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Abstract We develop an algorithm and computational
implementation for simulation of problems that combine
Cahn–Hilliard type diffusion with finite strain elasticity.
We have in mind applications such as the electro-chemo-
mechanics of lithium ion (Li-ion) batteries. We concentrate
on basic computational aspects.A staggered algorithm is pro-
posed for the coupled multi-field model. For the diffusion
problem, the fourth order differential equation is replaced by
a system of second order equations to deal with the issue
of the regularity required for the approximation spaces. Low
order finite elements are used for discretization in space of
the involved fields (displacement, concentration, nonlocal
concentration). Three (both 2D and 3D) extensively worked
numerical examples show the capabilities of our approach
for the representation of (i) phase separation, (ii) the effect
of concentration in deformation and stress, (iii) the effect of
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strain in concentration, and (iv) lithiation. We analyze con-
vergence with respect to spatial and time discretization and
found that very good results are achievable using both a stag-
gered scheme and approximated strain interpolation.
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equation · Coupling with elasticity · Screened-Poisson
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1 Introduction

Due to their comparatively high specific energy, applica-
tions of Li-ion batteries range from portable electronics to
large scale energy storage. Intercalation compounds, which
are used as electrodes in Li-ion batteries, have large vari-
ations in Li concentration during charging and discharging
often accompanied by phase transformations. Phase interface
migration is known to decrease the diffusion of Li-ions, so
the electrochemical kinetics will be dependent on the phase-
transition mechanism. In order to represent these experimen-
tally observed phase interfaces, it is important to be able to
describe the diffusion of lithium inside the battery and the
way it interacts with the electrodes. Phase separation can be
properly represented by the Cahn–Hilliard equation [2].

Furthermore, lithium diffusion induces strains in the
electrode particles, resulting in a coupled Cahn–Hilliard/
Elasticity problem. Two approaches to deal with this cou-
pled problem have been recently introduced. A standard
Galerkinmethodwas proposed byDi Leo et al. [3], where the
Chemical potential was considered an unknown. The other
approach was the variationally consistent method by Miehe
et al. [8], having the same number of unknowns. Properties
of the uncoupled Cahn–Hilliard equation and its coupled ver-
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sion require a specific treatment, which can be a matter of
choice from an algorithmic perspective. Both the coupled
and the uncoupled versions of the Cahn–Hilliard equation
are fourth-order PDEs and therefore require either C 1 dis-
cretizations or the use of a penalty term to partition the fourth
order equation into two second-order equations (in a manner
analogous to the case of the Mindlin theory of plate bending,
when compared with the original Kirchhoff–Love, see also
[6]). Ubachs et al. [12] combined this long-standing idea
with Peerlings implicit gradient model (cf. [9]) to obtain
an efficient penalized uncoupled implementation with C 0

elements. A micromorphic interpretation was introduced by
Di Leo et al. [3] with a similar resulting discretization. We
here follow this general strategy and propose a staggered
approach in order to increase algorithmic simplicity. Cou-
plingwith elasticity introduces a difficulty: the strain gradient
is required and low order elements have a low resolution
representation of strains. In particular, four-node tetrahedra
have constant strain and therefore this coupling term would
be null if a displacement-based strain were to be used. Di
Leo et al. make use of an additional degree-of-freedom cor-
responding to the stress part of the Chemical potential (in
their nomenclature μσ ) with the additional tying equation.
Alternatively, Miehe et al. use the total Chemical poten-
tial μ as an unknown field in their variationally-consistent
formulation. We adopt here a more pragmatical approach
(avoiding the need of one additional degree-of-freedom),
which is to perform a nodal averaging of theGreen–Lagrange
strain and therefore use these nodal values to estimate
μσ .

