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Abstract This paper presents an extension of two recently
published conforming and non conforming eight-node hexa-
hedral finite elements, presenting rotational degrees of free-
dom in addition to the classical displacement ones, to analyze
geometric nonlinear problems. Their formulations are based
on the so-called space fiber rotation concept that consid-
ers virtual rotations of a nodal fiber within the element
which enhances the displacement vector approximation. To
demonstrate the efficiency and accuracy of the proposed
finite elements, several beam and shell nonlinear assessment
tests are presented and the obtained results are principally
compared with the classical first-order and second-order
hexahedral elements responses as well as other advanced ele-
ments from the literature. In particular, it is shown that the
proposed elements allow a correct prediction of the stud-
ied structures nonlinear behaviors including snap-through
and snap-back instabilities and the accuracy of the non con-
forming element is close to the classical 20-node hexahedral
element.
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1 Introduction

Nonlinear geometric analysis of structures represents one of
the important items in their safe design as it allows, for
example, predicting some serious problems like buckling
instability. In fact, several lightweight structures like those
used in aerospace applications can undergo large displace-
ments even if the elastic limit of their constitutive materials
are not reached [1]. In this case, the behavior of these
structures is highly (geometrically) nonlinear and numerical
approximation methods should be used for their study and
optimization. Within this context, the finite element method
has been widely considered to solve nonlinear geometric
problems and several nonlinear elements have been devel-
oped throughout the past 30 years. These elements can be
mainly classified into three categories: shell, solid-shell and
three-dimensional (3D) solid finite elements.

Several three-node and four-node enhanced shell finite
elements have been extended to describe large displace-
ments and large rotations of shell structures (see [2–8]
for four-node elements and [9–12] for three-node shell
elements, among others). As displacement-based formu-
lations suffer from many numerical pathologies like the
so-called transverse shear locking, several nonlinear shell
elements have been based on mixed variational formula-
tions that result in some well known approaches like the
so-called assumed natural strain (ANS) approach [2] or
the enhanced assumed natural strain (EANS) method [13].
Besides, different strain measures have been used in nonlin-
ear shell elements such as Green–Lagrange strains adopted
in [3,14] or Biot strains considered in [4,5]. Despite these
valuable contributions which are principally based on sim-
plified assumptions across the thickness,modeling geometric
nonlinear problems with shell finite elements could be insuf-
ficient in some cases especially when information across
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the thickness direction is needed as in sheet metal forming
simulations.

During the last 20 years, a consequent research effort has
been devoted to develop the so-called solid-shell finite ele-
ments to model linear and especially nonlinear behaviors
of thin to moderately thick structures (see [15–22] to cite
only a few). These continuum-based elements offer many
advantages with respect to shell elements such as the use
of kinematics much easier than those of complex shell-
type ones, the use of complete 3D constitutive laws, the
direct determination of thickness variations as well as the
simple connection with 3D solid elements since displace-
ments are their only DOFs [20]. For instance, in the work
of Abed-Meraim and Combescure [20], the under-integrated
solid-shell elementSHB8PS formulationwas revised to elim-
inate some remainingmembrane and shear locking problems.
This element was used to analyze in particular some geomet-
ric nonlinear popular benchmarks and the obtained results
were found to agree well with reference solutions.

3D enhanced solid elements have been also developed to
analyze geometric nonlinear problems [1,6,23,24]. In the
work of Ooi et al. [1], an extension of the unsymmetric 20-
node hexahedral element US-HEXA20, based on the Petrov-
Galerkin formulation, was proposed to account for geo-
metrically nonlinear problems. Two different sets of shape
functions, namely isoparametric and metric shape functions,
were considered and the Total Lagrangian approach was
adopted. To overcome numerical difficulties of the clas-
sical first-order hexahedral element, Klinkel and Wagner
[23] developed a first-order 3D brick element based on the
enhanced assumed strainmethod and 30 incompatiblemodes
were considered to enhance the strain tensor. In addition
to that, improvements of the classical low-order hexahe-
dral element were reported by Reese in [25] for 3D finite
elasto-plasticity (the under-integrated element Q1SPe was
presented) and byWang andWagoner in [26] to analyze sheet
metal forming problems (the eight-node hexahedral element
WW3D was developed).

In this paper, we present an extension of two recently pub-
lished 3D solid elements [27], named SFR8 and SFR8I, to
account for geometrically nonlinear problems. Their formu-
lations are based on the so-called space fiber rotation (SFR)
concept firstly introduced by Ayad in [28]. This concept con-
siders 3D rotations of a virtual fiber within the finite element
that enhances the displacement vector approximation and
subsequently the strain tensor expression. Consequently, the
SFR concept introduces rotational DOFs in addition to the
classical displacement ones. In Ayad et al. [27], the SFR
concept was adopted to formulate the eight-node hexahedral
elements SFR8 and SFR8I and linear benchmarks were con-
sidered to assess their responses. SFR8I is a nonconforming
element because three incompatible modes are introduced
in the element natural space to avoid the Poisson thickness

locking encountered in bending-dominated situations. In par-
ticular, theSFR8and especially SFR8I responseswere shown
to be much more accurate than the classical first-order hexa-
hedral element and close to the quadratic 20-node hexahedral
element with a quasi-insensitivity to high mesh distortions.
Moreover,Meftah et al. [29] developed a six-nodewedge ele-
ment named SFR6 and based on the SFR concept for linear
problems. In the same way as the SFR hexahedral elements,
the SFR6 resultswere found to agree verywell with reference
solutions and its accuracy outweighs that of the first-order
wedge element.

The present paper is structured as follows. In Sect. 2, the
variational formulation of the nonlinear geometric problem
based on the Total Lagrangian approach is recalled. Section 3
is devoted to the SFR concept finite element approximation
by extending the formulations of the hexahedral elements
SFR8 and SFR8I to geometric nonlinear problems as well
as their implementation in the commercial code ABAQUS.
Finally, and before the concluding remarks, the performance
of the proposed nonlinear hexahedral elements is investigated
by studying several beam and shell structures in Sect. 4.

