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Abstract This paper presents a two-scale extension of the
generalized finite element method (GFEM) which allows
for static fracture analyses as well as fatigue crack propa-
gation simulations on fixed, coarse hexahedral meshes. The
approach is based on the use of specifically-tailored enrich-
ment functions computed on-the-fly through the use of a
fine-scale boundary value problem (BVP) defined in the
neighborhood of existing mechanically-short cracks. The
fine-scale BVP utilizes tetrahedral elements, and thus offers
the potential for the use of a highly adapted fine-scale mesh
in the regions of crack fronts capable of generating accurate
enrichment functions for use in the coarse-scale hexahedral
model. In this manner, automated hp-adaptivity which can be
used for accurate fracture analyses, is now available for use
on coarse, uniform hexahedral meshes without the require-
ments of irregular meshes and constrained approximations.
The two-scale GFEM approach is verified and compared
against alternative approaches for static fracture analyses,
as well as mixed-mode fatigue crack propagation simula-
tions. The numerical examples demonstrate the ability of the
proposed approach to deliver accurate results even in scenar-
ios involving multiple discontinuities or sharp kinks within a
single computational element. The proposed approach is also
applied to a representative panel model similar in design and
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complexity to that which may be used in the aerospace com-
munity.
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1 Introduction

The physical phenomenon of fatigue crack propagation has
been a relevant area of research in the civil, mechanical
and aerospace communities for decades. There are many
existing numerical techniques which are available to analyze
such scenarios, with the generalized/extended finite element
method (G/XFEM) [7,9,17,22,51,62] being one such tech-
nique, which has been actively developed over the past
ten years or so. In contrast to standard finite element (FE)
approaches in which the crack surface must ‘fit’ the FEmesh
[59,66], the G/XFEM utilizes enrichment functions to accu-
ratelymodel the crack surface as it propagates throughout the
computational domain, thus eliminating the potentially cum-
bersome meshing requirements associated with the standard
FE approach. A potential limitation of the G/XFEM is the
requirement of enrichment functions which can accurately
model the physics of the problem at hand. Unfortunately,
accurate closed-form enrichment functions are often unavail-
able, except for in a few specific cases. To meet the need of
a more general enrichment function construction, the GFEM
has been extended to the so-called GFEM with global-local
enrichment functions (GFEMgl) [16,33] in which an addi-
tional BVP is solved in a region of localized interest so as to
numerically compute an appropriate enrichment function to
model the relevant physics.
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In this manner, the GFEMgl is a more general form of
the GFEM which does not require closed-form enrichment
functions to be defined a priori, and it also represents a more
truly multi-scale form of the GFEM which can enable the
accurate and efficient modeling of localized features (in this
instance cracks) which are significantly smaller than the
size of the elements used to perform the numerical sim-
ulations. In order for the method to be more appropriate
for the class of problems involving large, thin gauge panel-
type structures, such as those commonly used in aerospace
applications, the GFEMgl has been formulated to incorpo-
rate the use of hexahedral elements for the fixed, coarse
global discretization, while still allowing for the use of tetra-
hedral elements in the meshing of the highly adapted local
domain.

The use of a ‘small scale’ BVP defined in a region of
localized interest is not unique to the GFEMgl approach.
Other methods, such as the multi-scale FEM as proposed
by Hou et al. [32], as well as the more recent variational
multi-scale enrichment technique proposed by Oskay [47]
also utilize the solutions of localized BVPs which are aimed
at enhancing, or enriching the coarse-scale solution. Other
multi-scale approaches which can be mentioned as poten-
tially appropriate for the class of problems investigated in
this work, while not necessarily taking the same approach
as that proposed here; are the spectral overlay method of
Belytschko et al. [8]; the superposition FEM (s-fem) of Fish
and co-workers [20,21]; the combination s-fem/XFEM of
Lee et al. [38]; the multi-scale FE approaches of Krause
and co-workers [37,56], the multi-scale projection methods
of Loehnert and co-workers [30,31,40] and the concurrent
multi-level FE approaches proposed by Ghosh et el. [26,27].

A focus of the current work is on the ability of theGFEMgl

to accurately resolve local features (in this case cracks)which
are smaller than the size of the elements used in the coarse-
scale BVP, thus highlighting the multi-scale nature of the
methodology. In particular, numerical examples are chosen
to illustrate the ability of the approach to accurately repre-
sent sharp kinks, as well as multiple crack surfaces within a
single element. The accurate representation of the crack sur-
faces themselves is done completely through enrichment, as
no rigorous computational geometry engine [51] is available
for hexahedral elements which would allow for the represen-
tation and potential evolution of the crack surfaces directly
on a hexahedral mesh. It is worth noting that other global ele-
ments could be used, but it’s likely that a more complicated
integration scheme would be required (such as is presented
in [20]) to integrate out the numerical enrichment functions
if the local BVP is not properly nested within the global
solid elements. This is not a problem with the use of global
hexahedral elements, as this type of element allows for a
straightforward conversion into nested tetrahedral elements
[14].

The GFEMgl using tetrahedral elements for both the
global and local BVPs has been applied to linear elastic frac-
ture mechanics (LEFM) analyses, as presented in detail by
Kim et al. [33,53]. The suitability of the GFEMgl with a
global BVP composed of hexahedral elements has yet to be
investigated. In this work we seek to illustrate the poten-
tial to extend the capability of the GFEMgl to allow for
automated hp-adaptivity to address LEFM problems ana-
lyzed using fixed, coarse hexahedral meshes. In general,
hp-adaptivity is a non-trivial task on hexahedral meshes, and
requires the use of irregular meshes, hanging nodes and con-
strained approximations [11,12]. The use of hanging nodes
within the G/XFEM context has been investigated by Fries,
et al. [23]. The approach proposed in this work, as will be
demonstrated in detail, is able to circumvent this particular
inconvenience, and still allow for the benefits ofhp-adaptivity
on a coarse, hexahedral mesh.

The remainder of the paper is structured as follows. A
problem description with governing equations and a brief
discussion of the crack propagation criteria used is presented
next. Brief overviews of the GFEM and GFEMgl are then
presented, respectively. A series of numerical examples of
increasing complexity are then provided to illustrate the
potential of the proposed approach. Finally, the main con-
clusions from the current work are summarized.

2 Problem formulation

2.1 Governing equations

We consider a 3D domain, �, with external boundary ∂�.
Portions of ∂� are assumed to be subjected to (potentially
cyclic) tractions and there is a pre-existing crack surface
(potentially multiple) in the domain as illustrated in Fig. 1.
We assume a linear elastic, homogeneous and isotropicmate-
rial, thus yielding a typical LEFM scenario.We subdivide the
external boundary into �u and �σ such that �u ∪ �σ = ∂�

and �u ∩ �σ = ∅. Dirichlet and Neumann boundary condi-
tions may then be prescribed on �u and �σ , respectively.

