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Abstract We present a method for the numerical integra-
tion of homogeneous functions over convex and nonconvex
polygons and polyhedra. On applying Stokes’s theorem and
using the property of homogeneous functions, we show that it
suffices to integrate these functions on the boundary facets of
the polytope. For homogeneous polynomials, this approach
is used to further reduce the integration to just function eval-
uations at the vertices of the polytope. This results in an
exact cubature rule for a homogeneous polynomial f , where
the integration points are only the vertices of the polytope
and the function f and its partial derivatives are evaluated at
these vertices. Numerical integration of homogeneous func-
tions in polar coordinates and on curved domains are also
presented. Along with an efficient algorithm for its imple-
mentation, we showcase several illustrative examples in two
and three dimensions that demonstrate the accuracy of the
proposed method.
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1 Introduction

Integration of polynomial functions over arbitrarily-shaped
polygons and polyhedra is required in computational meth-
ods such as extended finite elements [1], embedded inter-
face methods [2–4], virtual element method [5], and weak
Galerkin method [6], just to name a few. In these applica-
tions, accurate and efficient numerical integration techniques
are needed.

For integrating functions over arbitrary polytopes, three
general approaches have been employed: (i) tessellation of
the domain into simplices; (ii) application of generalized
Stokes’s theorem to reduce the volume integral to a surface
integral; and (iii) use ofmoment fittingmethods. Tessellation
requires partitioning the domain into smaller subdomains
(usually simplices) and then performing numerical integra-
tion over the subdomains. The generalized Stokes’s theorem
(Gauss’s divergence theorem) converts integration over the
domain into integration over the boundary of the domain, but
often requires the integrand to be predefined or requires sym-
bolic computations. Moment fitting methods solve a linear
system of equations to build a cubature rule over the domain
to integrate a given set of basis functions. For further details
on these three approaches, the interested reader can refer to
Sudhakar et al. [3].

Mousavi and Sukumar [7] presented a technique for inte-
grating arbitrary polynomial functions over polygons in
R
2 and bounded polyhedra in R

3. This method uses the
properties of homogeneous functions to simplify integra-
tion over a d-dimensional polytope to integration over the
(d − 1)-dimensional faces of the polytope. In Mousavi and
Sukumar [7], cubature rules for polygons and polyhedra are
constructed. However, these rules were only applied to con-
vex polytopes, a limitation that was noted in Sudhakar et
al. [2]. Cubature rules that are applicable to both convex and
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nonconvex polytopes are desirable, and in this contribution
we extend Lasserre’s approach to nonconvex polytopes.

In this paper, we demonstrate that the method developed
by Lasserre [8] for integrating homogeneous polynomials is
also valid for nonconvex polytopes, provided a precise defi-
nition of the polytope is given. This definition of the domain
of the polytope in fact broadens the utility of the method and
we provide examples that illustrate its use to integrate homo-
geneous functions over a range of convex and nonconvex
polygons and polyhedra. Through recursive application of
Lasserre’s method, we show that exact integration of homo-
geneous polynomials over arbitrary polytopes can be reduced
to evaluation of the polynomial and its partial derivatives at
the vertices of the polytope. The methods developed in this
paper can be used to devise cubature rules, such as the ones
constructed inMousavi and Sukumar [7] and also elsewhere.

The remainder of this paper is organized as follows. In
the following section, we establish the validity of the method
described in Lasserre [8] for nonconvex polytopes. In Sect. 3,
wediscuss three particular extensions of thismethod. Specifi-
cally, in Sect. 3.1, we extend themethod to reduce integration
to function evaluation at vertices; in Sect. 3.2,we consider the
integration of homogeneous functions over domains bounded
by polar curves; and in Sect. 3.3, we treat the integration of
weakly singular integrands and discontinuous integrands in
polar coordinates over polygons. In Sect. 4, we provide an
efficient algorithm to implement the above methods. Several
numerical examples that demonstrate the accuracy and ver-
satility of the new method are presented in Sect. 5 and we
close with some final remarks in Sect. 6.