2 Total Lagrangian formulation

Consider a 3D deformable body undergoing large displace-
ments. The Total Lagrangian approach is adopted to describe
its motion and the initial undeformed configuration C0 is
fixed as the reference configuration (Fig. 1). Suppose that
the total load subjected to this body is applied in several
increments so that the body occupies intermediate config-
urations before converging to the final one. Consequently,
the equilibrium of this body must be solved for each loading
increment. Consider for this the loading interval [tn, tn+1]
and denote with the indexes n and n + 1 all quantities at tn
and tn+1, respectively. We assume that the body is in equi-
librium at t = tn and hence the configuration Cn is known.
An increment of the external load results in an increment
of the displacement vector between the configurations Cn

and Cn+1. We denote by C (k)
n+1 the last known configura-

tion between Cn and Cn+1 that does not verify the body
equilibrium. A correction of the displacement vector �u(k)

should be determined to reach the next configuration C (k+1)
n+1 .

For this last configuration, the weak form of the equilibrium
reads [30]:

δπ =
∫
0V

n+1
0 S(k+1)

i j δ(n+1
0 E (k+1)

i j ) d 0V

−
[ ∫

0S

n+1
0 Ti δui d

0S +
∫
0V

n+1
0 f v

i δui d
0V

︸ ︷︷ ︸
δ(n+1

0 Wext )

]
= 0

(1)
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Fig. 1 Reference and deformed
configurations of the elastic
body

where n+1
0 T and n+1

0 f v are, respectively, the boundary trac-
tion forces and the body forces applied toCn+1 and referred to
the reference configurationC0, S and E are, respectively, the
second Piola–Kirchoff stress tensor and the Green–Lagrange
strain tensor, and δ(n+1

0 Wext ) denotes the virtual work done
by the external loads.

To simplify, we adopt the following notation:

n+1
0 S(k)

i j = 1
0Si j ; n+1

0 E (k)
i j = 1

0Ei j
n+1
0 S(k+1)

i j = 2
0Si j ; n+1

0 E (k+1)
i j = 2

0Ei j
n+1
0 u(k)

i = 1
0ui ; n+1

0 u(k+1)
i = 2

0ui
�u(k) = �u

(2)

Equation (1) can thus be rewritten as:

δπ =
∫
0V

2
0Si j δ

(2
0Ei j

)
d 0V − δ

(n+1
0 Wext

) = 0 (3)

By remarking that

2
0ui = 1

0ui + �ui ; 2
0Ei j = 1

0Ei j + �Ei j ;
2
0Si j = 1

0Si j + �Si j (4)

where �Ei j and �Si j are, respectively, the Green–Lagrange

strain and Kirchoff stress increments between C (k)
n+1 and

C (k+1)
n+1 , we arrive at the following expression:

∫
0V

1
0Si j δ(�Ei j ) d

0V +
∫
0V

�Si j δ(� Ei j ) d
0V

− δ
(n+1
0 Wext

) = 0 (5)

1
0 S and 1

0 E are given by (the Einstein summation technique
is used):

1
0Si j = Ci jkl

1
0Ekl;

1
0Ei j = 1

2

(
∂10ui
∂x j

+ ∂10u j

∂xi
+ ∂10uk

∂xi
· ∂10uk

∂x j

)
(6)

where Ci jkl are the components of the elasticity tensor and
xi (i = 1, 2, 3) are the cartesian coordinates of the reference
configuration C0.

The increment of the Green–Lagrange strain tensor �E
can be decomposed into linear �e and nonlinear �η strain

tensors in term of the unknown displacement vector�u [30]:

�ei j = 1

2

(
∂�ui
∂x j

+ ∂�u j

∂xi
+ ∂10uk

∂xi
· ∂�uk

∂x j
+ ∂10uk

∂x j
· ∂�uk

∂xi

)

�ηi j = 1

2

∂�uk
∂xi

· ∂�uk
∂x j

(7)

The variations of �e and �η are given by:

δ(�ei j )= 1

2

(
∂δui
∂x j

+ ∂δu j

∂xi
+ ∂10uk

∂xi
· ∂δuk

∂x j
+ ∂10uk

∂x j
· ∂δuk

∂xi

)

δ(�ηi j )= 1

2

(
∂�uk
∂xi

· ∂δuk
∂x j

+ ∂δuk
∂xi

· ∂�uk
∂x j

)
(8)

After conserving all terms related to the unknown displace-
ment vector �u on the left hand side of the weak form (5),
this last expression becomes:

∫
0V

�Si j δ(�Ei j ) d
0V +

∫
0V

1
0Si j δ(�ηi j ) d

0V

= −
∫
0V

1
0Si j δ(�ei j ) d

0V + δ(n+1
0 Wext ) (9)

After that, it is supposed that the displacement vector �u is
small enough so that the following approximation can hold
as explained in [30]:

�Si j δ(�Ei j ) ≈ Ci jkl�ekl δ(�ei j ) (10)

We obtain hence the final weak form to develop the finite
element approximation based on the Total Lagrangian for-
mulation:
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∫
0V

Ci jkl�ekl δ(�ei j ) d
0V +

∫
0V

1
0Si j δ(�ηi j ) d

0V

= −
∫
0V

1
0Si j δ(�ei j ) d

0V + δ(n+1
0 Wext ) (11)

This will be developed in the next section by presenting the
formulations of two conforming and non conforming eight-
node hexahedral elements with rotational DOFs.

3 The SFR concept finite element approximation

3.1 Formulation of the conforming element SFR8

The finite element approximation of Eq. (11) is constructed
by dividing the 3Ddeformable body into elementary domains
or finite elements. In order to analyze geometric nonlinear
problems, the formulations of two recently published hexa-
hedral elements, named respectively SFR8 and SFR8I [27],
are extended in this paper within the Total Lagrangian frame-
wok. They are based on the so-called SFR concept initially
proposed by Ayad in [28]. As shown in Fig. 2, this con-
cept considers 3D rotations of a virtual nodal fiber within
the element (fiber iq in Fig. 2a) that enhances the classical
approximation of the displacement vector. As proposed in
[27,28], the SFR approximation of the displacement vector
of one point q of the element is given by:

u(ξ, η, ζ )=
8∑

i=1

Ni (ξ, η, ζ )
(
ui + θ i ∧ iq

)
; uq ≡u

(12)

where Ni are the classical trilinear Lagrange interpolation
functions associatedwith the eight-node hexahedral element,

{ui } = {ui vi wi }T is the vector of nodal displacements and
{θi } = {θxi θyi θzi }T is the vector of nodal virtual rotations.

Equation (12) can be rewritten in the following matrix
form:

{u} = [N ] {uen} ; [N ] =
⎡
⎣ {Nui }T

· · · {Nvi }T · · · i = 1, 8
{Nwi }T

⎤
⎦

=
⎡
⎣ {Nu}T

{Nv}T
{Nw}T

⎤
⎦ (13)

where

{Nui } ={ Ni 0 0
.
.
. 0

.

