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Abstract In the current work we examine the application
of the stochastic finite element method (SFEM) to the mod-
eling of representative volume elements for heterogeneous
materials.Uncertainties in the geometry of themicrostructure
result in the random nature of the solution fields thus requir-
ing use of the stochastic version of the finite element method.
For considering large differences in the material properties
of matrix and inclusions a standard SFEM approach proves
not stable and results in high numerical errors compared to
a brute-force Monte-Carlo evaluation. Therefore in order to
stabilize the SFEM we propose an alternative Gauss integra-
tion rule as resulting from a truncation of the probability
density function for the random variable. In addition we
propose new basis functions substituting the common poly-
nomial chaos expansion, resulting in higher accuracy for the
standard deviation in the homogenized stress at the macro
scale.
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1 Introduction

The effectivemacroscopic properties of heterogeneousmate-
rials result from the response of the underlying microstruc-
ture and can be estimated using homogenization techniques.
Various analytical approaches based on multiscale meth-
ods, perturbation methods and asymptotic estimations are
proposed e.g. in [2–5]. Alternatively computational homoge-
nization can be applied to a wide range of complex problems,
as e.g. the response of heterogeneous magneto-active poly-
mers [7,20,42], which can not be properly modeled using
only analytical methods. A number of applications for com-
putational homogenization can be found in [1,17,24,27,45].

Due to its high efficiency and simple extension to complex
problems we choose in this study computational homoge-
nization to determine the macroscopic behavior of heteroge-
neous materials.

Computational homogenization involves two main
ingredients—transfer of the macroscopic loading to the
microscale and averaging the corresponding response of the
microstructure to obtain the macroscopic properties.

Thereby transfer of the macroscopic loading to the
microscale is performed by applying either Neumann, peri-
odic or Dirichlet boundary conditions (satisfying the Hill-
Mandel condition) to the representative volume element
(RVE) of the microstructure.

A challenging aspect in computational homogenization is
the modeling of the microstructure, which is often assumed
to be periodic. We use the computational homogenization
formulation proposed in [20], which theoretical aspects are
discussed in [7]. Thereby the proposed framework requires
two separate FE models—a macroscopic model and a model
of the underlying microstructure (RVE).

Due to the heterogeneity of the microstructure and the
often complex phase distribution the mesh generation for the
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microscopic model is not a trivial task. Alternatively [45]
proposes to introduce the material heterogeneity on the inte-
gration point level. Asmentioned in [27] this yields sufficient
accuracy for the homogenized stress but suffers from the
improper description of the stress distribution over the RVE.
The later aspect was used as motivation for the development
of a XFEM based homogenization framework [24,27]. This
method was initially developed in [28] for crack propagation
problems of the underlying discretization. However the inte-
gration rule still has to be fitted to the geometry. More details
can be found in [14].

XFEM is also suitable to describe matrix-inclusion inter-
faces, open interfaces inside the media and holes in the
material. Spieler [42] successfully applied this method to
complex magneto-elastic problems.

We consider the random microstructure of a heteroge-
neous material, i.e. the random geometry of the RVE. Thus
neither the usual FEM with a geometry dependent mesh,
nor traditional XFEM can be applied. Here the most suitable
option is the approach proposed in [45].

A lot of works are devoted to periodic media. However,
most of real composites can possess randommicrostructures.
In many applications the uncertainties results from the ran-
dom position of inclusions in the RVE.

Analytical estimates for the averaged effective properties
of random heterogeneous material can be found in [6,15–
17]. The framework proposed in [6] is based on averaging the
energy function for the case of aligned, ellipsoidal particles
distributed randomly with “ellipsoidal” symmetry.

A simple estimate of the lower and upper bounds of the
macroscopic properties of the material with random distrib-
ution of inclusions is proposed in [3]. This estimate is based
on the solution of a purely deterministic problem which is
found as an asymptotic expansion in powers of a small para-
meter.

To date the most common methods applied to problems
with uncertainties are the perturbation method, Monte-Carlo
simulation and Stochastic FEM.

A number of results in stochastic homogenization were
obtained by Sakata et al. [37–40]. He considered a mate-
rial with random position of inclusions (defined by a small
parameter ε) and obtained the mechanical properties as func-
tion of the parameter ε by using the first-order perturbation
method. This method is based on the assumption that the
uncertainty is small, i.e. the inclusion is located in the center,
but its position can be changed by a very small value. The
deterministic solution is assumed to coincide with the mean
value and is obtained analytically. Likewise the homogenized
quantities for the deterministic problem are obtained analyti-
cally. Introducing a small perturbation into the deterministic
solution and further differentiation allows to obtain the sensi-
tivity matrix. This method provides only linearized solutions
and is restricted to problems with small uncertainties. Higher

order generalizations of thismethod are discussed in [37] and
are found to be not efficient enough.

The formulation of the perturbation method is very close
to the multiscale method used in [3] and can be naturally
combined with upper and lower bound estimates.

TheMonte-Carlo simulation (MC) is a “brute-force” tech-
niquewhich involves the independent solution of the problem
for each particular model configuration (called sample). In
the case of a sufficient high number of samples this technique
can guarantee good convergence for any problem. Monte-
Carlo simulation does not require a stochastic model and
all probabilistic measures are obtained statistically from the
set of independent solutions. MC is a very effective tool in
stochastic homogenization [8,9,23,44] due to its capability
to handle problems where other methods fails. Furthermore
Monte-Carlo simulation is often used to verify solutions
obtained with more sophisticated techniques as the pertur-
bation method or SFEM.

Recent results in stochastic homogenization for a problem
similar to the one considered in this paper were obtained in
[25,26] using a combination of the FE2 method with Monte-
Carlo simulation. The considered RVE includes a few types
of uncertainties such as in the geometry of themicrostructure
as well as in its mechanical properties.

A high number of samples needed to reach a required
accuracy results in high computational costs and long simu-
lation times, which constitute the main disadvantages of the
MC method.

The Stochastic FEM (SFEM) is introduced in the clas-
sical treatise [18] for problems including different types of
uncertainties. This method can be applied to problems with
randommaterial properties and random loading or boundary
conditions. It has a number of application to the diffusion
problem, stochastic plasticity, and thermo-mechanical prob-
lems [10–13,19,21,22,30,33–36,43].

The stochastic finite element method states that the nodal
values of the solution field (e.g. nodal displacements) are not
anymore deterministic but random variables (RV). Accord-
ingly all uncertainties in the model are represented in terms
of random variables and random fields. Due to the fact that
the probability density functions of the introduced random
variables and their supports are usually unknown, the solu-
tion of the resulting stochastic problem is highly complex.
However it can be strongly simplified by the introduction
of a set of independent orthogonal basic random variables
with known density function and correspondent probabilis-
ticmeasures. Then all other randomvariables are represented
as a nonlinear mapping of the basic variables, which is repre-
sented in terms of orthogonal polynomials called Polynomial
Chaos [18]. The unknown coefficients of the polynomial
chaos expansion (PCE) are obtained by applying the sto-
chasticGalerkinmethod,whichmerely differs from the usual
Galerkin method by the definition of the inner product in the
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probability space. A brief description of the SFEM frame-
work is presented in Sect. 3.

In many problems considering heterogeneous materi-
als the physical properties are unknown and there is no
expression describing their distribution over the domain
[11,18,21,22,35,43]. However information about their aver-
aged properties and their covariance matrix (characterizing
the intensity of local random fluctuations) is always avail-
able. The Karhunen-Loeve expansion (KLE) is a technique
compensating this lack of information by transformation the
covariance matrix to the more convenient form of the ran-
dom field. The KLE presents the spectral decomposition of
the covariance matrix which yields an expression in terms of
random variables and eigenvectors. This expression can be
directly used in the MC simulation to generate samples or as
part of the SFEM framework.

In comparison to the perturbation method SFEM is not
restricted to a small randomness or linearized solution.And in
contrast to the Monte-Carlo simulation SFEM is considered
to be more efficient, because it requires to solve the problem
only once.