2 Integration of polynomials over arbitrary
polytopes

Consider a closed polytope P ⊂ R
d on an orientable man-

ifold whose boundary is denoted by ∂P . The boundary ∂P
is defined by m (d − 1)-dimensional boundary facets Fi ,
where Fi ⊂ aTi x = bi for some vectors ai and b. This def-
inition is broader than the one used in Lasserre [8], since it
now includes nonconvex polytopes. In comparison, a convex
polytope is defined by Ax ≤ b for a matrix A of dimensions
m×d, and a vector b of lengthm. As illustrated in Fig. 1, this
definition is no longer valid for nonconvex polytopes, since it
will erroneously include or exclude parts of the polytope P .

We wish to integrate a polynomial function, g(x), over a
polytope P , i.e.,

I =
∫
P
g(x) dx. (1)

For this purpose, we introduce the generalized Stokes’s the-
orem, which can be stated as (see Taylor [9]):

A x ≤ b

∂PP

Fig. 1 The cross-hatched region is defined by Ax ≤ b, whereas the
actual polygon is P—the grey, shaded area bounded by ∂P

∫
P

(∇ · X) f (x) dx +
∫
P

〈X,∇ f (x)〉 dx

=
∫

∂P
〈X,n〉 f (x) dσ. (2)

In (2), 〈·, ·〉 denotes the inner product of vectors and dσ is
the Lebesgue measure on ∂P . Choosing f (x) := 1 and the
vector field X := x, one obtains

d
∫
P
dx =

m∑
i=1

∫
Fi

〈
x,

ai
‖ai‖

〉
dσ

=
m∑
i=1

bi
‖ai‖

∫
Fi

dσ, (3)

wheredσ is theLebesguemeasure on the (d−1)-dimensional
affine variety1 that contains the facet Fi . The formula (3),
which first appeared in Lasserre [10], relates the volume of
a polytope to the (d − 1)-dimensional volume of its bound-
ary, the collection of all boundary facets Fi , i = 1, . . . ,m.
Geometrically, each term of the summation can be thought of
as the volume of a simplex emanating from the origin to the
boundary facet, Fi . In (3), bi and ai are related by aTi x = bi ,
the hyperplaneHi in which Fi lies. Furthermore, the normal
to the hyperplane is: n = ai/‖ai‖. This is readily verified
by normalizing the gradient of aTi x, which is in the direction
that is perpendicular to the isocontours of aTi x.

Let f (x) be a positively homogeneous function of degree
q that is continuously differentiable:

f (λx) = λq f (x) (λ > 0), (4)

which satisfies Euler’s homogeneous function theorem:

q f (x) = 〈∇ f (x), x〉 ∀x ∈ R
d . (5)

Note that for functions with degree of homogeneity q < 0,
the validity of (5) is for x ∈ R

d\{0}. For a homogeneous
function f and X := x, (2) yields

1 Algebraic varieties are the extension of algebraic curves to higher
dimensions and are defined to be the set of solutions of a system of
polynomial equations over real or complex numbers.
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d
∫
P
f (x) dx +

∫
P

〈∇ f (x), x〉 dx

=
m∑
i=1

bi
‖ai‖

∫
Fi

f (x) dσ. (6)

On invoking Euler’s theorem given in (5), (6) simplifies to

∫
P
f (x) dx = 1

d + q

m∑
i=1

bi
‖ai‖

∫
Fi

f (x) dσ. (7)

Equation (7) relates integration of a positively homogeneous,
continuously differentiable function f (x) over a polytope in
R
d to integration of the same function over the polytope’s

(d − 1)-dimensional boundary, ∂P . This equation appears
in Lasserre [8]; however, the proof therein was only valid
for convex polytopes. Here, the equation applies for both
convex and nonconvex polytopes, provided P is defined by
its boundary facets.

This method can be extended to arbitrary polynomial
functions by decomposing such a function as a sum of
homogeneous polynomials, then integrating each one. More
formally, consider g(x) to be a polynomial of highest degree
p, i.e., g(x) := ∑p

j=0 f̂ j (x) = f̂0(x) + · · · + f̂ p(x),

where f̂ j (x) is a homogeneous polynomial of degree j . If a
polynomial contains no terms of degree j , we simply have
f̂ j (x) = 0. Now, selecting X := x and f (x) := g(x), (2)
becomes

∫
P
g(x) dx =

p∑
j=0

1

d + j

m∑
i=1

bi
‖ai‖

∫
Fi

f̂ j (x) dσ. (8)