.

. Ni (z − zi )
.
.
. −Ni (y − yi ) }T

{Nvi } ={ 0 Ni 0
.
.
. −Ni (z − zi )

.

.

. 0
.
.
. Ni (x − xi ) }T

{Nwi } ={ 0 0 Ni

.

.

. Ni (y − yi )
.
.
. −Ni (x − xi )

.

.

. 0 }T
(14)

and

{uen} = {· · · | ui vi wi
... θxi θyi θzi | · · · i = 1, 8}T (15)

is the elementary nodal DOFs vector containing the nodal
displacements and fictive rotations.

We introduce at this stage the notation

1
0u1 = u, 1

0u2 = v, 1
0u3 = w, �u1 = �u,

�u2 = �v, �u3 = �w (16)

At the element level, the first term of Eq. (11) is written in
the alternate form

Fig. 2 The SFR concept. a 3D
rotation θ i of the virtual nodal
fiber iq inducing an additional
displacement θ i ∧ iq . b The
hexahedral element SFR8 and
its nodal degrees of freedom

(a) (b)
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∫
0V

Ci jkl�ekl δ(�ei j ) d
0V =

∫
0V

{δ�e}T [C]{�e} d 0V

(17)

where [C] is the elasticity matrix and {�e} = {�exx �eyy
�ezz 2�exy 2�exz 2�eyz}T .

Using Eq. (7), {�e} can be shown to be related to {�uen}
by a (6 × 48)-sized matrix [BL ] as:

{�e} = [BL ]{�uen}, [BL ] = [BL0] + [BL1] (18)

where

[BL0] = [D0].[N ] ; [D0] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x
0 0

0
∂

∂y
0

0 0
∂

∂z
∂

∂y

∂

∂x
0

∂

∂z
0

∂

∂x

0
∂

∂z

∂

∂y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

and

[BL1]=[D1].[N ] ;

[D1]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂u

∂x
· ∂

∂x

∂v

∂x
· ∂

∂x

∂w

∂x
· ∂

∂x
∂u

∂y
· ∂

∂y

∂v

∂y
· ∂

∂y

∂w

∂y
· ∂

∂y
∂u

∂z
· ∂

∂z

∂v

∂z
· ∂

∂z

∂w

∂z
· ∂

∂z
∂u

∂x
· ∂

∂y
+ ∂u

∂y
· ∂

∂x

∂v

∂x
· ∂

∂y
+ ∂v

∂y
· ∂

∂x

∂w

∂x
· ∂

∂y
+ ∂w

∂y
· ∂

∂x
∂u

∂x
· ∂

∂z
+ ∂u

∂z
· ∂

∂x

∂v

∂x
· ∂

∂z
+ ∂v

∂z
· ∂

∂x

∂w

∂x
· ∂

∂z
+ ∂w

∂z
· ∂

∂x
∂u

∂y
· ∂

∂z
+ ∂u

∂z
· ∂

∂y

∂v

∂y
· ∂

∂z
+ ∂v

∂z
· ∂

∂y

∂w

∂y
· ∂

∂z
+ ∂w

∂z
· ∂

∂y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(20)

More details about [BL0] and [BL1] components are found
in Appendix.

Using relation (18), the first term of the weak form (11)
is then given by:

∫
0V

Ci jkl�ekl δ(�ei j ) d
0V

= {δ�uen}T
∫
0V

[BL ]T [C][BL ] d 0V
︸ ︷︷ ︸

[Ke
L ]

{�uen} (21)

where [Ke
L ] is the elementary linear stiffnessmatrix of SFR8.

At the element level, the second term of Eq. (11) can be
rewritten as [30]:

∫
0V

1
0Si j δ(�ηi j ) d

0V

=
∫
0V

{δ�η}T {10S} d 0V

=
∫
0V

⎧⎨
⎩

δ�u
δ�v

δ�w

⎫⎬
⎭

T

[DNL ]T [10S][DNL ]
⎧⎨
⎩

�u
�v

�w

⎫⎬
⎭ d 0V

(22)

where {�η} = {�ηxx �ηyy �ηzz 2�ηxy 2�ηxz 2�ηyz}T ,

[DNL ]T =

⎡
⎢⎢⎢⎢⎢⎣

∂

∂x

∂

∂y

∂

∂z
0 0 0 0 0 0

0 0 0
∂

∂x

∂

∂y

∂

∂z
0 0 0

0 0 0 0 0 0
∂

∂x

∂

∂y

∂

∂z

⎤
⎥⎥⎥⎥⎥⎦

(23)

and

[10S]=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0Sxx

1
0Sxy

1
0Sxz 0 0 0 0 0 0

1
0Sxy

1
0Syy

1
0Syz 0 0 0 0 0 0

1
0Sxz

1
0Syz

1
0Szz 0 0 0 0 0 0

0 0 0 1
0Sxx

1
0Sxy

1
0Sxz 0 0 0

0 0 0 1
0Sxy

1
0Syy

1
0Syz 0 0 0

0 0 0 1
0Sxz

1
0Syz

1
0Szz 0 0 0

0 0 0 0 0 0 1
0Sxx

1
0Sxy

1
0Sxz

0 0 0 0 0 0 1
0Sxy

1
0Syy

1
0Syz

0 0 0 0 0 0 1
0Sxz

1
0Syz

1
0Szz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

Using the approximation matrix [N ] and the transformation
(22), the second term of the weak form (11) becomes:

∫
0V

1
0Si j δ(�ηi j )d

0V

= {δ�uen}T
∫
0V

[BNL ]T [10S][BNL ] d 0V
︸ ︷︷ ︸

[Ke
NL ]

{�uen} (25)

where [BNL ] = [DNL ][N ] and [Ke
NL ] is the elementary

nonlinear stiffnessmatrix of SFR8.More details about [BNL ]
components are found in Appendix.

