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Abstract In this paper layered composite shells subjected
to static loading are considered. The theory is based on a
multi-field functional, where the associated Euler–Lagrange
equations include besides the global shell equations formu-
lated in stress resultants, the local in-plane equilibrium in
terms of stresses and a constraint which enforces the correct
shape of warping through the thickness. Within a four-node
element the warping displacements are interpolated with lay-
erwise cubic functions in thickness direction and constant
shape throughout the element reference surface. Elimina-
tion of stress, warping and Lagrange parameters on element
level leads to a mixed hybrid shell element with 5 or 6 nodal
degrees of freedom. The implementation in a finite element
program is simple. The computed interlaminar shear stresses
are automatically continuous at the layer boundaries.Also the
stress boundary conditions at the outer surfaces are fulfilled
and the integrals of the shear stresses coincide exactly with
the independently interpolated shear forces without intro-
duction of further constraints. The essential feature of the
element formulation is the fact that it leads to usual shell
degrees of freedom, which allows application of standard
boundary or symmetry conditions and computation of shell
structures with intersections.
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1 Introduction

A survey on models to compute the complete
three-dimensional stress state in laminates is given e.g. in
[1–5]. In the following only a few representative papers out
of a large number are discussed.

Shell theories are able to describe the overall deformation
behaviour of thin laminated structures. Nowadays mostly the
first-order shear deformation theory is the accepted basis to
develop elements. This theory considers also shear defor-
mations, which is essential in the context of composite
structures. It needs only C0- instead of C1-continuity, being
of great interest from a numerical point of view. Often this
approach gives satisfactory results for a wide class of struc-
tural problems, even for moderately thick laminates and
should be the best compromise between prediction ability
and computational costs. For thin up to moderately thick
structures one obtains sufficiently accurate in-plane stresses,
however the interlaminar stresses are either zero or only aver-
aged values are obtained.

If one is interested in more local problems—e.g. the ques-
tion of construction of connections or the description of the
interlaminar stresses—the use of standard two-dimensional
models is not appropriate. Highly complicated inter- and
intralaminar failuremodes (e.g. delamination and ply failure)
may occur in laminated structures which could consider-
ably influence the overall structural behaviour. In order to
obtain the complicated three-dimensional stress state in lay-
ered structures various approaches have been developed.
Especially the interlaminar stresses are of interest for the
evaluation of failure criteria.

Several authors exploit the equilibrium equations within
a post-processing technique, e.g. [6,7]. The computed inter-
laminar stresses are not embedded in the variational formu-
lation. These techniques have also been used in conjunc-
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tion with commercial codes. Besides a predictor corrector
approach [8], the equilibrium equations have been success-
fully exploited, e.g. [9]. In general, this requires higher-order
shape functions to allow for second order derivatives of the
in-plane stresses. Thus typically elements with bi-quadratic
or bi-cubic shape functions are used, e.g. [10]. In [11] a proper
generalized decomposition and layer-wise approach for the
modelling of composite plate structures is proposed.

The authors in [12–14] present linear plate elements
based on mixed-enhanced approaches. On basis of the first-
order shear deformation theory resultant shear stresses and
enhanced incompatible modes are used as primary variables.

In [15] and [16] refined theories with seven unknown
kinematic quantities have been presented. The standard dis-
placement field is enhanced by layer-wise linear (zig-zag)
functions through the thickness. For an overview on zig-zag
theories for multilayered plates and shells see e.g. [17].

Higher order plate and shell formulations and layerwise
theories have been developed to obtain an accurate shape of
the interlaminar stresses, e.g. [18–25]. For example, Ref. [18]
accounts for a parabolic distribution of the transverse shear
strains through the thickness of the plate. For geometrical
nonlinear formulations we refer to e.g. [26,27].

The use of brick elements or so-called solid shell ele-
ments, e.g. [28–30] represents a computationally expensive
approach. For a sufficient accurate evaluation of the inter-
laminar stresses each layer must be discretised with several
elements (≈5–10) in thickness direction. The price for this
type of modelling is a large number of unknowns leading
to unacceptable computing times. Especially for non-linear
practical problems with a multiplicity of load steps and sev-
eral iterations in each load step this is not a feasible approach.

Based on above discussionwe propose a shell formulation
which is characterized by the following features and new
developments.

(i) The underlying shell theory is based on the Reissner–
Mindlin kinematics with inextensible director field.
This leads in the basic version to averaged transverse
shear strains when exploiting the linearised Green–
Lagrangian strain tensor. The extension to geometrical
nonlinearity for the global part of the formulation is a
straight forward task, see e.g. [31,32]. For the sake of
convenience, here we restrict to the linear representa-
tion.

(ii) We propose a multi-field functional, where the asso-
ciated Euler–Lagrange equations include besides the
usual shell equations in terms of stress resultants the
local inplane equilibrium in terms of stresses and a con-
straint which enforces the correct shape of the warping
function through the thickness.

(iii) The displacements of the Reissner–Mindlin kinemat-
ics are enriched by a fluctuation field, which describes

warping. Within four-node elements the warping dis-
placements are formed with layerwise cubic functions
through the thickness and constant distribution through-
out the element reference surface.

(iv) Elimination of stress,warping andLagrange parameters
on element level leads to a mixed hybrid shell element.
The condensation is computationally effective since the
relevantmatrices are sparse. The resulting element stiff-
ness matrix for quadrilaterals exhibits the usual 5 or 6
nodal degrees of freedom. This is an essential property
since standard geometrical boundary conditions can be
applied and the element is applicable also to shell inter-
section problems. Due to the simple structure of the
formulation the implementation in a finite element pro-
gram can easily be achieved.

(v) Without introduction of further constraints continuity of
the interlaminar shear stresses is automatically obtained
in an exact way. This holds also for the zero stress con-
ditions at the outer surfaces and for the integrals of the
shear stresses which coincide identically with the inde-
pendently interpolated shear forces.

(vi) The computed interlaminar shear stresses show good
agreement with the results of costly 3D-computations.
Likewise comparisons with the post processing proce-
dure [7] are performed. In contrast to that approach,
here the interlaminar shear stresses are embedded in
the variational formulation.

The paper is organized as follows. In Sect. 2 we propose
a functional and derive the first variation as well as the asso-
ciated Euler–Lagrange equations. The shape of the warping
displacements, the integrals in thickness direction of the con-
stitutive law assuming orthotropicmaterial behaviour and the
constraint are specified in Sect. 3. Furthermore the approx-
imations of the independent fields and the derivation of a
mixed-hybrid element stiffness matrix is shown. The mem-
brane and bending patch test, a plate with 5 different layer
sequences and a stiffened cylindrical shell are investigated in
Sect. 4.

