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Abstract We explore a general family of eddy viscosity
models for the large-eddy simulation of turbulence within
the framework of the Variational Multiscale Method. Our
investigation encompasses various fine-scale eddy viscosi-
ties and coarse-scale residual-based constructs. We delineate
the domain of parameter space in which physically and
mathematically suitable models exist, and identify several
sub-families of potentially useful models that are either
entirely new or extend previously proposed ones. We also
combine classical modeling ideas, that lead to turbulent
kinetic energy evolution equations, with the residual-based
approach to derive a new residual-driven, one-equation
dynamic model.

Keywords Variational multiscale method · Multiscale
viscosity · Dynamic fine scale equation

1 Introduction

In the variational multiscale method (VMS) for large eddy
simulation (LES) the flow field is decomposed into coarse
and fine scales, that is u = ū + u′, the fine scales are
approximated, and a model for their effect is generated by
explicitly using this approximation in the equations for the
coarse scales.
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There are two principal ways of approximating u′. In the
first approach, an approximation is computed by solving a
system of discrete equations that is ostensibly as complex
as the Navier–Stokes equations. This system is necessar-
ily enhanced with a fine-scale eddy viscosity, otherwise the
approach reduces to a coarse-scale direct numerical simula-
tion (DNS). This viscosity is added to account for the effect of
the scales that are finer than the approximation for u′. For this
reason thesemethods fall under the category of fine-scale vis-
cosity methods. While it has generally been accepted that the
eddy viscositymust only be applied to the fine scales, the pre-
cise formof this eddyviscosity, in termsof contributions from
the fine and coarse scale velocities, has not been explored
systematically. This is one of the main topics of this paper.

In the second approach to approximating u′, the fine-scale
velocities are approximated as a scalar function times a resid-
ual, and are expressed on the same grid as the coarse scale
velocities. For this reason, this approach is often referred to as
the residual-based VMS method. The scalar function is often
denoted as τ , the intrinsic time scale. Inmodel problems, such
as the linear advection-diffusion equation, τ can be explicitly
calculated in terms of the fine-scale Green’s function [1,2]
resulting in H1-optimality of the coarse scales. It may be
argued that the residual-based approach, while inexpensive,
does not usually lead to a sufficiently accurate reconstruction
of the fine scales, at least on relatively coarse grids. On the
other hand the fine-scale viscosity approach, though often
accurate, is considered inefficient because the fine scales are
“sacrificed” in behalf of the good behavior of the coarse
scales. The second main topic of this paper is to improve
the accuracy of the residual-based approach. In particular,
we derive a dynamical partial differential equation for the
evolution of the magnitude of the fine-scale scale velocity,
which is to be solved on the same grid as the coarse-scale
velocity. This equation represents a combination of classi-
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cal one-equation turbulent kinetic energy models with the
residual-based approach to turbulence modeling.

In summary, in this manuscript we explore the space of
viable models for the approximation of the fine scales within
the VMS approach.We do so for both the fine-scale viscosity
and the residual-based approaches.

2 Multiscale viscosities for the fine-scale equations

2.1 Overview

There are twomain classes offine-scale viscosity approaches.
The first floats the definition of the fine-scale viscosity and
endeavors to solve for the fine scales in terms of the coarse
scales. This approach has been pursued in the context of sim-
ple model problems such as the linear advection-diffusion
equation [3,4]. The result is an expression for the fine scales
in terms of the coarse-scale residual facilitating the elim-
ination of the fine scales from the coarse-scale equation,
effectively “closing” it. Then some type of optimality is
imposed on the coarse-scale solution and the fine-scale vis-
cosity is computed to achieve it. As Brezzi [5] has shown,
this reveals non-intuitive behavior of the fine-scale viscosity.
The resulting coarse-scale eddy viscosity is inversely pro-
portional to the fine-scale viscosity. In particular, in the limit
of infinite fine-scale viscosity, the fine scales are completely
suppressed, resulting in simply a coarse-scale DNS. In the
limit of zero fine-scale viscosity, the coarse scales are over-
dissipated. Of course, there is a lot of room between zero and
infinity, and an appropriate value of the fine-scale viscosity
coefficient can be determined to achieve optimal coarse-scale
behavior.