Using Eq. (18), the third term of the weak form (11) is
rewritten in a matrix form as:

∫
0V

1
0Si j δ(�ei j ) d

0V = {δ�uen}T
∫
0V

[BL ]T {10S} d 0V

(26)

where {10S} = {10Sxx 1
0Syy

1
0Szz

1
0Sxy

1
0Sxz

1
0Syz}T .
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At the element level, the substitution of Eqs. (21), (25) and
(26) intoEq. (11) yields the finite elementmodel to determine
the correction {�uen}:(

[Ke
L ] + [Ke

NL ]︸ ︷︷ ︸
[Ke

T ]

)
{�uen}

= −
∫
0V

[BL ]T {10S} d 0V + {n+1
0 Fe

ext }︸ ︷︷ ︸
{Re}

(27)

where {n+1
0 Fe

ext } = ∫
0V [N ]T {n+1

0 f v} d 0V + ∫
0S[N ]T

{n+1
0 T } d 0S is the vector of external loads, [Ke

T ] is the ele-
mentary tangent stiffness matrix and {Re} is the elementary
residual vector.

3.2 Formulation of the non conforming element SFR8I

In this section, we present the nonlinear formulation of
the non conforming element SFR8I based on the Total
Lagrangian approach. As explained in [27], three incompat-
ible displacement modes au , av and aw are introduced in the
natural space of the element to prevent the Poisson’s ratio
locking. The natural space extra modes are given as [27]:
⎧⎨
⎩
ua = (1 − ξ2) au
va = (1 − η2) av

wa = (1 − ζ 2) aw

(28)

In this case, we obtain an enhanced Green–Lagrange strain
vector:

{E} = {Eu} + {Ea}, {Ea} = [Ma]{a} (29)

where {Eu} and {Ea} are, respectively, the conforming and
non conforming strain vectors, {a} is the vector of incom-
patible modes and [Ma] the matrix relating {Ea} to {a} (see
[27] for more details about [Ma]).

After introducing the enhanced strain vector in the equi-
librium weak form (5) at the element level instead of the
compatible strain vector, we obtain the following system of
equations [16,17,23,31]:
[ [Ke

L ] + [Ke
NL ] [Ke

ua]
[Ke

au] [Ke
aa]

] { {�uen}
{�a}

}

=
{ {n+1

0 Fe
ext } − ∫

0V [BL ]T {10S} d 0V

− ∫
0V [Ma]T {10S} d 0V

}
(30)

where

[Ke
ua] =

∫
0V

[BL ]T [C][Ma] d 0V, [Ke
au] = [Ke

ua]T ,

[Ke
aa] =

∫
0V

[Ma]T [C][Ma] d 0V (31)

The vector of internal variables {�a} can be eliminated at
the element level by using a static condensation. We obtain

{�a} = −[Ke
aa]−1

(
[Ke

au] {�uen} +
∫
0V

[Ma]T {10S} d 0V
)

(32)

Finally, the following system of equations should be solved
to determine the correction {�uen} for SFR8I:

[Ke
T ]{�uen} = {Re} (33)

with

[Ke
T ] = [Ke

L ] + [Ke
NL ] − [Ke

ua][Ke
aa]−1[Ke

au] (34)

{Re} = {n+1
0 Fe

ext } −
∫
0V

[BL ]T {10S} d 0V

+[Ke
ua][Ke

aa]−1
∫
0V

[Ma]T {10S} d 0V (35)

3.3 Implementation in ABAQUS

The SFR concept-based finite elements SFR8 and SFR8I
were implemented in the commercial code ABAQUS via the
user element subroutine (UEL) [32]. We depict in Fig. 3 the
general resolution scheme of the geometric nonlinear prob-
lem in ABAQUS via UEL for the conforming element SFR8.
At the element level, we should

1. First, construct the elementary stiffness matrix [Ke
T ] that

will be stored in the predefined matrix AMATRX of
ABAQUS;

2. and second, compute the elementary residual vector {Re}
which will be stored in the predefined right hand side
vector RHS.

4 Numerical validation

The performances of the proposed SFR concept hexahedral
elements, for geometric nonlinear problems, are evalu-
ated with several known beam and shell benchmarks. The
obtained results of SFR8 and SFR8I are then compared with
some advanced elements from the literature as well as the
ABAQUS hexahedral elements C3D8 and C3D20 [32]:

– C3D8: the classical eight-node first-order hexahedral ele-
ment with an exact numerical integration scheme;

– C3D20: the classical 20-node second-order hexahedral
element with an exact numerical integration scheme.

It is worth noting that in ABAQUS Standard, C3D8 and
C3D20 are formulated in the current configuration when
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Fig. 3 Resolution of the geometric nonlinear problem in ABAQUS using the UEL subroutine

Fig. 4 A cantilever beam
subjected to an end shear force
modeled with the regular mesh
10 × 1 × 1

the NLGEOM option is specified in the input file [32]. The
nonlinear solution procedure adopted to solve the following
problems is the full Newton–Raphsonmethod and the default
automatic load incrementation scheme in ABAQUS is used.
The maximum applied load is automatically subdivided into

NINC load increments that are not necessarily uniform. On
the other hand, and in order to show the impact of the load
step size on the accuracy of SFR8 and SFR8I, schemes with
uniform load increments are also used in examples 4.1 and
4.3. Therefore, the maximum load is divided into a number
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Table 1 The cantilever rectangular beam

C3D8 C3D20 SFR8 SFR8I

NINC 7 10 12 10

NITER 8 56 49 71

The numbers of increments NINC and iterations NITER required to
reach the ultimate solution with the automatic load incrementation
scheme

of equal increments NINC	 which is much more larger than
the number of increments NINC required by the automatic
incrementation scheme.

For the different boundary conditions considered in the
next sub-sections, it is worthy to note that constraints on the
rotational DOFs should be added to the classical displace-
ment ones as explained in [27].

4.1 A cantilever beam subjected to transverse bending

A rectangular cantilever beam subjected to an out-of-plane
shear force at its free end is studied in this example (Fig. 4).
Reference solutions of the tip displacements along the X and
Z directions are reported by Sze et al. [33] by considering
two converged meshes (8 × 1 and 16 × 2) of the under-
integrated first-order shell element of ABAQUS S4R. As
shown in Fig. 4, this rectangular beam is modeled with the
regular mesh 10 × 1 × 1 and the automatic incrementation
scheme is adopted. We summarize in Table 1 the total num-
bers of increments NINC and iterations NITER required to
obtain the ultimate solution and depict in Fig. 5 the obtained
results of SFR8 and SFR8I compared to C3D8 and C3D20.
We show also in Fig. 6 the convergence of the normalized

Fig. 6 The cantilever rectangular beam. Convergence of the normal-
ized tip transverse displacement at F = 4 with respect to the total
number of variables in the model (wre f = 6.698 [33])

tip transverse displacement at maximum load (F = 4) with
respect to the total number of variables in the model (DOFs
plus internal variables) by considering the regular meshes
10 × 1 × 1, 20 × 2 × 1 and 40 × 4 × 1. Furthermore, and
in order to evaluate the impact of the load step size on the
proposed SFR elements accuracy, we depict in Fig. 7 the
load-displacement curves of SFR8 and SFR8I obtained by
the automatic load incrementation scheme and a 40 equal
load increments scheme (NINC	 = 40).