2 Functional and Euler–Lagrange equations

Let B be the three-dimensional Euclidean space occupied
by a shell with thickness h. With ξ i we denote a convected
coordinate system of the body, where for the thickness coor-
dinate holds h− ≤ ξ3 ≤ h+. For the reference surface � of
the shell holds ξ3 = 0 and the coordinate on the boundary �

is denoted by s. In the following the summation convention
is used for repeated indices, where Latin indices range from
1 to 3 and Greek indices range from 1 to 2. Commas denote
partial differentiation with respect to the coordinates ξα .
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The position vector of the reference surface is denoted
by X(ξ1, ξ2). Furthermore, the vector field D̄(ξ1, ξ2) with
|D̄(ξ1, ξ2)| = 1 which is perpendicular to � is introduced.
The director field of the deformed configurationwith position
vector x follows from d(ξ1, ξ2) = D̄ +�d. With d · x,α �= 0
the kinematic assumption accounts for averaged transverse
shear strains. Hence the displacements of the reference sur-
face follow from u = x − X. Based on the standard shell
kinematics one can express the relation of the linearised
Green–Lagrangian strains Ei j at a coordinate ξ3 to the shell
strains by

Eg = A1 εg Eg =

⎡
⎢⎢⎢⎢⎣

E11

E22

2E12

2E13

2E23

⎤
⎥⎥⎥⎥⎦

g

A1 =

⎡
⎢⎢⎢⎢⎣

1 0 0 ξ3 0 0 0 0
0 1 0 0 ξ3 0 0 0
0 0 1 0 0 ξ3 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

. (1)

Here, the index g refers to geometrical strains and

εg(v) = [ε11, ε22, 2ε12, κ11, κ22, 2κ12, γ1, γ2]T (2)

with v = [u,�d]T . The membrane strains, curvatures and
transverse shear strains are given by

εαβ = 1

2
(u,α ·X,β + u,β ·X,α )

καβ = 1

2
(u,α ·D̄,β + u,β ·D̄,α + X,α ·�d,β + X,β ·�d,α )

γα = u,α ·D̄ + X,α ·�d, (3)

respectively.
We summarize the independent field quantities in the

vector θ := [v, σ , ε]T . The vector of independent stress
resultants reads

σ = [n11, n22, n12, m11, m22, m12, q1, q2]T (4)

with membrane forces nαβ = nβα , bending moments mαβ =
mβα and shear forces qα . The vector ε = [ε1, ε2, ε3]T con-
sist of three parts.Note, thatε1 contains physical shell strains,
ε2 discrete warping displacements and ε3 Lagrange parame-
ters. The three parts are formally summarized in the vector ε.
The components of the first part are organized in a sequence
as in (2), whereas the components of the second and third
part are specified in detail in the next section.

Fig. 1 a Wrong shape and b qualitative correct shape of the warping
function

We introduce the following functional depending on θ =
[v, σ , ε]T

�(θ) =
∫

�

[W (ε1, ε2) + σ T (εg(v) − ε1) + εT
3 g(ε2)] dA

+�ext (u) → stat. (5)

Here, the area element of the reference surface is given by
dA = j dξ1 dξ2 and j = |X,1 ×X,2 |. The shell is loaded
statically by surface loads p̄ on � and by boundary forces
t̄ on the boundary �σ . Hence, the potential of the external
loads reads

�ext (u) = −
∫

�

uT p̄ dA −
∫

�σ

uT t̄ ds . (6)

The strain energy density W is assumed to be a quadratic
form in terms of εα , thus

W (ε1, ε2) = 1

2

2∑
α=1

2∑
β=1

εT
α Dαβ εβ . (7)

The descriptive meaning of the constraint

g(ε2) = D32 ε2 = 0 (8)

is illustrated in Fig. 1. The warping function of Fig. 1a leads
to additional bending moments and therefore is not correct.
In Fig. 1b a qualitative correct shape is shown. Thus, g = 0
describes an orthogonality condition which enforces the cor-
rect shape of warping through the thickness, see Sect. 3.2.
The constant matrices Dαβ and D32 are specified in the next
section. The Lagrange term in (5) with constraint g = 0
represents an enhancement of the three-field functional intro-
duced in Ref. [31].

With admissible variations δθ := [δv, δσ , δε]T where
δv := [δu, δϕ]T the stationary condition for functional (5)
reads
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δ�(θ , δθ) =
∫

�

⎡
⎣
⎛
⎝

2∑
α=1

δεT
α

∂W

∂εα

⎞
⎠ + δσ T (

εg − ε1
)

+ δεT
g σ − δεT

1 σ + δεT
3 g + δεT

2

(
∂g
∂ε2

)T
ε3

]
dA

+ δ�ext = 0 (9)

with δ�ext = −
∫

�

δuT p̄ dA −
∫

�σ

δuT t̄ ds .

The virtual shell strains δεg = [δε11, δε22, 2δε12,
δκ11, δκ22, 2δκ12, δγ1, δγ2]T are given with

δεαβ = 1

2
(δu,α ·X,β + δu,β ·X,α )

δκαβ = 1

2
(δu,α ·D̄,β + δu,β ·D̄,α + X,α ·δd,β +X,β ·δd,α )

δγα = δu,α ·D̄ + X,α ·δd (10)

where δd = δϕ × D̄ and δd,α = δϕ,α ×D̄. Inserting (8) and

∂W

∂εα

=
2∑

β=1

Dαβ εβ

( ∂g
∂ε2

)T = DT
32 := D23 (11)

in Eq. (9) yields

δ�(θ , δθ)

=
∫

�

⎡
⎣
⎛
⎝

2∑
α=1

2∑
β=1

δεT
α Dαβ εβ

⎞
⎠ + δσ T (εg − ε1) + δεT

g σ

− δεT
1 σ + δεT

3 D32 ε2 + δεT
2 D23 ε3

]
dA + δ�ext

=
∫

�

⎡
⎢⎢⎢⎢⎣

δεg

δσ

δε1
δε2
δε3

⎤
⎥⎥⎥⎥⎦

T ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

0 1 0 0 0
1 0 −1 0 0
0 −1 D11 D12 0
0 0 D21 D22 D23
0 0 0 D32 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

εg

σ

ε1
ε2
ε3

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

× dA + δ�ext = 0. (12)

Introducing

D :=
⎡
⎣

D11 D12 0
D21 D22 D23

0 D32 0

⎤
⎦ IT := [−1, 0, 0] , (13)

where D is constant and symmetric, we obtain from (12)

δ�(θ , δθ) =
∫

�

⎡
⎣

δεg

δσ

δε

⎤
⎦

T ⎡
⎣

0 1 0
1 0 IT

0 I D

⎤
⎦
⎡
⎣

εg

σ

ε

⎤
⎦ dA

+ δ�ext = 0 , (14)

which is the basic equation for the finite element approxima-
tions of the next section.

Finallywederive theEuler-Lagrange equations associated
with the introduced functional. For this purpose integration
by parts is applied to (9). This yields with (11)2

δ�(θ , δθ) =
∫

�

[
δεT

1

(
∂W

∂ε1
− σ

)
+ δεT

2

(
∂W

∂ε2
+ D23 ε3

)

+ δσ T (εg − ε1) + δεT
3 g −

(
1

j
( j nα),α +p̄

)

· δu −
(
1

j
( j mα),α + X,α × nα

)
· δϕ

]
dA

+
∫

�σ

{[ j (nα να) − t̄] · δu + [ j (mα να)]

· δϕ} ds = 0 , (15)

where να are components of the outward normal vector on
�σ and

nα := nαβ X,β + qα D̄ + mαβ D̄,β mα := D̄ × mαβ X,β .

