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Abstract Additive manufacturing (AM)methods for rapid
prototyping of 3D materials (3D printing) have become
increasingly popular with a particular recent emphasis on
those methods used for metallic materials. These processes
typically involve an accumulation of cyclic phase changes.
The widespread interest in these methods is largely stim-
ulated by their unique ability to create components of
considerable complexity. However, modeling such processes
is exceedingly difficult due to the highly localized and dras-
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tic material evolution that often occurs over the course of the
manufacture time of each component. Final product char-
acterization and validation are currently driven primarily by
experimental means as a result of the lack of robust modeling
procedures. In the present work, the authors discuss primary
detrimental hurdles that have plagued effective modeling of
AM methods for metallic materials while also providing
logical speculation into preferable research directions for
overcoming these hurdles. The primary focus of this work
encompasses the specific areas of high-performance comput-
ing, multiscale modeling, materials characterization, process
modeling, experimentation, and validation for final product
performance of additively manufactured metallic compo-
nents.

Keywords Additive manufacturing · Non-equilibrium
processes · Multiscale modeling · Materials design ·
Process–structure–property

1 Introduction

Additive manufacturing (AM) comes in many different vari-
eties for numerous material systems including polymeric
materials, biological materials, and metallic materials. How-
ever, AM for metallic components has risen to be one of the
major research thrusts in materials science and mechanical
engineering over the past decade. One of the primary reasons
that these manufacturing methods have become so popular
is because of their unique ability to create complex com-
ponents that may otherwise be impossible to manufacture.
The impact of these methods can be observed in many scien-
tific disciplines, e.g., advanced manufacturing, mechanical
engineering, materials science, component/systems design,
aerospace engineering, and bio-medical engineering. AM
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Fig. 1 Opportunities and
impact areas of AM for the MGI

also offers strong societal impact through enablement of
entrepreneurship and patient-specific medical applications.
For the present work, the authors confine the focus of the
manuscript to metallic powder-based AM and thus the term
“AM” from this point forward will refer to these particular
forms of AM. Moreover, it will be assumed when discussing
“metal-based AM” that the authors are referring to those
methods that involve metal powder as the raw material.

In 2011, the White House set forth the Materials Genome
Initiative (MGI) [53], a multi-agency initiative designed to
accelerate the discovery and deployment of advancedmateri-
als at a substantially reduced cost. The advanced capabilities
ofAMempower it to have a natural extension to theMGI (see
Fig. 1). Processes falling under the umbrella of AM have cre-
ated a foundation that has the potential to revolutionize the
design capabilities for novel components and engineering
systems. A stable framework for rapid design and improved
time-to-market of materials for enhanced bulkmaterial prop-
erties, a fundamental objective of the MGI, is closer to
fruition than ever before. AM offers a unique opportunity for
materials design through a combination of process control
and compositional optimization via an integration of powder
metallurgy, physical metallurgy and mechanical metallurgy.
The enhanced capability provided by AM for topological
optimization and manufacturing components with complex
geometries greatly facilitates design and creation of func-
tionally gradedmaterials,which is a challenging endeavor for
conventional subtractivemanufacturingdue to gradient struc-
tures, internal features, and interface layers. Additionally, a
likely high-impact research direction inAM that will become
popular in the near future is design of metal-based metama-
terials that have properties superseding metallic materials

found in nature. The numerous capabilities of AM paired
with a coupled top-down and bottom-up design methodol-
ogy positions it to become a key tool in the MGI’s ultimate
goal of accelerated discovery of new advanced materials. A
top-down approach to comprehensively understand the AM
processwill allow us to implement a bottom-upmethodology
to design novel materials.

Patient-specific implants and prosthetics are perhaps the
most obvious of medical applications of AM. Everyone has
a unique body structure and therefore mass production of
prosthetics and metallic implants is not always a viable solu-
tion, e.g., jaw replacement. For cases when patient-specific
alternatives are desirable, a simple 3D scan can be used to
obtain the necessary component geometry followed by AM
processing with no special tooling required. Additionally,
AM provides the possibility of directly printing functional
products with embedded electronics for various applications,
many of which are uniquely suited for biological appli-
cations. This reduces the amount of time for a patient to
receive the final product while also being far more economi-
cal than usingmore traditional processes requiring additional
tooling and rework by way of high-precision machining
processes.

Extending the life of existing products and engineering
systems is of particular importance for aerospace and defense
related applications. AM can play two roles in this area: (1)
improved design and manufacturing of the materials and/or
prototypes and perhaps even more so through (2) component
and systems repair. As there is no need for product-specific
dies and tooling, AM can be used to repair damaged or
failed components on-site with minimal lead time. Even full
size AM machines are not excessively large and could be
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Fig. 2 Simulation driven process/product design strategy for AM processes

developed in such a way that portability will not be a major
concern.

Digital manufacturing is a digital framework for con-
current virtual design of materials, components, materials
systems, and manufacturing process chains simultaneously
within the paradigm of process–structure–property–
performance (see Fig. 2). This form of design is much
more economical than guess-and-check experimental meth-
ods, which generally have poor sustainability properties in
the form of excessive material waste, high energy consump-
tion, and sometimes years of experiments before a viable
solution is determined. As digital manufacturing becomes
more prevalent for industrial applications, the manufactur-
ing methods for which this framework can be applied must
be examined. AM fits perfectly into a digital manufacturing
framework due to process flexibility and excellent compli-
ance to complex geometrical features. The aforementioned
patient-specific applications provide a great example of how
digital manufacturing and AM can be coupled effectively.
One can imagine a situation in which a patient-specific
implant that includes specific design constraints is needed.
The biological feature can be scanned and imported as aCAD
file, then sent into a simulation-based analysis preprocessor,
followed by topological optimization, and finally a virtual
design loop which iteratively develops a robust and practical
set of process parameters along with material composition
for the desired application. The process is so flexible in fact

that once the topology, material composition, and process
have been successfully designed, the part can be produced
with minimal to no human interaction. This also improves
the viability of AM in distributed manufacturing networks
and cloud manufacturing.

AM will no doubt have a positive impact on driving both
entrepreneurship and innovation by reducing design and pro-
duction costs. One way in which this has already been made
a reality is through the development of desktop versions of
AM machines. While the current versions of personal AM
machines are typically for polymeric-based materials, there
is the potential for metallic-based AM machines to become
available in the near future. Designers from any level of expe-
rience can capitalize on this new technology with minimal
training. The level of simplicity in operating AM machines
allows it to be used as a platform for innovation and design in
educational atmospheres as well; many high schools and uni-
versities have already invested in assorted versions of these
machines in order to encourage student interest in the fields
of science and technology.

While the benefits and impact of using AM to create
metallic components is quite clear, the governing physics
that drive the process to be so versatile also greatly compli-
cate our ability to fully characterize the effect of the process
on final product performance. The lack of predictability in
the final product tends to reduce the level of confidence that
can be expected withmore traditional manufacturing process
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Fig. 3 Metal-based AM
processes with associated
methods of accumulation and
energy input. LENS laser
engineered net shaping, LMD
laser metal deposition, DED
directed energy deposition, SLM
selected laser melting, PBF
powder bed fusion, SLS selected
laser sintering, DMLS direct
metal laser sintering, EBM
electron beam melting

methodologies, e.g., metal forming and cutting. This has
resulted in a delay in the use of AM for metallic compo-
nents and could be a potential bottleneck that may ultimately
lead to a premature decline in AM research. This indicates
that there is a strong need for robust and efficient computa-
tional tools that can improve predictive capabilities in these
processes. This will ensure a fruitful future for AM and will
accelerate the emergence of high-quality AM products that
can have a high economical and societal impact. The ques-
tion that needs to be answered is, what can the computational
mechanics community do to aid the development and wide-
spread usage of AM?

The purpose of the present work is to shed light on the
intricacies of AM processes to a wide audience of computa-
tional and experimental researcherswith the hopeof inspiring
the pursuit of collaborative research amongst each other and
within themany facets ofAM.While this article addresses the
current challenges and directions of AM research (including
novel conceptual contributions from the authors), the present
work is not meant to be a complete technical guide to AM as
the details and governing equations can be observed through
the citations foundwithin the text. The target research areas in
AM along with short-term and long-term goals for the com-
putational and experimental research communities will be
discussed. The manuscript is divided into the following pri-
mary sections: Sect. 2 will describe themethods used for AM
of metallic materials, Sect. 3 will focus on experimental AM
process and AM materials characterization, Sect. 4 show-
cases computational challenges and the current approaches
used to obtain an understanding of AM processes, materials,
and products, Sect. 5 will discuss the short-term and long-
term goals for the computational community to realize for
continued growth of AM processes as seen from the per-
spective of the authors, and Sect. 6 contains the conclusions
of the work.

2 AM methods for metallic components

Metal-based AM processes can be separated into a number
of categories based on the methods implemented to create
the 3D components. In the present work, the categories of

additive manufacturing will be dissected based on (1) the
method of accumulation and (2) the method of energy input.
The term “method of accumulation” refers to the strategy
selected for depositing particles on the substrate while the
“method of energy input” is referring to the type of heat
source used in order to fuse the particles to the layer sub-
strate. From a practical analysis point-of-view, these two
categories are the most fundamental drivers of the overall
physics encountered during processing, regardless of the spa-
tial and temporal scales in question. In other words, although
a single modeling method may be adequate for multiple
processes, all necessary or simplifying assumptions should
start by assessment of these two primary categories (see
Fig. 3).