The aim of this paper is the development of an accurate
homogenization strategy for random heterogeneous mate-
rials with geometrical uncertainties in the microstructure.
To this end we combine the SFEM as presented in [18]
with the computational homogenization approach [20]. In
Sect. 3 we introduce a general SFEM formulation for contin-
uous nonlinear mechanical problems. The stochastic RVE
including uncertainties in the geometry is introduced in
Sect. 4. Introduction of geometrical uncertainties into SFEM
is demonstrated for an example of a RVE with random posi-
tion of inclusions.

The first modification of the standard SFEM involv-
ing truncated Gaussian random variables and a new Gauss
integration rule is presented in Sect. 5. The second modi-
fication of SFEM considering non-polynomial bases in the
stochastic domain is discussed in Sect. 6. Section 7 presents
simulation results obtained using SFEM with both modifi-
cations, comparison of different bases and comparison with
the Monte-Carlo simulation. Accuracy and weak points of
the method are discussed in Sect. 8. Modification of the RVE
considering further seven examples of geometrical uncer-
tainties are introduced in Sect. 9, followed by the discussion
of the simulation results. Finally, Sect. 10 concludes the
paper.

2 Notation

In this work we distinguish between deterministic and ran-
dom variables, vectors and tensors, matrices and operators.
We use the following notation:

• Second order tensors and vectors are emphasized by bold
(e.g. F) and bold italic (e.g. x) scripts respectively.

• Random variables, second order tensors and vectors are
represented [31,41] as functions of the elementary event
ω, e.g. χ(ω), F(ω), θ(ω).

• Randomfields are any functions of the spatial coordinates
x and the elementary event ω (e.g. G(x, ω)).

• Capital calligraphic letters are used for the domains of
functions and sets [e.g. D, S, F].

• Bold calligraphic letters denote function space like e.g.
the Hilbert space H.

• Differential operators are denoted by capital upright let-
ters, e.g. D(x, ω).

• In particular Div and Grad denote divergence and gradi-
ent operators applied in the reference configuration of a
geometrically nonlinear continuous deformable body.

3 Stochastic finite element method

We consider SFEM as a special case of the Galerkin method.
To this end we introduce two spaces—the physical space,
where we apply the usual spatial FEM discretization, and the
probability space, with discretization described in the sequel.

Following [18] we introduce the Hilbert (inner product)
spaceH of functions defined over a physical domainD with
values on the real lineR. Examples for spatial basis functions
inH are thewell-known piece-wise linear or quadratic shape
functions.

Let (�,F ,P) be the probability spacewith total mass equal
to unity. � is the space of elementary events ω or the sample
space. F is a σ -algebra in �, P is a probability measure
[31,41].

Any random variable χ(ω) can be defined as a function
mapping � into the real line [18].

χ(ω) : � → R.

LetQ be the Hilbert space of random variables called the
stochastic space, so that ∀χ(ω) : χ(ω) ∈ Q.

In the stochastic space we can choose a subset of indepen-
dent random variables as coordinates. For convenience the
random variables in this subset will be Gaussian, denoted by
θi (ω) that are collected in the vector θ(ω). Then all other
random variables and random fields will be expressed as a
nonlinear mapping of this set.

We can visualize the stochastic space with Gaussian ran-
dom variables θi (ω) as coordinates in the same way as the
physical space with coordinates x1, x2 and x3. The domain
for the Gaussian random variables in the stochastic space is
called the stochastic domain S. A random field (any function
of the spatial coordinates x and the eventω)may be described
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Fig. 1 Physical, stochastic and
product spaces H, Q and W
with corresponding physical,
stochastic and product domains
D, S and V

Fig. 2 JPDF for two independent Gaussian random variables

as a function defined on the product spaceW = H×Q over
the domain V , see Fig. 1. This space is Hilbert as well.

The main property of a Hilbert space is the existence of
an inner product denoted by 〈, 〉. In H the inner product (a
scalar) of two functions over D [18] is defined as

〈
g1(x), g2(x)

〉 :=
∫

D
g1(x)g2(x)dx. (1)

A similar inner product of two elements in Q (called
expectation) i.e. of two functions over � is represented as
the Lebesgue integral

〈
g1(ω), g2(ω)

〉 :=
∫

�

g1(ω)g2(ω)dP. (2)

It can be written more conveniently as the Riemann inte-
gral

〈
g1(ω), g2(ω)

〉 = 〈
g1
(
θ(ω)

)
, g2

(
θ(ω)

)〉

:=
∫

S
g1(θ)g2(θ) f�dθ , (3)

where the weight function f� is the joint probability den-
sity function (JPDF) of the basis random variables θi (ω) that
are collected in the vector θ(ω). For independent Gaussian
variables the JPDF is well-known; for the case of two inde-
pendent random variables θ1 and θ2 it is depicted in Fig. 2.

Based on the definitions given in the above the inner prod-
uct in the product space W results in

〈
g1(x, ω), g2(x, ω)

〉 :=
∫

D

∫

S
g1(x, θ)g2(x, θ)dx f�dθ . (4)

We introduce next a random differential operator D(x, ω)

with correspondent data f (x, ω), i.e. a random field

D(x, ω)u(x, ω) = f (x, ω). (5)

Thus the solution u(x, ω) satisfying the random differen-
tial operator is in general also a random field.

The Bubnov–Galerkin method includes two steps: firstly,
representing the unknown functions by their projections onto
some basis

u(x, ω) =
∞∑

i=1

uiϕi (x, ω) (6)

Whereby, for an approximation, the first n coefficients ui
are computed from the system

〈
u(x, ω), ϕ j (x, ω)

〉 =
n∑

i=1

ui
〈
ϕi (x, ω), ϕ j (x, ω)

〉
, (7)

where j = 1, 2 . . . n.
Secondly, projecting the differential equation onto the

same basis

〈
D(x, ω)u(x, ω) − f (x, ω), ϕi (x, ω)

〉 = 0. (8)

For the numerical implementation the number n of basis
functions ϕi (x, ω) is finite and thus the solution obtained is
approximate.

Restricting this procedure to the space H results in the
deterministic Galerkin method. Selecting piece-wise basis
functions e.g. based on Legendre polynomials as shape func-
tions Ni (x) collected in N(x), renders the familiar spatial
FEM.

On the other hand if we focus on the stochastic domain
only, we obtain the stochastic Galerkin method. Due to their
orthogonality the basis functions in the stochastic domain are
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typically expressed in terms of the Polynomial Chaos Expan-
sion (PCE). If we restrict ourselves to Gaussian variables,
Polynomial Chaos will be represented by the so called Her-
mite polynomials Hi

(
θ(ω)

)
that are collected in the vector

H
(
θ(ω)

)
. They are orthogonal with respect to their expecta-

tion.

〈
Hi
(
θ(ω)

)
, Hj

(
θ(ω)

)〉 = 〈
H2
i

(
θ(ω)

)〉
δi j . (9)

In the physical-stochastic product spaceW the basis func-
tions will be represented as a tensor product of the set of
spatial FEM basis in terms of the piece-wise defined Legen-
dre polynomials and the set of stochastic Galerkin basis
functions in terms of the Hermite polynomials

ϕ(x, ω) = N(x) ⊗ H
(
θ(ω)

)
, (10)

or component-wise

ϕi (x, ω) = ϕkl(x, ω) = Nk(x)Hl
(
θ(ω)

)
, (11)

where i is a multi-index containing index combinations i =
{k, l}.

In this work we focus on nonlinear mechanical problems
described by the differential operator

D(x, ω)u(x, ω) := −DivP
(
u(x, ω)

)
,

f (x, ω) := f (x, ω), (12)

where u(x, ω) denotes the random displacement field, P is
the Piola stress and f (x, ω) denotes random body forces.