The equilibrium equations for the associated problem are

∇ · σ + f (x) = 0 (1)

where σ is the Cauchy stress tensor and f is the body force
vector. Linear elastic material properties are assumed, lead-
ing to the following constitutive relations

σ (x) = λtr {ε(x)} I + 2με(x) (2)

where λ and μ are the two independent Lame elastic con-
stants, tr {ε} is the trace of the small-strain tensor and I
is the identity tensor. Making the additional assumption of
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Fig. 1 Typical 3D LEFM boundary value problem

small deformations, the small-strain tensor is given by the
symmetric component of the deformation gradient as

ε(x) = 1

2

[
∇u + ∇uT

]
. (3)

The following boundary conditions are enforced on the
appropriate portions of ∂�:

σ (x)n(x) = t̄(x, t) on �σ (4)

u(x) = ū(x) on �u (5)

σ (x)n(x) = 0 on �c (6)

where t̄(x, t) are prescribed tractions and ū(x) are prescribed
displacements. The boundary condition prescribed by (6)
indicates a traction-free crack surface.

For a finite element formulation we seek the weak form
of (1), which can be posed as:

Find u ∈ H̃1 (�) such that

B
(
u, v
) = L

(
v
) ∀ v ∈ H1

0 (7)

where B(·, ·) and L(·) are the bilinear and linear forms,
respectively, and are given by

B
(
u, v
) =

∫

�

σ
(
u
) : ε

(
v
)
d�

L
(
v
) =

∫

�

f · v d� +
∫

�σ

t̄ · v d�. (8)

We define the set of kinematically admissible displacement
fields as

H̃1 (�) =
{
u | u(x) ∈ H1 (�) ;u(x) = ū(x) on �u

}

where H1 is the first order Hilbert space. The space of kine-
matically admissible virtual displacement fields, H1

0 (�), is
then defined as the subset of functions in H1 (�) which sat-
isfy the homogeneous Dirichlet boundary conditions on �u ,
i.e.

H1
0 (�) =

{
v | v(x) ∈ H1(�); v(x) = 0 on �u

}
.

The above represents the weak formulation of a 3D elasticity
problem for a standard finite element implementation. Gen-
eralized finite element shape functions (c.f. Sect. 3) are used
to spatially discretize (7) in the usual manner.

2.2 Crack propagation considerations

There are many empirical fatigue crack growth laws avail-
able which are focused on the stable growth of macro-cracks
subjected to cyclic loads of constant amplitude. In these
instances, it may be appropriate to use the Paris–Erdogan
equation (or something similar) for prediction of the crack
growth rate [1,48] as a function of the variation in the locally
extracted stress intensity factors (SIFs)

da

dN
= C (�K )m (9)

where da
dN is the fatigue crack growth rate per loading cycle,

�K = Kmax − Kmin , is the stress intensity factor range
during one cycle, and C and m are material parameters. The
local SIF values may be computed from the finite element
(FE) solution in the region of a crack front using either the
contour integral or cut-off function methods as presented in
the literature [24,50,63]. It may be noted that numerous other
techniques are possible, but they are not used in this work.

An incremental algorithm for fatigue crack growth in lin-
ear elastic materials is adopted in this work. As such, the
maximum crack front increment �amax is set at the begin-
ning of each crack step. Fatigue life can then be estimated
using an incremental form of (9),

Ni = Ni−1 + �amax

C
(
�Kmax

eq

)m (10)

where Ni and Ni−1 are the number of cycles up to the current
and previous crack advancement steps, respectively and Keq

is an equivalent effective SIF, defined subsequently, which
takes into account KI , KI I and KI I I .
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In a general 3D mixed-mode crack simulation, �Keq can
vary (perhaps quite significantly) along a particular crack
front and therefore each crack front vertex will not propa-
gate the same distance in a given crack advance step. The
advancement of each vertex must be appropriately scaled so
as to subject each crack front vertex to the same number
of loading cycles, and thus allow for (9) to remain valid. In
effect, the maximum crack increment size,�amax , is applied
only to the crack front vertex that has maximum �Keq , i.e.,
for which �Keq = �Kmax

eq . The crack growth increments
for the other vertices are then scaled to match the number
of cycles for the current step. Thus, for a given crack front
vertex j , we can compute the advancement for the vertex as

�a j = C
(
�K j

eq

)m �amax

C
(
�Kmax

eq

)m = �amax

(
�K j

eq

�Kmax
eq

)m

(11)

where�K j
eq is the variation of the equivalent stress intensity

factor for vertex j .
The second major consideration for crack propagation

simulations is the computation of the crack vertex deflection
angles, and thus the crack propagation trajectory. In a purely
continuum-level approach, as is the focus of the presentwork,
crack growth direction may be computed from the extracted
SIFs. In the general case, crack growth trajectory is defined
by a kinking angle (θ) and twisting angle (ψ) at the crack
front. In this paper, Schöllmann’s criterion [57] is used for
computation of the crack deflection angles.

Schöllmann’s criterion [57] for crack path trajectory is
based on the standard assumption that crack growth devel-
ops perpendicularly to the direction of a maximum applied
principal stressσ ′

1. Themaximumprincipal stress,σ ′
1, is com-

puted from the near field stresses σθ , σz and τθ z as follows:

σ ′
1 = σθ + σz

2
+ 1

2

√
(σθ − σz)2 + 4τ 2θ z (12)

where σθ , σz and τθ z are the components of the stress tensor,
including the contributions of all three fracture modes. These
stress components are defined in terms of the SIFs, and are
computed in cylindrical coordinates as

σθ = KI

4
√
2πr

[
3 cos

(
θ

2

)
+ cos

(
3θ

2

)]

− KI I

4
√
2πr

[
3 sin

(
θ

2

)
+ 3 sin

(
3θ

2

)]

τθ z = KI I I√
2πr

cos

(
θ

2

)

σz = 8ν

4
√
2πr

[
KI cos

(
θ

2

)
− KI I sin

(
θ

2

)]
(13)

Fig. 2 Crack deflection angles computed to predict propagation path

Using Eqs. (12) and (13), the equivalent SIF, Keq , can be
computed for each crack front vertex as follows:

Keq = 1

2
cos

(
θ

2

)⎡
⎣KI cos2

(
θ

2

)
− 3

2
KI I sin

(
θ

2

)

+
√{

KI cos2
(

θ

2

)
− 3

2
KI I sin

(
θ

2

)}2
+4K 2

I I I

⎤
⎦

(14)

Kmax
eq is then used in (9) to compute the number of load-

ing cycles corresponding to a given crack advancement.
According to Schöllmann’s criterion the crack growth deflec-
tion angles are calculated as follows. The kinking angle, θ ,
(Fig. 2a) is computed so as to satisfy

∂σ ′
1

∂θ
= 0 and

∂2σ ′
1

∂θ2
< 0 (15)

The twisting angle, ψ , is then computed as

ψ = 1

2
arctan

[
2τθ z(θ)

σθ (θ) − σz(θ)

]
. (16)

Remark The crack propagation discussion has been included
for completeness, but left intentionally brief. Detailed for-
mulations of the crack propagation algorithm used in this
paper along with the crack propagation criterion selected can
be found in [52,57], respectively. A detailed account of SIF
extraction appropriate for GFEM can be found in [50].
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3 Generalized finite element method: an overview

The generalized finite element method (GFEM) [17] is
a partition-of-unity (PoU) based FE method [19,42]. The
GFEM is similar in nature to the standard, Galerkin FE
method [6], but offers significant flexibility in terms of shape
function construction. For a given node α in a FE mesh, we
can define a GFEM shape function as

φαi (x) = ϕα(x)Lαi (x) (17)

where there is no implied summation on α.
The GFEM shape functions have two distinct compo-

nents, each providing a benefit. The first component, ϕα(x),
is referred to as a PoU function. This simply implies that the
function sums to one at any point in the domain, i.e.