2.1 Methods of accumulation

For the metal-based AMmethods discussed in this work, the
metal begins in powder form, with each particle typically
being on the order of 20–100µm in diameter. Therefore, it
is necessary to develop methods for transferring the particles
to the substrate in order to prepare for the process of fusing
the new particle layer to the substrate. While each of the cur-
rently utilized methods have value, there are both similarities
and unique considerations afforded by the differences in the
accumulation methods.

2.1.1 Selective processes

Selective processes, also known as powder bed processes,
e.g., selective laser melting (SLM) and electron beam melt-
ing (EBM), use a mechanical system to apply a flat layer of
particles with a preselected thickness to a substrate prior to
application of an energy input. Once the material has been
applied to the surface, an energy input method selectively
fuses the new particles to the previously fused layer sub-
strate. Therefore, each layer of particles in the powder bed
accumulation method is a 2D slice of a 3D component, but
there will be additional unused powder in each layer. The
accumulation of these slices create a 3D component that is
then resting within the powder bed. The component is then
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pulled from the powder bed and the excess powder is removed
in order to yield the final product.

Powder bed based AM technologies, especially SLM,
are some of the most popular among the many AM tech-
nologies. One major advantage of powder bed based AM is
the outstanding ability to fabricate components with highly
complex geometries. In particular, the powder bed acts as a
supporting mechanism that improves the feasibility of fab-
ricating cantilever-type structures. Another major advantage
is the relatively small residual stress in the final products;
the powder bed in selective processes acts to reduce ther-
mal gradients, cooling rates, and residual stress by insulating
the build and removing convective heat transfer. Addition-
ally, preheating the powder bed before the selective melting
stage can yield favorable reductions in the residual stress.
The most notable drawbacks of these processes are the low
utilization rate of the powder and the potential size of the
component, which is limited by the manufacturing cham-
ber size. For example, in order to manufacture a part with
a weight of 5 pounds, approximately 100 pounds of powder
must be prepared.

2.1.2 Local deposition processes

Local deposition processes, e.g., Laser EngineeredNet Shap-
ing (LENS) and Direct Metal Deposition (DMD), are vastly
different from powder bed processes with respect to the
methodology behind transferring particles to the substrate.
In this method, the powder is applied to the substrate using a
nozzle that sprays the particles into the focal point of the
energy input source. The focal point of the energy input
source is the location where the material is to be fused
and therefore local deposition processes require a predic-
tion/assumption of the approximate location of the previous
layer in order to obtain optimal particle-substrate fusion.

In comparison with selective processes, the local deposi-
tion processes have a high or even perfect utilization rate of
the powder and more flexibility in the manufacturable size
because powder is only supplied where necessary. Not only
can larger parts be createdwith thismethod, the ability to pro-
vide component modification and repair are unique qualities
of local deposition processes. On the other hand, the major
drawbacks are the high residual stresses, distortion (some-
times causing fracture of the component), and limited ability
to fabricate cantilever-type structures. It is worth noting that
the use of the pressurized carrier gas leads to higher porosity
and oxidation.

2.2 Methods of energy input

A tremendous amount of energy is required in order to create
a 3Dcomponent frommetallic particles. InAMprocesses this
energy is applied locally to the particles, which can be used
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Fig. 4 Equipment used for different types of AM processes. a
Schematic diagram of electron beam melting (selective-powder bed)
equipment. b Schematic diagram of Laser Engineered Net Shaping
(local deposition) equipment

to reduce the amount of energy needed when compared to
other casting/forging processes; in particular, AM processes
allow for remanufacture of damaged components in order to
reduce waste associated with component replacement. The
localized nature of the process requires a highly controllable
and high intensity energy source in order to achieve adequate
energy density to force phase changes in themetallic particles
while also giving acceptable spatial resolution of additively
manufactured components. There are currently two primary
choices of the energy input method, i.e., laser beam and elec-
tron beam, each unique in its underlying physics. Figure 4
showcases some of the primary equipment used for different
types of energy inputs.
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2.2.1 Laser beam

Laser-based AM (see Fig. 4b) uses a mobile laser head to
create the 2D planar sections discussed in the previous sub-
sections. The laser beam is capable of emitting photons to a
focal point located on a substrate and the collision of these
photons with the surface produce enough heat to change
the phase of the particles/substrate. State-of-the-art laser
technology allows for numerous control methods including
modulation and pulsing, fine-scale adjustments to spot diam-
eter and a wide range of power output settings.

Lasers can be employed to heat a large variety of mate-
rials, providing extensibility of laser-based AM processing
methods to a vast number of practical applications. It is also
relatively easy to control the scan strategy of the laser beam,
either by mirror deflections or a moving fiber laser bead;
these two advantages combined are primary contributing fac-
tors that have led to laser beams being the most widely used
heat source in AM and other manufacturing areas. Addition-
ally, the focal point of the laser beam can be extremely small
(20μm [26]), which improves the ability of the process to
fabricate fine-featured structures to an impressive resolution.
The drawbacks of laser-basedAMare the low absorption rate
of the transmitted energy and the relatively low scan speed
(0.2m/s [40]) induced by the mechanical inertia. Moreover,
laser-based AM methods have difficulty in manufacturing
materials with high melting points and high thermal conduc-
tivity.

2.2.2 Electron beam

Electron-based AM uses a scanning electron beam in order
to create a 3D component out of 2D planar sections, but
the physical mechanisms of both heating and control of the
electron beam are different from those used in laser-based
methods. As schematically shown in Fig. 4a, the electrons
are emitted by the electrical heating filament and then accel-
erated at a voltage of about 60 kV. The high-energy electrons
can be focused to create an electron beam with a diameter
of approximately 350μm, which is controlled by a focusing
coil. The focusing coil is turned off and a defocused elec-
tron beam is used during the preheating step, whereas the
focused electron beam (provided by the focusing coil) is used
to obtain a high energy density for the melting step [21].

Scanning of the electron beam is controlled through the
deflection coil. The scan speed can be extremely high, on the
order of tens of meters per second (sometimes even higher),
because of the lack of mechanical inertia. The entire process
takes place in a vacuum chamber, which effectively prevents
contaminations from surrounding air (oxidation) and reduces
porosity. Furthermore, the powder bed can be preheated to
reduce both the thermal gradients and, as a result, the residual
stresses. The fundamental mechanism of the energy transfer

from the electron beam to the material is penetration of the
electrons followed by collision with the particle/substrate
atoms. A detailed description and modeling procedure for
these interactions can be found in [84]. It should be noted that
the penetration ability of the electron beam is stronger and the
absorption rate is higher than that possible with laser-based
methods. Therefore, the use of electron beam based AM has
advantages over laser-based methods in terms of the abil-
ity to manufacture materials with both high melting points
and good thermal conductivity. Compared with laser-based
AM technologies, the electron-based technologies have an
advantage in fabricating high reflectivity and high melting
point materials, e.g., Ti-Al alloys and Tungsten, because of
the high energy absorption.

Unfortunately, electron beams are not applicable to mate-
rials with poor electrical conductivity and there is notable
complexity in the process of focusing and deflecting the elec-
tron beam; these two disadvantages are the primary reasons
that EBM is not aswidely used as SLM.Anothermajor draw-
back of electron beam based processes is the limitation of the
size of the product. Large vacuum chambers allowing high
volume parts to be produced are very expensive. Moreover,
the deflection angle cannot be too large or dimensional accu-
racy of each scan will be unsatisfactory, which again limits
the size of the chamber.

3 AM process mechanics and materials
characterization

Characterization of the AM process mechanics, as well as
the effects of these mechanics on the final product material
behavior, is necessary in order to obtain insight that can drive
design of both process and product. This characterization is
the primary starting point for selection of numerical schemes
directed at predictionof as-builtAMmaterialmicrostructures
and relating conformation and composition to performance,
i.e., process–structure–property relationships.

3.1 AM process mechanics

Understanding the fundamental mechanics inherent to a
given process,whether it is deformation based, subtractive, or
additive, is the key to process control, process optimization,
and process innovation. As previously stated, AM processes
incorporate a heat source that drives a phase transformation
of the material being processed. Thus, the primary process
mechanics are related to an extremely localized phase trans-
formation that accumulatively becomes a final product. The
current priority in AM is to develop the capability of con-
trolling the powder-scale phase and microstructure evolution
to produce a high quality final product. Design/control of
the local microstructure evolution is limited only by the
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controllable process parameters and an understanding of
the effect of those parameters on structure, properties and
performance. The most fundamental controllable process
parameters are: (1) input source power, (2) energy source
velocity/position, (3) surface area of the energy input, e.g.,
laser spot size, (4)mass flowrate (local deposition processes),
(5) composition, size distribution, and packing density (pow-
der bed processes) of the powder material, and (6) the
hatch spacing and layer depth. Establishing a comprehen-
sive understanding of the fundamental physics driving the
complex microstructure and phase evolution is imperative to
regulating AM processes; this will inform us on how to opti-
mize process parameters to produce a desirable final product
quality.

A number of different physical phenomena, and interac-
tions between these phenomena, directly influence the AM
process, and consequently alter the local and global prod-
uct properties and performance. While it is well-understood
that the fundamental driving forces are inherently connected
to the selection of process parameters, the exact correlation
between the physical phenomena and the process parame-
ters is poorly understood. The primary culprit of the lack
of understanding is the inability to establish high-resolution
and accurate in situ experimental monitoring methods for
AM processes. Although detailed quantitative data related
to the real-time physical processes taking place in AM are
not presently available, the inherent physical mechanisms
driving the complex microstructures can still be explored
using ex situ experimental observation (see Sect. 3.2).

