + 1

2

∫
lc

[û]k′[û] ds −
∫

∂�y

û · t d� (24)

Performing the partitioning of the RVE as aforementioned,
replacing the perturbation terms by the kinematically admis-
sible sub-domain fields uD

�i
y
and εD

�i
y
where compatibility is

satisfied on the sub-cell boundaries, and considering that the
consistent Dirichlet boundary condition is imposed in the
sub-cells, we have:

1

Vy

(∫
�y

�D
�y

d� + 1

2

∫
�c

uD�y
· hD�y

ds −
∫
∂�y

uD�y
· tD�y

d�

)

≤ 1

Vy

4∑
i=1

(
1

2

∫
�i

y

�D
�i

y
d� + 1

2

∫
�i
c

uD
�i

y
· hD

�i
y
ds

−
∫
∂�i

y

uD
�i

y
· tD�y

d�

)
(25)

Here the following conditions have been applied to the above
inequality:

1

2

∫
lc

[u]k′[u] ds = 1

2

∫
�c

u · hds, 1
2

∫
lc

[û]k′[û] ds

= 1

2

∫
�c

û · ĥds (26)

Note that by considering that the displacement field uD
�i

y
and

the surface traction tD�y
are continuous across the interfaces

of any two neighboring sub-domains, and uD
�y

= uD
�i

y
on the

overall boundary of the entire domain, we have:

∫
∂�y

tD�y
· uD

�y
d� =

4∑
i=1

∫
∂�i

y

tD�y
· uD

�i
y
d� (27)

Thus, we can deduce from (25) to yield the following form:

1

Vy

(∫
�y

�D
�y

d� + 1

2

∫
�c

uD
�y

· hD
�y

ds

)

≤ 1

Vy

4∑
i=1

(
1

2

∫
�i

y

�D
�i

y
d� + 1

2

∫
�i
c

uD
�i

y
· hD

�i
y
ds

)
(28)

Using the relationship between the Helmholtz free energy of
the homogenized continuum and themicroscopic free energy
and cohesive energy in (13), we obtain the following inequal-
ity in terms of the Helmholtz free energy, namely:

�̃D
�y

≤ 1

4

4∑
i=1

�̃D
�i

y
(29)

Here we consider a sub-division of domain �y into four
equal-size sub-domains denoted as �y/4. Note that since
the sizes of the 4 subdomains are equal, �i

y is replaced by
�y/4 in the following stochastic analysis. With ergodicity,
we have:

〈
�̃D

�y

〉
≤

〈
�̃D

�y/4

〉
(30)

Applying (19) to (30), it yields:

〈(
1 − dD

�y

)
�̃D

0_�y

〉
≤

〈(
1 − dD

�y/4

)
�̃D

0_�y/4

〉
(31)

Furthermore, assume that the undamaged material moduli
are homogeneous:

�̃D
0_�y

= �̃D
0_�y/4 = 1

2
ε̃D�y

: CD
0_�y

: ε̃D�y
(32)

We then obtain:

〈
dD
�y

〉
≥

〈
dD
�y/4

〉
(33)

Repeating the same procedures of partitioning the RVEs,
the hierarchy of the damage parameter inequality can be
obtained:

〈
dD
�y

〉
≥

〈
dD
�y/4

〉
≥ · · · ≥

〈
dD
�y/∞

〉
(34)

The above inequalities agree with the phenomenological
Weibull-type representation of brittle solids: the larger the
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Fig. 3 Periodic micro-structure
with micro-cracks

Micro-crack

(a) (b) (c)

Fig. 4 Illustration of the size effect of periodic micro-structures:
(a) Large RVE with multiple small cracks, (b) Multiple small RVEs
each with single crack, (c) Large RVE with large single crack

specimen the more likely it is to fail. With fixed characteris-
tic length of the structure, e.g. employing the same fracture
cohesive law which is independent of the structural dimen-
sion, a larger structure fails easier.