(16)

Applying standard arguments of variational calculus we
deduce from (15) as Euler–Lagrange equations the static and
geometric field equations, the constitutive equations and the
constraint g = 0

1

j
( j nα),α + p̄ = 0 εg − ε1 = 0

1

j
( j mα),α + X,α × nα = 0

∂W

∂ε1
− σ = 0

∂W

∂ε2
+ D23 ε3 = 0 g = 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

in � .

(17)

Furthermore, ∂W/∂ε2 + D23 ε3 = 0 describes the equilib-
rium of higher order stress resultants, as is shown in Sect.
3.2. Finally one obtains the static boundary conditions

j (nα να) − t̄ = 0 j (mα να) = 0 on �σ . (18)

The equilibrium of higher order stress resultants and the con-
straint are further field equations in (17) in addition to the
representation in [31].

3 Finite element formulation

3.1 Interpolation in thickness direction

The finite element approximation of the warping displace-
ments ũ = [ũ1, ũ2]T as are depicted in Fig. 1 is chosen as
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Fig. 2 Laminate with N layers

ũ(ξ3) = �(ξ3) ε2 . (19)

The vector ε2 is elementwise constant and contains alternat-
ing the discrete warping ordinates in 1- and 2-direction of the
nodes in thickness direction. Rigid body modes are avoided
by suppressing the displacements of one arbitrary node, see
Fig. 2. For N layers this leads to M = 6 · N + 2 compo-
nents in ε2, where the first two components are zero. The
interpolation matrix contains cubic hierarchic functions

�(ξ3) = [
φ1 12 φ2 12 φ3 12 φ4 12

]
ai

φ1 = 1

2
(1 − ζ ) φ2 = 1 − ζ 2 φ3 = 8

3
ζ (1 − ζ 2)

φ4 = 1

2
(1 + ζ ) ,

(20)

where −1 ≤ ζ ≤ 1 is a normalized thickness coordinate of
layer i . Furthermore,

ai = [
08×8·(i−1) 18 08×(M−8·i)

]
8×M (21)

is an assemblymatrix, which relates the 8 degrees of freedom
of layer i to the M components of ε2 and 1n denotes a unit
matrix of order n.

Assuming orthotropic material behaviour the constitutive
equations are introduced with S33 = 0 in the following stan-
dard manner

⎡
⎢⎢⎢⎢⎣

S11

S22

S12

S13

S23

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

C11 C12 C13 0 0
C21 C22 C23 0 0
C31 C32 C33 0 0
0 0 0 C44 C45

0 0 0 C54 C55

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

E11

E22

2E12

2E13

2E23

⎤
⎥⎥⎥⎥⎦

S = C E . (22)

Due to the varying fibre orientation the material constants
Ci j = C ji differ for each individual layer. To alleviate the
notation the layer index i is omitted.

The physical layer strains are obtained from

E = [A1, A2]
[

ε1
ε2

]
(23)

where

A1 =
[

13 ξ3 13 0

0 0 12

]
A2 =

[
03×8

A2s

]
ai

A2s = 2

hi

[
φ′
112 φ′

212 φ′
312 φ′

412
]

φ′
j = dφ j

dζ
.

(24)

Now the relation of the stress resultants to the vector of
stresses S can be defined with thickness integration of the
internal virtual work expression and δE = A1 δε1 + A2 δε2.
This yields

h+∫

h−
δET S μ̄ dθ3 = δεT

1
∂W

∂ε1
+ δεT

2
∂W

∂ε2
(25)

with

∂W

∂ε1
:=

h+∫

h−
AT
1 S μ̄ dθ3

∂W

∂ε2
:=

h+∫

h−
AT
2 S μ̄ dθ3 , (26)

where μ̄ denotes the determinant of the shifter tensor. With
an orthonormal element coordinate system, as is introduced
in Sect. 3.3, μ̄ = 1 holds. We assert that ∂W/∂ε2 contains
higher order stress resultants.

Furthermore, the matrices Dαβ introduced in context with
strain energy function (7)

W (ε1, ε2) = 1

2

h+∫

h−
ET C E μ̄ dξ3 E =

2∑
α=1

Aα εα (27)

can be computed by means of thickness integration. This
leads to

Dαβ =
h+∫

h−
AT

α C Aβ μ̄ dξ3 . (28)

Now, inserting (22) with (23) into (26) yields with (28)
the constitutive law for the stress resultants (11)1.
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The material matrix D11 reads

D11 =
h+∫

h−
AT
1 C A1 μ̄ dξ3 =

⎡
⎣

Dm Dmb 0
DT

mb Db 0
0 0 Ds

⎤
⎦

(8×8)

(29)

The submatrices for membrane, bending and shear are
obtained by summation over N layers and exact integration
in each layer leading to well-known expressions. For certain
layer sequences the couplingmatrixDmb vanishes. Shear cor-
rection factors, as are used in a first order shear deformation
theory, are not introduced in Ds .

Inserting (22) and (24) into (28) the matrices D22 and D21

can now be assembled with the contributions of the layers

D22 =
N∑

i=1

aiT Di
22 ai D21 =

N∑
i=1

aiT Di
21 (30)

where

Di
22 =

+1∫

−1

AT
2s Cs A2s μ̄

hi

2
dζ Cs =

[
C44 C45

C54 C55

]

Di
21 =

+1∫

−1

AT
2s Cs A1s μ̄

hi

2
dζ A1s =[

02×6 12
]
. (31)

With μ̄ = 1 only powers of ζ occur in (31) and analytical
integration is possible. A numerical integration with 3 Gauss
integration points also leads to correct results. Due to the
interpolation functionswith local layerwise support it follows
that D22 is sparse.

3.2 Equilibrium of stresses and constraint g = 0

Neglecting body forces the equilibrium equations for the in-
plane directions read

[
S11,1 +S12,2 +S13,3

S12,1 +S22,2 +S23,3

]
= f = 0 . (32)

In (32) the bending stresses S11, S22, and S12 as well as
transverse shear stresses S13 and S23 enter. The local element
coordinate system, as is introduced in Sect. 3.3, is orthogonal
and constant in each element. This allows partial derivatives
instead of covariant derivatives.

For the bending stresses holds with (22)

⎡
⎣

S11

S22

S12

⎤
⎦ = ξ̂3

⎡
⎣

C11 C12 C13

C21 C22 C23

C31 C32 C33

⎤
⎦
⎡
⎣

κ11
κ22

2κ12

⎤
⎦ (33)

with ξ̂3 = ξ3 − ξ3si , where ξ3si denotes the coordinates of the
ideal centre of gravity of the laminate.