A typical physical mechanism seen during the process is
the rapid melting and solidification of the metallic powder,
which is primarily driven by thermodynamic and hydro-
dynamics forces. Melting of the powder particles lead to
the formation of a melt pool, incorporating fluid dynamic
forces such as surface tension. Surface tension effects can
cause surrounding powder particles to be drawn into the
melt pool, whereas surface tension gradients can introduce
additional convective forces from Marangoni effects, signif-
icantly impacting the smoothness and continuity of the ensu-
ingmelt track [83]. Rayleigh instabilitieswithin themelt pool
can also result in a discontinuous melt track, which is known
as balling [28]. Lastly, sufficient remelting of the previously
solidified layers is required for sufficient bonding of the cur-
rent layer; this impacts the flow behavior of the melt pool and
ultimately influences the melt track formation. These forces
combined with the highly localized solidification dynamics
significantly impact the surface finish of the final prod-
uct. Further complications arise when the energy density
becomes high enough to cause evaporation within the melt
pool. The evaporation effects in conjunction with the rapid
solidification of the metal powders can cause gas entrapment
within the product, creating both internal porosity and surface
defects.

These are just a sample of the physical mechanisms occur-
ring during the build process. Other forces that can also play
an important role in the final product quality are the residual
stresses resulting from highly localized temperature gradi-
ents, which are influenced by the absorption of the beam
energy, thermal diffusion between powder particles and the
surrounding powder bed/bulk material (substrate or previ-
ously solidified layers), convective heat loss, and radiation
of heat. Aside from implying the number of complexities
that impact final product performance for AM materials, the
inherent physical mechanisms known to occur during AM
processing establishes thesemethods asmultiscale problems.
Determining and understanding the dominant physicalmech-
anisms can better our ability to predict the optimal process
parameters to obtain the material structure and properties for
a particular product application.

3.2 Experimental materials characterization of
additively manufactured products

Experimental materials characterization of additively man-
ufactured samples is similar to that of some traditional
manufacturing methods. Therefore, microstructure charac-
terization techniques used for materials manufactured by
traditional methods can still be applied to AM materials.
However, due to the unique attributes of AM, three major
properties require special attention in materials character-
ization. The first is the density of as-fabricated alloys, i.e.,
voids/porosity, since the alloys aremanufactured using alloy-
ing powders. The second is the anisotropic microstructure,
e.g., defect distribution, oxide inclusions, grain orientation,
attributed to the occurrence of reheating cycles via the back-
and-forth motion of the laser/electron beam power source.
The third is the surface roughness, which can be reduced by
undergoing surface finishing in the post-processing stages.
It should also be noted that residual stress is of particular
importance for many applications [78] but the study in the
present work related to experimental characterization will be
limited to the three aforementioned properties.

The selection of densitymeasurement techniques can have
significant influence in quantifying the effect of process
parameters on the bulk porosity of as-built AM alloys. For
example, Kamath et al. [29] used both Archimedes method
and Scanning Electron Microscopy (SEM) in order to pre-
dict the effect of laser power and laser speed in the SLM
process on the density of as-built alloys, which were found
to yield qualitatively similar results but were quantitatively
dissimilar. As shown in Fig. 5, most of the currently available
microstructural characterization techniques can be directly
applied to the additively manufactured alloys, which are part
of Materials by Design® and Accelerated Insertion of Mate-
rials [50–52,81]. The size and volume distributions of grains
and phases as a result of the complex thermal history are of
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Mechanical Characterization
for Strength/Toughness/Creep/Fatigue

StructureProcessing Properties Performance

Microstructure Characterization
FIB, SEM/EDX/EBSD, TEM, AFM, APT, XRD

Fig. 5 Common materials characterization experiments used for addi-
tive manufacturing. FIB Focused Ion Beam, SEM Scanning Electron
Microscopy, EDX Energy-Dispersive X-ray spectroscopy, EBSD Elec-
tron Backscatter Diffraction, TEM Transmission Electron Microscopy,
AFM Atomic Force Microscopy, APT Atom Probe Tomography, XRD
X-ray Diffraction

particular interest due to their impact on the final properties.
Figure 6 shows the simulated temperature profile (Fig. 6a)
and the heating and cooling rate (Fig. 6b) of one spot in an
additively manufactured component using EBM. The model
setup is shown in Fig. 7 and uses a symmetry boundary condi-
tion on all side surfaces and the bottom surface while the top
surface incorporates the effects of heat loss due to radiation.
The model dimensions and process parameters along with
material properties used for the simulation can be found in
Tables 1 and 2, respectively. A combination of experimental
measurements and robust thermal modeling procedures are
highly desirable in order to provide a comprehensive under-
standing of the localized thermal history inAMproducts. The
integrated experimental-computational approachwill also be
beneficial for simulation of microstructural evolution based
on physical metallurgical models.

In addition, understanding the microstructural inhomo-
geneity generated by AM processing will greatly assist in
connecting process parameters to microstructural evolution,
and thus providing the potential for microstructure design
through in situ laser/electron beam process control. It is
noteworthy that among the microstructure characterization
techniques, Focused Ion Beam (FIB) assisted 3D tomogra-
phy with resolution on the submicron level is a powerful
and often used method for characterizing anisotropic fea-
tures within the microstructure as well as pore distribution
and size [49]. Typically, 3D tomography based on opti-
cal microscopy can observe the distribution of large size
grains and large voids at the micron scale [47,48]. Alter-
natively, 3D tomography based on FIB/SEM can be utilized
to study the sub-micron void distribution, and thus under-
stand causation of crack initiation and fracture [49,72]. Due
to the complex thermal distribution observed during devel-
opment of AM samples, the material microstructure usually
shows strongly inhomogeneous features that can be asso-
ciated to both size and distribution of both the grains and
defects. Figure 8 (Fig. 6 in Zhu et al. [88]) illustrates such a
feature observed in Ti6.5Al3.5Mo1.5Zr0.3Si titanium alloy
fabricated by a laser-based local deposition process [88].
Evidently, the introduced inhomogeneity of the microstruc-
ture will have substantial influence on the generation of
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anisotropic mechanical properties in the additively manu-
factured alloys. Therefore, in contrast to the investigation of
alloys manufactured by other techniques, mechanical char-
acterizations of the as-built alloys by AM to determine
anisotropic properties are especially important for the pur-
pose of improving materials performance [70,88,89].

Aside from the anisotropic microstructure and porosity of
the as-fabricated alloys in AM, another challenging issue
related to microstructure characterization and mechanical
properties is surface roughness, which can lead to severe
fatigue failure. Although the traditional method of using
Atomic Force Microscopy (AFM) or optical profiling sys-
tems may work for 2D section measurements of the surface
roughness, 3D characterization methods to investigate the
surface roughness are still arduous [57]. In the study of
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microporosity effects on fatigue properties by Xue et al. [82],
it was clearly shown that the source of cracks not only include
defects on rough AM product surfaces, but also near the
surface within the volume of the specimens. Some research
studies have been dedicated to reduce the surface roughness,
and thus attempting to improve fatigue resistance of the fab-
ricated components in AM. For example, Pyka et al. [57]
developed a novel protocol for surface modification of 3D Ti
alloy-based open porous structures using a combined tech-
nique of chemical etching and electrochemical polishing.

The experimental characterization of AM materials pro-
vides a tremendous amount of motivation for computational
research. Although many AM processing techniques utilize
post-processing methodologies, e.g., Hot Isostatic Pressing
(HIP) and surface roughness refinement, in order to improve
the material microstructure and performance, the as-built
microstructural conformation is the initial condition for any
post-processing methods and thus warrants thorough investi-
gation.Moreover, if the process–structure–property relations
can be understood for AM processes, materials, and prod-
ucts, post-processing could potentially be removed entirely;
removal of post-processing improves applicability of AM to

Fig. 8 Microstructure of Ti6.5Al3.5Mo1.5Zr0.3Si titanium alloy fab-
ricated by a laser-based local deposition process [88]. a The overview
of Transition zone between heat affected zone (HAZ) and wrought sub-
strate zone (WSZ). b–f Microstructure of the corresponding positions
bf in (a). αs is lamellar secondary α-hcp phase, αp is the primary α

phase

more applications, reduces time to market for materials and
products, and could potentially lead to the highly desirable
mass production of AM products.

4 Computational challenges and current
approaches in AM

The primary purpose of this section is to discuss and spark
interest in the many computational challenges that have been
presented in AM research. In particular, the need for high-
fidelity physics-based models for AM applications and the
necessary hardware, software, and theoretical developments
needed to facilitate AM processing as effectively as possi-
ble. Additionally, current approaches taken by the authors,
as well as others, are discussed in order to benchmark the
state-of-the-art in computational analysis of AM methods.
This section will focus on the key computational areas that
most urgently need to be addressed, as observed from the
perspective of the authors.