Now, consider the deterministic case: a micro-structure
containing micro-cracks as shown in Fig. 3. As the micro-
structure is periodic, we can modify (29) as:

�̃D
�y

≤ �̃D
�y/4 (35)

As illustrated in Fig. 4b, c, consider an enlarged micro-
structurewith a single crack proportionally enlarged inwhich
the totalHFEof the system inFig. 4b is equal to that inFig. 4c,
that is:

4

(
1

4
Vy

)
�̃D

�y/4 = Vy�̃
D_Coarse
�y

(36)

Here Vy�̃
D_Coarse
�y

denotes the energy of the enlargedmicro-
structure as given in Fig. 4c. One can see that by substituting
(36) into (35), the micro-structure with a single crack has
lager energy density than the one with 4 smaller cracks.
The cases of Fig. 4a, c can be viewed as two different mesh
discretizations of the material described by the same consti-
tutive law as shown in Fig. 5a, c, respectively. The superscript
“Coarse” signifies its underlined coarse mesh representation
as shown in Fig. 5c.

Repeating the sameprocedures, theHFE inequalities asso-
ciated with mesh refinement of material described by the
damage law read:

(a) (b) (c)

Fig. 5 Illustration of the mesh dependency with different discretiza-
tions: (a) FEM model with fine discretization, (b) Subdivisions of the
FEM model, (c) FEM model with coarse discretization

Fig. 6 Mesh dependency of stress and strain curves

Vy�̃
D_Coarse
�y

≥ · · · ≥ Vy�̃
D_ f ine
�y

(37)

The above inequalities reveal that the free energy of the dis-
crete system of damaged material reduces as the mesh is
refined, referred to as the mesh dependency as shown in
Fig. 6.

Meshfree refinement of material subjected to the same
damage law implicitly imposes a condition that the under-
lined RVEs with different dimensions have the same homog-
enized stress-strain relationship. This requires a critical crack
opening displacement in the micro-cracks to be proportional
to the RVE size and thus yields mesh dependency in (37).
To remedy the mesh dependency, some approaches such as
introducing non-local theories in the finite element mod-
els [19–21], embedding non-locality in the kernel function
support in meshfree method [22], or employing the implicit
gradient operator [23] have been proposed. In this work, we
introduce a scaling law in the damage evolution function to
resolve the mesh-dependency deficiency as will be discussed
in the next sub-section.

3.2 A remedy for mesh dependency by considering size
effect

Consider a 3-point bending test on a notched beam as shown
in Fig. 7. The overall behavior of the beam is governed by
the Mode I crack initiated at the vertex of the notch. In this
example, we consider that the damage evolution is driven
only by the tensile damage due to the bending condition and
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P

L=0.1 m

1.0 m

0.05 m

0.02 m

Fig. 7 A notched beam subjected to three-point bending

5 mm 2.5 mm 1.25 mm

Fig. 8 Samples of different microscopic cell sizes

the substantial strength in compression of the concrete. The
material properties of the Young’s modulus and Poisson’s
ratio are 21.5 GPa and 0.22, respectively. For this problem,
only half of the beam is modeled for numerical simulations
due to the symmetric conditions.

As discussed before, the solution of a problem with mate-
rial degradation exhibits mesh dependency if a characteristic
length independent to the mesh size is not defined. Consider
a concrete sample with three different microscopic cell sizes,
5×5, 2.5×2.5 and 1.25×1.25mm2 as shown in Fig. 8. The
concrete sample is simplified as a 2-phasematerial consisting
voids and matrix for the numerical study.

In this work, various sizes of microscopic cells corre-
sponding to macro-structural discretizations with coarse,
medium and fine meshes are considered to study the size
effect. For this purpose, a dimensionless parameter, λ, is
defined as follows:

λ = lmic

lmac
= l

L
(38)

where lmic is the microscopic length parameter and lmac is
the macroscopic length parameter. Here we chose the micro-
scopic cell size l = 5 mm, 2.5 mm and 1.25 mm as the
microscopic length parameters and the beam depth L as the
macroscopic length parameter. ThenormalizedRVEsizes are
the physical RVE sizes divided by the depth of the notched
beam shown in Fig. 7, which is L = 0.1 m.