The second main class of fine-scale viscosity approaches
does not endeavor to eliminate the resolved fine scales. The
resolved coarse and fine scales are solved for in a com-
bined fashion in the usual way. In this approach the added
fine-scale viscosity is parameterized to achieve improved
behavior on all scales retained, namely, all resolved coarse
and fine scales.1 This idea was used to model turbulence
in [6–8]. The parameterizations were inspired by traditional
LES ideas and specifically the Smagorinsky model [9]. This
second approach may also be interpreted as a projection sta-
bilization method which has received considerable attention
in the computational mathematics literature (see the review
article [10] and references therein). By virtue of the added
fine-scale viscosity term, strong residual-based consistency
is lost in the fine-scale subsystem of equations. However the

1 This is still a debatable point. There is some evidence that the fine
scales are being sacrificed to benefit the coarse scales, and other evi-
dence that the fine-scale contribution improves both the coarse and fine
scales.

coarse-scale subsystem of equations continues to be strongly
consistent. For fairly well-resolved LES, this approach is
viewed as superior to traditional LES because of this prop-
erty2. There is computational evidence to support this; see
e.g. [11]. For coarseLES theperformance canbe improvedby
supplementing the fine-scale viscosity with another viscos-
ity that acts on all scales [15]. For a general discrete system
(other than spectral methods), the construction of a fine-scale
projection operator is required to implement this approach.
One way to accomplish this is through the use of the machin-
ery available in geometric and algebraic multigrid solvers
(see e.g., [16,17]).

2.2 Multiscale vicosities

We consider the solution of the incompressible Navier–
Stokes equations in the turbulent regime using an eddy-
viscosity based LES methodology derived from the VMS
method. We solve for the coarse resolved velocity field ū
with a filter width denoted by �̄. We note that there is no
model term in the equations for the coarse scales, other than
thepresenceof thefine-scalefield.Thefine scales, denotedby
u′, are determined approximately by solving a set of discrete
equations. The filter width associated with the fine scales is
denoted by �′, with �̄ > �′. The resulting set of coupled
equations for the coarse and fine scales is the Navier–Stokes
equations with an eddy viscosity that appears only in the
equations for the fine scales.

In the most general case we write the model dissipation
and eddy viscosity as

ε = νT
∣
∣∇su′∣∣2 . (1)

νT = (C ′)2(�′)n|∇s ū|p|∇su′|q |u′|r |ū|m . (2)

HereC ′ is a non-dimensional parameter,∇s is the symmetric
gradient operator, and m, p, q, r & n are exponents that will
be determined by imposing certain design conditions on the
eddy viscosity.

2.2.1 Galilean invariance

We require that the eddy viscosity be unchanged if the frame
of reference is translated by a constant velocity. Since this
constant velocity mode is assumed to be present in the space
of coarse resolved scales, we must have m = 0. As a result
(2) reduces to

νT = (C ′)2(�′)n|∇s ū|p|∇su′|q |u′|r . (3)

2 Interestingly, the residual based VMS method, which is consistent
for all resolved scales, also displays this superior performance for well-
resolved LES [12,13,28].
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Fig. 1 Schematic representation of the two-parameter space of mod-
els. The intersection of the two shaded regions contains models with
vanishing viscosity at the walls. The four dashed lines represent the
families of models examined in detail. The four points represent large-
small (1, 0), small-small (0, 0), turbulent energy (0, 1), and themodified
plateau Smagorinsky (1/2, 1/2) models. The triangle with vertices
(0, 0), (1, 0), and (1, 1) seems to contain the most attractive oppor-
tunities for fine-scale models