Projection onto the basis ϕi (x, ω) leads to

R = Fext − Fint → 0,

Fint
i = 〈

P · Grad ϕi (x, ω)
〉
,

Fext
i = 〈

f (x, ω), ϕi (x, ω)
〉
, (13)

where R is the residual and 〈 , 〉 is the inner product in
W . Here for the simplicity of exposition only the Dirichlet
problem is considered.

An iterative procedure (Newton method) is used to find
the solution.

Rk(U) + ∂Rk

∂U

∣∣∣∣∣
U

· dUk → 0,

Kk := − ∂Rk

∂U

∣∣∣∣∣
U

,

dUk =
[
Kk

]−1
Rk,

Uk+1 = Uk + dUk, (14)

whereU is a vector of coefficients in the finite approximation
of (6)

U =

⎡

⎢⎢⎢
⎣

u1
u2
...

un

⎤

⎥⎥⎥
⎦

,

The explicit expression for the stiffness matrixK is given
as follows:

Ki j =
〈
∂P
∂F

: [Grad ϕi (x, ω) ⊗ Grad ϕ j (x, ω)
]〉

, (15)

where : denotes the non-standard double contraction of a
fourth order tensorA and a second order tensorB represented
component-wise by

[
A:B]ik = [

A
]
i jkl

[
B
]
jl .

Note that SFEM differs from common FEM only by the
definition of the inner product over an extended (physical-
stochastic) domain. However since additional stochastic
dimensions are introduced the system size increases consid-
erably.

For the evaluation of the integrals in the product spaceW
we use Legendre–Gauss quadrature in the physical domain
and Hermite–Gauss quadrature in the stochastic domain
respectively, thus resulting in a very high accuracy.

4 Basic example: stochastic RVE

The effective properties of heterogeneous materials on the
macro level can be obtained from the response of the
underlying microstructure [7,20]. Homogenization theory
typically considers two separate scales: the macro-scale,
which describes the continuum body, and the micro-scale
characterized by a RVE. From scanning electron microscopy
(Fig. 3) we often conclude that the microstructure is random.
A realistic RVE model has to capture this uncertainty in the
geometry of the microstructure.

Following [20] we study composites with (almost) peri-
odic microstructures. As an example we initially consider for
demonstration a RVE that includes only one circular parti-
cle (Fig. 4), however we do not restrict the position of the
inclusion to the center of the RVE. Thus we here introduce
only two random parameters ξ1(ω) and ξ2(ω) in terms of the
elementary event ω with normal distribution describing the
random position of the inclusion within the RVE.

For the sake of demonstration we consider the mater-
ial behavior of the matrix and inclusion to be isotropic,
compressible and hyperelastic. The Neo-Hookean energy
potential Ψ for such material is given in the form:

Ψ (F) = 1

2
μ [F : F − 3 − 2 ln J ] + 1

2
λ ln2 J, (16)
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Fig. 3 Scanning electron microscopy of an iron particle filled elas-
tomer (Courtesy of Bastian Walter, chair of Applied Mechanics,
University of Erlangen-Nuremberg)

Fig. 4 2D stochastic representative volume element with two random
parameters describing the random position of the inclusion

resulting in

P = ∂Ψ

∂F
= μF + [λ ln J − μ]F−t , (17)

where P is the Piola stress, F is the deformation gradient,
F−t denotes the transposed inverse of F, J = det F is the
Jacobian determinant, μ and λ are Lamé parameters. The
Lamé parameters are related to the shear modulus G = μ

and the Poisson’s ratio ν = λ
2[λ+μ] .

We model an inclusion as a jump in the elastic properties.
Thereby we assume for simplicity a constant Poisson’s ratio
ν = 0.25. Then only the shear modulus is a random field and
is explicitly given as

G(x, ω) = Gm + 1

2
[Gi − Gm][1 − tanh kz

(
x, ω

)]
, (18)

where Gm and Gi are shear moduli of the matrix and the
inclusion, respectively; k is a coefficient of smoothness;
z
(
x, ω

)
is the level-set function, which indicates whether

the material point with coordinates x belongs to the matrix
or to the inclusion (z < 0: inclusion, z > 0: matrix).

For the here considered simplest case of a circular inclu-
sion with constant radius the definition of z

(
x, ω

)
is the

equation

z
(
x, ω

) = r

⎡

⎣

√
[x1 − ξ1(ω)]2

r2
+ [x2 − ξ2(ω)]2

r2
− 1

⎤

⎦ ,

(19)

where r is the (deterministic) radius of the inclusion.
For convenience we represent the random parameters

ξ1(ω) and ξ2(ω) in terms of the orthogonal, zero mean and
unit variance Gaussian random variables (RV) θ1(ω) and
θ2(ω).

ξ1(ω) = m1 + σ1θ1(ω),

ξ2(ω) = m2 + σ2θ2(ω), (20)

where mi and σi , respectively, are the mean value and the
standard deviation (STD) of the random parameters.

If the inclusion intersects with the boundary of the RVE
or even is outside, the volume fraction changes and affects
the results. In order to reduce the influence of this effect
we force the inclusion to be fully contained in the RVE for
ξi ∈ [−3σi , 3σi ] by choosing σ1 = σ2 = 0.15 and m1 =
m2 = 0.

For the basic example please note that, unlike for the case
of periodic boundary conditions, the homogenized stress is
not deterministic when Dirichlet boundary conditions are
applied.

Remark It is strongly recommended to not use quadratic
level-set functions like

z̄
(
x, ω

) = [
x1 − ξ1(ω)

]2 + [
x2 − ξ2(ω)

]2 − r2,

due to the fact that the smoothing level depends in this case
not only on the parameter k but also on the radius of the
inclusion.

In the case of the quadratic level-set function z̄
(
x, ω

)
the

transition between thematrix and the inclusion gets smoother
with a smaller inclusion radius (see Figs. 5 and 6). If the
radius is variable (see Sect. 9) then simulations provide
incorrect stress statistics. This results from the form of the
level-set function z̄

(
x, ω

)
describing for a given values of

ξ1(ω), ξ2(ω) an elliptic paraboloid in the x1, x2, z̄
(
x, ω

)
-

space (see Fig. 7). Thus the values of z̄
(
x, ω

)
are related

to the square of the distance between the point (x1, x2) and
the inclusion’s center. Therefore the transition between the
matrix and the inclusion, as described by a hyperbolic tan-
gent of the level-set function, is not uniform. In contrast the
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Fig. 5 Transition between the matrix and the inclusion defined for the
sake of demonstration as 1 − tanh(kz̄) where z̄

(
x, ω

)
is the quadratic

level-set function. Please note the different angles of plotted curves and
different sizes of the transition region resulting from dependence of the
smoothing level on the inclusion’s radius

Fig. 6 Transition between the matrix and the inclusion defined for the
sake of demonstration as 1−tanh(kz)where z

(
x, ω

)
is the cone level-set

function (19). Please note the equal angles of all curves in the diagram

Fig. 7 Quadratic level-set function versus spatial coordinates

level-set function in the form (19) represents (if plotted ver-
sus the spatial coordinates) a cone-like surface (Fig. 8) and
corresponds to the distance between the point (x1, x2) and
the inclusion’s boundary. Further it can be easily modified
for the case of an elliptic inclusion and the case of multiple
inclusions (see Sect. 9).

Note that for the advanced examples in Sect. 9 the formu-
lation of z

(
x, ω

)
needs to be modified further.

Fig. 8 Level-set function of the form (19) versus spatial coordinates

Fig. 9 Shear modulus G(x) corresponding to the case of a centered
inclusion (k = 30, r = 0.4)

In Stochastic FEM, due to its randomness, it is impossible
to provide ameshmatching the geometry of the inclusion.We
will thus rather use a discretization with a regular mesh due
to its simplicity, efficiency and low computational costs. The
heterogeneity in elastic properties is treated at the integra-
tion point level. As mentioned in [27,45] this strategy yields
a reasonable rate of convergence for the homogenized para-
meters of the RVE but suffers a slow rate of convergence for
the quality of the stress distribution within the RVE. The pos-
sible alternative is to use the XFEM technique. However the
traditional XFEM cannot be directly applied to the stochastic
problem, whereas the special stochastic XFEM proposed in
[29] drastically increases computational costs and requires
further study (see discussion in Sect. 8).