Although simplicity of implementation is an advantage,
it is well known that staggered algorithms cause drifting
of results and also tend to cause loss of convergence due
to a reduced iteration radius for the Newton–Raphson solu-
tion. We therefore assess the present approach by changing
the time step and mesh size while studying both effects
of coupling: the effect of the strain gradient in the con-
centration evolution and the effect of concentration in the
Green–Lagrange strain. As will become apparent, results are
relatively insensitive and indistinguishable from the afore-
mentioned more sophisticated approaches.

This work is organized as follows: Sect. 2 presents a
concise description of the governing equations, weak form,
discretization and linearization adopted. Section 3 shows
examples of phase-separation in 2D and 3D using the uncou-
pled Cahn–Hilliard equation. Section 4 repeats the exercise
of Sect. 3 but including coupling with elasticity. Section 5
presents a Lithiation exercise of a ellipsoid particle with
exterior time-dependent flux. It is shown that swelling due
to coupling is represented in a time-step insensitive form.
Finally, in Sect. 6 conclusions are drawn considering the
results and future work.
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Fig. 1 Coupled problem: identification of regions

Table 1 Constitutive quantities for the combined problem

Parameter Name SI dimensional
representation

cmax Maximum species concentration L−3N

D Diffusivity L2T−1

χ Interaction parameter –

β Penalty parameter –

λ Gradient energy parameter L2

� Swelling parameter L3N−1

R Ideal gas constant LMT−2�−1N−1

θ Absolute temperature �

E Elasticity modulus L−1MT−2

ν Poisson coefficient –

2 Governing equations and discretization

2.1 The Cahn–Hilliard equation

The phenomenological [4] Cahn–Hilliard [2] equation for-
malizes the phase separation1 process, in which phases of
a binary mixture (often a solid solution in which case is
called exsolution, or in a fluid, and is then called symplectite
growth) separate and form regions pure in each component.
In the Li-ion context only solid solutions are of practical
relevance, cf. [13]. The observed phase separation requires
uphill diffusion in which material moves against concentra-
tion gradients. The classical Fick diffusion equation, which
generates uniform concentration profiles, does not produce
this observable effect. If we identify c as the normalized
species concentration, with c = 0 indicating pure phase I
and c = 1 indicating pure phase II, then the (uncoupled)
Cahn–Hilliard equation and problem statement is established
as follows:

1 Also called spinodal decomposition.
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Se(K) is the set of all elements
containing node K

Fig. 2 Definition of nodal strains E from a weighted average

ċ = ∇ ·

⎧
⎪⎨

⎪⎩
M(c)∇

⎡

⎢
⎣μ(c) − λ∇2c
︸ ︷︷ ︸

h(c)

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
in 
×]0, T [ (1)

c = g on �g×]0, T [ (2)

M(c)
{
∇
[
μ(c) − λ∇2c

]}
· n = s on � f ×]0, T [ (3)

M(c) [λ (∇c) · n] = 0 on � ×]0, T [ (4)

c(x, 0) = c0(x) in 
 (5)

where M(c) is called a mobility function with LT−1 units
and λ is a non-negative constant with L2 units. μ(c) rep-
resents the Chemical potential of a regular solution in the
absence of phase interfaces and is non-dimensional. In (1)
standard notation is followed: •̇ is the time derivative and
∇2 is the (space) Laplacian in n dimensions. The term λ∇2c
represents the interface energy and effectively coarsens the
phases. Two mechanisms dominate the evolution of a solu-
tion to the Cahn–Hilliard equation: separation represented by
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Fig. 3 Contour plots for c, μ and c − c�
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a non-convex μ(c) and coarsening represented by the Lapla-
cian term. There is one essential (see also Fig. 1) boundary
condition on boundary �g where the value of c is known
(c = g) and two natural boundary conditions: Eq. (3) on
boundary� f represents a prescribedflux and is called theflux
boundary condition and Eq. (4) which inhibits coarsening
at the boundary �. These boundary conditions are comple-
mented by the initial condition for c, which is provided by
Eq. (5). Time, t , is present in (1–5) as a parameter in the open
interval: t ∈]0, T [ where T is the total time of analysis. The
gradient operator ∇ represents the derivative with respect to
original, or undeformed coordinates x:

∇ =
{

∂

∂x

}

(6)

In (1), h(c) is an intermediate function that will be
approximated with the goal of reducing the order of (1) by
partitioning.