2.2.2 Dimensional consistency

We require that the proposed eddy viscosity have the dimen-
sion L2T−1, where L denotes length and T denotes time.
This gives us the constraints that r+n = 2 and p+q+r = 1.
With these constraints (3) reduces to

νT = (C ′)2(�′)2−r |∇s ū|p|∇su′|1−p−r |u′|r (4)

Remarks 1. We note that the turbulent viscosity is now a
two-parameter (p, r ) family of functions (see Fig. 1). The
simplest model, namely the Smagorinsky eddy viscosity
[9,18], is obtained by setting r = 0 and p = 1,

νT = (C ′)2(�′)2|∇s ū|. (5)

Note that this is not the classical Samgorinsky viscosity
model because its action is restricted to the fine scales.
However, if it is applied to all scales its effect is rela-
tively uniform over all resolved wavenumbers. It is said
to create a “plateau” [11,19,20].

2. Assuming that the space of the fine-scale velocities is
constructed such that u′ = 0 at the walls, then as long
as r > 0 and p + r < 1, νT will be zero at the walls
consistent with known boundary layer behavior.

2.3 Estimating C ′

Using Lilly’s analysis [21] it is possible to estimate the para-
meter C ′ for any combination of p and r by assuming an
infinite inertial sub-range. That is we assume that

E(k) = αε2/3k−5/3, (6)

where E(k) is the kinetic energy spectrum, α is the Kol-
mogorov constant, ε is the dissipation rate, and k is the
wavenumber. Using this expression the quantities on the
right-hand side of (4) may be estimated as follows. First,

1

2

∣
∣∇s ū

∣
∣2 =

∫ k̄

0
k2E(k)dk

= 3

4
k̄4/3αε2/3. (7)

which yields

∣
∣∇s ū

∣
∣ =

(
3α

2

)1/2

ε1/3k̄2/3. (8)

Similarly,

1

2

∣
∣∇su′∣∣2 =

∫ k′

k̄
k2E(k)dk

= 3

4

(

k′4/3 − k̄4/3
)

αε2/3. (9)

which yields

∣
∣∇su′∣∣ =

(
3α

2

)1/2

ε1/3
(

k′4/3 − k̄4/3
)1/2

, (10)

and,

1

2

∣
∣u′∣∣2 =

∫ k′

k̄
E(k)dk

= −3

2

(

k′−2/3 − k̄−2/3
)

αε2/3. (11)

which yields

∣
∣u′∣∣ = (3α)1/2ε1/3

(

k̄−2/3 − k′−2/3
)1/2

. (12)

Using (4), (8), (10), (12), along with �′ = π
k′ , in (1), and

equating the model dissipation to the total dissipation, we
arrive at the following expression for C ′2,

C ′2 = 2−r/2
(

2

3α

)5/2 ( a

π

)2−r

(

a4/3 − 1
)(p+r−3)/2 (

1 − a−2/3
)−r/2

, (13)

where a = k′
k̄

= �̄
�′ is the ratio of the two filter widths. We

note that the viscosity parameter C ′ is only a function of the
exponents r and p, and the ratio of the filter widths a. These
parameters are known in any simulation, hence C ′ can be
determined using the formula above.
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Remark In the analysis above we assumed that the turbulent
viscosity was active only in the equations for the fine scales.
However, often the turbulent viscosity is applied to all scales.
In this case the model dissipation is given by

ε = νT
∣
∣∇su

∣
∣2 , (14)

while the expression for νT is remains the same (that is (4)).
Recognizing that

|∇su| =
(
3α

2

)1/2

ε1/3k′2/3, (15)

and using (4), (8), (10), (12), along with�′ = π
k′ , in (14), we

arrive at the following expression for C ′2,

C ′2 = 2−r/2
(

2

3α

)5/2 ( a

π

)2−r
a−4/3

(

a4/3 − 1
)(p+r−1)/2

(

1 − a−2/3
)−r/2

. (16)

We note that (13) is valid when the turbulent viscosity is
applied only to the fine scales, and (16) is valid when it is
applied to all scales (coarse and fine).