N∑
α=1

ϕα(x) = 1, ∀ x ∈ �. (18)

Within the GFEM context, the PoU functions are provided
by standard, Langrangian FE shape functions.

The second component of the GFEM shape functions are
called enrichment functions, Lαi (x). The enrichment func-
tions are local approximation spaceswhich are a priori known
to approximate well the physics of the given problem locally.
Both components of the GFEM shape function contribute a
specific benefit which is leveraged in the resulting GFEM
approximation. The compact support of the PoU functions
provide the benefit that the global approximation space inher-
its the inter-element continuity of the PoU functions, even
though in general, the enrichment functions will not satisfy
global conformity on their own [42]. The global approxima-
tion space also inherits the local approximation potential of
the enrichment functions because the PoU used to paste them
together can exactly reproduce the shape of the enrichment
functions in the global approximation space. It is this second
attribute of the global GFEM approximation space which is
the focal point of this work as well as most of the previous
work in the GFEM.

The GFEM has been applied successfully to numerous
engineering applications. These application areas include,
but are not limited to: the simulation of boundary layers
[15], dynamically propagating fractures [18], singularities
in structural mechanics problems [17], high wave num-
ber acoustics [4,41], advection-diffusion equations with
high Peclet number [65], materials with polycrystalline
microstructures [58], porous materials [60], 3D LEFM [51],
3D crack propagation in a linear elastic medium [52].

A benefit of the GFEM is that it sits atop a robust math-
ematical foundation [3,17,42,43,61], which is in contrast to
many other multi-scale FE approaches. As a result, an error

bound has been derived for the global approximation error
within the GFEM. The error bound may be formally posed
as

Theorem Let u ∈ H1(�). Then there is uhp ∈ SGFEM such
that

‖u − uhp‖2H1(�)
≤ Ĉ

N∑
α=1

inf
uα∈χα

‖u − uα‖2H1(ωα)
.

Proof of the theorem can be found in the literature [42]. In
the above theorem, SGFEM is the GFEM solution space, Ĉ is
a problem-dependent constant, and ‖ · ‖ denotes an energy
norm.

What the error bound essentially indicates is that the
resulting global error is bounded by the local errors, and
thus the GFEM relies upon the availability of a high-quality
enrichment basis in order to guarantee accurate solutions.
Unfortunately, inmany cases, high quality, closed-form, ana-
lytical enrichment functions are not available a priori. This
is true, for instance, in the case in which there are multiple
crack surfaceswithin close proximity to one another,which is
one application area considered in this paper. Other scenarios
lacking closed form analytical enrichments include, but are
not limited to: problems involving nonlinearities, dynamics
or general multi-scale applications; all of which are impor-
tant to the engineering design and analysis communities.
As such, we would like to extend the range of applicabil-
ity of the GFEM to be more appropriate for these types of
applications.

Due to the GFEM ’s reliance upon high quality enrich-
ment functions in order to ensure good global accuracy, and
the limited availability of closed-form analytical enrichment
functions, a more general version of enrichment function
construction is required. A more general extension of the
GFEM, referred to as the generalized finite element method
with global-local enrichment functions (GFEMgl) [16,33]
has been proposed. In the GFEMgl framework, enrichment
functions are numerically generated on-the-fly during the
course of the simulation, and customized to resolve the local-
ized physics of the particular problem being analyzed. The
GFEMgl can be seen as simply a more general form of the
standard GFEM. A brief overview of the GFEMgl is now
presented.

4 Generalized finite element method
with global-local enrichments

The GFEMgl [16,33] is a more general version of the stan-
dard GFEM aimed at alleviating the a priori requirement of
a high quality local approximation space. The essential idea
of the method is to build specially-tailored enrichment func-
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tions to allow for accurate analyses on fixed, coarse meshes.
In the GFEMgl, two discretizations are utilized: (1) fixed,
coarse global discretization and (2) highly-adapted, poten-
tially evolving local discretization defined in a region of
localized interest. Each discretization constitutes a separate,
but linkedBVP tobe analyzed.The following is a formulation
of the GFEMgl with global hexahedral elements appropriate
for LEFM applications. A detailed formulation for transient
heat conduction canbe found in [46]. While beyond the scope
of the current paper, the GFEMgl approach has also been
successfully developed for nonlinear applications involving
small-strain plasticity models [28,35] as well as propagating
cohesive fractures [36], with the use of tetrahedral elements
in both the global and local domains.

Initial global problem The initial phase of the GFEMgl

involves the solution of the 3D elasticity problem posed in
Sect. 2 on a coarse FE mesh, in this case composed of hexa-
hedral elements. The crack itself is not modeled directly in
the global BVP, taking the same approach as was used in
[33], which indicates that �c = ∅ in Fig. 1.

The initial global BVP to be solved in order to generate
boundary conditions with which to drive the computation of
the global-local enrichment functions is formally posed as:

Find uG ∈ χG(�) ⊂ H̃1 (�) such that ∀vG ∈ χG(�)∫

�

σ
(
uG
) : ε

(
vG
)
d� + ηp

∫

�u
uG · vGd�

=
∫

�

f · vG d� +
∫

�σ

t̄ · vG d� + ηp

∫

�u
ū · vGd�.

(19)

We can more stringently define the FE solution space as

χG(�) =
⎧⎨
⎩u

G =
NG∑
α=1

ϕα(x)ûα

⎫⎬
⎭ (20)

in which NG is the number of nodes in the global mesh and
the PoU functions, ϕα(x) are provided by either tri-linear
(c.f.(21)) or tri-quadratic hexahedral elements. The use of
the ηp parameter in (19) is indicative of a penalty formu-
lation used to enforce Dirichlet boundary conditions. Other
methods may be used for the application of this boundary
condition type, but in this instance the penaltymethod is used
due to ease of implementation. For clarity of presentation, the
global PoU functions shown in (20) corresponding to the use
of 8-node brick elements are the standard Lagrangian shape
functions as can be found in most finite element text books,
for instance [13]. The shape functions are explicitly defined
as

{N} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
8 (1 − ξ) (1 − η) (1 − ζ )

1
8 (1 + ξ) (1 − η) (1 − ζ )

1
8 (1 + ξ) (1 + η) (1 − ζ )

1
8 (1 − ξ) (1 + η) (1 − ζ )

1
8 (1 − ξ) (1 − η) (1 + ζ )

1
8 (1 + ξ) (1 − η) (1 + ζ )

1
8 (1 + ξ) (1 + η) (1 + ζ )

1
8 (1 − ξ) (1 + η) (1 + ζ )

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (21)

Local problem Once the initial global BVP is solved, the
local BVP can then be solved in order to compute the global-
local enrichment functions. The local domain itself, �L ,
is created as a subset of global elements consisting of the
global elements containing the crack surface itself. After the
elements comprising the local domain have been selected,
the coarse global elements are converted from hexahedral
elements to tetrahedral elements using the smallest vertex
algorithm [14]. With this particular conversion technique,
no neighbor information is required to ensure a conform-
ing tetrahedral mesh when converting a hexahedral element.
This aspect of the algorithm makes it very appealing for the
element conversion process, which is illustrated in Fig. 3b, c.