4.1 Process modeling challenges

As schematically shown in Fig. 9, AM processes are
extremely complex, involving multiple physical phenomena
at multiple scales; the strongly non-equilibrium processes

Table 1 Dimensions and
process parameters for powder
bed FEA study

Lx (mm) Ly (mm) Lz (mm) Lt (mm) V x (mm/s) P (W) D (mm)

4.0 0.5 0.4 0.05 100 60 0.35

Table 2 Material properties of
stainless steel 316L [3] used in
the powder bed FEA study

TS (K) TL (J/g K) CP (J/g K) �HL (g/mm3) ρ kpowder (W/mm2) kbulk (W/mm2)

1648.15 1673.15 0.5 272.5 0.008 0.0003 0.0214
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Fig. 9 Multiscale multiphysics
phenomena in AM processes
and materials

stemming from molten pool flow, energy deposition, and
phase transformations are of particular importance. The
heat source model on the macroscale represents the energy
absorption and interactions between electrons/photons and
powders. Since the individual powders get varied amounts of
thermal energy from the interactions, a variety of heat transfer
takes place, including thermal conduction inside the pow-
der particles and heat transfer between them through surface
radiation, conduction at the contact regions and convection (if
not in a vacuum environment). Meanwhile, the phase of the
material is changing alongwith the temperature, from solid to
liquid when the temperature is higher than the melting point,
even from liquid to gas with the temperature higher than
the boiling point. The latent heat associated with the phase
transformations has an enormous effect on the temperature
distribution, which makes the heat transfer analysis highly
nonlinear. Moreover, it should be noted that the individual
powders may get partially or entirely melted, which makes
the solid-liquid interface very complex. The molten liquid
flow is driven by a variety of forces, e.g., gravity, capillary
forces, Marangoni forces caused by temperature gradients,
and recoil pressure if evaporation occurs. The highly complex
flow also strongly influences the heat transfer. Finally, when
the heat is transferred away and the temperature falls below

themeltingpoint, themolten liquid solidifies, re-formingpor-
tions of the previously solidified structures, which is the basic
principle of AM. In addition to the complex behavior taking
place during the manufacturing process, the powder bed for-
mation or the powder feed properties are also of significance
in terms of process modeling. The powder formation process
consists of elastic and/or inelastic frictional collisions of a
large number of powder particles, while the powder feed by
high-pressure gas is a multiphase flow problem.

The first process modeling challenge is related to devel-
oping models that include all of the complex physical
phenomena into strongly coupled multiphysics analysis pro-
cedures. As mentioned in Sect. 4.2, current computational
approaches often simplify the interactive influences between
different physical phenomena and build models separately;
this approach is not able to provide a thorough enough under-
standing of the many complex processes observed in AM.
Again,most of the current thermalmodels do not consider the
effect of themolten pool flow.Currentmolten pool flowmod-
els ignore the evaporation and the recoil pressure is applied
according to empirical equations, which is not convincing
in terms of the physics. The evaporation is a major con-
cern, especially formanufacturingwithin a vacuum chamber,
resulting in obvious changes in the chemical compositions
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Fig. 10 Integrated computational toolset approach for understanding process–structure–property relations for AM processes

and physical properties of the final products. The evapora-
tion of lightweight elements, e.g., aluminum alloys, has been
experimentally observed to be serious enough to influence
the microstructures and properties [20]. Thermal simula-
tions have also been used to demonstrate the importance
of evaporation [75]. Therefore, a successful multiphysics
model should consist of heat transfer, phase transformations
including melting, evaporation and solidification, molten
liquid flow, and should consider the strong interactive
effects.

Developing an understanding of how to obtain valuable
information at multiple spatial and temporal scales is another
challenge. As previously illustrated, the mesoscopic models
tracing individual powders changing in very short time peri-
ods (milliseconds) during heating, melting, and subsequent
flow to solidification will be valuable in understanding the
underlying physicalmechanisms ofAMprocesses. However,
the actual components are mostly in complex shapes with
dimensions of centimeters or even meters, and the actual
manufacturing processes could last as long as hours or even
days. Therefore, determining how to link the scales in time
and space is critical to simulation of the fabrication process of
AM products. To be more specific, for a given set of process
parameters there are both mesoscopic and macroscopic char-
acteristics that require prediction. At the mesoscale, it is
desirable to understand mechanisms such as the flow of the
molten liquid and the heat in the powder bed along with the
evaporation behavior in order to predict the development of
microvoids and material loss. At the macroscale, the ther-
mal stress and distortions, which will influence the service
life and dimensional accuracy of the final product, must be
accurately predicted for part qualification.

It is also challenging to integrate models pertaining to
individual phenomena into one framework that is accessible
to researchers and engineers in the area of manufactur-
ing (see Fig. 10). The widely used finite element method
(FEM) has certainly been established as a primary contrib-
utor to simulation and analysis of AM processes but does
not seem to be enough to handle such complex problems
alone. Some other methods like Reproducing Kernel Par-
ticle Method (RKPM), Lattice Boltzmann Method (LBM),
Discrete Element Method (DEM), phase-field methods and
level set methods will act as useful tools with some unique
advantages in modeling complicated interfaces, contact, and
large deformations. Aside from selecting and incorporating
the advantages of specificmethods on particular aspects, how
to effectively integrate the different models together without
reduction of the efficiency and accuracy is a key challenge.
More importantly, it is unlikely that the integrated frame-
works will play useful roles in practical applications of AM
unless they are easily obtained and can be used in a manner
similar to commercially available FEM software.

4.2 Heat source modeling

The heat source model is the most fundamental aspect of
computationally analyzing AM processes. Moreover, the
heat sourcemodel is the primary factor driving the prediction
of the temperature field for a given AM process, with accom-
panying process parameters. The inherent physics of interest
in AM are directly dependent on the temperature field, e.g.,
the activation forces for the molten pool flow including the
Marangoni convection force due to the temperature gradient
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Electron Beam

Heat Flux Distribution

Electron Beam

(a) (b) (c)

Fig. 11 Traditional heat source models. a Surface Gaussian model [37]. b Double ellipsoidal model [22]. c Rotatory Gaussian body model [46]

and the recoil pressure caused by the evaporations when the
local temperature reaches the boiling point.

Most of the current heat source models (see Fig. 11)
originate from welding simulations because the fundamen-
tal physics of the welding process are very similar to those
seen in AM processes for a single pass. More specifically,
aside from the point or line heat source models for analyti-
cal analysis [61], theGaussian-distributed surface fluxmodel
[55] and the volumetric fluxmodel [54] remain themost pop-
ular to date in the thermal analysis of welding [46] and AM
[37] processes. Another popular volumetric flux model takes
on the double ellipsoidal shape proposed by Goldak [22].
TheGaussian-distributed and double ellipsoidalmodelswere
established based on the experimentally observed shape of
the solidification zone. For instance, in keyhole-mode melt-
ing, which has been observed both in welding [11] and AM
[34], the depth of melting is increasingly large because of
the recoil pressure caused by evaporation and the established
volumetric flux model has an extremely large penetration
depth [62]. In other words, the traditional heat source mod-
els are effective combinations of many influencing factors
such as convection and evaporation, rather than the actual
input energy from the laser/electron beam. The traditional
models are simple and efficient but are not able to capture
some of the more detailed information related to the complex
physical processes [84] observed in AM.

As explained in Sect. 2.2, the two primary heat sources
used in AM applications are lasers and electron beams,
which are characterized by different physical phenomena. It
is intuitive that different input energy types that incorporate
differing governing physics should have unique heat source
models. Therefore, new heat source models should be devel-
oped according to the actual physicalmechanisms rather than
based on the experimentally observed solidification zone in
previous studies. It should be noted that the powder bed used
inmanyAMprocesses has significant effects on the absorbed
input energy distribution and the thermal conduction. The
interaction between the laser/electron beam and the metal

powder results in energy distributions that differ greatly from
that observed inwelding. For laser-based processing, the heat
source model should be selected based on the type and state
of the material being processed. Because the material is in
a powder state for the SLM process, photons emitted by the
laser penetrate through the material and repeatedly reflect
between the powder particles, thus volumetric heat source
models with a penetration depth should be used. In contrast,
the material in laser welding is well-represented by a con-
tinuum state and most of the photons get reflected by the
surface, rather than penetrating into the continuum, so the
surface heat source model is more appropriate. Some studies
[27] analytically approximated the deposited energy profile
in the powder bed under strong simplifications and assump-
tions.

4.3 Modeling phase change during the powder–beam
interaction

The material phases in AM processes evolve over space and
time as the process continues. Material close to the loca-
tion of the laser/electron beam interaction can be in a liquid
phase while the near-field surrounding material is in a mix-
ture of liquid and solid phase, and interacts with the solid
far-field phase. The liquid phase incorporates complex liq-
uid flow behavior including Marangoni convection and melt
pool hydrodynamics. When the energy of the laser/electron
beam is high enough, as it often is to ensure sufficient
melting, an additional gas phase due to vaporization may
be important. Gas formation from vaporization can cause
recoil pressure and capillary forces to drive liquid trans-
port, further increasing complexity to modeling the process.
Modeling the multiphysics nature of AM processes requires
the ability to model the fluid-solid interaction while track-
ing the interfaces between the multiple phases existing near
the local interaction region. While detailed mesoscale cal-
culations capturing these interactions are computationally
expensive, they can certainly be useful in understanding the
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microstructure conformation that results fromAMprocesses.
The material porosity, microstructure anisotropy, and sur-
face roughness are a few examples of the outputs that can
be obtained from modeling the fluid-solid interaction taking
place at the mesoscale.

Using pore formation as an example, Vilaro et al. [71]
hypothesize that material evaporates during melting and the
subsequent gas becomes entrapped in the build due to rapid
solidification, developing a more porous component. Qiu et
al. [58] argued that insufficient re-melting between the liquid
and solid phase at localized sites could lead to discontinu-
ous tracks, developing more pores at the top surface. Qiu
et al. [59] theorized that instability in the melt pool induced
“splashing” of the molten material, which in turn causes pore
formation. These are just the few exampleswhere prior inves-
tigations have shown that interaction between liquid, solid
and gas phases play a crucial role in the quality of the final
part. Being able to simulate these complex interactions will
enhance our understanding of the governing physics occur-
ring at the powder-scale. Unfortunately, this information will
only give insight into the local microstructure due to limi-
tations of the current state of high-performance computing
(HPC) (see Sect. 4.7).