The distribution of the shear modulus and an example for
the regular FEM discretization are presented in Fig. 9 for
a realization with ξ1(ω) = ξ2(ω) = 0. To study accuracy
and convergence we consider the case of uniaxial tension in
horizontal direction with applied displacement U = 2.5%
for the sake of demonstration.
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Fig. 10 Weights and integration points of the Gauss–Hermite quadra-
ture

5 Modification I: truncated RV and new
integration rule

With a view to the proper description of uncertainties in the
geometry we define the level-set function (19) and introduce
it into the shear modulus (see Sect. 18). On the one hand due
to the huge difference in elastic properties (i.e. the jump in the
shear modulus) of matrix and inclusion the KLE suffers from
the Gibbs phenomenon and causes numerical instabilities.
However in contrast to theworks in [10–13,19,21,22,30,33–
36,43] the material properties are not exclusively given by
their mean and covariance, but explicitly by their analytical
expression (18), thus allowing us to avoid the KLE com-
pletely. Note in the case that no analytical expression for
the random field is available the application of the KLE is
possible and necessary. On the other hand the discontinuity
in the shear modulus causes a sophisticated behavior of the
solution field and requires to increase the number of basis
functions in H

(
θ(ω)

)
. In the stochastic domain this results

in the application of higher order Hermite polynomials and
correspondingly in the need to increase the number of Gauss
integration points.

By increasing the degree of Hermite polynomials the stan-
dard SFEM proves not stable due to numerical errors in
the integrals’ evaluation. In the case of higher order Her-
mite polynomials, for example such as fifth order H5

(
θ(ω)

)
,

the evaluation of the stiffness matrix involves integrals of
the polynomials

[
H5

(
θ(ω)

)]2 and
[
H5

(
θ(ω)

)]4. Weights of
the Gauss-Hermite quadrature versus the integration point
abscissa for the 1D-case are plotted in Fig. 10 and the values
of the polynomials

[
H5

(
θ(ω)

)]2 and
[
H5

(
θ(ω)

)]4 evalu-
ated at the integration points multiplied by the corresponding
weights are plotted in Figs. 11 and 12. Theoretically, values
which correspond to |θ(ω)| ≥ 3 should have a negligible
influence, however, they are strongly sensitive to computa-
tional errors and as becomes clear in Figs. 11 and 12, they
are obviously dominating.

Fig. 11 Values of the Hermite polynomials raised to the power two at
the integration points after multiplication by the weight factors

Fig. 12 Values of the Hermite polynomials raised to the power four at
the integration points after multiplication by the weight factors

To avoid this problem we therefore propose to change the
integration rule to one with integration points restricted to
the range [−3, 3]. This will be achieved by a change of the
basis random variables. Please note that the Gauss integra-
tion rule, the probability density function of the basis random
variable and the orthogonal polynomials are closely related
and thus can not be changed independently. So, e.g. simple
truncation of the integration range yields inconsistent solu-
tions due to the fact, that the total probability mass gets less
than one, axioms of the probability theory are not satisfied,
and the Hermite polynomials are not orthogonal in a finite
range. On the other hand the accurate numerical integration
is performed by using the Gauss integration rule which is
obtained uniquely from the support and the probability den-
sity function of the basic RV. Moreover the set of orthogonal
polynomials required for both the generation of the Gauss
integration rule and the Galerkin approximation in the SFEM
framework also depends on the RV.

Thereby we introduce new random variables, which are
a truncated version of the Gaussian RV with values only
in the interval [−3, 3]. From a physical point of view this
truncation is reasonable because in the basis example values
|θ(ω)| → ∞ correspond to the inclusion lying partially or
completely outside the RVE. From a mathematical point of
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Fig. 13 Probability density functions for the normal Gaussian and
truncated Gaussian RVs

view we perform a certain truncation anyway by evaluating
integrals numerically. According to the well-known 3-sigma
rule, most of the values drawn from a normal distribution lie
within three standard deviations, i.e. in the range [−3, 3]:

p =
3∫

−3

f�dθ = 0.9973.

Outside the range [−3, 3] the new probability density
function is set to zero,while its values inside the range [−3, 3]
are obtained by a rescaling of the Gaussian density function
f� → 1

p f� (Fig. 13).
The integral over the stochastic domain S in expres-

sion (3) includes the weight function f� which is the joint
probability density function (JPDF). Previously for the case
of Gaussian RV we used the well-known Hermite–Gauss
quadrature which fits exactly to this weight function. After
the truncation of the JPDF we have to introduce a modified
integration rule fitting this new weight function.

According to the framework given in [32] we can eas-
ily construct the Gauss integration rule from the set of
polynomials which are orthogonal with respect to the cur-
rent weight function. Orthogonal polynomials are computed
using the Gram–Schmidt (orthogonalization) process. These
new polynomials [limited Hermite polynomials denoted by
L
(
θ(ω)

)
] are close to the Hermite polynomials H

(
θ(ω)

)
,

but all their roots belong to the range θ(ω) ∈ [−3, 3] (see
Fig. 14).

According to [32] the nodes of the integration rule
coincide with the roots of the orthogonal polynomials. Fur-
thermore the weights can be obtained easily using the values
and derivatives of these polynomials:

w
(n)
i = an

an−1

∫ 3

−3
L2
n−1(θ) f�dθ

dLn(θ)

dθ

∣∣∣∣
θi

Ln−1(θi )

, (21)

Fig. 14 The first 12 limited Hermite polynomials L
(
θ(ω)

)

where w
(n)
i is the i th weight factor of the n-point integra-

tion rule, an is the coefficient of θn in Ln(θ), θi is the i th
integration point [i th root of the Ln(θ)].
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Fig. 15 Weights and integration points of the truncated Gauss–
Hermite quadrature

Fig. 16 Values of the limited Hermite polynomials raised to the power
two at the integration points after multiplication by the weight factors

Fig. 17 Values of the limited Hermite polynomials raised to the power
four at the integration points after multiplication by the weight factors

Weights of the new Gauss quadrature versus integration
points are plotted in Fig. 15 and values of the polynomials[
L5
(
θ(ω)

)]2 and
[
L5
(
θ(ω)

)]4 evaluated at integration points
and multiplied by the corresponding weights are plotted in
Figs. 16 and 17.

Please note that the new integration points are much more
densely distributed in the range of interest and that the max-
imum value of the polynomial in Fig. 17 is 75 times smaller
than the correspondent value in Fig. 12 and belong to the
range [−3, 3]. Values of the integrals ∫∞

−∞ [H5(θ)]2 dθ and

∫∞
−∞ [H5(θ)]4 dθ differ dramatically by a ratio of 4000, in
contrast values of the integrals of limited Hermite poly-
nomials

∫ 3
−3 [L5(θ)]2 dθ and

∫ 3
−3 [L5(θ)]4 dθ obtained with

the new quadrature display a ratio of 42. According to the
fact that the integrals

∫∞
−∞ [H5(θ)]2 dθ and

∫ 3
−3 [L5(θ)]2 dθ

result from the expression for the residual, while the inte-
grals

∫∞
−∞ [H5(θ)]4 dθ and

∫ 3
−3 [L5(θ)]4 dθ appear only in

the expressions for the stiffnessmatrix, their ratio is critically
important for the stabilization of the numerical procedure.

Furthermore due to the fact that the limited Hermite poly-
nomials are orthonormal in the domain S wemay implement
them together with the truncated Gaussian RV straightfor-
wardly in the SFEM framework as outlined in the above.
Thus the Galerkin basis functions in (10) can be rewritten in
the modified form:

ϕ(x, ω) = N(x) ⊗ L
(
θ(ω)

)
. (22)

The proposed changes to the numerical procedure strongly
increase the accuracy and stabilize the iterative procedure.
Results of the simulation performed using the new basic ran-
dom variables are collected in Chapter 7.