Using a 1D interpretation, Eq. (1) can be written in that
case, omitting the dependence on c, as:

ċ = M ′ [(c′)2 μ′ − λc′c′′′] + M
[
(c′)2μ′′ + μ′c′′ − λc′′′′]

(7)

where •̇ = ∂•/∂t and •′ = ∂•/∂x . x and t are the depen-
dent variables in (7). Two typical functions M(c) and μ(c)
functions are:

M(c) = Dc(1 − c) (8)

μ(c) = log

(
c

1 − c

)

+ χ(1 − 2c) (9)

where D is a diffusivity-like constant and χ , the interaction
parameter, sets the equilibrium concentration value in the
absence of the interface term. Accordingly, function μ(c)
has a local maximum at

c(μmax) = 1

χ + √
(χ − 2)χ

(10)

and a local minimum at

c(μmin) = 1

χ − √
(χ − 2)χ

(11)

noting that cmax �= c(μmax) and cmin �= c(μmin). Corre-
sponding values μmin and μmax are given as:

μmin = −√
χ(χ − 2) + log

[
χ − 1 + √

χ(χ − 2)
]

(12)

μmax = √
χ(χ − 2) + log

[
1

χ − 1 + √
χ(χ − 2)

]

(13)
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Fig. 4 Uncoupled case: effect of mesh size and time step on the time-
evolution of H (see Eq. (50)), a mesh size effect (note that c0 is random
and distinct for the three cases), b step size effect (�t ∈ [0.0125, 0.1]).
T = 2.5 s

Table 2 Constitutive properties for the combined problem

Parameter Value Units

cmax – –

D 1.0 × 104 nm2 s−1

χ 3 –

β 1 × 103 –

λ 2.5 × 102 nm2

� – –

R 8.31446 × 10−9 N nm mol−1 K−1

θ – –

E – –

ν – –

c0 ∼ U (0.58, 0.68)

Values of c approaching 0 will result in μ(c) approach-
ing −∞ and values of c approaching 1 will result in μ(c)
approaching +∞, therefore effectively restricting c to the
interval ]0, 1[.
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Fig. 5 Uncoupled case (3D): contour plots for c and c − c�, t = 1, 5, 10 and 50 s

Table 3 Constitutive properties for the combined problem

Parameter Value Units

cmax 3 × 10−22 mol nm−3

D 1.0 × 104 nm2 s−1

χ 3 –

β 1 × 103 –

λ 2.5 × 102 nm2

� 4.05 × 1021 nm3 mol−1

R 8.31446 × 109 N nm mol−1 K−1

θ 3 × 102 K

E 1.245 × 10−7 N nm−2

ν 0.25 –

c0 ∼ U (0.58, 0.68)

2.2 Partition in two second-order equations with
penalty term

As in the works of Di Leo et al. [3] and Ubachs et al. [12] we
partition the fourth-order equation (1) in two second-order
equations by introducing an additional field and the screened-
Poisson equation for c:

h�(c, c�) ∼= h(c) (14)

where the function h�(c, c�) is defined using an additional
variable c�:

h�(c, c�) = μ(c) − βl2∇2c� (15)
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Fig. 6 Combined case: contour plots for c, μ and c − c�. Deformation is not magnified

and l and β are new properties (which will be defined later).
The replacement is accompanied by the following equation
(see also [9] for an analogous equation in the fracture con-
text):

c − c� = −l2∇2c� (16)

from which we conclude that

h�(c, c�) = μ(c) + β
(
c − c�

)
(17)

where β(c − c�) acts as a penalty term. In essence, c − c�

should bemonitored andβ large enough so that the difference
is acceptable from a practical perspective. Accuracy in the
satisfaction of (14) depends on the accuracy of the following

approximation

∇2c� ∼= λ

βl2
∇2c (18)