2.4 Some specific models

Wenowexaminemodels that are obtained bymaking specific
choices for the exponents p and r (see Fig. 1).

1. The choice r = 2 eliminates the explicit length scale
dependence in the expression for the eddy viscosity (4)
and yields,

νT = (C ′)2|∇s ū|p|∇su′|−1−p|u′|2. (17)

This is particularly useful for unstructured grids where
the filter width is not easy to precisely estimate. Further,
for wall bounded flows, assuming that |∇s ū| and |∇su′|
are non-zero, this model yields νt ∼ |u′|2 ∼ y2, which
corresponds to the Van Driest wall law [22] variation.
Here we have assumed that the fine scales in the numer-
ical solution will replicate the correct scaling with wall
distance, that is |u′| ∼ y. There is however some poten-
tial for instability in this model since at least one out
of the two rates of strain, |∇s ū| and |∇su′|, appears in
the denominator. In regions where these strains are small
this viscosity might be too large. This potential instabil-
ity also affects dynamic Smagorinsky models [23–25].
In that case volume-averaging of the denominator and/or
adding a small, positive non-zero constant to the denom-
inator, are sometimes utilized. The choice, p = 1, in
(17) yields an eddy viscosity that closely resembles the

discontinuity-capturing directional dissipation (DCDD)
viscosity proposed in [14].

2. The choice r = 0 eliminates the fine-scale velocity in the
expression for the eddy viscosity (4) and yields,

νT = (C ′)2(�′)2|∇s ū|p|∇su′|1−p. (18)

This model generalizes two multiscale models that have
been utilized previously [7,8,26], that is the large-small
and small-small models, which are obtained by setting
p = 1 and p = 0, respectively. Models of this type have
been shown to produce the correct “cusp-like” behavior
of the spectral representation of eddy viscosity [11,19,
20].

3. The choice r = 1− p eliminates the fine-scale strain-rate
in the expression for the eddy viscosity (4) and yields,

νT = (C ′)2(�′)p+1|∇s ū|p|u′|1−p. (19)

In order to avoid velocity or strain-rate terms in the
denominator p must be chosen so that 0 ≤ p ≤ 1. In this
interval we create a Smagorinsky-like model that, due to
the dependence on |u′|1−p, modulates the decay rate of
the eddy-viscosity plateau (in the wavenumber space) of
the Smagorinsky model. For example with p = 1/2 we
have

νT = (C ′)2(�′)3/2|∇s ū|1/2|u′|1/2. (20)

4. The choice r = 1 yields,

νT = (C ′)2�′ (|∇s ū|/|∇su′|)p |u′|, (21)

which is an eddy viscosity where |u′| determines the fluc-
tuating velocity and the�′ determines the length-scale. A
special form of this viscosity, obtained by setting p = 0
was proposed by Lilly [21], and used in the context of the
VMS method to simulate incompressible and compress-
ible turbulent hydrodynamics, and incompressible MHD
flows [27]. In that case the eddy viscosity was given by,

νT = (C ′)2�′|u′|. (22)

Given this connection to the “turbulent energy” model
proposed by Lilly [21], the eddy viscosity in (21) may be
thought of as a generalization of the Lilly model.

3 Residual-based approach

In the residual-based approach, an algebraic relation is typ-
ically used to approximate the fine scales [28]. Further, this
approximation is evaluated on the same grid that is used to
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compute the coarse scales. Both these considerations make
this approach less expensive than the fine-scale eddy viscos-
ity approach described in the previous section. However, this
also means that the fine scales are not very accurate, when
the LES is not well resolved. Typically, the expression for u′
takes the form,

u′ = −τRm(Ū), (23)

where τ represents an intrinsic time-scale for the problem,
which can be determined from the fine-scale Green’s func-
tion for steady model advection-diffusion problems [2]. It
can be shown for the one-dimensional steady advection-
diffusion equation that this formula leads to the nodally exact
C0-continuous linear finite element method for the coarse
scales [29]. In this case the τ is the element mean value of
the fine-scale Green’s function. A comprehensive exposition
is presented in [2]. The quantity Rm(Ū), given by