The homogenized stress and strain curves under the uni-
axial tension are plotted in Fig. 9. The corresponding damage
evolution curves obtained by using the energy bridging
method are plotted in Fig. 10. The mesh dependency, in the
homogenized stress-strain curves and consequently the nom-

Fig. 9 Average homogenized stress-strain curves of different RVE
sizes

Fig. 10 Average damage evolution curves of different RVE sizes

λ

 (M
Pa

)
N

σ

Fig. 11 The size effect curve of nominal strength

inal strengths, is due to the influence of the internal length
scale, i.e., the void size and the cohesive crack law do not
scale with the overall dimensions of the microscopic cells.
Fig. 11 demonstrates the mesh dependency of the calculated
nominal strength which can be fitted to the size effect law
proposed by Bazant [24]:

σN = B fu√
1+β

, β = l
l0

(39)

where fu is the tensile strength of concrete, l is the specimen
dimension, and B and l0 are material parameters identified
by experiments or numerical simulations.

As being pointed out previously, if the discretization
is refined without considering the relationship between
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Fig. 12 Mesh dependent load–disp. curves using inconsistent micro-
scopic cell sizes

microstructure dimension andmesh size, the solutions exhibit
mesh dependency. Fig. 12 shows a strong mesh dependency
induced by the standard procedure in the conventional dam-
age mechanics, where the damage evolution law obtained
from the microscopic cell size 5 mm2 was used for all three
levels of mesh refinement. The damage evolution function
extracted from this microscopic cell size 5 mm2 is only con-
sistent with the coarse discretization but not for the medium
and fine discretizations.

To resolve the mesh-dependency artifact, modified dam-
age evolution with a scaling law is introduced:

d = ε − εi

εu − εi
, εi = εi (λ) , εu = εu (λ) (40)

where εi and εu are the damage initiation strain and the rup-
ture strain, respectively, and they are considered as functions
of the dimensionless parameter λ. The damage initiation
strain εi is assumed to be in a form similar to (39) expressed
as:

εi = A√
1+αλ

(41)

and the term (εu − εi ) is assumed of the form [10]:

(εu − εi ) = Cλn (42)

where A, α, C and n are constants obtained by fitting the
three mesh dependent damage evolution curves in Fig. 10:

A = 0.53336 × 10−4, α = 9.38776

C = 0.48918 × 10−4, n = −0.43116 (43)

The corrected (scaled) damage evolution curves and the
uncorrected damage evolution curves are compared in
Fig. 13. By introducing the corrected damage evolution func-
tion with a scaling law, the mesh insensitive results are
obtained as shown in Fig. 14. This approach avoids con-
ducting many RVE analyses for different mesh refinements
in the continuum scale simulations to achieve the converged
solution.

λ

λ
λ

λ

λ
λ

Fig. 13 Fitted and computed damage evolution curves of various RVE
sizes

Fig. 14 Mesh independent load–disp. curves using scaled damage evo-
lution law

4 Implementation of stochastic damage laws into
AFC model

4.1 A volumetric-deviatoric decoupled stochastic
damage model

In this work, a volumetric-deviatoric decoupled damage
model is adopted to describe the pressure-shear driven
material failure. Such volumetric-deviatoric decomposition
approach has been proposed and been applied to concrete
materials [25–28]. The damage model is described by using
the decoupled Helmholtz free energy (HFE) formulation:

�̃ = (1 − dvol)�̃0_vol + (1 − ddev)�̃0_dev (44)

where �̃ is the total effective HFE, dvol and ddev are volu-
metric and deviatoric damage parameters, respectively, and
�̃0_vol and �̃0_dev are volumetric and deviatoric parts of the
undamaged HFE, respectively.