A subtle yet important detail of the methodology is the
automatic subdivision of the global hexahedral elements into
nested, local tetrahedral elements. The nesting of local ele-
ments facilitates the accurate integration of the enriched
global weak form. Similar to that which is presented in great
detail in [33], the enriched global shape functions are inte-
grated using the integration points from the local elements.
In this instance, further clarification may be beneficial, since
multiple levels of local integration rules are required, as
shown in Fig. 4. In the far left of the figure, the global hexahe-
dral element has been subdivided into tetrahedral elements,
and uniformly refined. Additional refinement is then per-
formed on the light green region, to generate a locally graded
mesh in the region of the crack front. Refined elements in the
light green region indicate more integration points per ele-
ment, indicative of potentially using higher order enrichment
functions in this region. No further computational elements
are generated at this point, but additional integration elements
are created for elements which are cut by the crack surface,
or contain the crack front, as presented in great detail in [51].
It is the generation of the integration elements which allows
for the accurate integration of the discontinuous and singular
enrichment functions used to model the crack surface within
the elements themselves (discussed more below). Integra-
tion rules for the local elements which directly interact with
the crack surface/front are only provided by the integration
elements, as these are used in replace of, not in addition to,
the integration rules which would be provided by the locally
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Global Domain

1) Extract Local Domain 
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− Map BCs

− Apply BCs
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as Global Enrichment
− Apply Local Solution

(a)

(b) (c)

Fig. 3 Illustration of the GFEMgl with global hexahedral elements used for LEFM analyses in this paper

Fig. 4 Illustrates the different levels of local elements used to accurately integrate out the local enrichment functions for use in the enriched global
problem

refined, but uncut (i.e. before being diced into integration
elements), nested local elements. Special quadrature rules
designed for efficient numerical integration of singular func-
tions, such as those presented in [49], are also available for
use. One representative local tetrahedral region’s integration
rule is shown at the far right in the figure, in which integra-
tion points are generated due to both the local gradation of the
mesh, as well as the cutting of a tetrahedral element into inte-

gration elements. One additional note, as is discussed in [51],
integration elements in the vicinity of the crack front will uti-
lize a higher order integration rule to accurately integrate the
singular terms present in the tip enrichment functions.

The numerical integration of the enriched global hexa-
hedral elements is then done using all of the locally gen-
erated integration points (all red glyhps in the figure). The
nesting of the locally generated integration elements signifi-
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cantly facilitates selection of the enriched global integration
rules which are subsequently used in the enriched global
problem.

If the local elements are not nested in the global discretiza-
tion, the integration of the enriched elements, and thus the
up-scaling of information through the use of the local solu-
tion, uL , as enrichment (c.f. Sect. 4) becomes very difficult.
It is possible that significant amounts of information may be
lost due to integration errors, and the accurate multi-scale
aspect of the approach would be compromised.

An important feature of the localBVP, as defined in (22), is
the use of the global displacement field,uG , as boundary con-
ditions applied at the local boundary which are interior to the
global domain, so as to drive the local BVP. In this manner,
information is transferred from the global BVP level down to
the local BVP level. Different types of global-local boundary
conditions are possible for use at the local domain boundary
[33], but only Dirichlet are used in the present work. Portions
of the local boundary which intersect the global boundary are
subjected to boundary conditions which come directly from
the global BVP.

The local boundary value problem to be solved in order
to generate the global-local enrichment function is formally
posed as:

Find uL ∈ χ L(�L) ⊂ H̃1
(
�L
)

such that ∀vL ∈ χ L(�L)∫

�L
σ
(
uL
) : ε

(
vL
)
d� + ηp

∫

�L\(�L
⋂

�σ )

uL · vLd�

=
∫

�L
f · vL d� +

∫

�L
⋂

�σ

t̄ · vL d�

+ ηp

∫

�L
⋂

�u
ū · vLd� + ηp

∫

�L\(�L
⋂

∂�)

uG · vLd�.

(22)

In this instance we define the local GFEM solution space as

χ L(�L)=
⎧⎨
⎩u

L =
NL∑
α=1

ϕL
α (x)

[
up

α(x) + H ûα(x) + ũα(x)
]
⎫⎬
⎭
(23)

in which the PoU functions defined on �L , ϕL
α (x), are pro-

vided by linear 4-node tetrahedral elements as presented in
many finite element text books, such as [13]. The local PoU
functions are defined explicitly with respect to the parent
element coordinate system as

{N} =

⎧⎪⎪⎨
⎪⎪⎩

1 − ξ − η − ζ

ξ

η

ζ

⎫⎪⎪⎬
⎪⎪⎭

. (24)

The conversion from hexahedral elements to tetrahedral
elements in the local BVP is what allows for the crack sur-
face to be modeled using the hp-GFEM as presented in [51],
which is implied in (23). The discontinuity surface itself is
modeled through the use of discontinuous Heaviside enrich-
ments applied to nodes whose support is fully cut by the
crack surface (H ûα(x)). Nodes whose supports contain the
crack front are enriched with the asymptotic expansions for a
sharp crack in a 2D elastic medium (ũα(x)), as can be found
in [51]. The up

α(x) term in (23) is representative of the poten-
tial use of higher order, continuous polynomial enrichment
functions to raise the order of the resulting GFEM approx-
imation space used in the local BVP, again as presented in
[51].

With this enrichment strategy, the crack surface may be
modeled completely independent of the underlying FEmesh.
The mesh itself is locally graded in the region of the crack
front to better resolve the sharp gradients arising in the region
near the crack tip. A locally graded mesh in the near crack tip
region is still required alongwith the proper enrichment strat-
egy in order to obtain high levels of accuracy. The reason for
the necessity of local mesh refinement lies in the fact that the
enrichment functions come from the 2D elasticity solution
and not a 3D solution. Even so, the use of this asymptotic
expansion as enrichment has seen widespread use within the
GFEM and XFEM communities [7,51] in both 2D and 3D
applications. 3D asymptotic expansions, while they could be
possible, are quite complex, especially in regions where the
crack surface intersects the domain boundary and the type
of singularity itself changes. In fact, 3D problems would
require the use of additional, complementary expansions,
termed ‘Shadow Functions’ [10,67] to retain strict validity
as high quality enrichment functions for 3D applications.
Therefore, it is more practical to use 2D expansions of the
elastic solution as enrichment functions. As a result, in order
to obtain acceptable accuracy in fully 3D analyses it is nec-
essary to have a sufficiently refined mesh around the crack
front to properly resolve the highly localized gradients which
develop in the region.