6 Modification II: non-polynomial basis

The displacement mean value and its standard deviation
obtained using the SFEM show good agreement with the
brute-forceMonte-Carlo simulation performedwith 961 uni-
formly distributed samples. Furthermore the mean value of
the von Mises stress distribution in the RVE obtained with
both methods are close (relative error measured based on Eq.
(30) for the basic example is less than 0.7%). However the
SFEM has a deteriorated agreement with the MC simulation
in the standard deviation of the von Mises stress. For more
details see Figs. 27 and 29 that illustrates the relative error in
the mean stress and relative error in the stress STD respec-
tively. In addition, Figs. 31 and 32 depict the distribution
of the stress STD over the volume of the RVE for the MC
simulation and SFEM respectively.

This inaccuracy results from the oscillating behavior of
the higher order polynomial interpolation at the edges of
an interval in S. Note that this phenomenon is known as
Runge’s phenomenon and is likewise observed in Maclaurin
series, polynomial interpolation with equispaced interpola-
tion points and in asymptotic methods as the perturbation
series, where it is treated e.g. using the rational approxima-
tion [2,3,5]. For the sake of illustration we plot the nodal
displacements versus random variables θ1(ω) and θ2(ω) for
the node number 96 with coordinates (−0.375, 0.25). The
random variable is interpreted as a position of the inclusions
center. E.g. values of the random variables θ1(ω) = 0 and
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Fig. 18 Nodal displacement of the node number 96 (Monte-Carlo sim-
ulation)

Fig. 19 Nodal displacement of the node number 96 (SFEMwith poly-
nomial basis, card L

(
θ(ω)

) = 5)

θ2(ω) = 0 correspond to the position of the inclusion exactly
in the center of the RVE.

As a reference Fig. 18 shows the exact behavior of the dis-
placement field as obtained using the Monte-Carlo method.
Please note that the solution field is not smooth everywhere.
The set of points, where the function is onlyC0−continuous,
is called weak discontinuity and is highlighted by the white
curve.

In contrast Fig. 19 represents the approximate solution
obtained using the stochastic finite element method with
polynomial basis, where card L

(
θ(ω)

) = 5. Note the strong
oscillations of the solution field (Runge’s phenomenon) visi-
ble at the sides and especially in the corners of the domain S.
The same behavior is demonstrated by the standard Hermite
polynomials, thus this effect is general for all polynomial
bases. Runge’s phenomenon is associated solely with the
polynomial approximation, therefore we propose new non-
polynomial basis functions instead of usual PCE techniques
as used before.

A polynomial basis has several important properties, but
in many applications special bases such as trigonometric,
hyperbolic, trigonometric-hyperbolic or quasi-polynomials
can be advantageous. Here we select a few sets of indepen-
dent functions, i.e. polynomials, trigonometric, exponential

functions and their combinations from the generic expres-
sion:

gk(θ) = θnk exp
([αk + i βk]θ

)
, (23)

where nk is a non-negative integer number, αk and βk are
some real numbers and i is the imaginary unit.

Selected sequences are orthonormalized using the Gram-
Schmidt process. These bases are then used in SFEM and
compared with the Monte-Carlo simulation. Thereby the
modified Gauss integration rule as introduced in the above is
used.

A few examples of the selected sequences are shown in
Fig. 20. The first sequence considered is the set of polynomi-
als, which yields after orthonormalising the limited Hermite
polynomials L(θ) as discussed in the above.

g(θ) := {θn}. (24)

In the next set we replace θn by θn−1 sin
( 1
2

π
3 θ

) ∀n ≥ 1.

g(θ) :=
{
1, sin

(
1

2

π

3
θ

)
θn−1

}
. (25)

This increases the accuracy of the solution by almost 20%
(see Table 1). We examined all options between sequence
(25) and the trigonometric basis (26)

g(θ) :=
{
cos

(
n
π

3
θ
)

, sin

(
2n − 1

2

π

3
θ

)}
. (26)

and observed that the sequence with lower values at the ends
of the interval provides higher accuracy. Thereby the best
results were obtained using the trigonometric functions in
Eq. (26) denoted as Fourier basis F

(
θ(ω)

)
.

However a disadvantage of the sequence (26) is the prop-
erty

∂g(θ)

∂θ

∣∣∣∣±3
= 0,

which does not correspond to the function behavior in Fig. 18,
thus making the approximation on the boundary inexact.
To increase the accuracy we finally discuss the following
sequences:

g(θ) :=
{
1, cos

(
2n − 1

2

π

3
θ

)
, sin

(
n
π

3
θ
)}

, (27)

g(θ) :=
{
1, sin

(
2n − 1

2

π

3
θ

)
, sin

(
2n − 1

2

π

3
θ

)
θ

}
,

(28)

g(θ) :=
{
cos

(
n
π

3
θ
)

, cos
(
n
π

3
θ
)

θ
}

. (29)
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Fig. 20 Basic sequences used to obtain orthonormal bases in stochastic domain S. a Equation (24), after orthonormalization yields L
(
θ(ω)

)
. b

Equation (25). c Equation (26), after orthonormalization yields F
(
θ(ω)

)
. dEquation (27). e Equation (28), after orthonormalization yields Q

(
θ(ω)

)
.

f Equation (29)

Table 1 Comparison relative
error of different bases

Basis functions Relative error

Displacement Stress Homogenized stress

Mean STD Mean STD Mean STD

Limited Hermite polynomials 0.00092 0.0034 0.0066 0.3053 0.00170 0.1864

Basis obtained from Eq. (25) 0.00081 0.0028 0.0057 0.2856 0.00147 0.1557

Fourier basis 0.00034 0.0026 0.0025 0.1463 0.00054 0.1036

Quasi Fourier basis 0.00035 0.0024 0.0024 0.1550 0.00055 0.0711

SFEM with 9 basis functions
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Fig. 21 Nodal displacement of the node number 96 (SFEM with
Fourier basis, card F

(
θ(ω)

) = 5)

Fig. 22 Nodal displacement of the node number 96 (SFEMwith quasi
Fourier basis, card Q

(
θ(ω)

) = 5)

From the proposed sequences the set (28) provides results
very close to the sequence (26), but improves the approxi-
mation on the boundary. For the proposed model the basis
involving the sequence in Eq. (28) [called quasi Fourier and
denoted by Q

(
θ(ω)

)
] provides the most accurate results for

the homogenized quantities. In contrast sequences (27) and
(29) do not improve the method’s accuracy and are found
inefficient.

For comparison the nodal displacements at node 96 as
obtained using five Fourier basis functions and five quasi
Fourier basis functions are shown in Figs. 21 and 22 respec-
tively.

7 Basic example: simulation results

The solution fields from the simulation with nine stochastic
basis functions are compared with the Monte-Carlo simula-
tion. The relative error is determined by:

Aerror = |ASFEM − AMC |
max∀x∈D |AMC | , (30)

where Aerror is the relative error for the quantity A distributed
over D, ASFEM and AMC are solution fields obtained using
SFEM and Monte-Carlo simulation, respectively.

The error distribution of the displacement in x-direction
and the true (Cauchy) vonMises stress in the case of uniaxial
tension are plotted in Figs. 23, 24, 25, 26, 27, 28, 29, and 30.
The Figs. 23, 25, 27, 29 correspond to the solution with nine
limited Hermite polynomials [card L

(
θ(ω)

) = 9], and the
Figs. 24, 26, 28, 30 correspond to the solution with 9 quasi
Fourier basis functions [card Q

(
θ(ω)

) = 9].
Table 1 summarizes the comparison of the relative errors

of different bases. Please note that the first 4 columns corre-
spond to the maximum value of the relative error over the
domain D, while the last two columns correspond to the
homogenized quantities, which are volume averages over the
domain D.