The undamaged effective free energy can be expressed
in terms of homogenized material moduli and homogenized
stress (σ̃) and strain (ẽ):

�̃0 = 1

2
ẽ : C̃0 : ẽ = 1

2
σ̃0 : ẽ = �̃0_vol + �̃0_dev (45)

�̃0_vol = 1

2
σ̃0_vol : ẽvol , �̃0_dev = 1

2
σ̃0_dev : ẽdev (46)
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Fig. 15 Different loading cases for microscopic cell analyses:
(a) Under pure shear, (b) Under tension

σ̃0_vol = 1

3
tr(σ̃0)1, σ̃0_dev = σ̃0 − σ̃0_vol (47)

ẽvol = 1

3
tr(ẽ)1, ẽdev = ẽ − ẽvol (48)

The terms with subscript “0” denote their undamaged states,
“dev” denotes deviatoric and “vol” denotes volumetric. The
Helmholtz free energy is further decomposed into elastic and
plastic parts:

�̃0_vol = �̃e
0_vol + �̃

p
0_vol (a)

(49)
�̃0_vol = �̃e

0_vol + �̃
p
0_vol (b)

�̃e = (1 − dvol)�̃
e
0_vol + (1 − ddev)�̃

e
0_dev (a)

(50)
�̃ p = (1 − dvol)�̃

p
0_vol + (1 − ddev)�̃

p
0_dev (b)

where the superscript “e” denotes elastic and “p” denotes
plastic.

In the proposed model, the damage evolution is assumed
to be related to the elastic Helmholtz free energy [29]. The
elastic Helmholtz free energy �̃e can be obtained through the
homogenization process. Examples of imposing the shear
and tension boundary conditions on the RVE are shown
in Fig. 15. By modeling crack propagations in the RVEs
and computing the history of HFE [10], the deviatoric and
volumetric damage evolution functions of the homogenized
continuum can be obtained as:

ddev =
(
1 − �̃e

�̃e
0_dev

)
(51)

dvol =
(
1 − �̃e

vol

�̃e
0_vol

)
(52)

4.2 Advanced fundamental concrete (AFC) model

To validate the proposed stochastic damage model in this
paper, a high strength concrete material [30] is considered.
The micro-structural geometries are constructed using the
computerized tomography (CT) scans as shown in Fig. 16.

Fig. 16 Sampled CT scans of a high strength concrete

The adopted numerical simulation model is simplified as
a two-phase material: the matrix and voids. The effects of
aggregates and the interface between aggregates and the
cement are neglected, since the roughness of the aggregate
shape is sufficiently high to provide an appropriate bonding
of the interface, and the uniformity of the aggregate distri-
bution on the specimen makes the crack propagation path
less dependent on the interface. The procedures for obtain-
ing the stochastic damage evolution functions extracted from
the misco-scale fracture modeling are illustrated in Fig. 17.

For the construction of the micro-structural geometry,
a two-phase level set method is introduced for the image
based void segmentation [31] as illustrated in Fig. 18.
The corresponding numerical discretization of the micro-
structural geometry can then be obtained. Before conducting
the macro-scale simulations, the damage evolution functions
need to be determined. To quantify the heterogeneity of the
microstructure, the overall porosities of the RVE samples are
considered, where the porosity is defined as:

Porosi ty ≡ P = Avoid

Acell
(53)

Here Avoid is the total area of the voids and Acell is the area
of the microscopic cell.

The porosity is considered as a random variable sub-
jected to some assumed stochasticmeasures. Figure 19 shows
the probability density distribution of the porosity, which is
obtained by using Kernel Density estimation (KDE) [32,33]
with 1600 samples.
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Fig. 17 The procedures of the multi-scale modeling

Here, to describe the statistical variation of material prop-
erties the random variable, the normalized overall porosity,
ξ of the RVE is defined as:

ξ = P − μP

STDP
(54)

where P is the overall porosity of theRVE,μP and ST DP are
the mean value and the standard deviation of P , respectively.

The fracture mechanics based numerical simulation of
the micro-structural failure processes is then conducted. The
extrinsically enriched Reproducing Kernel Particle method
(RKPM) [34] with cohesive law is employed for the RVE
fracture analyses. The stochastic Helmholtz free energies
calculated in the stochastic RVEs are related to the stochas-
tic Helmholtz free energies of the homogenized continuum
based on the energy bridging of equation (13). Finally, the
stochastic damage evolution functions are extracted from
the loss of Helmholtz free energy in the RVEs following

Collocation points

PD
F

Porosity

Fig. 19 Approximation of PDF by using Kernel Density estimation

(19). Due to the random variations in the heterogeneity
of microstructures, the macro-scale damage parameter is
considered as a random function which exhibits stochastic
variations. The conventional stochastic methods are intro-
duced to evaluate the uncertainty for the investigated concrete
materials.