It is the requirement of a highly adapted localmodelwhich
naturally leads to the use of tetrahedral elements in the local
BVP mesh. Tetrahedral elements allow for a straightforward
refinement scheme based on themarked edge algorithm [2,5]
which generates highly graded, conforming meshes whose
element quality is no worse than the element quality of the
initial, coarse discretization. As noted previously, this type of
locally-graded mesh (without irregularity) is in general not
possible with the use of hexahedral elements [11,12].
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While a highly adapted, and therefore potentially compu-
tationally expensive, local BVP seemingly poses a limitation
to the efficiency of the approach, a parallel decomposition
of the local domain for computation of the enrichment func-
tions has been proposed. The approach has been proposed
and investigated for both LEFM applications [34] as well as
multi-physics applications [54] and in both instances prelimi-
nary results indicate that goodparallel efficiency is attainable.
A more thorough investigation of the parallel approach is the
focus of future investigations.

Another benefit of the conversion of hexahedral to tetra-
hedral elements in the local domain, as previously alluded
to, in addition to the potential for a highly adapted mesh,
is the potential to use the meticulously developed crack
surface geometry engine presented in [51] for tetrahedral
elements. The computational geometry engine allows for
the automatic selection of the proper enrichment functions
to explicitly represent the crack surface; the dicing of cut
elements into integration elements; automated selection of
localized regions of high refinement around crack fronts; and
the ability to accurately extract mixed-mode SIF values at
any crack front vertex and advance the crack front vertices
based on the appropriate physics. With the proposed use of
the tetrahedral elements in the local domain, all of these fea-
tures are readily available to compute enrichment functions
to allow for accurate crack surface representation and LEFM
analyses on fixed, coarse hexahedral meshes.

Enriched global problem Once the local BVP has been
solved, we once again re-solve the global BVP using the
local solution, uL as our multi-scale enrichment function.
We refer to this as the enriched global problem. We formally
pose the BVP as:

Find uE ∈ χ E (�) ⊂ H̃1 (�) such that ∀vE ∈ χ E (�)∫

�

σ
(
uE) : ε

(
vE
)
d� + ηp

∫

�u
uE · vEd�

=
∫

�

f · vE d� +
∫

�σ

t̄ · vE d� + ηp

∫

�u
ū · vEd�.

(25)

We now define the enriched global GFEM solution space
as

χ E (�) =
⎧⎨
⎩u

E =
NG∑
α=1

ϕα(x)ûα +
∑

β∈IE

ϕβ(x)uglβ (x)

⎫⎬
⎭ (26)

in which IE is the set of global nodes enriched with
uL(x), ϕα(x) and ϕβ(x) are global PoU functions provided

by hexahedral elements (c.f.(21)) and the term uglβ (x) =
{uβuuL(x), vβuv

L(x), wβu
w(x)
L }T . The terms uuL(x), uv

L(x),
uw
L (x) are the components of the local solution vector, uL(x),

taken with respect to the global coordinate system, and
uβ, vβ,wβ are global Dofs. The local solution vector, uL(x),
is defined as in (23) and has the local PoU functions (c.f.(24)),
ϕL(x), provided by tetrahedral elements embedded within,
so the resulting solution space is built with two different
types of PoU functions. Through the use of the multi-scale
global-local enrichment functions,uL(x), the enrichedglobal
BVP now has the crack surface modeled entirely through
enrichment, with uL(x) computed using the hp-GFEM as
formulated for tetrahedral elements. In accordance with
previous works [16,33], the local solution is a numerically
computed functionwhichmay be evaluated at any location in
�L . The function itself may thus be evaluated at any integra-
tion point when its contributions to the global weak form are
numerically integrated out in (25). The numerically gener-
ated enrichment function is simply a FE solution, computed
with knownapproximating functions, (23).As such the deriv-
atives of the local solution can also be computed, or more
specifically evaluated at integration points, for use in the gra-
dient terms arising in (25).

It should be noted that similar to the approach taken in
[46], in the creation of the local problem, only the corner
nodes of the global hexahedral elements are used for the
conversion into tetrahedral elements. It is important to note
that all global nodes encompassed by the local domain are
enriched with the local solution. That is to say that even
though mid-edge and face nodes from a higher order hexa-
hedral element are not used in the creation of the local
tetrahedral domain, they are still enriched with the local solu-
tion so as to preserve the PoU property of the shape functions
used to accurately paste the local solution into the enriched
global approximation space.

To summarize the overall algorithm, Fig. 3 illustrates the
basic flow of the GFEMgl methodology: (1) extract local
BVP as a subset of elements from the global model and apply
boundary conditions derived from global BVP solution; (2)
convert hexahedral elements to tetrahedral elements to allow
for a locally graded mesh; (3) solve local BVP and apply
local solution as enrichment for the global solution space.

We now analyze several numerical examples to evaluate
the accuracy of the proposed GFEMgl methodology with
global hexahedral elements. Numerical examples are ana-
lyzed which illustrate the truly multi-scale potential of the
GFEMgl enrichment functions when very coarse global ele-
ments are utilized. The term ‘very coarse’ will be seen to
indicate scenarios in which pertinent crack surface geome-
try features (such as kinks), or multiple crack surfaces, are
accurately represented within one computational element.

5 Numerical experiments

In this sectionwe analyze a series of LEFMproblems demon-
strating the capability of the method to handle benchmark
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(a)
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Fig. 5 Model problems used to assess the use of a coarse, uniform hexahedral mesh for GFEMgl fracture analyses. The problems selected illustrate
simple Mode I (a) and fully mixed-mode (b) scenarios. a Through-thickness edge crack. b Inclined penny-shaped crack

Table 1 Problem details for
Benchmark 1 and Benchmark 2

E ν Dimensions (x , y, z) Crack length (a)

Benchmark 1 2e5 psi 0.333 (2.0 in, 3.5 in, 3.0 in) 1.0 in

Benchmark 2 1e3 psi 0.300 (4.0 in, 4.0 in, 4.0 in) 1.0 in
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Fig. 6 Convergence in the enriched global strain energy corresponding to an h-extension in the local domain. Error values are computed with
reference to an overly refined hp-GFEM solution. a Benchmark 1. b Benchmark 2

caliber static fracture, multi-site damage and mixed-mode
crack propagation scenarios. An application problem involv-
ing the analysis of a representative aircraft-type structure is
also provided. The examples are selected so as to demon-
strate the ability of the GFEMgl to accurately assess fully
mixed-mode fracture scenarios as well as multiple-site dam-
age analyses and crack propagation simulations utilizing a
fixed, coarse hexahedral mesh. Unless otherwise noted, only
one global-local iteration is used in the following numerical
experiments. Detailed analysis of the impact that multiple
global-local iterations can have on enriched global solution
accuracy can be found in [29,45].