Rm(Ū) ≡ ū,t + ∇ · (ū ⊗ ū) + ∇ p̄ − ν∇2ū − f . (24)

represents the momentum residual of the Navier–Stokes
equations when operating on the coarse-scale solution Ū ≡
[ū, p̄]T . Note that when this residual vanishes, that is the
coarse scales can capture the entire solution of the Navier–
Stokes equations, the fine scales also vanish. This property
gives this approach its consistency.However, this approxima-
tion has certain obvious drawbacks. For example, for effects
such as the finite rate of decay (in time) of the fine scales,
or the convection of the fine scales by the coarse scales, or
the amplification of the fine scales by the mean shear of the
coarse scales, it relies only on changes in the residual. It does
not rely on a partial differential equation where these effects
are explicitly included within the differential operator on the
left hand side.

Thedynamicbehavior of thefine scales has been accounted
for in the work of Codina et al. [30,31]. A simple version of
this idea replaces (23) with the fine-scale evolution equation,

u′
,t + τ−1u′ = −Rm(Ū). (25)

In the context of (25), the formula in (23) is said to refer to as
steady, or static, fine scales because they emanate from the
solution of a steady model equation, whereas the fine scales
in (25) are referred to as dynamic subgrid scales.

3.1 A new dynamical model for u′

Motivated by the shortcomings of the algebraic model, we
propose a new dynamical model for u′. We note that we
are interested in an approximation to u′ that represents its
average effect (over the filter width) in the equation for the
coarse scales. The fact that we are interested in the average

effect, and not a detailed description of the fine scales, allows
us to solve for these velocities on the same coarse grid as the
coarse-scale velocities.

We begin with the assumption that the fine-scale approx-
imation is given by

u′ = −u′ Rm(Ū)

|Rm(Ū)| . (26)

That is, the fine-scale velocity field is oriented in the oppo-
site direction to the coarse scale residual. This assumption
is motivated by the approximations in (23) and (25). How-
ever, its magnitude, u′ = √

2k, where k = 1
2 |u′|2 is the

filtered fine-scale kinetic energy. Next we derive an equation
to determine k, and hence u′.

The momentum equation in the incompressible Navier–
Stokes equations is given by

u,t + ∇ · (u ⊗ u) = −∇ p + ν∇2u + f . (27)

Introducing the separation u = ū + u′ and retaining all the
fine-scale terms on the left-hand side, yields,

u′
,t+∇·(ū ⊗ u′ + u′ ⊗ ū + u′ ⊗ u′)+∇ p′−ν∇2u′ = −Rm(Ū).

(28)

Taking the dot product of this equation with u′ and making
use of the divergence-free condition for both ū and u′, we
arrive at

∂

∂t

(

|u′|2
2

)

+ ū · ∇
(

|u′|2
2

)

+ ∇s ū : u′ ⊗ u′ + ∇ ·
((

p′ + |u′|2
2

)

u′

− ν∇
(

|u′|2
2

))

+ ν|∇u′|2 = −u′ · Rm (Ū). (29)

Spatially filtering this equation with a filter of width �̄,
and assuming that the filter commutes with differentiation,
yields the following terms, some of which are subsequently
modeled.

1. The time derivative term,

∂

∂t

( |u′|2
2

)

= ∂

∂t

( |u′|2
2

)

= ∂k

∂t
. (30)

2. The convective term,

ū · ∇
( |u′|2

2

)

≈ ū · ∇
( |u′|2

2

)

= ū · ∇k. (31)

3. The production term,

∇s ū : u′ ⊗ u′ ≈ −C1|∇s ū|k. (32)
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We note that this model for the production term is similar
to the one used in the Spalart-Allmaras model [32]. Fur-
ther, C1 is a parameter whose value may be determined
by benchmarking against canonical flows.