The proposed stochastic damage model is then incorpo-
rated into theAdvanced Fundamental Concrete (AFC)model
[25,26], in which the damage evolution functions will be
replaced by the ones obtained by the proposed stochastic
damage model, while the plasticity part remains in its orig-
inal form. In this modified AFC model, the yield surface is
expressed as:

F(σdev, I1) = ‖σdev‖−
{
Ĉ∗
1 − [

C∗
2 +(

C∗
1 − C∗

2

)
d∗] eAn I1

−C∗
4 I1

} (
1+C∗

3 ln (ε̇n)
)

(55)

where I1 is the first invariant of the stress tensor, C∗
i and d∗

are random parameters and An is a constant. The damage
evolution function d∗ will be determined through homoge-
nization of stochasticRVE.The randomparametersC∗

1 ∼ C∗
4

are assumed in the following form:

C∗
i = Ci (1 + αiξ) , i = 1 ∼ 4

d∗ = d (1 + βξ) (56)

where ξ is a random variable as defined in (54) and αi and
β are constants. If ξ is a random variable with zero mean
and unit variance, αi and β will be the standard deviations of
the parameters C∗

i and d∗ normalized by their averages. The

Fig. 18 Construction of
numerical model through image
segmentation
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-I1

Damaged yield surface
Initial yield point:

1 2dev C C= −σ

dev dσ=σ

ha

hb

1

1

Damage initiation

point:

Undamaged yield surface
devσ

Fig. 20 Modified yield surface of AFC model

parametersCi and d can be regarded as themean values ofC∗
i

and d∗ respectively. Note that d is the average damage evo-
lution function in terms of strains, which can be obtained by
averaging the curves in Figs. 21b and 22b.More details of the
parameter C∗

i for the practical use will be discussed later in
Sect. 5. Here, we also slightly modify the AFCmodel, where
a bi-linear hardening law is introduced to the parameter Ĉ∗

1 :

Ĉ∗
1 = C∗

1

(
1 + hēp

)
(57)

in which h is the hardening parameter, and ēp is the effective
plastic strain. The hardening law is introduced to provide
stiffness after thematerial yields. Here a two-stage hardening
rules are adopted:

{
h = ha, at initial yield point
h = hb, when ‖σdev‖ = σ∗

d = σd (1 + γ ξ)
(58)

where ha , hb and γ are constants and σd is the damage ini-
tiation stress which is assumed to be a function of the first
invariant of the stress tensor (I1):

σd = a1 + a2 I1 + a3 I 21 (59)

Note that σd is not only dependent on equation (59) but also
on the elastic HFE, since the σd is the stress when the damage
is initiated and the damage evolution is related to the HFE.
When ‖σdev‖ reaches the critical value, the parameter Ĉ∗

1
becomes

Fig. 21 RVE analyses under shear boundary condition. a Homogenized stress-strain curves. b Damage evolution curves

Fig. 22 RVE analyses under uniaxial tension boundary condition. a Homogenized stress-strain curves. b Damage evolution curves
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(a) (b)

Fig. 23 Failure patterns of an RVE sample under different loading
conditions. a Under pure shear. b Under uniaxial tension

Ĉ∗
1 = C ′∗

1

(
1 + hbēp

)
, C ′∗

1 = C∗
1

(
1 + haē

d
p

)
(60)

in which ēdp is the effective plastic strain when ‖σdev‖ = σ∗
d .

Figure 20 illustrates the characteristics of the yield cri-
terion as I1 < 0. As can be seen in this figure, the initial
yield stress is the difference between the constants C1 and
C2. Beyond the initial yield point, the material hardening
provides sufficient stiffness for the yield surface to grow. At
some point, the damage is initiated and the hardening rule is
changed.