Hence, the sum of the derivatives of the bending stresses
yields

[
S11,1 +S12,2
S12,1 +S22,2

]
= ξ̂3

[
C11 C12 C13 C31 C32 C33

C31 C32 C33 C21 C22 C23

]

×

⎡
⎢⎢⎢⎢⎢⎢⎣

κ11,1
κ22,1

2κ12,1
κ11,2
κ22,2

2κ12,2

⎤
⎥⎥⎥⎥⎥⎥⎦

(34)

f1 = ξ̂3 C̄23 ε̄3

Within the following integrals the terms of the in-plane
equilibrium are weighted with the local interpolation func-
tions �(ξ3)

∂W

∂ε2
= −

h+∫

h−
�T

[
S13,3
S23,3

]
μ̄ dξ3

D̄23 := −
h+∫

h−
�T C̄23 ξ̂3 μ̄ dξ3 . (35)

The reformulation of (26)2 with μ̄ = 1 into (35)1 is obtained
with integration by parts and consideration of the stress
boundary conditions Sα3(h−) = Sα3(h+) = 0.

The 6 columns of D̄23 are not linearly independent. For a
homogeneous shell it follows immediately that the 1st, 2nd
and 6th column vector are linear dependent and accordingly
the 3rd, 4th and 5th column vector. Since the components of
ε̄3 still have to be determined, it is exact for homogeneous
shells to reduce D̄23 to a matrix with two columns by adding
the linear dependent columns. For this purpose we define

D23 = −
h+∫

h−
�T C23 ξ̂3 μ̄ dξ3

C23 =
[

C11 + C12 + C33 C13 + C31 + C32

C31 + C32 + C23 C33 + C21 + C22

]
. (36)

The computation of D23 is performed by summation over
layers considering (20)

D23 = −
N∑

i=1

aiT Di
23 (37)
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where

Di
23 =

+1∫

−1

φiT C23 ξ̂3 μ̄
hi

2
dζ

φi = [
φ1 12 φ2 12 φ3 12 φ4 12

]
. (38)

The coordinates of the ideal centre of gravity are computed
for each Cαβ

ξ3si =

h+∫
h−

Cαβ ξ3 μ̄ dξ3

h+∫
h−

Cαβ μ̄ dξ3
(39)

whereCαβ are the components ofC23 in (36). The integration
in (38) and (39) again can be done by analytical integration or
numerical Gauss integration with three integration points in
each layer. For symmetric laminates and h− = −h/2, h+ =
h/2 Eq. (39) yields ξ3si = 0.

Now the integral formof the the equilibrium f = 0 accord-
ing to (32) is formed with δũ = � δε2. Considering (35) and
(36) it follows

h+∫

h−
δũT f μ̄ dξ3 = −δεT

2

(
∂W

∂ε2
+ D23 ε3

)
= 0 (40)

and with δε2 �= 0 one obtains Eq. (17)3. Now ε3 contains
two components.

The derivation of the constraint g = 0 follows in an analo-
gousway.We introduce the equilibriumof the virtual bending
stresses considering the variation of (34)

[
δS11,1 +δS12,2
δS12,1 +δS22,2

]
= δf1 = ξ̂3 C̄23 δε̄3 = 0 (41)

and the integral form of δf1 = 0 yields with ũ = �ε2

h+∫

h−
δfT

1 ũ μ̄ dξ3 = δε̄T
3

h+∫

h−
ξ̂3 C̄T

23� μ̄ dξ3 ε2 = 0 . (42)

With the reduced matrix C23 according to (36) we define

D32 = −
h+∫

h−
CT
23 � ξ̂3 μ̄ dξ3 = DT

23 (43)

with now two rows. From (42) considering (43) follows
δεT

3 D32 ε2 = 0 and with δε3 �= 0 one obtains the con-
straint (8). It has the descriptive meaning that the warping

Fig. 3 Quadrilateral shell element

displacements must not lead to additional bending moments
as is illustrated in Fig. 1.

Remark For inhomogeneous shells the procedure to add the
quasi linear dependent columns represents an approximation.
However, in our numerical tests we obtain good agreement
with costly three-dimensional solutions. With an increasing
number of layers differences to the reference solution practi-
cally vanish. This can be observed with the examples in Sect.
4.2. For homogeneous shells the approach is exact.

3.3 Approximation of the independent fields

In this section the finite element shape functions for quadri-
laterals are specified applying the isoparametric concept. The
numbering of the corner nodes andmidside nodes can be seen
in Fig. 3.

A map of the coordinates {ξ, η} ∈ [−1, 1] from the unit
square to the reference surface is applied. Hence position
vector and director vector of the reference surface are inter-
polated with bi-linear shape functions

Xh =
4∑

I=1

NI XI D̄h =
4∑

I=1

NI D̄I , (44)

where NI (ξ, η) = 1
4 (1 + ξI ξ)(1 + ηI η) with ξI ∈

{−1, 1, 1,−1} , ηI ∈ {−1,−1, 1, 1} and superscript h refers
to the finite element approximation.

Theposition vectorsXI and the orthonormal basis systems
[A1I , A2I , A3I ] at the nodes are generated within the mesh
input. Here, D̄I = A3I is perpendicular to � and A1I , A2I

are constructed in such a way that boundary conditions can
be accommodated.

The tangent vectors Xh,α and the derivatives of the direc-
tor field D̄h,α are computed as follows

Xh,α =
4∑

I=1

NI ,α XI D̄h,α =
4∑

I=1

NI ,α D̄I . (45)
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The derivatives of the shape functions are obtained with the
inverse of Jacobian matrix J

[
NI ,1
NI ,2

]
= J−1

[
NI ,ξ
NI ,η

]
J =

⎡
⎣Xh,ξ ·t1 Xh,ξ ·t2

Xh,η ·t1 Xh,η ·t2

⎤
⎦

(46)

whereXh,ξ andXh,η are computed replacing NI by NI ,ξ and
NI ,η in (44)1. Furthermore, ti denotes the element coordinate
system with ti · t j = δi j , see [31]. The vectors t1 and t2 span
a tangent plane at the centre of the element and t3 is normal
vector.

The displacements and rotations of the reference surface
are approximated with the same interpolation functions

uh =
4∑

I=1

NI uI �dh =
4∑

I=1

NI �dI . (47)

The derivativesuh,α and�dh,α are obtained in a correspond-
ing way according to (45).

Here, uI = uI k ek describes the nodal displacement vec-
tor. With D̄I = D̄I k ek holds

�dI =ϕ I ×D̄I =WT
I ϕ I WI =

⎡
⎢⎢⎢⎣

0 −D̄I3 D̄I2

D̄I3 0 −D̄I1

−D̄I2 D̄I1 0

⎤
⎥⎥⎥⎦

.

(48)

At nodes which are not positioned on intersections a
drilling stiffness is not available and a transformation of the
rotation vector to the nodal coordinate system is necessary:

ϕ I = T3I β I

T3I =
{

13 for nodes on shell intersections
[A1I , A2I ](3×2) for all other nodes

β I =
{ [βx I , βy I , βz I ]T for nodes on shell intersections

[β1I , β2I ]T for all other nodes

(49)

Here, βα I are the rotations about local axes defined by Aα I .
The drilling degree of freedom is fixed, thus β3I = 0. Next
combining (48) and (49) one obtains

�dI = TI β I TI = WT
I T3I . (50)

The element has to fulfilmembrane andbendingpatch test.
The bending patch test—when using below specified mixed
interpolation—can be fulfilled with substitute shear strains
introduced e.g. in Ref. [33], but not with the transverse shear

strains (3)3. Thus, the finite element approximation of the
shell strains (3) reads

εh
g =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

εh
11

εh
22

2εh
12

κh
11

κh
22

2κh
12

γ h
1

γ h
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

uh,1 ·Xh,1

uh,2 ·Xh,2

uh,1 ·Xh,2 +uh,2 ·Xh,1

uh,1 ·D̄h,1 +Xh,1 ·�dh,1

uh,2 ·D̄h,2 +Xh,2 ·�dh,2

uh,1 ·D̄h,2 +uh,2 ·D̄h,1 +Xh,1 ·�dh,2 +Xh,2 ·�dh,1

J−1

{
1
2 [(1 − η) γ B

ξ + (1 + η) γ D
ξ

1
2 [(1 − ξ) γ A

η + (1 + ξ) γ C
η ]

}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(51)

The shear strains γ M
ξ and γ L

η at themidside nodes M = B, D
and L = A, C are specified in Appendix 2.