The most important values in this study are the stress
mean value, which will be used to obtain the macroscopic

Fig. 23 Mean displacement relative error, card L
(
θ(ω)

) = 9

Fig. 24 Mean displacement relative error, card Q
(
θ(ω)

) = 9
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Fig. 25 Displacement STD relative error, card L
(
θ(ω)

) = 9

Fig. 26 Displacement STD relative error, card Q
(
θ(ω)

) = 9

tangent stiffness, and the stress standard deviation, which
shows fluctuations of the mechanical properties in the het-
erogeneous material with randommicrostructure. Figures 29
and 30 show the stress standard deviation for both types of
basis functions. Note that the polynomial basis has a two
times lower accuracy than the quasi Fourier basis.

Figures 31, 32 and 33 represent the distribution of the von
Mises stress standard deviation obtained from the Monte-
Carlo simulation, SFEM with limited Hermite polynomials
and SFEM with quasi Fourier basis, respectively. The quasi
Fourier basis has obviously a better agreement with the
results from the Monte-Carlo simulation as compared to the
polynomial basis L

(
θ(ω)

)
.

Note that the bases Q
(
θ(ω)

)
and F

(
θ(ω)

)
compared to

the polynomial basis L
(
θ(ω)

)
both provide a relative error

Fig. 27 Mean von-Mises stress relative error, card L
(
θ(ω)

) = 9

Fig. 28 Mean von-Mises stress relative error, card Q
(
θ(ω)

) = 9

Fig. 29 Von-Mises stress STD relative error, card L
(
θ(ω)

) = 9
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Fig. 30 Von-Mises stress STD relative error, card Q
(
θ(ω)

) = 9

Fig. 31 Von-Mises stress STD, Monte-Carlo simulation

2.7 times less in mean displacements, 1.5 times less in dis-
placement STD, 2.75 times less in von Mises stress mean
value, and two times in von Mises stress STD. Comparing
the homogenized von Mises stress mean value the Fourier
and quasi Fourier bases provide a three times higher accu-
racy. Moreover the relative error in homogenized stress STD
is 1.7 times less in the simulation with Fourier basis and 2.6
times less with the quasi Fourier basis.

Convergence is studied for the cases of Fourier F
(
θ(ω)

)

and quasi Fourier Q
(
θ(ω)

)
bases. With increasing number

of basis functions the results obtained with the SFEM are
converging to the values obtained with theMonte-Carlo sim-
ulation. The rate of convergence is shown in Fig. 34 for the
mean value of homogenized stress and in Fig. 35 for the

Fig. 32 Von-Mises stress STD, card L
(
θ(ω)

) = 9

Fig. 33 Von-Mises stress STD, card Q
(
θ(ω)

) = 9

Fig. 34 Mean Homogenized Stress convergence
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Fig. 35 Homogenized Stress STD convergence

standard deviation of the homogenized stress. Detailed infor-
mation about the relative errors in displacement and stresses
as well as in homogenized quantities are presented in Tables
2 and 3 for the Fourier and quasi Fourier bases respectively.

Figure 35 demonstrates the main advantage of the quasi
Fourier basis in comparison to the Fourier basis: the standard
deviation of the homogenized stress is 1.5 times closer to the
exact solution. Another interesting fact is that the solution
with an even number of basis functions is inaccurate in terms
of the homogenized stress standard deviation (because we

start to count basis functions from zero, functions with an
even number are odd).

Please note that the quasi Fourier basis is strongly advan-
tageous in the case of a small number of basis functions. Thus
for the case of card Q

(
θ(ω)

) = 3 and card F
(
θ(ω)

) = 3 the
quasi Fourier basis proves three times more accurate. For
the case of card Q

(
θ(ω)

) = 5 and card F
(
θ(ω)

) = 5 the
accuracy gain is around 2 times, and with an increase of the
cardinality up to 9 it is deteriorating to only 1.5 times. With
the increase of the number of Fourier basis functions the size
of the areawith incorrect approximation is decreasing rapidly
and their influence according to the small weights of the side
integration points is getting negligible. Thus for a high num-
ber of basis function the advantage of the quasi Fourier basis
will be neglected as compared to the Fourier basis.

8 Discussion on weak discontinuities

By changing the integration rule and the stochastic basis we
stabilize convergence and strongly increase the accuracy. But
the comparisonwith theMonte-Carlo simulation shows some
disagreement in the stress standard deviation. It is definitely
lower for the homogenized stresses (which are themain point

Table 2 Relative error of the
SFEM with Fourier basis

Number of the
basis functions

Relative error

Displacement Stress Homogenized stress

Mean STD Mean STD Mean STD

2 0.01043 0.2290 0.0910 1.7466 0.02770 8.1353

3 0.00557 0.0450 0.0561 1.0691 0.01347 1.6703

4 0.00328 0.0230 0.0335 0.9464 0.00764 1.3214

5 0.00190 0.0152 0.0172 0.5087 0.00443 0.5986

6 0.00125 0.0072 0.0155 0.5111 0.00265 0.4635

7 0.00076 0.0038 0.0050 0.2458 0.00155 0.2294

8 0.00051 0.0018 0.0054 0.2480 0.00092 0.1686

9 0.00034 0.0026 0.0025 0.1463 0.00054 0.1036

Table 3 Relative error of the
SFEM with Quasi Fourier basis

Number of the
basis functions

Relative error

Displacement Stress Homogenized stress

Mean STD Mean STD Mean STD

2 0.01043 0.2290 0.0910 1.7466 0.02770 8.1353

3 0.00597 0.0439 0.0584 1.0811 0.01408 0.5949

4 0.00358 0.0293 0.0354 1.0456 0.00832 0.6991

5 0.00198 0.0157 0.0180 0.5277 0.00456 0.3423

6 0.00132 0.0079 0.0168 0.5588 0.00281 0.2762

7 0.00080 0.0037 0.0055 0.2778 0.00160 0.1457

8 0.00054 0.0019 0.0063 0.2742 0.00098 0.1059

9 0.00035 0.0024 0.0024 0.1550 0.00055 0.0711
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Fig. 36 Nodes selected to visualize the nodal displacement versus ran-
dom variables obtained using the Monte-Carlo method

Fig. 37 Nodal displacement of the central node (number 145)

of interest in this study) but still quite high. This inaccuracy
results from a weak discontinuity (discontinuous directional
derivative) in displacements (Fig. 18) and a strong discon-
tinuity (discontinuous function) in stresses which cannot be
described properly with smooth continuous basis functions.

There is a set of techniques to solve problems with
discontinuities—XFEM, GFEM, and Discontinuous
Galerkin. But their implementation is very difficult in the
current context, because we are restricted in the choice of
integration points. A detailed discussion is as follows:

For the sake of illustrationwe plot the nodal displacements
versus random variables θ1(ω) and θ2(ω) for the central node
145 and several offset nodes: node number 19 with coor-
dinates (−0.875,−0.875), node number 96 (Fig. 18) with
coordinates (−0.375, 0.25) and node number 563 with coor-
dinates (0.0625,−0.5) shown in Fig. 36. Figures 18, 37, 38
and 39 show the exact behavior of the displacement field as
obtained using the Monte-Carlo method.

The white curves in Figs. 18, 37 and 39 highlight the
weak discontinuity. This discontinuity forms an elliptic shape
and occupies different regions for different nodes. It results
from the jump in stiffness between matrix and inclusion. For
example, the corner node 19 at (−0.875,−0.875) displays
no discontinuity because the matrix-inclusion interface does
not reach this node in the simulation (Fig. 38).

Fig. 38 Nodal displacement of the node number 19

Fig. 39 Nodal displacement of the node number 563

On the one hand it is a well-known fact that discontinuous
Galerkin (as well as XFEM) requires independent integra-
tion over the domains separated by the discontinuity. On the
other hand in order to obtain a consistent solution we need
a uniform integration rule for each nodal variable. The anal-
ogy is obtained if we imagine that our stochastic dimension
is time. In dynamic problems in the case of implicit time
integration we typically have to avoid the use of different
time steps for different nodes. Exactly the same conclusions
can be drawn here. Each integration point in the stochastic
domain corresponds to a specific model configuration (sam-
ple). Taking different integration points we obtain solutions
for absolutely different models or rather realizations.