Now the Cahn–Hilliard problem statement becomes:

ċ = ∇ ·

⎧
⎪⎨

⎪⎩
M(c)∇

⎡

⎢
⎣μ(c) + β

(
c − c�

)

︸ ︷︷ ︸
h�(c,c�)

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
in 
×]0, T [

(19)

c − c� + l2∇2c� = 0 in 
×]0, T [ (20)

c = g on �g ×]0, T [ (21)

M(c)
{∇ [

h�(c, c�)
]} · n = s on � f ×]0, T [ (22)
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Fig. 7 Combined case: effect of mesh size and time step on the time-
evolution of H , a mesh size effect, b step size effect

M(c)
[
λ
(∇c�

) · n] = 0 on � ×]0, T [ (23)

c(x, 0) = c0(x) in 
 (24)

c�(x, 0) = c�
0(x) in 
 (25)

An alternative to this partition in two second-order equa-
tions is the use of discontinuous Galerkin method, as per-
formed by Wells et al. [15]. The first equation (19) defined
in 
×]0, T [ can be further expanded as:

ċ = dM

dc
(∇c) ·

(
∂h�

∂c
∇c + ∂h�

∂c�
∇c�

)

+ M

[
∂2h�

∂c2
(∇c) · (∇c) + 2

∂2h�

∂c∂c�
(∇c) · (∇c�

)

+ ∂2h�

∂c�∂c�

(∇c�
) · (∇c�

)
]

+ M

[
∂h�

∂c

(
∇2c

)
+ ∂h�

∂c�

(
∇2c�

)]

(26)

It is worth mentioning that, to ensure compatibility, initial
conditions for c and c� coincide: c�

0(x) = c0(x).

2.3 Coupling with equilibrium at finite strains

Considering the Kirchhoff/Saint-Venant material, which
relates the second Piola–Kirchhoff stress with the Green–
Lagrange strain, we now introduce two coupling terms to
Eq. (19):

• The swelling term, see [3], to represent the volumetric
expansion effect due to phase concentration.

• The effect of stress in the evolution of c, whichwas estab-
lished by Sethuraman et al. [10].

Figure 1 shows the boundaries for the phase separation and
the equilibrium problem. The flux natural boundary condi-
tion (imposed j · n) is related to our diffusion property s as
depicted in Fig. 1. In addition, we have the Cauchy equilib-
rium in material form, see also [11].

ċ = ∇ ·

⎧
⎪⎨

⎪⎩
M(c)∇

⎡

⎢
⎣μ(c) + β

(
c − c�

) + ψ(S (c, E))
︸ ︷︷ ︸

h�(c,c�,E)

⎤

⎥
⎦

⎫
⎪⎬

⎪⎭

in 
×]0, T [ (27)

∇ · (FS)T = 0 in 
×]0, T [ (28)

β
(
c − c�

) + λ∇2c� = 0 in 
×]0, T [ (29)

ψ(S(c, E)) = − �

3Rθ
I · S (c, E) in 
×]0, T [ (30)

c = g on �g×]0, T [ (31)

M(c)
{∇ [

h�(c, c�, E)
]} · n = s on � f ×]0, T [ (32)

M(c)
[
λ
(∇c�

) · n] = 0 on � ×]0, T [ (33)

u = u on �u ×]0, T [ (34)

S · n = t on �t×]0, T [ (35)

c(x, 0) = c0(x) in 
 (36)

c�(x, 0) = c�
0(x) in 
 (37)

where S is the second Piola–Kirchhoff stress tensor (with
S its Voigt form), E is the Green–Lagrange strain in Voigt
form and F is the deformation gradient (these are standard
quantities in continuummechanics, cf. [11]). We also use the
Voigt form of the identity matrix I as I. The term t in Eq.
(35) is the prescribed stress vector at the boundary�t . Inertia
and body forces are considered absent from the examples in
this work. Additional data follows:

• The Kirchhoff/Saint-Venant constitutive law is adopted,
with the coupling term:

S = C

(

E − cmax (c − c0) �

3
I
)

where cmax is the maximum species concentration and�

is the swelling parameter.
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Fig. 8 Coupled case (3D): contour plots for c and c − c�. The edges have 46 nodes in each direction

• Characteristic time-scale: τ = √
λ/M(c).