Inserting above finite element approximations into the
shell strains (51) yields

εh
g = B v̂ , (52)

where B is given in Appendix 2 and v̂ = [v1, v2, v3, v4]T is
the element displacement vector with vI = [uI ,β I ]T .

The independent stress resultants σ are approximated as
follows

σ h = Nσ σ̂ , (53)

where σ̂ contains 8 parameters for the constant part and 6
parameters for the varying part of the stress field, respec-
tively.

The approximation of ε consists of three parts

⎡
⎣

ε1
ε2
ε3

⎤
⎦ =

⎡
⎣

N1
ε 0 0

0 1 0
0 0 1

⎤
⎦
⎡
⎣

ε̂1
ε̂2
ε̂3

⎤
⎦

εh = Nε ε̂.

(54)

The first part with 14 parameters and interpolation matrix
N1

ε corresponds to (53). The second and third part are chosen
constant within the element. The matrices Nσ and N1

ε are
specified in Appendix 2.

123



Comput Mech (2016) 57:237–255 245

3.4 Element stiffness matrix

The approximations (52)–(54) and the corresponding equa-
tions for the virtual quantities

θh :=
⎡
⎣

εh
g

σ h

εh

⎤
⎦ =

⎡
⎣

B 0 0
0 Nσ 0
0 0 Nε

⎤
⎦
⎡
⎣

v̂
σ̂

ε̂

⎤
⎦

δθh :=
⎡
⎣

δεh
g

δσ h

δεh

⎤
⎦ =

⎡
⎣

B 0 0
0 Nσ 0
0 0 Nε

⎤
⎦
⎡
⎣

δv̂
δσ̂

δε̂

⎤
⎦ (55)

are inserted into the finite element approximation of (14)

δ�(θh , δθh) =
numel∑
e=1⎧⎪⎨

⎪⎩

∫

�e

⎡
⎣

δεh
g

δσ h

δεh

⎤
⎦

T ⎡
⎣

0 1 0
1 0 IT

0 I D

⎤
⎦
⎡
⎣

εh
g

σ h

εh

⎤
⎦ dA + δ�eh

ext

⎫⎪⎬
⎪⎭

= 0,

(56)

wherenumel denotes the total number of finite shell elements
to discretise the problem. Furthermore, δ�eh

ext = −δv̂T fext ,
where fext corresponds to the vector of loads p̄ and t̄ of a stan-
dard displacement formulation. Thus, Eq. (56) yields with
(55)

δ�(θh, δθh) =
numel∑
e=1

⎡
⎣

δv̂
δσ̂

δε̂

⎤
⎦

T

×
⎧⎨
⎩

⎡
⎣

0 GT 0
G 0 FT

0 F H

⎤
⎦
⎡
⎣

v̂
σ̂

ε̂

⎤
⎦ −

⎡
⎣

fext

0
0

⎤
⎦
⎫⎬
⎭ = 0 (57)

with

F =
∫

�e

NT
ε I Nσ dA G =

∫

�e

NT
σ B dA

H =
∫

�e

NT
ε D Nε dA . (58)

The integrals in (58) are computed numerically using a 2×2
Gauss integration scheme.

For each element one obtains the set of equations

GT σ̂ − fext = r
G v̂ + FT ε̂ = 0
F σ̂ + H ε̂ = 0,

(59)

where r denotes the vector of element nodal forces which
cancels out with the assembly. Since σ and ε are interpolated

discontinuously across the element boundaries the parame-
ters ε̂ and σ̂ can be eliminated from (59)

ε̂ = −H−1 F σ̂

σ̂ = Ĥ G v̂ Ĥ = (FT H−1 F)−1 .
(60)

Inserting σ̂ from (60) in Eq. (57) yields δ�(θh, δθh) =
numel∑
e=1

δv̂T (K v̂ − fext ) = 0 with

K = GT Ĥ G . (61)

The element stiffnessmatrixK possesseswith six zero eigen-
values the correct rank. The global system of equations
is obtained by standard assembly procedures. At nodes on
intersections there are six degrees of freedom (three displace-
ments and three global rotations) and five at all other nodes
(three displacements and two local rotations). The solution
yields the global displacement vector and thus for each ele-
ment the vector v̂. For the back substitution of σ̂ and ε̂

according to (60) the necessary matrices have to be stored
or to be recalculated.

Remark Due to the special structure of matrix

F =
[

F1

0

]
F1 = −

∫

�e

N1T
ε Nσ dA , (62)

where F1 is regular and sparse, the two matrix inversions in
Ĥ = (FT H−1 F)−1 according to (60) are not necessary. In
stead of this a static condensation of the parameters ε2 and
ε3 in (59) is more effective, see [32]. This leads to

Ĥ = F−1
1 H̄11 F−T

1 H̄11 = H11 − H12 H−1
22 H21 (63)

with Hαβ = ∫
�e

NαT
ε D̂αβ Nβ

ε dA where α, β = 1, 2. Fur-

thermoreN2
ε = 1holds and D̂αβ denote submatrices ofmatrix

D. The computation of F−1
1 requires the inversion of a diag-

onal submatrix and of three 2× 2 submatrices. Furthermore
a pivot change in D is necessary. In fact for the program-
ming the sequence of ε2 and ε3 is interchanged in the vector
ε. Due to the interpolation in thickness direction with local
layerwise support the matrix H22 is sparse which means for
examples with many layers a significantly reduced effort.

The developed 4-node shell element has been imple-
mented in an extended version of the general finite element
program FEAP [34].
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Fig. 4 Rectangular plate, patch
of 5 elements

Load case 1 2
Node Fx Fz Mx My

1 -10 -2 20 -10
2 0 0 20 10
3 0 0 -20 10
4 -10 0 -20 -10

4 Examples

For all examples with fibre reinforced polymer layers
transversal isotropic material behaviour is assumed as spe-
cial case of orthotropy. The material constants are chosen as

E1 = 125000N/mm2 G12 = 4800N/mm2

E2 = 7400N/mm2 G23 = 2700N/mm2

ν12 = 0.34,
(64)

where the index 1 refers to the preferred direction of the
material.