5 Validation of the proposed stochastic damage
model

In this section, a high strength concrete material is tested
under tri-axial compression with different confinement pres-
sures, namely, 20, 50, 100, and 300MPa, and the test data are
fitted into the AFC model as described in Sect. 4. The mate-
rial properties used in the microscopic level are: Young’s
modulus E = 24.5 MPa, and the Poisson’s ratio v = 0.16.
A linear cohesive law with the tensile strength 3.48MPa and
fracture energy 1.0N/m is employed. These parameters are

curve-fitted to the means of the homogenized stress-strain
curves and experimental data. We introduced reproducing
kernel particle method (RKPM) with crack enrichments to
model crack propagation in the RVE [34,35]. In the enriched
RKPM, a cubic B-spline kernel function and linear basis
functions are employed.

We model crack propagations in 11 RVE samples at the
collocation points as shown in Fig. 19 with cell dimension
5x5 mm2. The deviatoric and volumetric damage evolution
functions are extracted by the RVE analyses with shear and
uniaxial tensile Dirichlet boundary conditions, respectively,
as discussed in Sects. 3 and 4. The stress-strain curves and
the damage evolution functions for the corresponding RVE
analyseswith differentmicrostructures are plotted in Figs. 21
and 22. The failure patterns of a RVE sample under the ten-
sile and shear loading cases are shown in Fig. 23. The curves
relating the peak shear and tensile stresses to porosity are
plotted in Fig. 24. In the numerical simulation, the modified
AFC model in conjunction with the damage evolution func-
tions described in this paper is employed. The RVE samples
are selected at 11 sampling points. Each sampling point cor-
responds to a damage evolution function as shown in Fig. 21b
and 22b. After the results of RVE analyses are obtained, the
solution in terms of random variables can be determined by
introducing the approximation in the random space. Conse-
quently, the statistical moments such as mean and standard
deviation of the solution can be obtained.

As shown in Table 1, the normalized standard deviations
(STD’s) of the homogenized Young’s and shear moduli of
1600 samples are 3.4 and 4.6% respectively, and the nor-
malized standard deviation (standard deviation divided by
the average value) of the porosity is 18.51%, while the nor-
malized STD’s of the peak shear and tensile stresses based on
the 11RVE analyses are 11.61 and 14.83%, respectively. The
normalized STD’s of the peak stresses are slightly smaller
than the one of the porosity, and the normalized STD’s for the
homogenized Young’s modulus and shear modulus are much

(a) (b)

Fig. 24 Peak stress-porosity curves. a Peak shear stress versus porosity. b Peak tensile stress versus porosity
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Table 1 Normalized STDs of the homogenized material properties

Normalized STD (%)

Porosity 18.51

Shear modulus 3.4

Young’s modulus 4.6

Peak shear stress 11.61

Peak tensile stress 14.83

Table 2 Parameters of the
modified AFC model C1 98.25 (MPa)

C2 50 (MPa)

C3 0.0125

C4 0.002433

An 5.78×10−10 (1/Pa)

ha 13

hb 0.5

a1 0.3747×108

a2 −0.1985

a3 −0.0049x10−8

smaller than the normalized STD’s of the peak stresses. This
is due to the fact that homogenized moduli are determined by
the elastic response while the peak stresses are affected by
the fracture processes and are more sensitive to the void dis-
tribution in the microstructures. Furthermore, the parameters
in (56) have been characterized based on the RVE analyses.
The normalized standard deviation (STD) of the parameters
C∗
1 ∼ C∗

4 and σ∗
d are assumed to be the same as the normal-

ized STD of the homogenized damage parameter d∗:

α1 = α2 = α3 = α4 = γ = −β = −0.115 (61)

The other material parameters characterized using the trial
testing data are listed in Table 2. Consequently, the charac-
terized Young’s and shear moduli are expressed as

E∗ =
〈
Ẽ

〉
(1 − k1ξ) , k1 = 0.034,

G∗ =
〈
G̃

〉
(1 − k2ξ) , k2 = 0.046 (62)

where
〈
Ẽ

〉
and

〈
G̃

〉
are the means of the effective Young’s

modulus and shear modulus and the k1 and k2 are the nor-
malized STD’s.