3 Extensions of Lasserre’s method

3.1 Integration on facets of lower dimensions

We further reduce the integration of
∫
Fi

f (x) dσ through
application of Stokes’s theorem. We define Fi j := Fi ∩ Fj

for j �= i . Hi j is the (d − 2)-dimensional variety that is the
intersection ofHi andH j , and ni j is the d-dimensional unit
vector that lies in Hi and is normal to Fi j . Now,

x := x0 +
d−1∑
i=1

x ′
i e

′
i (9)

is a point inRd that lies inHi . In (9), x0 ∈ Hi is an arbitrary
point (serves as the origin) that satisfies aTi x0 = bi , and
{e′

i }d−1
i=1 formanorthonormal basis on the (d−1)-dimensional

subspaceHi . Note that the divergence of x (restricted toHi )
is d−1. For a homogeneous function f (x) and choosing the
vector field X := x − x0 =∑d−1

i=1 x ′
i e

′
i , (2) becomes

(d − 1)
∫
Fi

f (x) dσ + q
∫
Fi

f (x) dσ

=
∑
j �=i

∫
Fi j

〈
x − x0, ni j

〉
f (x) dν +

∫
Fi

〈∇ f (x), x0〉 dσ.

Let di j := 〈x − x0, ni j
〉
be the algebraic distance from x0 to

Hi j . Then, the above equation simplifies to

∫
Fi

f (x) dσ = 1

d + q − 1

[∑
j �=i

∫
Fi j

di j f (x) dν

+
∫
Fi

〈∇ f (x), x0〉 dσ

]
. (10)

Equation (10) appears in Lasserre [8]; however, here it is
shown to hold for both convex and nonconvex polytopes.
When f (x) is a polynomial, (10) can be applied recursively
to reduce integration over the polytope to evaluations of f (x)

and its partial derivatives at the vertices. A simple example
demonstrating this reduction is provided in Sect. 5.

In (10), the choice of x0 ∈ Hi is arbitrary. However,
careful selection of x0 can reduce the number of function
evaluations that are required. For example, consider the func-
tion f (x) = x100y defined in R

2. If Fi is not parallel to the
y-axis, choosing x0 such that it lies at the intersection ofHi

and x = 0 greatly reduces the number of partial derivatives
that need to be taken.

Combining (10) with (7), we can write down an explicit
formula for the volume of a polytope in terms of the locations
of its vertices. In 2D, this formula is:

∫
P
dx = 1

2

m∑
i=1

bi
‖ai‖

∑
j �=i

di j . (11)

Geometrically,
∑

j �=i di j is the length of the boundary edge,
Fi , and bi/‖ai‖ is the algebraic distance (can be positive or
negative) from the origin to Hi . Therefore, the summation
can be thought of as a set of triangles, of positive and negative
areas, emanating from the origin to the boundary edges.

In 3D, the volume formula is:

∫
P
dx = 1

3

m∑
i=1

bi
‖ai‖

1

2

∑
j �=i

di j
∑

k �=i,k �= j

di jk, (12)

where

∑
k �=i,k �= j

di jk = length of Fi j ,

1

2

∑
j �=i

di j
∑

k �=i,k �= j

di jk = area of Fi .
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Equation (12) can be viewed as the sum of volumes of tetra-
hedrons, of positive and negative volumes, emanating from
the origin to the boundary facets.

In addition to computing the volume of polytopes, we
can also use (10) with (7) to generate a closed-form expres-
sion for the integral of a homogeneous polynomial over P .
Let α = (α1, α2) be a 2-tuple of nonnegative integers with
absolute value |α| = α1 + α2 and α! = α1! α2!. Let D be the
differential operator in multi-index notation. Then, we have
the following formula in 2D:

∫
P
f (x) dx =

∑m
i=1

bi
‖ai‖

∑
j �=i di j I (vi j )

(q + 2)(q + 1)
, (13a)

where

I (vi j ) :=
q∑

k=0

Qk(vi j )(q
k

) , (13b)

Qk(vi j ) :=
∑

|α|=q−k

D|α| f (vi j )
α!