We remark that SFR8 clearly enhances the result of the
first-order element C3D8 especially for the displacement
along the Z direction but remains relatively far out the refer-
ence solution of Sze et al. [33] for the regularmesh 10×1×1.
The non conforming element SFR8I results agree very well

(a) (b)

Fig. 5 The cantilever rectangular beam. a Load versus displacement along the X direction curve and b Load versus displacement along the Z
direction curve
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(a) (b)

Fig. 7 The cantilever rectangular beam meshed with 10 × 1 × 1 elements. Impact of the load step size on the SFR8 and SFR8I results: a load
versus displacement along the X direction curve and b load versus displacement along the Z direction curve

Fig. 8 A curved cantilever
beam subjected to an end load
modeled with the regular mesh
16 × 1 × 1

with the reference curves and are found to be more accurate
than those of the quadratic element C3D20 (Fig. 5). From
Fig. 7, we conclude that the SFR8 and SFR8I responses are
practically not sensitive to the load step size as the same
results are found with the automatic load incrementation
scheme (limited number of increments) and the second 40
equal increments scheme.

4.2 Out-of-plane bending of a 45◦ circular cantilever
beam

We consider in this example the 45◦ curved beam of Fig. 8
subjected to a concentrated end load. As considered in the
works of Slavkovic et al. [6] and Klinkel and Wagner [23],
this cantilever beam ismodeledwith the regularmesh16×1×
1. We show in Table 2 the total numbers of increments NINC

Table 2 The circular cantilever beam

C3D8 C3D20 SFR8 SFR8I

NINC 7 13 9 10

NITER 25 61 50 62

The total numbers of increments NINC and iterations NITER required
to reach the ultimate solution with the automatic load incrementation
scheme

and iterations NITER required to obtain the ultimate solution
for C3D8, C3D20, SFR8 and SFR8I. The obtained load-tip
displacements along X, Y and Z directions curves of SFR8
and SFR8I are compared to C3D8, C3D20 and the enhanced
3D hexahedral element Q1/E30 of Klinkel and Wagner [23]
as shown in Fig. 9.

Once again, the results of SFR8I agree well with those of
C3D20 and the enhanced solid elementQ1/E30. The solution
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(a) (b)

(c)

Fig. 9 Load-displacement curves of the circular cantilever beam

of SFR8 is more accurate than that of C3D8 but remains far
out the other considered elements.

4.3 Pullout of an open-ended cylindrical shell

An open thin-walled cylinder of length L = 10.35 and radius
R = 4.953 loaded by two opposite concentrated loads is
studied in this example. This benchmark is considered in the
literature as one of the most demanding tests for the geo-
metrically nonlinear analysis of shells [1,33]. Thanks to the
symmetry of the problem, only one-eighth of the cylinder
is modeled with the regular mesh 8 × 12 × 1 (Fig. 10) as
considered in the works of Ooi et al. [1] and Sze et al. [34].
The loading applied to the cylinder shell is increased up to
a maximum load P = 18,000. A reference solution of the
vertical displacement at the point of load application (point
A) is reported by Sze et al. in [33] by considering two con-

verged meshes (16 × 24 and 24 × 36) of the shell element
S4R.We list in Table 3 the total numbers of incrementsNINC
and iterations NITER required to obtain the ultimate solution
and depict in Fig. 11 the load-deflection curves of SFR8 and
SFR8I along with those of C3D8, C3D20, the unsymmetric
20-node hexahedral element US-HEXA20 of Ooi et al. [1]
and the eight-node hybrid-stress solid-shell element HS of
Sze et al. [34]. We show also in Fig. 12 the convergence of
the normalized displacement of point A at maximum load
(P = 18, 000) with respect to the total number of variables
in the model by considering the regular meshes 8 × 12 × 1,
16 × 24 × 1 and 24 × 36 × 1. Furthermore, Fig. 13 plots
the load-displacement curves of SFR8 and SFR8I obtained
by the automatic load incrementation scheme and a 50 equal
load increments scheme (NINC	 = 50).

We remark that the non conforming element SFR8I
presents approximately the same result as the quadratic
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Fig. 10 One-eighth of the open-end cylindrical shell modeled with the
regular mesh 8 × 12 × 1

Table 3 The open-end cylindrical shell

C3D8 C3D20 SFR8 SFR8I

NINC 10 17 13 19

NITER 21 78 61 96

The total numbers of increments NINC and iterations NITER required
to reach the ultimate solution with the automatic load incrementation
scheme

Fig. 11 Load-deflection curve of the open-end cylindrical shell

element US-HEXA20. SFR8I is more accurate than the
quadratic element C3D20 and the solid-shell element HS is
found to be the most accurate element in this example (with
respect to the reference solution of Sze et al. [33]). In addition
to that, we verify again in Fig. 13 that the SFR8 and SFR8I
responses are practically not sensitive to load step size.

Fig. 12 Theopen-end cylindrical shell.Convergenceof the normalized
displacement of point A at P = 18, 000 with respect to the total number
of variables in the model (wre f

A
= 2.425 [33])

Fig. 13 The open-end cylindrical shell meshed with 8 × 12 × 1
elements. Impact of the load step size on the SFR8 and SFR8I load-
displacement curves

4.4 Pinching of a clamped cylinder

We consider in this example a thin cylindrical shell fully
clamped at one end and subjected to two opposite concen-
trated loads at the free end which are increased up to 1600.
Owing to symmetry, only one-quarter of the cylinder is mod-
eled with the regular mesh 16 × 16 × 1 as considered in the
work of Fontes Valente et al. [16] (Fig. 14). We depict in
Fig. 15 the load-displacement curves of the SFR concept
hexahedral elements along with those of C3D8, C3D20 and
the enhanced hexahedral element HCiS12 of Fontes Valente
et al. [16]. All these results are compared with the reference
curve of the four node shell element of Brank et al. [7] as
taken in [16]. We summarize also in Table 4 the total num-
bers of increments NINC and iterations NITER required to
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Fig. 14 One-fourth of the
pinched clamped cylinder
modeled with the regular mesh
16 × 16 × 1

Fig. 15 Load-displacement curve of the pinched clamped cylindrical
shell

Table 4 The pinched clamped cylinder

C3D8 C3D20 SFR8 SFR8I

NINC 12 42 20 26

NITER 40 245 175 210

The total numbers of increments NINC and iterations NITER required
to reach the ultimate solution with the automatic load incrementation
scheme

obtain the ultimate solution with the automatic load incre-
mentation scheme.