5.1 Static crack Benchmark problems

Figure 5 illustrates two benchmark problems involving static
fracture analyses which are analyzed for numerical veri-
fication purposes. The model problem shown in Fig. 5a
(Benchmark 1) is a simple Mode I problem, whereas the
model problem illustrated in Fig. 5b (Benchmark 2) repre-
sents a fully mixed-mode scenario where all three fracture
modes are both present and relevant. These benchmark
example problems illustrate the ability of the method to
accurately extract all three SIF values on a coarse hexa-
hedral mesh. The extracted values can then be used in (9)
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Fig. 7 Normalized KI plotted along crack front. The point with s =
0.0 corresponds to the center of the crack front

and (13) to predict both loading cycles accumulated as well
as crack trajectories in fatigue crack propagation analy-
ses.

In both model problems the domain is subjected to unit,
normal tractions applied to the top and bottom faces of
the domain, shown as red arrows in Fig. 5. Point Dirich-
let boundary conditions are applied so as only to prevent
rigid body motions. The material properties, as well as geo-
metric dimensions are provided for each model in Table 1.
For Benchmark 2, the crack length corresponds to the crack
radius, and the crack surface is inclined counter-clockwise
at an angle, α = 45◦ with respect to the global z-axis. Both
model problemsutilize a uniformmesh comprisedof 27-node
hexahedral elements. As a note, all numerical examples pre-

sented in this section utilize the same global coordinate axes
as are shown in Fig. 5b.

The examples presented in this section, as well as subse-
quent, utilize a local discretizationwhichhas been enriched to
a resulting polynomial order of, p = 3. The only enrichments
applied to the global, hexahedral models are the global-local
enrichment functions, i.e. uL , and no additional polyno-
mial or non-polynomial enrichment functions are used in
the global models. It may also be noted that the global, hexa-
hedral models utilize 27-node hexahedral elements, with the
exception of the stiffened panel (c.f. Sect. 5.4) which is com-
posed of 20-node hexahedral elements.

Convergence in the enriched global strain energy value
corresponding to an h-extension in the local domain is
presented in Fig. 6a. A reference strain energy value for
Benchmark 1 was computed using hp-GFEM as presented
in [51] with an overly refined mesh utilizing 772,038 dofs.
It can be seen from the plot that the strain energy con-
verges monotonically with local mesh refinement, and it
may be noted that the enriched global problem has 4620
dofs, regardless of the level or refinement used in the local
problem.

The normalized Mode I SIF

K̄ I = KI

σ0
√

πa
(27)

in which σ0 is the applied traction and a is the crack length,
was computed at each crack front vertex. As a note, in the two
benchmark problems in this section, the extraction of SIFs is
performed using the cut-off function method [24,50,63] for
all relevant fracture Modes.

Fig. 8 Enriched global
displacement contour computed
on a hexahedral mesh. Note that
the elements shown in the figure
are the actual computational
elements used to generate the
displacement contour
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Fig. 9 Extracted SIF values along crack front. Solid glyphs denote data
from reference solution andhashed glyphs represent data generatedwith
GFEMgl analyses on a coarse hexahedral mesh

The normalized Mode I SIF values are plotted in Fig. 7
along the crack front. A reference curve is also provided in
the figure, which was obtained from [39] where the authors
analyzed the problem using the boundary element method.
As can be seen, the normalized Mode I SIFs computed with
the GFEMgl compare very well with the reference curve,
and capture the edge effects as the crack vertices approach
the domain boundary. Figure 8 shows the enriched global
displacement contour forBenchmark1, and as canbe seen the
Mode I crack opening is accurately represented on the coarse,
hexahedralmesh,without the requirement of any globalmesh
refinement or any requirement of the crack surface lining up
with element faces in the global mesh.

Benchmark 2 presents a mixed-mode fracture problem,
due to the inclination of the crack with respect to the loading
axis. Convergence in the enriched global strain energy value
again corresponding to an h-extension in the local domain
is presented in Fig. 6b. The reference strain energy value for
Benchmark 2 was also computed using hp-GFEM with a
model consisting of 528,408 dofs. It can be seen that the strain
energy again converges to the reference valuewith localmesh
refinement. In this benchmark problem the enriched global
problem has 6180 dofs.

Modes I, II and III SIFs are extracted along the crack front,
and plotted in Fig. 9. A reference solution for each of the SIF
curves is also plotted in the figure. The reference solution
is computed using the hp-GFEM as in [52]. In that work
the hp-GFEM solution was shown to be very accurate as
compared to an analytical solution obtained from [64], and
can thus be taken as a reliable reference. The solid glyphs
on the plot represent the reference data, whereas the hashed
glyphs denote data generated with GFEMgl and hexahedral
elements. As can be seen, there is very good quantitative
agreement between the two sets of data.
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Fig. 10 GFEMgl model used for multi-site damage simulation. The
red glyphs represent the common geometric point in both figures. a
Model with boundary conditions. b Zoomed-in view of cracked config-
uration. (Color figure online)

5.2 Static, multi-site damage analysis

The example problem in this section investigates a multi-site
damage scenario involving multiple, static crack surfaces.
This example seeks to illustrate the ability of the GFEMgl

to analyze multiple discontinuity surfaces in close proximity
to one another. The ability to analyze multiple discontinu-
ity surfaces within one computational element allows for
analyses on significantly coarser meshes, and thus more
efficient analyses thanwould otherwise be possiblewith stan-
dard FE approaches. In his instance, the increased generality
of the GFEMgl over the standard GFEM is highlighted, as
there are no general, closed-form analytical enrichment func-
tions readily available for use in a problem with multiple
cracks in close proximity.We are relying on themore flexible,
numerically-generated multi-scale nature of the enrichment
functions to deliver accurate results for this class of prob-
lems analyzed on coarse FE meshes. The proposed method
may be seen as a potential alternative approach to address
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Table 2 Details of crack Configuration for Multi-Site Damage Simu-
lation

Crack (x , y) α 2a

1 (0,0) 0 0.15

2 (−0.25, 0) 0 0.05

3 (0.25,0) 0 0.05

4 (−0.15, 0) 0 0.05

5 (0.15,0) 0 0.075

6 (−0.15, 0.14) 20 0.159

7 (0.16,0.12) 45 0.127

8 (−0.1,−0.15) −30 0.173

9 (0.17,−0.09) 25 0.166

Values are reported in inches and degrees

the class of multi-site damage simulations which are inves-
tigated with the multi-scale projection method by Loehnert
and co-workers [30,31,40].

The domain has dimensions (1.5 × 2.8 × 0.125) inches
in the x-, y- and z-directions, respectively. The domain is
subjected to normal tractions of magnitude 100 psi along
the top and bottom faces, as indicated by the red arrows in
Fig. 10a. Young’s Modulus is taken as E = 17, 100 ksi and
Poisson’s ratio is taken as, ν = 0.325.