Fig. 25 Comparison of the tri-axial compression tests. a 20MPa confinement stress. b 50MPa confinement stress. c 100MPa confinement stress.
d 300MPa confinement stress
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The characterized stochastic AFC model aforementioned
is then used for the macro-scale modeling of concrete speci-
men under triaxial compressions. The comparisons between
the numerical simulations and the experiment observations
are plotted in Fig. 25. For the numerical simulations, three
curves are obtained through the stochastic analysis for each
confinement stress. One is the average of the principal stress
difference, which is the difference between the major princi-
pal stress and the confinement stress, and the other two are the
average plus and minus STD. In the comparison, the numer-
ical results agree well with the experimental data. Note that
for high confinement stresses, such as 100 and 300MPa, the
material exhibits high rigidity after reaches the yield point.
This behavior is appropriately captured by the bi-linear hard-
ening law in the AFC model.

Here we observe how the statistical variations in the
microstructure (porosity) affect the statistical variations in
thematerial and damage properties of macro-structure. From
numerical macro-scale triaxial tests, the normalized STD’s
(normalized by average) of the equivalent Young’s and shear
moduli are 0.038 and 0.049, respectively. These two values
are very close to the ones obtained from theRVEanalyses, i.e.
0.034 and 0.046 as shown in (62). Furthermore, we compare
the STD of the overall damage evolution in triaxial tests with
the STD of the damage evolution from the RVE analyses.
For the former, the STD of the overall damage is evaluated at
the point of 14% axial strain. The STD of the overall dam-
age under 50, 100 and 300MPa confining stresses are 0.115,
0.111 and 0.112, respectively. These values are very close to
the normalized STD β, which is 0.115 as shown in (61), of
the damage evolution obtained from theRVEanalyses. These
results show that the normalized STD’s for the homogenized
Young’s modulus and shear modulus are much smaller than
the ones in the damage state. High STD of porosity does not
affect much for the material moduli but the damage state and
consequently the peak stresses. This is due to the fact when
the RVE size is sufficiently large the material moduli will
tend to be deterministic as being discussed in the literature.
On the other hand, the damage state and peak stresses are
affected by the fracture processes which is more sensitive to
the void distribution in the microstructures.

6 Conclusions

This study aims to develop a stochastic damage model for
brittle materials. A two-parameter damage model is con-
sidered under the framework of SRVE, which employs the
deviatoric and volumetric damage laws for brittle materials.
The proposed stochastic damage model is implemented into
the AFCmodel. In this approach, the material damage on the
macro-scale has been considered as the consequence of the
crack formation and coalescence on the micro-scale.

This work is the extension of the micro-crack informed
damage model proposed by Ren and Chen et al. [10] with the
consideration of statistical variations in the voids geometry
and distributions. The characteristics of the SRVE have been
investigated. The size effect of the proposed damage analysis
is analyzed by using the principle of the minimum potential
energy. The analysis confirms that the larger the specimen
the more likely it is to fail. This size effect associated with
the dimension of SRVE serves as the basis in explaining
the mesh dependency phenomenon in continuum analysis of
materialswith softening.Thequantified size effect provided a
remedy for the mesh dependency issue by introducing a size
scaling law into the damage evolution function to achieve
mesh insensitive results in damage mechanics modeling.

From RVE and macro-scale modeling we observe that the
normalized STD’s for the homogenized Young’s modulus
and shear modulus are much smaller than the ones in the
damage state. High STD of porosity does not affect much for
the material moduli but the damage state and consequently
the peak stresses. This is due to the fact when the RVE size
is sufficiently large the material moduli will tend to be deter-
ministic as being discussed in the literature. On the other
hand, the damage state and peak stresses are affected by the
fracture processes which is more sensitive to the void distri-
bution in the microstructures.

Finally, the proposed stochastic damage model was vali-
dated through modeling of concrete specimen under triaxial
compression, which shows good agreement with experimen-
tal results.
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