Contrary to the previous studied benchmarks, we remark
in this example a notable difference between the results of

SFR8I and C3D20 (this latter agrees well with the reference
solution of Brank et al. [7]). This difference could be related
to the adopted Total Lagrangian approach to describe the
structure deformation (the Updated Lagrangian formulation
is considered with C3D20 and HCiS12). A similar difference
between the Updated and Total Lagrangian formulations has
been already reported by Sze et al. [34] in some cases.

4.5 Slit annular plate under a line load

A slit annular plate with inner radius R1 = 6, outer radius
R2 = 10 and thickness h = 0.03 is shown in Fig. 16. This
plate is clamped at one end and subjected to a line force P at
the other end that reaches 0.8 (force per unit length). The reg-
ular mesh 4×40×1 is used tomodel the slit plate as depicted
in Fig. 16. Reference solutions of the vertical deflections at
points A and B (Fig. 16) are reported by Sze et al. [33] by
using 10 × 80 S4R elements. The load-deflection curves of
SFR8 and SFR8I are shown in Fig. 17 and compared to C3D8
and C3D20. Table 5 lists the total numbers of increments and
iterations required to reach the ultimate solution when using
the automatic load incrementation scheme.

As for the previous example, we remark that the result of
SFR8I is different from C3D20 that better agrees with the
reference curves.

4.6 A hinged cylindrical roof subjected to a central
point load

A circular cylindrical roof subjected to a central point load
is studied in this example. The longitudinal boundaries are
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Fig. 16 The slit annular plate subjected to the line force P and modeled with the regular mesh 4 × 40 × 1

(a) (b)

Fig. 17 The slit annular plate. a Load-deflection at point A curve and b Load-deflection at point B curve

Table 5 The slit annular plate

C3D8 C3D20 SFR8 SFR8I

NINC 10 29 31 32

NITER 34 161 170 185

The numbers of increments NINC and iterations NITER required to
reach the ultimate solution with the automatic incrementation load
scheme.

hinged and immovablewhile the curved edges are completely
free. This benchmark constitutes a common assessment of
the path following algorithm. Because of symmetry, only
a quarter of the structure is modeled with the coarse regu-
lar mesh 4 × 4 × 2 as used in the works of Schwarze and
Reese [21] and Mostafa et al. [22] (Fig. 18). The use of two
elements across the thickness permits to correctly represent
hinged boundary conditions by fixing all translational DOFs
of the mid-plane nodes as explained in [22]. The two thin and

thick versions of this problem are considered (h = 6.35 and
12.7). These two cases were studied by Sze et al. in [33] by
using converged regular meshes of S4R (8 × 8 and 16 × 16
for the thin shell and 16 × 16 and 24 × 24 for the thick
roof). Due to the snapping behavior, this problem is solved
by the arc-length method or the modified Riks method avail-
able in ABAQUS [32]. We show in Figs. 19 and 20 the
load-displacement curves of SFR8 and SFR8I along with
those of C3D20, the enhanced hexahedral element Q1STs
of Schwarze and Reese [21] and the solid-shell element pre-
sented by Mostafa et al. in [22] (only for the thin shell). All
these results are compared with those of S4R reported by Sze
et al. in [33].

We remark that SFR8 and especially SFR8I predict cor-
rectly the unstable snap-back and snap-through behaviors of
the thin and thick cylindrical roofs. It is worth noting that the
C3D8 response was found to be divergent for the two cases
and is not shown in Figs. 19 and 20 for clarity. In addition to
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Fig. 18 One-fourth of the hinged cylindrical roof modeled with the
regular mesh 4 × 4 × 2

that, a good agreement between the SFR8I response, C3D20
and the other cited solutions is obtained.

5 Conclusion

In this paper, two recently published 3D solid elements pre-
senting displacement and rotational DOFs were extended to
account for geometric nonlinear problems. Their formula-
tions are based on the so-called SFR concept that considers
virtual rotations of a nodal fiberwithin the element enhancing
the displacement vector approximation and the strain tensor

expression. The geometric nonlinear formulation was devel-
oped within the framework of the Total Lagrangian approach
that considers the Green–Lagrange strain tensor associated
with the second Piola–Kirchoff stress tensor. These nonlinear
hexahedral elements were implemented in the commercial
code ABAQUS via the user element subroutine (UEL). To
assess the performance of the proposed elements, several
geometric nonlinear beam and shell benchmarks were ana-
lyzed and the obtained results were compared principally
to the classical fully-integrated first-order and second-order
hexahedral elements ofABAQUS (C3D8andC3D20) aswell
as advanced solid finite elements from the literature.

The proposed SFR hexahedral elements were shown to
clearly enhance the response of the classical first-order ele-
ment C3D8 as in linear geometric problems. They were
also found to predict correctly the studied beam and shell
structures behaviors including snap-through and snap-back
instabilities. The accuracy of the nonconforming element
SFR8Iwas often close to that of the quadratic elementC3D20
and the notable difference found in the pinched clamped
cylinder and slit annular plate examples (Sects. 4.4 and 4.5) is
likely to be related to the adopted Total Lagrangian approach
that can lead, in some cases, to different results from the
Updated Lagrangian formulation used in ABAQUS Stan-
dard.

For the future work, the Updated Lagrangian approach
will be adopted in the SFR8 and SFR8I formulations and an
evaluation of its impact on their accuracies will be addressed.
Furthermore, the work presented in this paper deals exclu-
sively with geometrically nonlinear problems with linear
elastic behavior. Consequently, it would be interesting to
extend the SFR8 and SFR8I formulations to account for
material nonlinearity like elasto-plasticity. Besides, exten-

Fig. 19 Load-deflection curve
of the thin hinged cylindrical
roof
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Fig. 20 Load-deflection curve
of the thick hinged cylindrical
roof

sion of the SFR concept elements is underway in order to
analyze linear and nonlinear behaviors of composite lami-
nate structures.