There are a number of methods for implicit tracking of the
phase interfaces. Such methods include the level set method
(LSM), volume of fluid (VOF)method, and phase fieldmeth-
ods. These methods are able to implicitly track the interface
by solving an additional partial differential equation for an
auxiliary function,which acts to describe the phase of amate-
rial. Although implicit tracking of the interface involves an
additional equation to solve for the auxiliary variable, they
are still more computationally efficient than explicit tracking
and maintain a reasonable accuracy.

A number of investigations into numerically modeling
laser-material interaction have created a foundation for mod-
eling the AM process. For example, Zhang et al. [85]
implemented a modified level set method to track the liquid-
gas interface evolution. By accounting for effects such as
recoil pressure, surface tension and the Marangoni effect,
molten ejection effects seen in experiments can be cap-
tured computationally. Ki et al. [33] developed a level set
based model to analyze the liquid vapor interface produced
by the high-energy density laser beam-material interaction
process. Through incorporation of complex physical effects,
e.g., Knudsen layer, thermo-capillary effects and recoil pres-
sure, phenomena such as fluid ejection and evaporation of
material, and thus loss of mass during the process, can be
simulated. Currentmodelingmethods forAMprocesses have
been directed at establishing the underlying physics of the
laser-material interaction at the powder-scale. Klassen et al.
[36] utilized a lattice Boltzmann method (LBM) for hydro-
dynamics coupled with VOF to track the evolution of the
free surface between the gas-liquid phase during EBM. They

Fig. 12 Particle scale phase transformation analysis for a single track
in the SLM process [32]

found that the penetration depth of the beam plays a sig-
nificant role in evaporation effects. Khairallah et al. [32]
developed a 3D powder-scale hybrid finite element finite
volume model, which couples hydrodynamic and thermal
interactions throughout the process. Their model accounts
for temperature-dependent material properties, surface ten-
sion and particle distribution, all of which play a crucial role
in driving the outcome of the process in terms of microstruc-
ture andproperties.Bymodeling at such a high resolution, the
hydrodynamic and stochastic effects, which homogeneous or
effective models do not capture, can be accounted for. Figure
12 provides an example of the particle-scale phase trans-
formation model utilized by Khairallah et al. Much of the
applications of interface trackingmethods to the AMprocess
demonstrate that the complex physical interaction among
phases at the powder-scale can have a profound impact on
the outcome of the process. Developing methods to model
such complex interactions are necessary to establish a fun-
damental understanding of AM processes.

4.4 Computational materials characterization

Computationalmaterials characterization is perhaps themost
intricate and yet critical area of study that will dictate the
future of AM processes. The reason that this particular area
is of such great importance is because of the effects of the
process on local microstructure and properties. The local
microstructure and properties will be controlled by both
local process parameters as well as powder composition.
The microstructural features that are of particular interest
encompass phase fraction, grain size and structure, den-
drite formation/structure, porosity, inclusions, and surface
roughness.While there aremany computationalmethods and
models that can be used to predict these microstructural fea-
tures, there are few methods that can predict the evolution of
the microstructure over the course of the entire manufactur-
ing cycle.
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4.4.1 CALPHAD-informed AM process modeling

The CALculation of PHAse Diagrams (CALPHAD)
approach is widely accepted in the materials research com-
munity as a powerful engineeringmethod in predictingmate-
rial thermodynamics and kinetics of materials [7,31,52].
It was originally developed for computational modeling of
alloy thermodynamics based on experimental phase equilib-
ria and thermodynamic properties. A further development
made in the CALPHAD research community enabled this
approach to be applicable for diffusion kinetic modeling of
inorganic systems [6]. Therefore, the state-of-the-art CAL-
PHAD method and its developed database is considered
as one of the most important methodologies for construct-
ing materials genomic databases. The primary advantage
of the CALPHAD approach is the fidelity of model pre-
diction for multicomponent alloys. For example, Saunders
[63] demonstrated the good agreements in phase equilib-
ria and thermodynamic properties between the CALPHAD
method predictions and experimental results on multicom-
ponent commercial alloys.

Fundamentally, the CALPHAD model is based on the
thermodynamic description of the pure elements composing
the material, which is expressed as heat capacity start-
ing from room temperature to temperatures well-above the
melting point. The standard CALPHAD database of pure
elements, made by SGTE (Scientific Group Thermodata
Europe) in 1991 [16], allows the CALPHAD community
to perform CALPHAD-type thermodynamic modeling for
binary, ternary and multicomponent alloy systems.

In the CALPHAD approach, the Gibbs free energy of
phase φ in amulticomponent alloy systemGφ

m can be defined
as:

Gφ
m =

∑

i

x0i G
φ
i + Rθ

[
∑

i

xi ln (xi )

]
+ ExGφ

m + MagnGφ
m

(1)

in which, R is the gas constant, θ is temperature, and xi is
the composition of element i in the multicomponent system.
The third term on the right hand side (RHS) stands for excess
energy in the system, and the last term on the RHS evaluates
the magnetic contribution to the Gibbs energy of the system
[80]. Different types of thermodynamic models have been
developed for different crystalline and liquid phases, and the
model parameters are optimized according to phase diagrams
and/or thermodynamic property data, which can be obtained
by experiments or sometimes atomistic modeling, e.g., quan-
tum mechanical calculations.

Several comprehensive software packages have been
developed for CALPHAD-based research, e.g., Thermo-
Calc, which is generally considered as the pioneering

software package in computational thermodynamics and
kinetics. Thermo-Calc was developed in 1981 by research
groups at KTH Royal Institute of Technology in Swe-
den. Prediction of phase equilibria, phase stability, and
thermodynamic properties are considered basic features of
the CALPHAD approach, which serves as a basis of per-
forming diffusion kinetic simulations and non-equilibrium
studies during the solidification process. For example, the
Scheil–Gulliver model has been adopted in the Thermo-Calc
software package for estimating thermodynamic properties
during solidification [9,64], which is demonstrated briefly in
the current work.

In simulation of the solidification process of alloys, the
behavior of the solidifying alloy under local equilibrium con-
ditions can be simulated based on the thermodynamic and
kinetic properties,which is readily obtainable using theCAL-
PHAD approach. Analogous to the phase equilibrium case,
alloys solidifying under rapid cooling conditions require pre-
dictions based on a non-equilibrium solution, which can be
described using the Scheil–Gulliver model [24,65] as a good
approximation. This model provides a qualitative analysis
of the solute redistribution during solidification processes.
It assumes that no diffusion takes place in the solid phases
and that solute redistribution in the liquid is infinitely fast. In
the Thermo-Calc software, the Scheil–Gulliver simulation
is available as a built-in module that generates thermody-
namic properties, e.g., latent heat and phase fraction, during
rapid cooling under the Scheil–Gulliver condition. Further
descriptions of these models can be found in [9].

One methodology that is currently under development by
the authors is a CALPHAD to 3D FEM coupling [68]. The
benefits of such an approach are: (1) the material compo-
sition is used as an input, (2) the non-equilibrium solution
incorporating supercooling effects in AM can be simulated,
and (3) high-resolution material properties with nonlinear
temperature-dependence can be obtained. The EBM model
described in Sect. 3.2 was used to showcase the devel-
oped method (see Fig. 13). The material composition used
as inputs for the CALPHAD-derived properties are shown
below in Table 3, whereas the predicted liquidus and solidus
temperatures are shown Table 4. As can be seen in Fig. 14,
the impact of (1)–(3) is that the thermal history in terms of the
heating and cooling rate, which has a dramatic impact on the
microstructural evolution of stainless steel 316L, is notice-
ably effected.While the specific heat capacity and latent heat
are readily available in common engineering handbooks and
look-up tables, these experimentally detected values are only
rough approximations to the real values for knownmaterials.

A comparison of the CALPHAD and handbook derived
properties can be seen in Fig. 15. The noticeably different
temperature histories (Fig. 14a) and heating/cooling rates
(Fig. 14b) observed between the handbook-based properties
and CALPHAD-derived properties imply that the predicted

123



Comput Mech (2016) 57:583–610 597

1.726e+03

1600

1400

1200

1000
9.000e+02

Temperature

Fig. 13 Single track EBM model using CALPHAD-derived thermo-
dynamic properties (Note max temperature shown is liquidus)

Table 3 CALPHAD material composition inputs for stainless steel
316L (wt%)

Fe Cr Ni Mo Mn
Balance 16.3 10.3 2.09 1.31
Si C P S

0.49 0.026 0.026 0.006

Table 4 CALPHAD-derived solidus and liquidus temperatures for
stainless steel 316L

TS (K) TL (K)

1607.15 1726.15

microstructure can be significantly influenced by the input
thermodynamic properties. More specifically, the handbook
properties do not take into account the impact of the super-
cooling in AM processes and are also extremely simplified
(see Fig. 15a, b) in the temperature ranges that are most
important for understanding as-built AM materials, i.e.,
between the solidus and liquidus temperatures. The differ-
ence in the prediction of the secondary dendrite arm spacing,
which can be obtained from the simulated cooling rate [1,63],
is one example of a prediction that could be strongly influ-
enced by poor material property assumptions.