Crack configuration details are provided in Table 2. The
angle of inclination, α, is taken positive counter-clockwise
with respect to the x-axis. The values reported for (x, y)
indicate the coordinates of the center of the crack surface,
with the origin taken as the center of Crack 1. The center of
Crack 1 lines up with the center of the domain. The value
reported as 2a indicates the total crack length.

The representation of multiple crack surfaces in close
proximity to one another is a non-trivial task, particularly
on a coarse FE mesh. As is noted in [25], the use of an
explicit crack surface representation in conjunction with a
locally graded mesh greatly facilitates this type of analy-
sis. As such, in this instance we rely on the highly graded
local mesh to generate the enrichment functions represent-
ing the multiple discontinuity surfaces in close proximity to
one another. We then utilize the truly multi-scale nature of
the GFEMgl approach to accurately represent the multi-site
damage scenario on an extremely coarse FE mesh. As can be
seen in Fig. 11 we require no local mesh refinement in order
to represent the multiple discontinuity surfaces, which are in
this case all within one computational element.

A reference solution was generated for the same problem
using hp-GFEM, and an overly refined model consisting of
1, 722, 426 dofs. The enriched global problem utilizes 1, 638
dofs regardless of the levels of local refinement used. The
monotonic convergence in the enriched global strain energy
is plotted in Fig. 12 corresponding to an h-extension per-
formed in the local problem.

In this example problem the SIF extraction is performed
using the contour integral method with the same extraction
parameters used in both the GFEMgl and hp-GFEM analyses
[50]. The hp-GFEM model (as well as the local mesh in
the GFEMgl approach) is refined such that the ratio of the
characteristic element size, le, to the half crack length, a, is
approximately le

a = 3 × 10−2 for elements containing the
crack front. This refinement guideline is taken from [51].
With this refinement level, we would expect the GFEM to
deliver accurate results for a quasi-2D, through-thickness

Fig. 11 Displacement contour generated with GFEMgl . Note that there are nine discontinuity surfaces which are opened within one computational
element. Displacement contour shown is scaled 5×
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Fig. 12 Convergence in the enriched global strain energy for themulti-
site damage model, corresponding to an h-extension in the local model

Table 3 Comparison of extracted KI values at right crack front

Crack GFEMgl hp-GFEM Relative difference

1 60.513 61.164 0.0106

2 34.289 34.325 0.0010

3 36.794 36.433 0.0099

4 23.705 23.121 0.0253

5 33.878 32.964 0.0277

6 40.569 41.412 0.0204

7 26.253 25.468 0.0308

8 36.951 38.010 0.0279

9 46.396 47.674 0.0268

crack. The extracted SIF values are provided in Table 3 for
both the GFEMgl as well as hp-GFEM simulations. It can be
seen from the table that the SIFs extracted with the GFEMgl

compare very well with those extracted using the hp-GFEM.
In most cases the relative difference is in the neighborhood
of 2–3 %.

Remark It should be noted that while propagation of the
multiple crack surfaces is possible, the results would need
to be interpreted very carefully. Essentially what needs to be
considered is that each crack surface would have a differ-
ent Kmax

eq and thus care would need to be taken to ensure
that the advancement of a particular crack vertex is scaled
according to Eq. (11) to reflect the maximum overall Kmax

eq
and not merely the Kmax

eq for each individual crack surface.
Otherwise it cannot be ensured that each crack vertex in the
overall model is subjected to the same number of loading
cycles, and thus the results would be somewhat meaningless.
This is merely a limitation of the current implementation,
and not of the approach itself, and this type of analysis is
considered beyond the scope of the present work. Focus on
propagation/interaction of multiple crack surfaces utilizing a

Fig. 13 GFEMgl model
used for mixed-mode
through-thickness crack
propagation
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Fig. 14 Crack trajectory predicted both numerically and experimen-
tally. The numerically computed crack path is in very good agreement
with the experimentally obtained crack path

fixed, coarse (potentially hexahedral) finite element mesh is
the topic of a subsequent paper.

5.3 Mixed-mode through-thickness crack propagation

The example problem in this section illustrates the ability of
the methodology to analyze the mixed-mode crack propa-
gation of an inclined through-thickness crack, on a coarse
hexahedral mesh. This includes the ability to represent a
sharp crack kinking completely within one computational
element, so as to avoid the use of an overly-refined, and there-
fore computationally inefficient FE mesh.
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Fig. 15 Displacement contours generated with different global dis-
cretizations. Results are in very good agreement, and it may be noted
that solid black lines indicate the actual computational elements used

in the simulations. a Crack trajectory predicted with global model from
Fig. 13. b Crack trajectory predicted with coarser global model

The domain has dimensions (76.2 × 203.2 × 3.175) mm
in the x-, y- and z-directions, respectively. The global model
has 3, 6 and 1 hexahedral elements in the x , y and z-
directions, respectively. The domain is subjected to cyclic,
normal tractions with maximummagnitude 172.37 MPa and
R = 0.1, along the top and bottom faces, as indicated by
the red arrows in Fig. 13. Young’s Modulus is taken as
E = 115×103 N

mm2 and Poisson’s ratio is taken as, ν = 0.32.
The initial crack surface is inclined at an angle of 43◦ clock-
wise with respect to the y-axis. The initial crack surface has

a total length of 2a = 13.46 mm. Paris law parameters are
taken as C = 1.251 × 10−11 mm

cycle and m = 2.59. In this
particular problem, the SIFs are only extracted at the center
crack front vertex, and each crack front vertex propagates the
same distance/direction for a particular crack front stretch.
This is done due both to the thin through-thickness dimension
of the specimen as well as to allow for comparison against
existing numerical results generated with hp-GFEM.

Results for the mixed-mode propagation simulation are
presented in Fig. 14. There is data plotted corresponding to
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the GFEMgl results, results generated with hp-GFEM, as
well as experimentally generated results from the literature
[55]. Similar hp-GFEM results to those presented here can
also be found elsewhere in the literature [52]. It can be seen
from the plot that both the hp-GFEM as well as the GFEMgl

as presented in this paper, yield numerical results which com-
pare very favorablywith the experimental data, and the initial
sharp kinking is accurately predicted.

A displacement contour computed using the GFEMgl and
the coarse globalmodel shown in Fig. 13 is shown in Fig. 15a.
In the figure, it should be noted that the solid black lines indi-
cate the actual computational elements used to generate the
displacement contour. It can be seen that the initial sharp
kinking, commonly seen in mixed-mode crack propagation
scenarios, can be well-represented entirely within one com-
putational element entirely through the use of enrichment
functions and the underlying explicit crack surface repre-
sentation. This type of complex crack surface representation
poses serious challenges on such a coarse mesh if using an
implicit crack surface representation. Mesh objectivity of the
predicted crack path in this case can be further illustrated
with the use of an even coarser global discretization. A solu-
tion contour corresponding to a simulation run using a global
mesh utilizing five elements in the y-direction and only one
element in the x and z-directions, is shown in Fig. 15b. It

z

x

y

Fig. 16 Three-bay panel model, along with flange crack (blue) and
stiffener crack (red) locations. Red arrows indicate traction boundary
conditions applied in z-direction along front and back faces of the panel.
(Color figure online)

can be seen from the figure that the predicted crack paths are
in very good agreement with one another. In the latter case
the entire propagated crack surface, including the two initial
kinks, is still well represented and accurately predicted, even
though the computational mesh has been coarsened.