4. The fine-scale flux term,

∇ ·
((

p′ + |u′|2
2

)

u′ − ν∇
( |u′|2

2

))

= ∇ ·
((

p′ + |u′|2
2

)

u′ − ν∇
( |u′|2

2

))

≈ ∇ ·
(

−νT

σk
∇k

)

. (33)

Herewehavemadeuse of the gradient-diffusionhypothe-
sis which is often used in the k-equation in RANSmodels
[33]. The term νT represents the turbulent viscosity, and
many options (including several described in this paper)
are available for representing this. Finally, σk is the turbu-
lent Prandtl number, which is typically an O(1) constant.

5. The dissipation term,

ν|∇u′|2 ≈ C2
k3/2

�̄
. (34)

Here we have made use of an approximation that is typ-
ically used in single-equation RANS models (see for
example, [34]). Further C2 is a parameter whose value
may be determined by applying the model to canonical
flows.

6. The source term,

−u′ · Rm(Ū) ≈ |u′| R
m(Ū)

|Rm(Ū)| · Rm(Ū)

= |u′||Rm(Ū)|
≈

(

|u′|2
)1/2 |Rm(Ū)|

= √
2k|Rm(Ū)|. (35)

In the first line of the equation above we have assumed
that the true fine-scale velocity is oriented in the opposite
direction to the coarse-scale residual. We note that this
termdoes not have a counterpart in anyof the usualRANS
models. It is however, a critical term in our model. It
contributes only when the coarse scale residual is non-
zero, and hence provides consistency to our method.

Using the approximations enumerated above in the filtered
form of (29)we arrive at an equation for the filtered fine-scale
kinetic energy, viz.,

k,t + ū·∇k −C1|∇s ū|k − ∇·
(

νT

σk
∇k

)

+C2
k3/2

�̄
= √

2k|Rm(Ū)|.
(36)

The salient difference between (36) and the traditional mod-
eled k-equation in RANS [33,35] is the right-hand-side
dependence on the the residual of the coarse scales,Rm(Ū),
which is absent in traditional models.

Remarks 1. Our final approximation for the fine-scale
velocity field is given by (26), where u′ = √

2k, and
satisfies (36).

2. We note that like the algebraic approximation, the new
equation for k, and hence the dynamical approximation
for u′, is driven by the coarse-scale residual. However,
unlike the algebraic approximation it contains the effects
of the convection, production, diffusion, and destruction
of the fine scales by the coarse scales. This represents a
significant improvement over the simple algebraic rela-
tion for the fine scales.

3. Since k is a filtered quantity, (36) may be solved on the
same coarse grid as ū.

4. It is possible to derive an explicit equation for u′, the
magnitude of the approximate fine-scale velocity, from
(36) once a formula for νT has been selected. For exam-
ple, if we assume that νT = C4u′�̄ and substitute this,
and k = u′ 2/2, in (36), we arrive at

u′
,t + ū · ∇u′ − C1

2
|∇s ū|u′ − u′∇ ·

(
�̄

σk
∇u′

)

− 2
�̄

σk
|∇u′|2 + C2

2
√
2

u′ 2

�̄
= |Rm(Ū)|. (37)

In this equation, the constantC4 has been absorbed in the
definition of the Prandtl number.

4 Conclusions

We have assumed a very general form of a multiscale eddy
viscosity model depending on a filter width, the fine-scale
velocity field, the coarse-scale velocity field, and the gradi-
ents of the coarse-scale and fine-scale velocity fields. Using
physical and mathematical realizability conditions, we have
delineated a restricted set of models and identified its poten-
tially interesting members. In addition, we have considered
coarse-scale residual-based approaches in the modeling of
turbulence. Combining classical ideas used in RANSmodel-
ing, with residual-based concepts, which are the backbone of
stabilized andVMSmethods,wehave derived a newdynamic
model for the turbulent kinetic energy, which is driven by the
coarse-scale residual.
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