• Characteristic length: lc = √
λ.

• h�(c, c�, E) is the normalized Chemical potential.
• The relation between the natural boundary function s (cf.
Eq. 32) and the classical flux boundary condition ( j · n),
cf. [3], is given by:

s = −M(c)
j · n
Rθ

(38)

where R is the ideal gas constant and θ is the absolute tem-
perature. Table 1 summarizes the relevant quantities and
corresponding units.

2.4 Weak form of the coupled equations

With the purpose of implementing the equations using finite
elements, we use two weight functions, wc(x) and wc� (x)

plus the virtual Green–Lagrange strain δE and apply the

arguments for the Galerkin method argument to obtain three
equations in the integral form. For the coupled case we have
(omitting dependence on c, c� and E):

∫




(wcċ + M∇wc · ∇h) d
 +
∫




[
βwc�

(
c − c�

)

− λ∇wc� · ∇c�
]
d
 =

∫

� f

wcsd� f (39)

where

∇h = dμ(c)

dc
∇c + β

(∇c − ∇c�
) − �

3Rθ
I

·C
[

∇E − cmax�

3
I∇c

]

(40)

and the standard weak form of equilibrium:
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∫




S · δEd
 =
∫

�

t · δud� (41)

Table 4 Constitutive properties for the block indentation

Parameter Value Units

cmax 1 × 10−12 Consistent units

D 1 × 10−2

χ 2.5

β 5 × 103

λ 1

� 1.2 × 104

R 8.31446

θ 3 × 102

E 7.8

ν 0.3

c0 0.5

where cmax is the maximum species concentration and S ≡ S(
E − ccmax�

3 I
)
. Linearization of (39) and (41) is performed

by AceGen [5] add-on to Mathematica [16].

2.5 Discretization

For one triangle or one tetrahedron, given nK shape functions
NK (ξ) with K = 1, . . . , nK where ξ are the parent-domain
coordinates, we use the following finite element approxima-
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tion for c, c�, wc, w�
c , u and E in (30):

c =
nK∑

K=1

NK (ξ)cK (42)

c� =
nK∑

K=1

NK (ξ)c�
K (43)

wc =
nK∑

K=1

NK (ξ)wK (44)

w�
c =

nK∑

K=1

NK (ξ)w�
K (45)

u =
nK∑

K=1

NK (ξ) uK (46)

E =
nK∑

K=1

NK (ξ)EK for stress gradient (47)

where EK are the strain tensors (in Voigt form) at the nodal
points (cf. Fig. 2). We use a weighted average for the nodal
Green–Lagrange strains:

EK =
∑

e∈Se(K ) VeEe
∑

e∈Se(K ) Ve
(48)

where Ve is the volume of each element e and Se(K ) is the set
of elements containing node K . Since low order tetrahedra
provide a constant Ee, there is no dependence on parent-
domain coordinates in (48). Subsequently,we use these nodal
values to calculate the gradient:

∇ψ(S(c, E)) (49)

arising from Eq. (30).
The implementation is performed over Simplas (cf. [1])

with the backward-Euler time-integration algorithm. The lin-
ear solver is BiCGStab from Van der Vorst (cf. [14]).