5.4 Application to representative aerospace structure

In this section we simulate fatigue cracks propagating in a
representative aerospace structure. The structure is a three-
bay stiffened panel (Fig. 16) subjected to cyclic normal
tractions with magnitude 10 ksi applied in the z-direction.
Material properties and Paris law parameters for a T i 6242s
alloywere obtained from [44], and taken as E = 17, 100 ksi ,
ν = 0.325, C = 1.17e−15 in

cycle and m = 5.47. The load
ratio was taken as R = 0.0. The panel skin has dimen-
sions (19.6 × 0.065 × 34) in the x-, y- and z-directions,
respectively. There are two flanges located at x = ±9.8
with dimensions (0.065 × 2.5 × 34) in the x-, y- and z-
directions, respectively. There are four stiffeners located at
z = ±5 , ±10 with dimensions (17.6 × 1.25 × 0.065) in
the x-, y- and z-directions, respectively. The stiffeners taper
linearly from a depth of 1.25 to 0.75 at each end, as can be
seen in Fig. 17. All dimensions and locations reported in this
section are in inches and the origin is taken at the geometric
center of the top surface of the panel. This panel-type struc-
ture is a good example of the type of structure that is easier
to analyze with brick elements because it is easier to create
a well-behaved coarse mesh than would be the case if global
tetrahedral elements are used.

There are two crack locations investigated, which are
illustrated in Fig. 16. The first crack is a thru-thickness
flange crack with crack mouth located at (x , y , z) =
(9.8 , 2.5 , 3.0). The second crack is a thru-thickness stiff-
ener crackwith crackmouth located (x , y , z) = (1.7 , 1.25 ,

−5.0). The stiffener crack location is selected based on the
deflected shape of the stiffened panel when subjected to axial
tension, as illustrated in Fig. 17, in which a tensile region
develops in the lower portion of stiffener as the panel under-
goes bending.

The first scenario considers both cracks separately, in
Mode I configurations. That is to say that the crack surfaces
are parallel with the global y-axis. It should be noted that
the cracked configuration shown in the red box in Fig. 16
is in a mixed-mode configuration, which will be considered
subsequently. Each crack has an initial length of acr = 0.2,

Fig. 17 Deflected shape of stiffened panel when subjected to axial tension
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Fig. 18 Crack length versus loading cycles for flange crack (a) and stiffener crack (b). a Flange crack. b Stiffener crack

Fig. 19 Initial (a) and final (b)
crack surfaces for mixed-mode
crack propagation in panel
stiffener. a Initial crack surface.
b Final propagated crack surface

and simulations are run to compute the cycles necessary to
grow the crack to twice its initial length, i.e. a f inal

cr = 0.4.
Similar to what is done in Sect. 5.3, the SIFs are only com-
puted at the crack vertex in the center of the domain and each
crack front is propagated uniformly. This is again due to the

extremely thin thru-thickness dimension. The crack is prop-
agated to twice its initial length in ten equal advancements,
with �amax = 0.02, and cycle data is calculated via (10).

Figure 18 illustrates the crack length versus number of
load cycles for each crack case investigated. As can be seen
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Fig. 20 Highly-adapted local
(a), and coarse global
discretizations (b) used to
represent a propagated crack
surface in a panel stiffener. a
Local discretization. b Global
discretization

in the figures, both cracks exhibit the same behavior with
significant reduction in the number of load cycles for a given
crack growth increment as the crack length, and therefore
KI value increase, as would be expected. It can also be seen
that the the number of cycles required to double the length of
the stiffener crack is essentially beyond the run-out for this
particular loading case, and thus the flange crack is a much
more critical flaw. This is not unexpected since the loading
is transferred directly into the flange, whereas the loading
in the stiffener is structural only, resulting from the out-of-
plane bending exhibited as the stiffened panel itself is loaded
axially.

Mixed-mode crack propagation The second case inves-
tigated is a mixed-mode stiffener crack, again with initial
length acr = 0.2 propagated to twice its initial length. In this
instance the crack is in a mixed-mode configuration, as seen
in the red box in Fig. 16 aswell as in Fig. 19a, inwhich the ini-
tial crack surface is rotated 30◦ clockwise with respect to the
global y-axis, and with the crack mouth in the same location
as in the Mode I configuration. As can be seen in Fig. 19b,
the final crack shape indicates that again the crack orients
itself in manner in which is it now normal to the maximum
tensile stress, as would be expected.

The multi-scale nature of the approach is again illustrated
in Fig. 20. The highly-adapted local domain is shown in
Fig. 20a, where the hp-GFEM is used to accurately model
the mixed-mode crack propagation, and the crack itself is
then modeled in the coarse global model entirely through
the use of the multi-scale enrichment functions, as shown in
Fig. 20b.

6 Conclusions

This paper presents an extension of the GFEMgl appropriate
for fracture mechanics analyses on fixed, coarse hexahedral
meshes. No explicit crack surface geometry engine appropri-
ate for hexahedral elements is required as the crack surface is
represented entirely through enrichment functions computed
from a fine-scalemodel utilizing a tetrahedral mesh. As such,
the hp-GFEM as presented in [51] can be used to model
the crack only in the fine-scale problem and accurate repre-
sentation in the coarse-scale model is accomplished entirely
through the use of a multi-scale enrichment function. The
approach allows for the extension of automated hp-adaptivity
to hexahedral meshes and the associated ability to perform
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accurate fracture analyses without any requirements of mesh
irregularity or constrained approximations to retain C0 con-
tinuity of the coarse-scale solution.

The proposed approach was successfully verified against
hp-GFEM for two static crack benchmark problems: one
simple Mode I problem and one fully mixed-mode example.
The approach was also successfully verified against both hp-
GFEM results as well as experimental data for amixed-mode
fatigue crack propagation scenario. The sharp initial kinking
of the crack, a common occurrence in mixed-mode crack
propagation problems, is accurately represented completely
within one coarse, hexahedral element.

In addition to accurately modeling a sharp kinking in a
crack surface, the proposed approach was able to accurately
represent nine discrete discontinuity surfaces all opened
within one hexahedral element. The approach was able to
deliver very good accuracy when compared to the hp-GFEM
approach with orders of magnitude reduction in the Dof
requirements to accurately analyze the problem.

The final numerical example demonstrates the ability of
the proposed approach tomodel crack propagation in amodel
of industrial complexity.BothMode I andmixed-mode crack
propagation simulation results are provided for cracks prop-
agating in the flange and stiffener of a three-bay stiffened
panel.
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