4.4.2 Multiscale microstructure evolution analysis

Although the tools utilized in additively manufacturing a
part are conceptually simple, the processes are rather com-
plex in that there are multiple physical phenomena involved.
Included in these phenomena are defect formation, dendrite
formation, and cyclic melting/solidification during the build
process, all of which contribute to the quality of the fin-
ished part. These behaviors are largely affected by the input
process parameters, e.g., laser power, speed, scan direc-
tion, layer depth, and hatch spacing. Figure 17a illustrates
how process parameters can dictate the complex physics and
behavior seen from the global part scale to the powder scale,
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Fig. 14 Comparison of the predicted response of a selected node cal-
culated using handbook-based specific heat and change in enthalpy due
to phase change and CALPHAD-derived specific heat and change in
enthalpy due to phase change for stainless steel 316L. a Thermal his-
tory for selected node. b Temperature rate history for selected node

establishing AM as a multiscale and multiphysics problem.
Qualification of the produced part is established as a signif-
icant challenge stemming from the fact that there is still a
degree of uncertainty associated with the understanding of
the influence of process parameters on the observed physical
phenomena.

Numerous experimental investigations have been carried
out to develop an understanding of the physics driving
AM processes. The underlying goal of these experiments
is to create a relation between the process parameters and
the resulting response of the material to the manufactur-
ing process. Although much progress has been made in this
area of research, there still remains enough uncertainty to
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Fig. 15 Comparison of handbook and CALPHAD-derived
temperature-dependent specific heat and change in enthalpy due
to phase evolution for stainless steel 316L. a Specific heat as a function
of temperature. b Change in enthalpy as a function of temperature

prevent ubiquitous commercialization of AM. Furthermore,
performing these experiments is costly and time consum-
ing. The inefficiency of experimentally linkingAMprocesses
to final part quality implies that a combined experimental-
computational approach has a higher potential for success.
With the ever-increasing power and affordability of fast par-
allel computers, computationalmodeling has become amajor
tool in providing a physical explanation for complex physical
phenomena. As a result, researchers have resorted to com-
putational modeling and simulation to provide a physical
understanding of AM processes.

Numerically modeling the AM process is further com-
plicated by the fact that the complex physical phenomena

Fig. 16 Schematic of concurrent multiscale coupling

occur over a broad range of length and time scales. Zohdi
[90] utilized a discrete element method (DEM) to capture the
powder scale behavior during the laser sintering process. Fur-
thermore, Bauereiß et al. [5] developed a mesoscopic Lattice
Boltzmannmodel to capture themelting behavior at the pow-
der scale during the EBM process. Yan et al. [84] developed
a new heat source model to capture the thermal profile on the
part scale. Despite the progress made in computational mod-
eling, AM is an inherently multiscale problem. Figure 17a
demonstrates how multiple length scales can evolve to con-
trol the quality of the finished part. Being able to accurately
represent the complex physical evolution of an additively
manufactured part requires a computational tool to couple
the various scales of interest. Such a tool can then connect
process, structure and properties to the final part quality and
performance. Initial work has been done byKing et al. [35] in
developing a methodology to couple multiple models on var-
ious time and length scales. Through their effective medium
and powder models, they are able to reproduce results that
are observed in experiments. Their work demonstrates that a
multiscale model is necessary to develop a true understand-
ing of the governing physics of AM processes, and is part of
a strategy aimed at qualification of AM parts.

It is evident that a multiscale method is necessary in order
to accurately depict the evolution of the powder scale during
the AM process. There is still no conclusive understanding
of how the rapid and complex phase evolution occurring at
the powder scale affects the product scale behavior after
AM processing. Concurrent multiscale methods may offer
valuable insight into the instantaneous behavior and interac-
tion among disparate spatial and temporal scales. There has
been recent efforts devoted to developing concurrent meth-
ods capable of performing this intricate analysis. Chu et
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Fig. 17 Experimental and
(concurrently coupled)
computational framework for
characterizing
process–structure–property
relationships in as-built AM
materials. a Experimental
characterization of as-built AM
microstructure. b Schematic of
concurrent multiscale coupling
technique

Evolve coarse scale simulation 

multiscale 

(a) (b)

al. [14] proposed a concurrent multiscale method through
coupling conservation laws for mass. Similar concurrent
methods [8,10] have been developed by coupling macro-
and micro-pressure equations through boundary conditions
and iterating until the resulting pressures between disparate
scales match. Gu et al. [23] coupled a coarse scale meshfree
analysis to a fine scalemolecular dynamics (MD) simulation.
They utilized transition particles to couple the two domains
while implementing a penalty method to ensure compatibil-
ity of displacements.Wagner et al. [76] established a bridging
scale decomposition that couples fine scale MD to a contin-
uum scale finite element model into a single multiple-scale
simulation. This was done through a projection of bound-
ary conditions and MD displacement degrees of freedom
between the two models. These aforementioned concurrent
methods rely on some form of immediate exchange of infor-
mation among scales, as depicted in Fig. 16. Choosing the
information being transferred among these scales is an inte-
gral part of designing concurrent methods, as the fidelity of
this transfer determines the accuracy and effectiveness of the
method.

The authors are in the process of developing a multiscale
method to concurrently couple and evolve disparate spatial
and temporal scales. This method passes thermodynamic
information between scales to calculate boundary conditions
ensuring conservation of the total energy of the system. Such
boundary conditions result in microstructural evolutions at
each individual scale that are energetically consistent. Figure
17b presents a simple concept of how the method currently
operates. At the coarse or global part scale, the thermal his-

tory is passed down to a finer (microstructure) scale. Using
the thermal history, the fine scale is evolved to the same
temporal state of the coarse scale, tracking microstructure
formation through solution of a coupled temperature-phase
field model. The solution at the fine scale gives informa-
tion related to the properties of the evolved microstructure,
which can be homogenized back to the coarse scale to give an
effective capacitance, conductivity and phase composition.
By performing concurrent simulations, instantaneous infor-
mation can be passed between scales to provide an accurate
representation of the real time process. This method can be
advantageous for AM applications as it is able to provide a
rapid depiction of the resulting microstructure evolution at
specific points of the part given a set of process parameters.
Future implementations of this method will also incorporate
the powder scale. Concurrently evolving this scale allows for
prediction of the complex phase history of the powders, offer-
ing insight into the cyclicmelting/solidification and its effects
on track distortion. Results from these multiscale models can
then strengthen our understanding of the complex physics
governing the process, which in turn can accelerate the qual-
ification process of additively manufactured parts.

4.5 Computational characterization of mechanical
behavior

The experimental characterization of additively manufac-
tured components drives the development of the computa-
tional material models used for analysis of final product per-
formance. Purely phenomenological models for analyzing
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these materials are enticing but will ultimately be limited
in predictive capabilities; while useful, these models are
unlikely to be robust outside of the training data used to
develop them. Instead, it is more desirable to focus on
mechanics-based models such that a correlation can be made
between the material properties and the material microstruc-
ture. The microstructure of additively manufactured materi-
als is of course dependent on local process parameters, and
thus a mechanics-based constitutive law has a higher proba-
bility of alluding to the process–structure–property relations
that are so important for design of processes, products, and
materials.

4.5.1 Microstructure-informed plasticity and damage

As indicated in Sect. 3.2, there are many different aspects
of the microstructure which can be taken into account in
a mechanics-based constitutive law. The primary question
that must be answered is, what microstructural compo-
nents have the highest contribution to material behavior,
and can any be eliminated from consideration? For exam-
ple, there are a number of void/inclusion-based constitutive
models available that could potentially account for the voids
and inclusions experimentally observed in the additively
manufactured microstructure. However, most of these mod-
els would require the assumption that the phase fraction,
grain size, dendrite spacing, etc., will not explicitly have
a tremendous impact on the overall behavior of the mate-
rial. Many models would also require the assumption that
the microstructure is uniform, which is known to be a falsity
in additively manufactured components. An ideal solution
would be to combine microstructurally-informed models
as basic building blocks of advanced material laws, e.g.,
anisotropic void growth caused by local grain orientation,
which is the primary goal of a recently developed general-
ized anisotropic plasticity framework [67].

One example of a void/inclusion-based constitutive law
which can address the complex microstructure and mechan-
ical behavior of additively manufactured materials is the
Gurson–Tvergaard–Needleman (GTN) model [13,25,73,
74]. As indicated by Fig. 18, the microstructure of addi-
tively manufactured materials has a relatively high density
of voids and oxide inclusions that are spherical in geometry,
which fits within the assumptions made during theoretical
development of the GTN model. However, the GTN model
cannot by itself reflect the heterogeneity in the void and
inclusion distributions within the microstructure. The alter-
native is to reconsider the homogeneity assumptions in the
original GTN model as local homogeneities such that the
initialization of the void and inclusion parameters can now
be a function of spatial coordinates. In this sense, the spatial
coordinates of interest could either be dictated by image-
based microstructural reconstruction or perhaps the process

Fig. 18 Schematic showing the process of experimental imaging, 3D
statistical reconstruction, and placement of defects in amacroscale FEA
model

Fig. 19 Depiction of macroscale sensitivity to microstructural defects
using the locally homogeneous modeling approach throughout a mesh
geometry. The underlying bulkmaterial properties can be extracted from
specimens containing a relatively low density of defects and can be later
used to analyze the impact of higher defect densities

parameters, the latter of which could potentially be used to
predict the microstructure through development of accurate
process–structure relations. Conceptually, the idea behind
this approach is to incorporate experimentally consistent
microstructural information into the modeling approach in
order to analyze the sensitivity of the material to defects, as
depicted in Fig. 19.