3 Phase separation problems

First examples are verification tests to assess the effect of
time-step andmesh size in the phase separation process. Both
2D (a 800× 800 nm rectangle with 125× 125, 95× 95 and
45× 45 triangular elements) and 3D (a 800× 800× 800 nm
cube with 45×45×45 equally spaced tetrahedron elements)
discretizations are used. Since in the first stage the problem is
restricted to the phase separation (no mechanical coupling)
we omit the properties cmax, �, θ, E and ν. The initial
conditions c0(x) are defined using a uniform probability dis-
tribution: c0 ∼ U (0.58, 0.68) with the interval [0.58, 0.68].
Table 2 contains the relevant properties. Natural boundary
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Fig. 11 Step size and mesh size effects in the evolution of c and c�,
a step size influence in the evolution of c and c�at the monitored node
(which is identified in Fig. 10), b mesh size effect in the evolution of c
and c�at the monitored node (which is identified in Fig. 10)

conditions correspond to j · n = 0 in all boundaries. Con-
tour plots of c,μ and c−c� are shown in Fig. 3 andmesh size
effect is shown in Fig. 4a for the integrated Chemical poten-
tial. Some slight oscillations can be observed but the results
are relatively mesh-insensitive, specially considering that c0
is random. Concerning the effect of step size, we focus on the
time interval [0, 2.5] s and observe that large steps present a
premature drift but steps smaller than 0.05 s are sufficient for
accuracy in this stage.

The effect of time step and mesh size in the integrated
h�(c, c�, E):

H =
∫




h�
(
c, c�, E

)
d
 (50)

is monitored for this uncoupled problem. Global mesh size
effect and detail of the growth stage for several time steps
are shown in Fig. 4. Results are relatively insensitive to both
step and mesh sizes. For the 3D case, we present a sequence
of contour plots for c and the difference c − c� in Fig. 5. It
is observed that the value of β = 1000 is sufficient to ensure
that c� ∼= c.

123



Comput Mech (2016) 57:339–351 349

X

Z

Y

X

Z

Y

8.731e-01

8.957e-01

9.184e-01

9.411e-01

9.637e-01

X

Z

Y

-1.200e+03

-6.000e+02

0.000e+00

6.000e+02

1.200e+03

E = 1.245 × 10−7 N/nm2

ν = 0.25
(Kirchhoff/Saint-Venant)

c σ1 [MPa]

t = 6 s t = 6 s

j · nj · n

(one eighth of the ellipsoid is modeled)

j · n = −[h − hi + t(hi − hf )], 0 ≤ t ≤ 1 [s]

hi = −5.8 × 1012 N.nm.mol−1

hf = +5.8 × 1012 N.nm.mol−1
300 nm

500 nm

Mesh: 5358 nodes, 27774 tetrahedra, 778 flux triangles

j · n = −[h − hf ], t > 1 [s]

Fig. 12 Lithiation problem: geometry, elastic properties and flux (natural) boundary conditions. Also shown is the contour plot (for t = 6 s) of
the concentration c and maximum principal stress σ1 which emerges due to coupling with the Cahn–Hilliard equation

4 Application of the staggered algorithm with
Cauchy equilibrium (chemo-mechanical
problem)

Wenow tackle the corresponding combined problem, by con-
sidering the properties shown in Table 3. The sequence of
deformed contour plots for c as well as the contour plots for
μ and c−c� are shown in Fig. 6 where the deformation due to
coupling is clear. In addition, the values ofμ are two order of
magnitude larger due to the presence of functionψ . Concern-
ing the effect of step and mesh sizes (the same meshes of the
previous section are used), Fig. 7 presents the results. Despite
the oscillations, results are relatively mesh-insensitive. It can
be observed that, as in the uncoupled case, for �t < 0.05,
results become relatively step-size insensitive.

Concerning the 3D representation of the coupled model,
we use a 800 nm-side cubewith a clamped bottom (at y = 0).