But due to the fact that the discontinuity appearing in our
problem is unique for each node, it is impossible to introduce
such unique integration rule, which will fit all configurations
for all nodal variables.

However this does not mean, that the XFEM integration
into the SFEM framework is impossible. There have been
some recent developments in this field [29]. However the
form of the enrichment, the high dimensional integration
rules for the enriched elements and the division of the ele-
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Fig. 40 Geometrical uncertainties for the advanced examples (b)–(g)

ments in the high dimensional tetrahedrons are non-trivial
and require further development.

Thus we have only two options to treat problems with
discontinuities. One way is to change the coefficient k in
Eq. (18). This makes the distribution of the shear mod-
ulus more smooth and strongly increases the accuracy of
the method (no weak discontinuity appears anymore). But a
small value of k corresponds to a large transition region and
very smooth shear modulus distribution that can no longer
be considered an inclusion. Due to the fact that the physical
model is affected, this option should be avoided if possible.

Another option is to increase the number of basis func-
tions. It doesn’t change the physical model, but increases the
size of the stiffness matrix.

With the increase of the number of basis function the
SFEM results are converging to the Monte-Carlo simulation.
Figs. 34 and 35 illustrate the convergence of the standard
SFEM with Hermite polynomial and modified SFEM with
Fourier and quasi Fourier basis functions. Please note that
the number of basis functions, as in usual FEM, is restricted
by the computer capacity.

One has to notice that increasing the number of basis func-
tions strongly increases the size of the problem. If d is the
number of degrees of freedom of the deterministic FEmodel,
s is the number of the random parameters, n is the number of
the basis functions in the stochastic domain, then the number
of degrees of freedom of the stochastic FE model D can be
estimated as:

D = d ns .

In the proposed model 10 basis functions result in a 100
times larger stiffness matrix. Thus this method sets higher
requirements to the computational capacity, in particular to
the memory. However, it is still less time consuming than the
Monte-Carlo simulation. Please note that the increase of the
stochastic dimensions’ number s results in an exponential
increase of the problem size D. This phenomenon is well-
known as the curse of dimensionality.

9 Advanced examples

In this section we discuss several advanced numerical exam-
ples for different cases of geometrical uncertainties. In
contrast to the previous basic example in all advanced exam-
ples we apply periodic boundary conditions to the RVE,
which are commonly considered to be the most accurate.
The applied macroscopic deformation gradient describes a
25% uniaxial stretch

F =̂
[
1.25 0
0 1

]
,

which clearly requires a geometrically nonlinear formula-
tion.

We perform a parameter study for the following cases (see
Figs. 4 and 40):
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(a) The inclusion is (as in the previous study) circular with
area A. The source of the uncertainties is the randomness
in position.

(b) A centered elliptic inclusion with given area A. The ori-
entation of the major axis is random and is given by the
angle ϕ(ω) with values 0 ≤ ϕ(ω) ≤ π

2 .
(c) A centered elliptic inclusion with given area A and axes

parallel to the coordinate axes. The random parameter
ρ(ω) with values 0.5 ≤ ρ(ω) ≤ 2 defines the ratio
between the radii of the ellipse: ρ(ω) = r1

r2
.

(d) A centered elliptic inclusion with random orientation of
the axes and random ratio between the radii. The level-
set function includes two randomparameterswith values
0 ≤ ϕ(ω) ≤ π

2 and 0.5 ≤ ρ(ω) ≤ 2.
(e) A centered circular inclusionwith random radius 0.28 ≤

r(ω) ≤ 0.52.
(f) Two equal circular inclusions with total area A and with

their centers on the diagonal of a rectangular RVE. The
distance between the inclusion’s centers and the center
of the RVE is described by the random parameter e(ω)

such that 0.125 ≤ e(ω) ≤ 0.575.
(g) Two equal circular inclusions with total area A and with

their centers on the line l passing through the center of the
RVE. The distance between the inclusion’s centers and
the center of the RVE is described by the random para-
meter e(ω): 0.125 ≤ e(ω) ≤ 0.575, the angle between
the line l and the x-axis is ϕ(ω) which belongs to the
interval [0, π

2 ].

The level-set function for the example (a) has already been
introduced in Chap. 4.

In example (b) the level-set function for an elliptic inclu-
sion is defined as

x̃1 = x1 cos
(
ϕ(ω)

) + x2 sin
(
ϕ(ω)

)
,

x̃2 = −x1 sin
(
ϕ(ω)

) + x2 cos
(
ϕ(ω)

)
,

z
(
x, ω

) = √
r1r2

[√
x̃21
r21

+ x̃22
r22

− 1

]

. (31)

For the case (c) the level-set function has to satisfy the
following restrictions:

r1r2 = A

π
= const,

r1
r2

= ρ(ω),

resulting in

r21 = ρ(ω)
A

π
,

r22 = A

ρ(ω) π
,

z
(
x, ω

) =
√

A

π

[√
x21
r21

+ x22
r22

− 1

]

. (32)

In the case (d) we have a combination of the two previous
cases:

r21 = ρ(ω)
A

π
,

r22 = A

ρ(ω) π
,

x̃1 = x1 cos
(
ϕ(ω)

) + x2 sin
(
ϕ(ω)

)
,

x̃2 = −x1 sin
(
ϕ(ω)

) + x2 cos
(
ϕ(ω)

)
,

z
(
x, ω

) =
√

A

π

[√
x̃21
r21

+ x̃22
r22

− 1

]

. (33)

For the case (e) the level-set function is represented by

z
(
x, ω

) = r(ω)

⎡

⎣

√
x21

r(ω)2
+ x22

r(ω)2
− 1

⎤

⎦ . (34)

For the twonext exampleswehave to define separate level-
set functions for each inclusion. In the case (f) they are given
by

ϕ = π

4
,

x̃11 = x1 − e(ω) cos(ϕ),

x̃12 = x1 + e(ω) cos(ϕ),

x̃21 = x2 − e(ω) sin(ϕ),

x̃22 = x2 + e(ω) sin(ϕ),

z1
(
x, ω

) = r

⎡

⎣

√
x̃211
r2

+ x̃221
r2

−
√
1

2

⎤

⎦ ,

z2
(
x, ω

) = r

⎡

⎣

√
x̃212
r2

+ x̃222
r2

−
√
1

2

⎤

⎦ . (35)

The case (g) differs from this equation only in the value of
ϕ which is not anymore constant but represents the random
parameter ϕ(ω).

However two separate level-set functions cannot directly
be substituted into Eq. (18). We need some trick to merge
them in one, and the resulting level-set function has to satisfy
the following conditions:
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Fig. 41 Merged level-set function versus spatial coordinates

{z(x, ω
)

< 0} =
⋃

i

{zi
(
x, ω

)
< 0},

{z(x, ω
)

> 0} =
⋂

i

{zi
(
x, ω

)
> 0},

{z(x, ω
) = 0} =

⋃

i

{zi
(
x, ω

) = 0} \
⋃

j

{z j
(
x, ω

)
< 0}.

(36)

This statement can be read as follows: if the region is
occupied by at least one inclusion, i.e. at least one level-set
function in this region has values less than zero, the result-
ing level-set function in this region has to be negative. In the
case that all level-set functions are positive in some region,
i.e. no one level-set function indicates an inclusion, the region
belongs to the matrix and the resulting level-set function
has to be positive. The third condition states that the curve
z
(
x, ω

) = 0 (in other words the inclusion boundary) cannot
cross the region inside another inclusion.

Please note that the earlier discussed formulation of the
level-set function posseses the important property that all its
values are proportional to the shortest distance from the point
(x1, x2) to the inclusion’s boundary (see Sect. 4). The level-
set function obtained by merging is expected to keep this
property thereby necessitating additional restrictions on the
merging procedure.