For the output the transverse shear stresses are evaluated
via Eqs. (22) and (23) at the element centre. For comparison
8-noded solid shell elements according to Ref. [29] are used.
Here, results are obtained at nodes of the global FE-mesh
using a standard smoothing procedure. Due to the applied
assumed strain interpolation for the transverse shear strains
[33] these elements possess an orientation which must coin-
cide with the thickness direction of the shell. Furthermore,
5 parameters are used for the enhanced strain interpolation.
A relative fine discretisation for each layer is necessary to
obtain sufficient accurate results for the distribution of the
transverse shear stresses through the thickness. We choose
10 elements in thickness direction of each layer.

Remark For all examples with a layered setup holds: With
the present element formulation continuity of the trans-
verse shear stresses at the layer boundaries is automatically
obtained. We do not apply any smoothing technique. At
the outer surfaces the zero stress boundary conditions are
fulfilled in an exact way. The integrals of the shear stress
distribution coincide identicallywith the independently inter-
polated stress resultants q1 and q2.

4.1 Membrane and bending patch test

At first we investigate the element performance within mem-
brane and bending patch test as is depicted in Fig. 4, see
also Ref. [35]. A rectangular plate of length lx = 40, width
ly = 20 and thickness h = 0.1 is supported at three cor-
ners. The linear elastic material behaviour is described by

p x

y
z

xp

yp

l

h 

l

Fig. 5 Simply supported layered plate

Table 1 Plate with 5 different layer sequences

Plate Layer sequence

1 [0◦/90◦/0◦]
2 [0◦/90◦]
3 [45◦/−45◦/45◦]
4 [45◦/−45◦/45◦/−45◦]s

5 [−45◦/45◦/−45◦/45◦/−45◦/45◦/−45◦/45◦/−45◦/0◦]s

E = 106 and ν = 0.3. We consider in-plane loading and
bending loading denoted by load case 1 and 2, respectively.
Both, membrane and bending patch test are fulfilled by the
present element. One obtains constant normal forces nx = 1,
ny = nxy = 0 (load case 1) and constant bending moments
mx = my = mxy = 1 (load case 2).

4.2 Simply supported plate subjected to constant
loading

With the next example a square plate according to Fig. 5 is
considered. The geometrical data are: l = 50 mm and h = 1
mm. The origin of the x, y, z-coordinate system coincides
with the plate centre. The plate is simply supported (soft
support) and subjected to a constant load p̄ = 1N/mm2. For
the discretisation with solid shell elements the loading is also
applied at the middle surface. We investigate five different
layer sequences as are displayed in Table 1. The fibre direc-
tion 0◦ coincides with the x-direction. A subscript s refers to
symmetry of the total lay-up. Furthermore, (x p, yp) repre-
sent coordinates of a chosen element centre, where warping
displacements or stresses are evaluated as function of the

123



Comput Mech (2016) 57:237–255 247

Table 2 Maximum displacements of the simply supported plate in
[mm]

Plate Present Element [32] Solid shell [29]

1 7.744 7.744 7.754

2 16.490 16.490 16.500

3 7.266 7.264 7.265

4 5.159 5.159 5.153

5 4.967 4.966 4.957

thickness coordinate. These values are specified in the respec-
tive captions of Figures.

First we compare the maximum displacements uz at the
plate centre computed with the developed element and two
comparative elements. The results in Table 2 represent con-
verged values. There is good agreement between the different
models.

4.2.1 Symmetric cross-ply laminate

At first a symmetric cross-ply laminate [0◦/90◦/0◦] is inves-
tigated. The applied discretisations for both models using
regular meshes and the coordinates of the stress evaluation
are given in Figs. 7 and 8.

The shape of the normalized warping displacement

ûx = ũx − 1

h

+h/2∫

−h/2

ũx dz (65)

at the specified coordinates computed with the developed
element is shown in Fig. 6. One can see the typical shape
as is qualitatively depicted for a homogeneous shell in Fig.
1b. The transverse shear stresses according to Figs. 7 and 8
show good correlation between the two applied models, see
Tables 3 and 4.

Fig. 7 τxz(x p = 21.429mm, yp = 0, z) for a cross-ply laminate
[0◦/90◦/0◦]

Fig. 8 τyz(x p = 0, yp = 21.429mm, z) for a cross-ply laminate
[0◦/90◦/0◦]

The influence of mesh distortion on the results has also
been investigated. We compare results for τxz(z = 0) of a
distorted mesh (1594 elements, 1675 nodes-generated with
a meshing scheme based on an advancing front technique)
with a regular mesh (1600 elements, 1681 nodes) for a quar-
ter of the plate. Figures 9 and 10 show that only negligible
differences occur when a distorted mesh is used.

4.2.2 Unsymmetric cross-ply laminate

Here we consider the unsymmetric cross-ply laminate
[0◦/90◦]. The discretisation density for the respective model

Fig. 6 ûx (x p = 21.429mm,

yp = 0, z) for a cross-ply
laminate [0◦/90◦/0◦]
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Fig. 9 τxz(x, y, z = 0) in N/mm2 for lay-up [0◦/90◦/0◦] using a reg-
ular mesh

Fig. 10 τxz(x, y, z = 0) in N/mm2 for lay-up [0◦/90◦/0◦] using a
distorted mesh

Fig. 11 τxz(x p = 21.429mm, yp = 0, z) for an unsymmetric lay-up
[0◦/90◦]

applying regular meshes and the coordinates of the stress
evaluation are given in Figs. 11 and 12. The results for the
shear stresses computedwith the twomodels showonly small
differences, see also Table 5.

Fig. 12 τyz(x p = 0, yp = 21.429mm, z) for an unsymmetric lay-up
[0◦/90◦]

Fig. 13 τxz(x p = 21.429mm, yp = 0, z) for an angle ply lay-up
[45◦/−45◦/45◦]

Fig. 14 τxz(x p = 10.937mm, yp = 14.062mm, z) for an angle ply
lay-up [45◦/−45◦/45◦]

4.2.3 Angle-ply laminate with 3 layers

The angle ply lay-up [45◦/−45◦/45◦] is considered next.
The applied discretisations using regular meshes for the two
models and the coordinates of the stress evaluation are given
in Figs. 13, 14, and 15. The shape of τyz(x p = 0, yp =
21.429mm, z) corresponds to the distribution of τxz in Fig.
13, and therefore is not displayed. Instead of this we present
the stress evaluation at the coordinates given in Fig. 14. It
shows the interesting effect that a drop of τxz in the mid-
dle layer takes place. The evaluation of τyz at the same
coordinates yields a distribution as in a homogeneous plate,
Fig. 15. Discrete data are presented in Tables 6–8.
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Fig. 15 τyz(x p = 10.937mm, yp = 14.062mm, z) for an angle ply
lay-up [45◦/−45◦/45◦]

Fig. 16 τxz(x p = 21.429 mm, yp = 0, z) for an angle ply lay-up
[45◦/−45◦/45◦/−45◦]s

Fig. 17 τxz(x p = 10.937 mm, yp = 14.062 mm, z) for an angle ply
lay-up [45◦/−45◦/45◦/−45◦]s

4.2.4 Angle-ply laminate with 8 layers

We consider an 8 layer laminate [45◦/−45◦/45◦/−45◦]s .
The applied shell and solid shell discretisations using regu-
lar meshes can be seen in Figs. 16 and 17. The coordinates
(x p, yp) for the evaluation of τxz are chosen as in the pre-
vious example. In both diagrams there is good agreement of
the shear stresses computed with the two models.