Table 5 Constitutive properties for the lithiation problem

Parameter Value Units

cmax 2.29 × 10−23 mol nm−3

D 1.0 × 104 nm2 s−1

χ 3 –

β 1 × 103 –

λ 2.5 × 102 nm2

� 4.05 × 1021 nm3 mol−1

R 8.31446 × 109 N nm mol−1 K−1

θ 300 K

E 1.245 × 10−7 N nm−2

ν 0.25 –

c0 0

Three time instances are represented in Fig. 8 with contour
plots for c and c − c�. A sequence of deformed meshes is
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Fig. 13 Effect of step size on SOC and lithiation. Comparison with
the results of Di Leo et al. [3], a effect of step size in the SOC, b effect
of step size in the volume ratio during lithiation

shown in Fig. 9. The effect of evolution of c in the strain field
is observable in this figure.

We now consider the converse effect where the strain
gradient affects the concentration c. With that purpose, we
consider a block indentation similar to the one employed by
Miehe et al. [8] and two meshes: 20 × 20 × 20 divisions
(shown in Fig. 10) and a coarser one with half the divisions.
Properties (with consistent units) are shown in Table 4. The
effect of time-step in the evolution of c and c� is shown in
Fig. 11a with excellent insensitivity and the same applies to
the mesh size effect, shown in Fig. 11b.

5 Lithiation with swelling of a spheroidal particle

As a final example, we now use of the lithiation example
shown byDi Leo et al. [3].We use a full 3DmeshwhereasDi-
Leo et al. used an axisymmetric mesh. Reported dimensions
and problem properties are employed. Figure 12 and Table
5 provide the required data for this simulation. As described
by Fig. 12, the flux is applied in two different stages with
a switch at t = 1 s. Flux is imposed by simple triangular
facets (mesh is described in Fig. 12). Two time-steps are
used: �t = 0.025 s and �t = 0.050 s. The definition of
state-of-charge (SOC) is given simply by:

SOC =
∫



cd


∫



d


(51)

For these two time steps, we compare the SOC results
with the ones reported by Di Leo et al. [3] with reasonable
agreement (see Fig. 13a). Swelling is also measured for the
two time steps, as Fig. 13b shows. Reasonable step-size inde-
pendence is observed. Some oscillations in the volume ratio
is observed when the smaller time-step is used 13b and this

Fig. 14 Effect of � in the
volume ratio evolution
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is caused by irregularities in the spatial distribution c during
the inward evolution.

5.1 Numerical lithiation experiment with increased
Swelling parameter

The question of applicability of the present algorithm to the
lithiation of silicon. The key difficulty is the volume ratio,
which is relatively low in the present case (cf. Fig. 13b), but
can reach 3 in the case of silicon, cf. [7]. To assess this specific
Algorithm capability, we use the properties in Table 5 but
with� = 6×1022 nm3 mol−1 to force a larger volume ratio.
Figure 14 shows the resulting effect of�with�t = 0.01.We
can observe that the present algorithm is perfectly capable of
reaching volume ratios of more than 3 and therefore solve
the silicon lithiation problem.

6 Conclusions

A staggered algorithm for the coupled Cahn–Hilliard/
Equilibrium problemwas found to be sufficiently accurate to
be used in practice. The screened-Poisson equation allowed
the split of the fourth-order Cahn–Hilliard equation in two
second-order equations which are solved with low-order
finite elements. This is an approximation and depends on the
value of the penalty parameter β. The two coupling effects:
(i) effect of strain gradient in the Chemical potential and (ii)
effect of concentration on the stress state, were found to be
effectively present and nearly independent of time and step
size with our staggered scheme. Both 2D and 3D results were
provided and compared with coupled formulations (Di Leo
et al. [3] and Miehe et al. [8]) where similar results were
obtained. For the lithiation problem, we used a 3D model
of the axisymmetric representation in [3] and measured the
swelling and SOCwith similar results. Promising results will
allow the extension to an anisotropic Cahn–Hilliard equation
and elastic model, which are required to realistic simulate
battery lithiation.
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