The merging of two level-set functions satisfying restric-
tions (36) is depicted in Fig. 41. In Eq. (37) we represent the
closed form expression defining the merging of two level-set
functions into only one:

z
(
x, ω

) = min
∀x∈D

(
z1
(
x, ω

)
, z2

(
x, ω

))
. (37)

This expression canbe easily extended to the case ofmulti-
inclusion level-set functions:

z
(
x, ω

) = min
∀x∈D

(
z1
(
x, ω

)
, . . . zn

(
x, ω

))
.

For all examples we use the Fourier basis (26) introduced
in Chap. 6. The quasi Fourier basis is advantageous only for
example (a) due to the particular form of the solution fields.
The Fourier basis is more general and provides very accu-
rate results for the models (b)–(g), so there is no need to
construct special and more sophisticated bases. In examples
(b), (c), (e), (f) we introduce only one random parameter and
the number of basis functions in the stochastic domain is set
to 12 (card F

(
θ(ω)

) = 12). For the sake of reducing com-
putational effort we use in examples (a), (d) and (g) which
require two random parameters only 9 basis functions for
each stochastic dimension [card F

(
θ(ω)

) = 9].
Please note that due to the periodic boundary conditions

the position of the inclusion does notmatter, thus as a verifica-
tion of ourmethod the standard deviation of the homogenized
stress in example (a) has to be zero. The absolute values of the
stress standard deviation for this example in both SFEM and
Monte-Carlo simulations are much smaller than in the other
examples and result from the method’s accuracy. Since small
numbers are subtracted and divided, this yields a comparable
high relative error.

The homogenized von Mises stresses versus the random
variables are presented in Figs. 42, 43, 44, 45, 46, 47 and 48.
The colors of the points correspond to the weights (proba-
bilities) of these points while computing the mean value and
the standard deviation. Please note the very good agreement
between the Monte-Carlo simulation and the SFEM results
in all examples, however with the exception of example (a).
Please keep in mind that the high relative error in example
(a) results from the small STD of the homogenized stress and
not from themethod’s inaccuracy.More detailed information
is provided in Table 4.

10 Summary & conclusions

In the presentworkwe apply the SFEMfor the computational
homogenization of heterogeneous materials with geomet-
rical uncertainties in the microstructure. To this end, we
introduce a basic example for a stochastic RVE including
uncertainties in the geometry which result from the random
position of an inclusion.

Thematrix–inclusion interface ismodeled as a jump in the
elastic properties of themedia described in terms of a random
level-set function. Thus the geometrical uncertainties result
in an expression for the shear modulus presenting a random
field. For convenience random parameters are presented in
terms of Gaussian random variables.

The so defined basic example is used to study themethod’s
accuracy and to compare different modifications proposed in
this paper.

The standard SFEM formulation proves unstable due to
the Gibbs phenomenon and the numerical errors resulting
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Fig. 42 Homogenized stress
versus random variables θ(ω),
example (a). Observe the
comparable small STD due to
the insensitivity of the result on
the position of the inclusion if
periodic boundary conditions
are applied

Fig. 43 Homogenized stress
versus random variables θ(ω),
example (b)

Fig. 44 Homogenized stress
versus random variables θ(ω),
example (c)

from the standard integration scheme. With a view to avoid
the numerical instability we refuse from the KLE and intro-
duce new random variables which are a truncated version
of the standard Gaussian RVs. The correspondent set of

polynomials which are orthogonal with respect to the new
(truncated) probability density function (called limited Her-
mite polynomials) and a new Gauss integration rule are
proposed.
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Fig. 45 Homogenized stress
versus random variables θ(ω),
example (d)

Fig. 46 Homogenized stress
versus random variables θ(ω),
example (e)

Fig. 47 Homogenized stress
versus random variables θ(ω),
example (f)

This change of the variables and integration rule stabilizes
the solution especially in the case of a high number of basis
functions.

The standard polynomial basis in the stochastic space Q
known as the PCE suffers from the Runge’s phenomenon—
strong oscillation of the solution field on the edges of an
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Fig. 48 Homogenized stress
versus random variables θ(ω),
example (g)

Table 4 Comparison of the
SFEM with Fourier basis and
the Monte-Carlo simulation for
advanced examples

Displacement Stress Homogenized stress

Mean STD Mean STD Mean STD

Example (a)

SFEM 0.250 0.0273 0.307 0.080 0.2938 0.00022

MC 0.250 0.0274 0.306 0.078 0.2936 0.00010

Relative error 0.0010 0.0031 0.0043 0.0734 0.00078 1.2212

Example (b)

SFEM 0.255 0.0096 0.395 0.083 0.2942 0.003016

MC 0.255 0.0096 0.395 0.083 0.2942 0.003018

Relative error 2.44E−05 0.00173 0.00012 0.00206 6.58E−07 0.00076

Example (c)

SFEM 0.250 0.0103 0.372 0.076 0.2939 0.00335

MC 0.250 0.0103 0.372 0.076 0.2939 0.00336

Relative error 2.35E−05 0.00191 0.000137 0.00163 3.61E−06 0.00204

Example (d)

SFEM 0.250 0.00707 0.349 0.0599 0.2939 0.00154

MC 0.250 0.00708 0.349 0.0598 0.2939 0.00155

Relative error 3.72E−05 0.00326 0.000196 0.00209 3.38E−06 0.00505

Example (e)

SFEM 0.250 0.0116 0.345 0.082 0.2955 0.00889

MC 0.250 0.0116 0.345 0.082 0.2955 0.00890

Relative error 2.01E−05 0.00209 0.000150 0.00216 6.82E−06 0.00185

Example (f)

SFEM 0.262 0.0141 0.387 0.111 0.2955 0.00140

MC 0.262 0.0141 0.387 0.111 0.2955 0.00141

Relative error 4.28E−05 0.00154 0.000151 0.00418 9.79E−06 0.00547

Example (g)

SFEM 0.2605 0.0163 0.343 0.137 0.2959 0.00367

MC 0.2605 0.0163 0.343 0.136 0.2959 0.00368

Relative error 0.000223 0.00360 0.000827 0.00221 9.17E−05 0.00443
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interval. In order to avoid the Runge’s phenomenon we also
study non-polynomial bases.

The highest accuracy in comparison to the brute-force
Monte-Carlo simulation is obtained with the Fourier basis
which provides 2–3 times higher accuracy in displacements
and stresses, 3 times higher accuracy in mean value of the
homogenized stress and 1.5 times higher accuracy in the stan-
dard deviation of the homogenized stress.

In particularly for the basic example of the stochastic RVE
we present a further improved basis denoted as quasi Fourier
basis. This basis fits much better to the behavior of the dis-
placement field on the edges of the stochastic domain S
resulting in ≈2.5 lower relative error in the stress standard
deviation in comparison to the polynomial basis and in≈1.5
times lower relative error in comparison to the Fourier basis
(Table 1 and Fig. 35). All simulations are performedwith dif-
ferent number of stochastic basis functions (a convergence
study is presented in Figs. 34 and 35). By the increase of the
number of basis functions the error decreases as the geomet-
ric progression with ratio 2. The quasi Fourier basis is found
strongly advantageous for a low number of basis functions.
With the increase of the number of basis functions from 3 to 9
the gain in accuracy of the quasi Fourier basis in comparison
to the Fourier basis deteriorates from 3 times to 1.5 times.
All results are collected in the Tables 1, 2 and 3.

The influence of weak discontinuities and various poten-
tially possible techniques for their treatment are discussed.

Additionally seven advanced examples for a stochastic
RVE with periodic boundary conditions and different types
of geometrical uncertainties were introduced to study the
accuracy of the method on a wide range of problems. The
absolute value of the error in all examples is less than 1e−4,
the relative error in comparison to the brute-force Monte-
Carlo simulation is less than 7e−3 for the standard deviation
of the homogenized stress and less than 5e−4 for the mean
value of the homogenized stress.

Thus the SFEM in combination with the here proposed
modifications was proven highly accurate and efficient in the
application to computational homogenization of nonlinear
heterogeneous materials with random microstructure.
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