4.2.5 Angle-ply laminate with 20 layers

Finally a 20 layer laminate [−45◦/45◦/−45◦/45◦/−45◦/
45◦/−45◦/45◦/−45◦/0◦]s is investigated. The applied shell

Fig. 18 τxz(x p = 21.429 mm, yp = 0, z) for a 20 layer angle-ply
laminate

Fig. 19 τxz(x p = 10.937 mm, yp = 14.062 mm, z) for a 20 layer
angle-ply laminate

and solid shell discretisations using regular meshes can be
seen in Figs. 18 and 19. The coordinates (x p, yp) for the
evaluation of τxz are chosen as in the previous example. Both
diagrams show good agreement between the shear stresses
of the two models.

4.3 Stiffened cylindrical shell

The last example represents a stiffened cylindrical shell. Fig-
ure 20 shows a cross-section of the structure and a coarse
finite element mesh of half the structure considering sym-
metry conditions. Radius and length of the cylinder are
R = 1000mm, L = 2000mm and the shell thickness is
h = 10mm. The shell is free at y = z = 0 and clamped at
y = L . A concentrated force F = 1 kN acts at the coordi-
nates (x, y, z) = (0, 0, R). The skin of the structure consists
of a [0◦/90◦/0◦] lay-up, where 0◦ refers to the tangential
direction and 90◦ to the length direction of the cylinder. The
stiffeners with geometrical data d = 50mm and h = 10mm
are arranged in radial direction. The stiffener in the symmetry
axis has a thickness of 2h. The stiffeners are homogeneous
and the fibre direction coincides with the length direction.
Again the data for transversal isotropic material behaviour
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F

R R
d

h

h

2h

x

z

ξ 1

x

y

z

Fig. 20 Stiffened cylindrical shell and finite element mesh

Fig. 21 uz in mm for the
present formulation

Fig. 22 uz in mm for the
element formulation [7]

(64) are taken.Comparative results are obtained with the ele-
ment formulation [7] where the transverse shear stresses are
computed within a post processing procedure and thus are
not embedded in the variational formulation. Plots of the dis-

placements uz(ξ
1, ξ2) and of the shear stresses τ13(ξ

1, ξ2)

of the middle surface, where ξ2 ≡ y, are depicted in Figs.
21, 22, 23, and 24 for the present model and the comparative
model. A 24 × 16 mesh is used for the skin and a 2 × 16
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Fig. 23 τ13 of the middle
surface in N/mm2 for the
present formulation

Fig. 24 τ13 of the middle
surface in N/mm2 for the
element formulation [7]

7

Fig. 25 τ13

(
ξ1p, ξ

2
p, ξ3

)
of the stiffened cylindrical shell

mesh vor each stiffener. The displacements of the deformed
configuration are amplified by a factor 200 and the stiffen-
ers are turned off in the plots. Finally in Fig. 25 the shape
of τ13(ξ

1
p, ξ

2
p) through the thickness at a point P with coor-

dinates ξ1p = (27/192 · π/2) · R and ξ2p = 13/128 · L is

displayed. Here, a refinedmeshwith 96×64 elements for the
skin and 2×64 elements for each stiffener is used. In all dia-
grams one can state good agreement between the twomodels.

5 Conclusions

In this paper a new mixed hybrid 4-node finite element for
applications to layered shells is presented. The global shell
equations in terms of stress resultants are coupled with the
local equilibrium equations in the variational formulation.
With layerwise cubic interpolation functions one obtains
automatically continuous interlaminar shear stresses. Fur-
thermore the stress boundary conditions at the outer surfaces
are automatically fulfilled. This holds also for the integrals
of the shear stresses which coincide identically with the
independently interpolated shear forces. Good agreement of
the displacements and stresses with comparative results is
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obtained. The setup of the element stiffness matrix is com-
putationally effective, since the matrix which is subject to
a static condensation is sparse. The essential feature of the
element formulation is the fact that it leads to the usual shell
degrees of freedom. This allows the application of standard
boundary conditions and the computation of folded shell
structures.

Acknowledgments The financial support of the Deutsche
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Appendix 1: Data for some selected stress distribu-
tions

Symmetric cross-ply laminate [0◦/90◦/0◦]

Table 3 τxz at (x p = 21.429mm, yp = 0, z) for a cross-ply laminate
[0◦/90◦/0◦], see Fig. 7
z (mm) Present (N/mm2) Solid shell [29] (N/mm2)

0.000 30.3479 30.3950

0.033 30.3313 30.3772

0.067 30.2814 30.3240

0.100 30.1984 30.2355

0.133 30.0821 30.1118

0.167 29.9326 29.5985

0.167 29.9326 29.5985

0.200 28.2863 28.2535

0.233 26.3407 26.2993

0.267 24.0957 24.0466

0.300 21.5514 21.4958

0.333 18.7078 18.6469

0.367 15.5649 15.5003

0.400 12.1227 12.0566

0.433 8.3811 8.3166

0.467 4.3402 4.2812

0.500 0.0000 −

Table 4 τyz at (x p = 0, yp = 21.429mm, z) for a cross-ply laminate
[0◦/90◦/0◦], see Fig. 8
z (mm) Present (N/mm2) Solid shell [29] (N/mm2)

0.000 11.8232 11.8505

0.033 11.5727 11.5922

Table 4 continued

z (mm) Present (N/mm2) Solid shell [29] (N/mm2)

0.067 10.8213 10.8181

0.100 9.5688 9.5305

0.133 7.8153 7.7330

0.167 5.5609 6.0371

0.167 5.5609 6.0371

0.200 5.2550 5.2004

0.233 4.8936 4.8406

0.267 4.4765 4.4263

0.300 4.0038 3.9573

0.333 3.4755 3.4335

0.367 2.8917 2.8548

0.400 2.2522 2.2211

0.433 1.5570 1.5326

0.467 0.8063 0.7892

0.50 0.0000 −

Unsymmetric cross-ply laminate [0◦/90◦]

Table 5 τxz at (x p = 21.429mm, yp = 0, z) for an unsymmetric
lay-up [0◦/90◦], see Fig. 11
z (mm) Present (N/mm2) Solid shell [29] (N/mm2)

−0.50 0.0000 0.0000

−0.45 7.9417 8.1903

−0.40 14.4393 15.0640

−0.35 19.4926 20.3502

−0.30 23.1018 24.0410

−0.25 25.2668 26.1316

−0.20 25.9875 26.6204

−0.15 25.2641 25.5085

−0.10 23.0965 22.7998

−0.05 19.4847 18.5014

0.00 14.4287 14.3302

0.00 14.4287 14.3302

0.05 13.7072 12.4583

0.10 12.8254 11.8661

0.15 11.7833 11.0749

0.20 10.5808 10.0846

0.25 9.2181 8.8955

0.30 7.6951 7.5076

0.35 6.0118 5.9208

0.40 4.1682 4.1351

0.45 2.1642 2.1505

0.50 0.0000 −
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Angle-ply laminate with 3 layers [45◦/−45◦/45◦]