4.5.2 Computational fatigue life prediction based on
mechanics and microstructure

The previously discussed mechanical models provide criti-
cal information about the material response. However, many
current applications of interest for AM involve cyclic load
conditions, which require experimental and computational
approaches differing from those already mentioned. Fatigue
performance is linked with four primary factors: (1) defects
such as voids (micro-pores) and microcracks, (2) high resid-
ual stresses, (3) poor surface finish, and (4) microstructure
[17,30,41,60,66,69,77]. However, few computational stud-
ies of fatigue life for AM materials has been conducted,
whereas current experimental results indicate that fatigue
performance is poor to fair. There have been attempts to
apply or adapt current phenomenologicalmodels toAM, e.g.,
[42,43,79], that met moderate success. As with monotonic
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Δ

Fig. 20 Mechanics-based and microstructure-informed fatigue life prediction

simulations, such models are unsatisfactory for developing a
deeper understanding of the system.

There are ongoing efforts to apply mechanistic mod-
els to AM, though no such model is currently available to
our knowledge. Approaches to mechanistic simulation of
high cycle fatigue (HCF) include micromechanics models to
capture microstructures that influence fatigue, discrete dislo-
cation models, and localized plasticity methods. Most HCF
methods use pre-fracture or microstructurally small cracks
considered at the grain scale (e.g., Christ et al. [12]). Such
features are common in AM products meaning that perhaps
current models are adaptable to the AM setting. Applica-
tion ofmultiscalemethods are required to extendmicro-scale
models often used to understand fatigue processes to scales
of practical interest for the engineer. Such techniques often
use image-based or statistical reconstructions (see Fig. 18)
to generate a relatively large spatial volume of data with
relative ease. Once implemented, these methods can be
used to determine fatigue life with relatively high accuracy.
Fatigue crack growth can often be predicted directly, e.g.,
using finite element analysis, for lower cycle count appli-
cations. A schematic diagram to represent this is shown in
Fig. 20.

4.6 Data-driven analysis

An important and rapidly developing field of interest in
engineering simulation that extends to AM is data-driven
analysis. The use of advanced data mining techniques can
help expose the complex correlations between processing

conditions and the resultant material structure. It is appropri-
ate to separate the many modeling methods for AM into two
categories: (1) those intended to capture processing and (2)
those intended to capture mechanical response. As discussed
on a number of occasions in this document (e.g., Section
4.4.2), there are current efforts to use CALPHAD-based
modeling techniques, which relies on materials genomic
databases, in order to determine phase evolution during AM
processing. However, other opportunities exist that can also
be characterized as data-driven analysis, as will be elucidated
by the following selection of example cases. Given suffi-
ciently rich datasets, database-driven methods are shown to
effectively optimize processing conditions for desired build
properties, e.g., Krol et al. [39] used a Full Factorial Experi-
mental Design approach to prioritize processing parameters.
Lu et al. [45] predicted the effects of changing primary build
parameters on the precision of the build based on least square
support vector machine networks, a type of learning algo-
rithm. Similarly, Fathi and Mozaffari [18] developed a fully
data-driven process prediction and optimization scheme: the
mutable smart bee algorithm and fuzzy inference system
models are used to relate process parameters to layer thick-
ness and melt pool depth, then the non-dominated sorting
genetic algorithm is used to optimize the build process. The
ability to predict the total process time of complex parts
is important in commercial applications, where the cost of
manufacturing depends on machine time required. Zhang
et al. [86] used Grey Modeling, a development of fuzzy
logic, to predict process time based on statistics from large
datasets.
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Within the mechanics community, data-driven analysis
often refers to the use of large datasets paired with data-
miningormachine-learning algorithms to predictmechanical
behavior without the expense of an entirely new physics-
based computation at each material point. The specifics of
how this is achieved vary depending upon the goals of the
simulation and the type of data to be used. The predictions
of such models are purely phenomenological, but the goal
of these analyses is to identify and characterize complex,
nonlinear, multivariate interactions, just as was shown pos-
sible for process modeling. Currently, the use of data-driven
mechanical analysis for AM products is scarce in the liter-
ature. In one of the few examples, Garg and Tai [19] use
genetic programming and artificial neural networks to pre-
dict strength of parts created using fused deposition. The
lack of examples in this area is the result of two primary fac-
tors: (1) these methods have only recently arrived, although
are growing rapidly, to mechanical engineering fields and
(2) high quality, sufficiently large databases are difficult to
develop and are not easily accessible to date. The success of
this kind of approach depends upon the quantity and quality
of the training data provided to the analysis algorithm—a
statistically sufficient amount of data is required for accurate
prediction.

Data compression is extremely important for both stor-
age of large datasets and also for efficiency in data mining
approaches. One data compression technique that can be
applied to both processing and materials characterization is
to save only a statistical representation of important infor-
mation. Reduced-order modeling approaches, for example,
can be used to incorporate the stochastic nature of AM
processes and materials. By coupling experimental char-
acterization methods, e.g., SEM imaging, with statistical
modeling approaches, reduced-order models incorporat-
ing statistical microstructure descriptors can be utilized to
produce fast computational frameworks for prediction of
structure–property relations.

Another emerging approach is reduced-order modeling
using data analytics. By identifying similarities between the
current (deformed) configuration and initial configuration,
these methods can be used to rapidly compute mechani-
cal responses. An example of this, which is currently under
investigation by the authors [44], uses a clustering method
to group material regions with similar mechanical responses
under elastic loading. Once this grouping is achieved, larger
and more complex deformations can be analyzed using a
reduced set of degrees of freedom corresponding to the pre-
viously identified regions. Similar clustering techniques are
standard in fields such image processing and finger-print
scanning, but have only recently appeared in mechanics.
Applications in AM include reduced-order modeling for
mechanical response, e.g., fully detailed models could be

seeded with complex microstructures and used to train the
reduced-order models.

Each area presented above, all of which are related to
data-driven analysis, motivates the development and dissem-
ination of accurate, accessible, and extensive databases for
AM processes, products, and materials (Fig. 21 shows the
impact areas of data analytics in AM processes). However,
there are many challenges associated with such an effort.
Proprietary rights, widely varying AM technologies, varia-
tions in novel and existing powder compositions, and limited
standardization of the industry are a few examples of the
key detriments that prohibit the construction and manage-
ment of comprehensive databases. One initiative that could
be adopted by the research community that can simplify this
task is the development of, and adherence to, standardized
data collection procedures across the industry. Additionally,
approaches developed for the MGI could be adopted with
modification to support development of large-scale data-
bases to enhance the capacities of data-driven analysis in
AM-related endeavors. AM supports the MGI by allow-
ing rapid alloy development and application of novel alloys
through powder metallurgy and powder mixture. Database
driven methods, such as the CALPHAD approach, facili-
tate the computational design of materials. This philosophy
can be deployed in powder-based AM methods to process
new materials at an accelerated rate. Application of power-
ful MGI-derived approaches could even couple material and
topological design in the development of functionally graded
components.

4.7 High-performance computing challenges

Perhaps the highest impact in computationally solving AM
problems is in the area of HPC. The localized nature of
the process requires any predictive simulation to have suf-
ficiently small time steps in order to generate useful and
accurate information. However, as the global size of theman-
ufactured component increases, the number of time steps
necessary to complete the analysis will also increase. Figure
22 describes the primary competing limitations of simulat-
ing AM processes. Another underlying issue that arises in
this case is that the impact of successive passes on previ-
ous passes will depend largely on the part geometry, initial
conditions, and process parameters and therefore is history
dependent. Unfortunately, it may not be initially obvious how
much information will be required in order to simulate the
process and it may not be possible to predict the correct
boundary conditions accurately enough to use simplified or
reduced-order models.

The next issue is related to the characteristic length scales
used in simulation. The coarsest possible full-scale model
could perhaps make the assumption that a single element
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Fig. 21 Data analytics for AM
applications
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in a finite element mesh represents a particle cluster. The
maximum particle cluster size will have dimensions dictated
by the toolpath, i.e., the hatch spacing in the in-planedirection

and the layer depth in the out-of-plane direction. The particle
cluster length-scale can be on the order of µm to mm while
the length-scale of the global part shape might be cm or even
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Fig. 22 HPC considerations for
process modeling of AM
applications (particle model
obtained from Ammer et al. [2])

m. Therefore, the number of degrees of freedom in the model
will be dictated by the global part shape.

The numerical scheme used to compute the solution will
have tremendous impact on the analysis completion time.
Not only are AM processes highly localized, but the heating
and cooling rates are extremely rapid with high gradients in
the thermal solution. In order to obtain accurate predictions,
the time step must be selected to capture the heating and
cooling with substantial resolution. This time step limitation
will require implicit schemes to iteratively solve the nonlin-
ear thermal problem over thousands of steps (although it will
likely be tens or hundreds of thousands of steps for many
practical applications). Combining this fact with the poor
scalability of implicit schemes as additional degrees of free-
dom are added, and the additional memory requirements to
the simulation, yields the conclusion that implicit schemes
may not be appropriate for AM applications in predicting the
complete description of the process history.

Efficient utilization of HPC capabilities is critical for
the success of data-driven approaches. In particular, large
numbers of operations are generally required in order to
conduct computations on big datasets. The speed of the
initial computations, which typically require solution of
multiple case studies to obtain training data for subse-
quent simplified/reduced-order models, can be dramatically
improved using the latest HPC technology, e.g., massively
parallel computer clusters and Graphical Processing Unit
(GPU) computing, and algorithms. The primary benefits of
the reduced-order models developed from the training data
is the improved speed of computation and the reduction in
necessary data, which often leads to simulations capable of

being conducted using generic desktop workstation comput-
ers. Application of data-driven methods to create simplified
models can enhance the speed at which the research commu-
nity can develop an understanding of the impact of process
parameters on the structure of AM materials. A successful
example of this is the already discussed (see Sect. 4.4.2)
CALPHAD method, which utilizes a materials database for
calculations of the material property and microstructure evo-
lution during the solidification process. Thus, development
ofwell-scaled routines forHPCon large datasets is of interest
to the AM community.