Appendix: Expressions of [BL0], [BL1] and [BNL]
We use the following notation for partial derivatives:

∂Ni

∂α
= Ni,α, α ≡ x, y, z

[BL0] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ni,x 0 0 0 Ni,x (z − zi ) −Ni,x (y − yi )
0 Ni,y 0 −Ni,y(z − zi ) 0 Ni,y(x − xi )
0 0 Ni,z Ni,z(y − yi ) −Ni,z(x − xi ) 0

· · · Ni,y Ni,x 0 −Ni,x (z − zi ) Ni,y(z − zi ) Ni,x (x − xi )− · · · i = 1, 8
Ni,y(y − yi )

Ni,z 0 Ni,x Ni,x (y − yi ) Ni,z(z − zi )− −Ni,z(y − yi )
Ni,x (x − xi )

0 Ni,z Ni,y Ni,y(y − yi )− −Ni,y(x − xi ) Ni,z(x − xi )
Ni,z(z − zi )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[BL1] =

⎡
⎢⎢⎢⎢⎢⎢⎣

u,x · Ni,x v,x · Ni,x w,x · Ni,x C1 C2 C3

u,y · Ni,y v,y · Ni,y w,y · Ni,y C4 C5 C6

u,z · Ni,z v,z · Ni,z w,z · Ni,z C7 C8 C9

· · · u,x · Ni,y + u,y · Ni,x v,x · Ni,y + v,y · Ni,x w,x · Ni,y + w,y · Ni,x C10 C11 C12 · · · i = 1, 8
u,z · Ni,x + u,x · Ni,z v,z · Ni,x + v,x · Ni,z w,z · Ni,x + w,x · Ni,z C13 C14 C15

u,y · Ni,z + u,z · Ni,y v,y · Ni,z + v,z · Ni,y w,y · Ni,z + w,z · Ni,y C16 C17 C18

⎤
⎥⎥⎥⎥⎥⎥⎦
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with

C1 = −v,x · Ni,x (z − zi ) + w,x · Ni,x (y − yi );
C2 = u,x · Ni,x (z − zi ) − w,x ·

(
Ni,x (x − xi ) + Ni

)

C3 = −u,x · Ni,x (y − yi ) + v,x ·
(
Ni,x (x − xi ) + Ni

)
;

C4 = −v,y · Ni,y(z − zi ) + w,y ·
(
Ni,y(y − yi ) + Ni

)

C5 = u,y · Ni,y(z − zi ) − w,y · Ni,y(x − xi ) ;
C6 = −u,y ·

(
Ni,y(y − yi ) + Ni

)
+ v,y · Ni,y(x − xi )

C7 = −v,z ·
(
Ni,z(z − zi ) + Ni

)
+ w,z · Ni,z(y − yi );

C8 = u,z ·
(
Ni,z(z − zi ) + Ni

)
− w,z · Ni,z(x − xi )

C9 = −u,z · Ni,z(y − yi ) + v,z · Ni,z(x − xi )

C10 = −v,x · Ni,y(z − zi ) − v,y · Ni,x (z − zi )

+w,x ·
(
Ni,y(y − yi ) + Ni

)
+ w,y · Ni,x (y − yi )

C11 = u,x · Ni,y(z − zi ) + u,y · Ni,x (z − zi )

−w,x · Ni,y(x − xi ) − w,y ·
(
Ni,x (x − xi ) + Ni

)

C12 = −u,x ·
(
Ni,y(y − yi ) + Ni

)
− u,y · Ni,x (y − yi )

+ v,x · Ni,y(x − xi ) + v,y ·
(
Ni,x (x − xi ) + Ni

)

C13 = −v,x ·
(
Ni,z(z − zi ) + Ni

)
− v,z · Ni,x (z − zi )

+w,x · Ni,z(y − yi ) + w,z · Ni,x (y − yi )

C14 = u,x ·
(
Ni,z(z − zi ) + Ni

)
+ u,z · Ni,x (z − zi )

−w,x · Ni,z(x − xi ) − w,z ·
(
Ni,x (x − xi ) + Ni

)

C15 = −u,x · Ni,z(y − yi ) − u,z · Ni,x (y − yi )

+ v,x · Ni,z(x − xi ) + v,z ·
(
Ni,x (x − xi ) + Ni

)

C16 = −v,y ·
(
Ni,z(z − zi ) + Ni

)
− v,z · Ni,y(z − zi )

+w,y · Ni,z(y − yi ) + w,z ·
(
Ni,y(y − yi ) + Ni

)

C17 = u,y ·
(
Ni,z(z − zi ) + Ni

)
+ u,z · Ni,y(z − zi )

−w,y · Ni,z(x − xi ) − w,z · Ni,y(x − xi )

C18 = −u,y · Ni,z(y − yi ) − u,z ·
(
Ni,y(y − yi ) + Ni

)

+ v,y · Ni,z(x − xi ) + v,z · Ni,y(x − xi )

[BNL ] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ni,x 0 0 0 Ni,x (z − zi ) −Ni,x (y − yi )
Ni,y 0 0 0 Ni,y(z − zi ) −Ni,y(y − yi ) − Ni

Ni,z 0 0 0 Ni,z(z − zi ) + Ni −Ni,z(y − yi )
0 Ni,x 0 −Ni,x (z − zi ) 0 Ni,x (x − xi ) + Ni

· · · 0 Ni,y 0 −Ni,y(z − zi ) 0 Ni,y(x − xi ) · · · i = 1, 8
0 Ni,z 0 −Ni,z(z − zi ) − Ni 0 Ni,z(x − xi )
0 0 Ni,x Ni,x (y − yi ) −Ni,x (x − xi ) − Ni 0
0 0 Ni,y Ni,y(y − yi ) + Ni −Ni,y(x − xi ) 0
0 0 Ni,z Ni,z(y − yi ) −Ni,z(x − xi ) 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

123



Comput Mech (2016) 57:37–53 53

References

1. Ooi ET, Rajendran S, Yeo JH (2007) Extension of unsymmetric
finite elements US-QUAD8 and US-HEXA20 for geometric non-
linear analyses. Eng Comput 24:407–431

2. Dvorkin EN, Bathe KJ (1984) A continuummechanics based four-
node shell element for general non-linear analysis. Eng Comput
1(1):77–88

3. Parisch H (1991) An investigation of a finite rotation four node
assumed strain shell element. Int J NumerMethods Eng 31(1):127–
150

4. Sansour C, Bufler H (1992) An exact finite rotation shell theory,
its mixed variational formulation and its finite element implemen-
tation. Int J Numer Methods Eng 34(1):73–115