Table 6 τxz at (x p = 21.429mm, yp = 0, z) for an angle ply lay-up
[45◦/−45◦/45◦], see Fig. 13
z (mm) Present (N/mm2) Solid shell [29] (N/mm2)

0.000 23.9516 23.6254

0.033 23.6811 23.3621

0.067 22.8694 22.5779

0.100 21.5166 21.2889

0.133 19.6227 19.5173

0.167 17.1877 17.6660

0.167 17.1877 17.6660

0.200 16.2424 16.3040

0.233 15.1252 15.1801

0.267 13.8361 13.8798

0.300 12.3752 12.4176

0.333 10.7423 10.7934

0.367 8.9376 9.0044

0.400 6.9610 7.0428

0.433 4.8126 4.8945

0.467 2.4922 2.5393

0.500 0.0000 −

Table 7 τxz at (x p = 10.937mm, yp = 14.062mm, z) for an angle
ply lay-up [45◦/−45◦/45◦], see Fig. 14
z (mm) Present (N/mm2) Solid shell [29] (N/mm2)

0.000 9.3008 9.1705

0.033 9.3478 9.2315

0.067 9.4887 9.4141

0.100 9.7237 9.7164

0.133 10.0526 10.1315

0.167 10.4755 10.3575

0.167 10.4755 10.3575

0.200 9.8993 10.0405

0.233 9.2184 9.3620

0.267 8.4328 8.5677

0.300 7.5424 7.6645

0.333 6.5472 6.6531

0.367 5.4473 5.5339

0.400 4.2426 4.3068

0.433 2.9331 2.9715

0.467 1.5189 1.5289

0.500 0.0000 −

Table 8 τyz at (x p = 10.937mm, yp = 14.062mm, z) for an angle
ply lay-up [45◦/−45◦/45◦], see Fig. 15
z (mm) Present (N/mm2) Solid shell [29] (N/mm2)

0.000 13.0392 12.9990

0.033 12.9901 12.9394

0.067 12.8428 12.7611

0.100 12.5973 12.4656

0.133 12.2535 12.0560

0.167 11.8115 11.5437

0.167 11.8115 11.5437

0.200 11.1618 10.9263

0.233 10.3941 10.1851

0.267 9.5082 9.3202

0.300 8.5043 8.3376

0.333 7.3822 7.2376

0.367 6.1420 6.0203

0.400 4.7836 4.6856

0.433 3.3072 3.2335

0.467 1.7127 1.6642

0.500 0.0000 −

Appendix 2: Interpolation matrices of the mixed ele-
ment formulation

The transverse shear strains at the midside nodes A, B, C, D
of the element are as follows

γ M
ξ = [u,ξ ·D̄ + X,ξ ·�d]M M = B, D

γ L
η = [u,η ·D̄ + X,η ·�d]L L = A, C

(66)

where the following quantities are given with the bilinear
interpolation (44)–(47)

D̄A = 1

2
(D̄4 + D̄1) �dA = 1

2
(�d4 + �d1)

D̄B = 1

2
(D̄1 + D̄2) �dB = 1

2
(�d1 + �d2)

D̄C = 1

2
(D̄2 + D̄3) �dC = 1

2
(�d2 + �d3)

D̄D = 1

2
(D̄3 + D̄4) �dD = 1

2
(�d3 + �d4)

XA,η = 1

2
(X4 − X1) uA,η = 1

2
(u4 − u1)

XB,ξ = 1

2
(X2 − X1) uB,ξ = 1

2
(u2 − u1)

XC ,η = 1

2
(X3 − X2) uC ,η = 1

2
(u3 − u2)

XD,ξ = 1

2
(X3 − X4) uD,ξ = 1

2
(u3 − u4). (67)
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The matrix B = [B1, B2, B3, B4] follows with

BI =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NI ,1 XT ,1 0
NI ,2 XT ,2 0
NI ,1 XT ,2 +NI ,2 XT ,1 0
NI ,1 D̄T ,1 NI ,1 bT

I1

NI ,2 D̄T ,2 NI ,2 bT
I2

NI ,1 D̄T ,2 +NI ,2 D̄T ,1 NI ,1 bT
I2 + NI ,2 bT

I1

J−1

{
NI ,ξ D̄T

M

NI ,η D̄T
L

}
J−1

{
NI ,ξ ξI bT

M

NI ,η ηI bT
L

}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(68)

We denote by bIα = TT
I X,α , bM = TT

I XM ,ξ and bL =
TT

I XL ,η , where TI is introduced in (50). The allocation of
themidside nodes to the corner nodes is given by (I, M, L) ∈
{(1, B, A); (2, B, C); (3, D, C); (4, D, A)} .Toalleviate the
notation the superscript h is omitted in the matrix.

According to [32] the interpolation matrix Nσ reads

Nσ =
⎡
⎣

13 0 0 Nm
σ 0 0

0 13 0 0 Nb
σ 0

0 0 12 0 0 Ns
σ

⎤
⎦ (69)

where

Nm
σ = Nb

σ = T0
σ

⎡
⎣

η − η̄ 0
0 ξ − ξ̄

0 0

⎤
⎦

Ns
σ = T̃0

σ

[
η − η̄ 0
0 ξ − ξ̄

]
(70)

with the coordinates ξ̄ = 1

Ae

∫

�e

ξ dA and η̄ = 1

Ae

∫

�e

η dA

as well as

T0
σ =

⎡
⎢⎢⎣

J 0
11 J 0

11 J 0
21 J 0

21 2J 0
11 J 0

21

J 0
12 J 0

12 J 0
22 J 0

22 2J 0
12 J 0

22

J 0
11 J 0

12 J 0
21 J 0

22 J 0
11 J 0

22 + J 0
12 J 0

21

⎤
⎥⎥⎦

T̃0
σ =

[
J 0
11 J 0

21

J 0
12 J 0

22

]

.

(71)

The constants J 0
αβ = Jαβ(ξ = 0, η = 0) are the components

of J in Eq. (46) evaluated at the element centre.
Again from [32] it holds for N1

ε

N1
ε =

⎡
⎣

13 0 0 Nm1
ε 0 0

0 13 0 0 Nb1
ε 0

0 0 12 0 0 Ns1
ε

⎤
⎦ (72)

where

Nm1
ε = Nb1

ε = T0
ε

⎡
⎢⎢⎣

η − η̄ 0

0 ξ − ξ̄

0 0

⎤
⎥⎥⎦ Ns1

ε = Ns
σ (73)

and

T0
ε =

⎡
⎢⎢⎣

J 0
11 J 0

11 J 0
21 J 0

21 J 0
11 J 0

21

J 0
12 J 0

12 J 0
22 J 0

22 J 0
12 J 0

22

2J 0
11 J 0

12 2J 0
21 J 0

22 J 0
11 J 0

22 + J 0
12 J 0

21

⎤
⎥⎥⎦

.

(74)

A further partwith special interpolation functions has been
introduced in [32] to improve the membrane and bending
behaviour of the element. These functions are constructed
orthogonal to the stress resultant interpolation. For the sake
of convenience this part is omitted here.
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