5 Future goals of computational modeling for
AM applications

It is of ample value to give structure and direction for future
goals in computational research for AM applications. In
particular, short-term and long-term goals should be high-
lighted to ensure that research efforts align to contribute to
high impact goals requiring urgent attention while prepar-
ing for extensibility and portability of methods for long-term
goals. Since the process–structure–property paradigm can
be considered as a general research guideline in AM, both
short-term and long-term goals are given with the purpose of
strengthening the linkage of process–structure and structure–
property relationships, which can be summarized in Fig. 23.
Particularly, corresponding experiments are considered as
indispensable support to validate and/or calibrate theoreti-
cal modeling, which also require significant improvements
for AM applications.
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Fig. 23 Highlights of short-term and long-term goals for predictive-
science based computational modeling supported by experiments

5.1 Short-term goals

As discussed previously, traditional thermal modeling tech-
niques without considering reasonable material thermody-
namics will potentially neglect valuable information, and
therefore, cannot accurately model the full process–structure
relationships. Alloy thermodynamics have been relatively
well-understood for years; reliable information regarding
latent heat can be easily obtained from established ther-
modynamic databases, which are usually constructed using
the CALPHAD method. However, in order to comprehen-
sively model process–structure interactions, alloy diffusion
kinetics must also be considered. Therefore, material phase
and microstructure simulations will require the integration
of thermal modeling, alloy thermodynamics and alloy dif-
fusion kinetics; computational prediction methods based on
alloy thermodynamics and diffusion kinetics require further
advancement for more depth and breadth. Existing modeling
techniques used in welding processes [87] may be consid-
ered as a starting point. However, it should be noted that most
often the cooling and heating rates observed inAMprocesses
are much faster than those observed in traditional welding
processes. Therefore, more challenges are expected in simu-
lating the microstructural evolution during AM processes.

Reliable simulation often requires experimental verifica-
tion or calibration, which also applies to the AM process
simulation. As a short-term focus, experiments on moni-
toring the thermal process to determine in situ temperature
gradient profiles in the as-fabricated alloys are of prime
importance. One of the current constraints for high relia-
bility thermal modeling is the lack of experimental evidence.
Although the ex situ cooling rate can be estimated as a com-
promise [87], this cannot be a remedy for performing high
quality thermal modeling. Moreover, the microstructure fea-
tures of some alloys, e.g., Ti-based alloys, can be complex
and without dendrite formation; estimation of ex situ cooling
rates for these alloys is thus quite difficult. Accurate method-
ologies for in situ measurement of the heating and cooling

rates should be developed and adopted for calibrating ther-
mal modeling approaches. Due to the rapid heating/cooling
rates in AMprocesses, ultrafast response and high sensitivity
thermocouples are currently required for precise measure-
ment. However, such thermocouples [4,15] are mostly only
available for low temperature applications, e.g., lower than
400 ◦C, which is not remotely suitable for alloy studies
because of the high melting point of most alloys.

Aside from experimental support to thermal modeling,
another urgent need constituting a short-term goal is to
develop effective microstructural characterization toolkits
for 3D reconstruction of defects, which include internal
cracks, inclusions, micro-voids and submicron voids. Two
development thrusts should be highlighted. Firstly, a com-
plete 3D reconstruction of multiscale defects should be
established. Due to limitations of individual microstructural
characterization methods, as of yet there is no single effec-
tive method of representing a complete 3D reconstruction of
defects in a 1 cm3 volume. As a rapid solution, one should
consider a statistical algorithm to combine the results by
different characterization methods, and thus generate a com-
plete 3D reconstruction of defects. Synchrotron tomography
is often used for 3D tomography and has the potential for
further development for such purposes. It should be noted
that the synchrotron X-ray diffraction approach is a promis-
ing method for performing in situ phase and stress analysis
[38]. Similar methods should be employed to inform strain-
hardening models based on crystallographic properties, e.g.,
crystal plasticity.

In order to directly link defect properties with mechanical
properties, it is essential to emphasize themodeling efforts of
performing simulations based on anisotropic microstructural
properties of the as-fabricated alloys. Based on the above dis-
cussion about the microstructure of as-fabricated alloys, the
anisotropic grain features directly cause anisotropic mechan-
ical properties. Therefore, more effort is required in studying
the influence of anisotropic microstructure on mechanical
properties in characterizing microstructure–property rela-
tionships. In addition, one should also realize the importance
of surface roughness and its impact on fatigue resistance of
the AM as-fabricated alloys. Microstructure-based mechan-
ical simulations should be further developed and performed
under the support of experiments. Geometric factors should
be included in finite element simulation of the mechanical
properties, since unique complex geometries are often con-
sidered as one of the advantages in AM.

Multiscale approaches for AM processes that can be used
for linking the process to not only structure and property but
also to product performance should be developed. In partic-
ular, uncertainty quantification in design constraint satisfac-
tion should be carefully considered due to sensitivity of the
response ofmicrostructural evolution toAMprocess parame-
ters. This may require development of accurate and efficient
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algorithms using stochastic methods or reduced-order mod-
eling in combination with high-resolution direct numerical
simulations for obtaining training data. Enhanced concur-
rent modeling techniques are also of interest for determining
the effect of local process–structure–property relations on
global product performance. In particular, development of
new phase field modeling methods that can account for
non-equilibrium microstructure evolution is a key focus
area. Methods for modeling melt pool dynamics (i.e., inter-
face tracking methods such as Volume of Fluid (VOF) and
level set) are also a key interest for understanding process–
structure relations and surface morphology characterization,
which strongly affects product qualification and fatigue life,
in AM-developed components.Without these methods avail-
able, process modeling of AMmethods is unlikely to be suc-
cessful in contributing to the advancement of these processes.

Last but not least, materials design engineers should focus
efforts on design of alloys that are adaptive to the AM
processes. Design of materials for specific processes are
not uncommon in materials design practice. For example,
in the casting process, alloys are designed with a smaller
freezing range to avoid hot tearing effects, which provides
accommodation for specific casting techniques. Such alloy
design efforts for the short-term goals of AM can provide cir-
cumvention of some of the technical challenges in thermal
process control for AM processes.

5.2 Long-term goals

Although some of the long-term goals are further extensions
of the above short-term goals, there are several key points
that should be highlighted for special consideration.

Fundamental models in phase transformations of rapid
heating and solidification should be further developed. The
currentmaterials simulationonphase transformationsmainly
assume local equilibria, which may have significant devia-
tion from the far-from-equilibria case as observed in AM
processing. According to secondary dendrite arm spacing
measurements, the cooling rate of AMprocesses can bemore
than 1000 K/s [87]. As a compromise, the current simulation
based on the Scheil model [24,65] is considered as a good
starting point. Compared to rapid cooling, the fast heating
can be a more severe challenge in the process–structure sim-
ulation in terms of nucleation and growth. So far, studies have
been confined to metallic glass [56]; more rigorous theoreti-
cal work should be performed on crystal materials, which is
suitable for AM process simulation.

Understanding that many challenges in AM can only
be solved through collaboration between experimentalists
and theorists, a data repository is highly desired for shar-
ing valuable information, which is also considered a pri-
mary goal of the Materials Genome Initiative. Materials
and manufacturing informatics should be well-defined for

AM research, which involves not only materials engineers
but also mechanical engineers and physicists. Databases
with original information of processing, microstructure and
mechanical properties will be greatly beneficial to engi-
neers/scientists with common interests. This will accelerate
materials and manufacturing innovation in the AM research
community. By developing theories and databases for AM, it
is expected that an integrated computational manufacturing
design framework can be built for AM research. The blue-
print of computational material and microstructure design
can be realized with predictive-science approaches for AM.
Once all the steps of the process–structure–property relation-
ship for an AM process have been well-characterized, it will
be possible to control the final material properties by varying
parameters in each subsystem.

The primary long-term goal for the computational com-
munity should be directed at the collection of the combined
knowledge of materials engineers, mechanical engineers,
computer scientists, and physicists to development an inte-
grated solution platform that incorporates robust analysis
frameworks. While there are many software programs avail-
able (and many others are being developed) for solving
individual pieces of the AM puzzle, the lack of a common
data structure for swift and seamless flow of information
between these software packages is prohibitive. A fully-
integrated system can enable high-level development of AM
applicability, such as the reduction of variance in product per-
formance or increase in computational efficiency of product
scale simulations.

6 Conclusions

AMmethods have the potential to revolutionize themanufac-
turing industry and to promote rapid development of novel
materials and products. While a multitude of research is cur-
rently being conducted in order to establish these methods
as viable manufacturing solutions, there are still a number
of detriments that are prohibiting ubiquitous use of AM
technologies for practical applications. It is becoming ever-
increasingly apparent that computational methods can play a
key role in understanding the fundamental driving physics
that control the properties of as-built AM products. The
authors have presented an extensive review of the current
computational and experimental challenges that are crucial
to the short-term and long-term success of AM to provide
key focus areas and structure for the computational and
experimental research communities (see Fig. 24). The state-
of-the-art in computation as well as experimental motivation
for future scientific investigations into thematerials and prod-
ucts developed in AM has been provided. Moreover, the
authors have discussed their current research initiatives in the
area of computational analysis of AM materials, processes
and products as potentially acceptable solutions.
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Fig. 24 Key impact areas for future goals in AM processing
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