5. Wriggers P, Gruttmann F (1993) Thin shells with finite rotations
formulated in biot stresses: Theory and finite element formulation.
Int J Numer Methods Eng 36(12):2049–2071

6. Slavkovic R, Zivkovic M, Kojic M (1994) Enhanced 8-node
three-dimensional solid and 4-node shell elements with incom-
patible generalized displacements. Commun Numer Methods Eng
10(9):699–709

7. Brank B, Damjanic F, Peric D (1995) On implementation of a
nonlinear four node shell finite element for thinmultilayered elastic
shells. Comput Mech 16(5):341–359

8. Sansour C, Kollmann FG (2000) Families of 4-node and 9-node
finite elements for a finite deformation shell theory. An assesment
of hybrid stress, hybrid strain and enhanced strain elements. Com-
put Mech 24(6):435–447

9. Kuo-MoH (1987) Nonlinear analysis of general shell structures by
flat triangular shell element. Comput Struct 25(5):665–675

10. To CWS, Liu ML (1995) Hybrid strain based three node flat tri-
angular shell elements-II. Numerical investigation of nonlinear
problems. Comput Struct 54(6):1057–1076

11. Providas E, Kattis MA (1999) A simple finite element model for
the geometrically nonlinear analysis of thin shells. Comput Mech
24(2):127–137

12. Kim JH, Kim YH (2002) A three-node C0 ANS element for geo-
metrically non-linear structural analysis. Comput Methods Appl
Mech Eng 191:4035–4059

13. Andelfinger U, Ramm E (1993) EAS-elements for two-
dimensional, three-dimensional, plate and shell structures and
their equivalence to HR-elements. Int J Numer Methods Eng
36(8):1311–1337

14. Stander N, Matzenmiller A, Ramm E (1989) An assessment of
assumed strain methods in finite rotation shell analysis. Eng Com-
put 6(1):58–66

15. Hauptmann R, Schweizerhof K (1998) A systematic development
of solid-shell element formulations for linear and non-linear analy-
ses employing only displacement degrees of freedom. Int J Numer
Methods Eng 42(1):49–69

16. Fontes Valente RA, Alves de Sousa RJ, Natal Jorge RM (2004)
An enhanced strain 3D element for large deformation elastoplastic
thin-shell applications. Comput Mech 34:38–52

17. Vu-Quoc L, Tan XG (2003) Optimal solid shells for non-linear
analyses of multilayer composites. I. Statics. Comput Methods
Appl Mech Eng 192:975–1016

18. Alves de Sousa RJ, Cardoso RPR, Fontes Valente RA, Yoon JW,
Gracio JJ, Natal Jorge RM (2006) A new one-point quadrature
enhanced assumed strain (EAS) solid-shell element with multiple
integration points along thickness-part II: nonlinear applications.
Int J Numer Methods Eng 67(2):160–188

19. Klinkel S,GruttmannF,WagnerW(2006)A robust non-linear solid
shell element based on a mixed variational formulation. Comput
Methods Appl Mech Eng 195:179–201

20. Abed-Meraim F, Combescure A (2009) An improved assumed
strain solid-shell element formulation with physical stabilization
for geometric non-linear applications and elastic-plastic stability
analysis. Int J Numer Methods Eng 80(13):1640–1686

21. Schwarze M, Reese S (2011) A reduced integration solid-shell
finite element based on the EAS and the ANS concept-Large defor-
mation problems. Int J Numer Methods Eng 85(3):289–329

22. Mostafa M, Sivaselvan MV, Felippa CA (2013) A solid-shell coro-
tational element basedonANDES,ANSandEAS for geometrically
nonlinear structural analysis. Int J NumerMethods Eng 95(2):145–
180

23. Klinkel S, Wagner W (1997) A geometrical non-linear brick
element based on the EAS-method. Int J Numer Methods Eng
40(24):4529–4545

24. Simo JC, Armero F, Taylor RL (1993) Improved versions of
assumed enhanced strain tri-linear elements for 3d finite defor-
mation problems. Comput Methods Appl Mech Eng 110:359–386

25. Reese S (2005) On a physically stabilized one point finite element
formulation for three-dimensional finite elasto-plasticity. Comput
Methods Appl Mech Eng 194:4685–4715

26. Wang J, Wagoner RH (2005) A practical large-strain solid finite
element for sheet forming. Int J Numer Methods Eng 63(4):473–
501

27. Ayad R, Zouari W, Meftah K, Ben Zineb T, Benjeddou A (2013)
Enrichment of linear hexahedral finite elements using rotations of
a virtual space fiber. Int J Numer Methods Eng 95:46–70

28. AyadR (2002)Contribution to the numericalmodelingof solids and
structures and the non-newtonian fluids forming process. Applica-
tion to packaging materials (in French). Habilitation to conduct
researches, University of Reims

29. Meftah K, Ayad R, Hecini M (2013) A new 3D 6-node solid finite
element based upon the space fibre rotation concept. Eur J Comput
Mech 22(1):1–29

30. Reddy JN (2004) An introduction to nonlinear finite element analy-
sis. OUP, Oxford

31. Bischoff M, Ramm E (1997) Shear deformable shell elements for
large strains and rotations. Int J NumerMethods Eng 40(23):4427–
4449

32. ABAQUS (2014) Analysis user’s manual. V. 6.14. ABAQUS Inc.,
Providence

33. Sze KY, Liu XH, Lo SH (2004) Popular benchmark problems
for geometric nonlinear analysis of shells. Finite Elem Anal Des
40(11):1551–1569

34. Sze KY, Chan WK, Pian THH (2002) An eight-node hybrid-stress
solid-shell element for geometric non-linear analysis of elastic
shells. Int J Numer Methods Eng 55(7):853–878

123


	Geometric non-linear hexahedral elements with rotational DOFs
	Abstract
	1 Introduction
	2 Total Lagrangian formulation
	3 The SFR concept finite element approximation
	3.1 Formulation of the conforming element SFR8
	3.2 Formulation of the non conforming element SFR8I
	3.3 Implementation in ABAQUS

	4 Numerical validation
	4.1 A cantilever beam subjected to transverse bending
	4.2 Out-of-plane bending of a 45° circular cantilever beam
	4.3 Pullout of an open-ended cylindrical shell
	4.4 Pinching of a clamped cylinder
	4.5 Slit annular plate under a line load
	4.6 A hinged cylindrical roof subjected to a central point load

	5 Conclusion
	Appendix: Expressions of [BL0], [BL1] and [BNL]
	References