2∏
�=1

(x0�)α� . (13c)

In (13), x0� is the �-th component of x0 ∈ Hi and vi j is
the location of the vertex of the polygon that coincides with
Hi j . Also, when k = q, the final summation reduces to just
the evaluation of the function f (x) at vi j . Equation (13) is an
exact cubature rule for a homogeneous polynomial f , where
the integration points are the vertices of the polygon. Addi-
tionally, we can also use (13) as a cubature rule to integrate
nonpolynomial homogeneous functions of degree q that are
at least q times differentiable. Such a cubature is canonical
in the sense that it only requires evaluations at vertices of the
polygon, whereas cubature rules for polygons are typically
specific to each particular polygon.

While the method described here provides a simple and
appealing route to reduce integration to lower-dimensional
facets, it is not the only way to accomplish this task. An
alternative geometric method to reduce integration to point-
evaluations at the vertices of the polytope is presented in the
Appendix.

3.2 Integration of homogeneous functions over domains
bounded by polar curves

In Lasserre [11], a formula is derived that reduces integration
of a homogeneous function over a d-dimensional region to
an integral over its (d − 1)-dimensional boundary surfaces,
where the surfaces are described by homogeneous functions.
Here, we provide a few extensions of this approach for polar
curves and for homogeneous functions in polar form.

Consider a closed region V ⊂ R
d bounded by m (d −

1)-dimensional surfaces, Ai ,which are describedby the func-

tions hi (x) = bi , with hi (x) being a homogeneous function
of degree qi . We wish to integrate f (x), a homogeneous
function of degree q, over V . Applying (2) to the integral
with X := x, we obtain [11]

∫
V

f (x) dx = 1

d + q

m∑
i=1

∫
Ai

〈 ∇hi
‖∇hi‖ , x

〉
f (x) dσ. (14)

Using the homogeneity of hi (x), we can simplify this to

∫
V

f (x) dx = 1

d + q

m∑
i=1

qibi

∫
Ai

‖∇hi‖−1 f (x) dσ. (15)

This result can be extended to a region bounded by curves,
each of which can be expressed as a linear combination of
homogeneous functions (for example, polynomials). First,
we define ĥi (x) = ∑n

j=1 h
( j)
i (x) = bi , where ĥi (x) is a

linear combination of n homogeneous polynomials, h( j)
i (x).

The function h( j)
i (x) is homogeneous with degree q( j)

i . Now,
the result in (15) can be generalized to

∫
V

f (x) dx

= 1

d + q

m∑
i=1

∫
Ai

‖∇ĥi‖−1 f (x)

n∑
j=1

q( j)
i h( j)

i (x) dσ.

(16)

In R
2, it may be the case that f (x) is more conveniently

represented in polar coordinates. An example in fracture
mechanics is when f (x) represents elastic stresses in the
vicinity of a crack-tip – stresses are proportional to 1/

√
r ,

where r = √x2 + y2 represents the distance from the crack-
tip. Note that the function f (x) is homogeneous with degree
q = − 1

2 . Even though the function is homogeneous, the
method described in Sect. 3.1 is not exact since the partial
derivatives of the function do not eventually vanish. As a
result, we compute the one-dimensional line integrals in (7)
using Gauss quadrature. In this section, we present a method
to convert line integrals of this type to polar coordinates.After
applying this transformation, the convergence rate is shown
to improve for weakly singular integrands when compared
to using quadrature on the Cartesian integral.

Consider a region A ⊂ R
2 that is enclosed by the polar

curves r = Hi (θ). Each curve is represented as a linear
combination of two homogeneous functions:

ĥi (r, θ) = r − Hi (θ) = 0.

The gradient (in polar coordinates) of this function is

∇ĥi (r, θ) =
〈
1,−1

r

dHi (θ)

dθ

〉
.
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On setting h(1)
i := r and h(2)

i := −H(θ) with q(1)
i = 1 and

q(2)
i = 0, respectively, one can use (16) to obtain

∫
A
f (x) dx = 1

2 + q

m∑
i=1

∫ βi

αi

r f
(
x(θ)

) ∥∥∥〈r, dHi (θ)
dθ

〉∥∥∥
1
r

∥∥∥〈r,− dHi (θ)
dθ

〉∥∥∥
dθ,

where ds := || 〈r, dHi (θ)/dθ〉 ||dθ is the differential of the
arc length and θ ∈ [αi , βi ] defines the limits for the polar
curve. Since r = Hi (θ), the above equation simplifies to

∫
A
f (x) dx = 1

2 + q

m∑
i=1

∫ βi

αi

H2
i (θ) f

(
x(θ)

)
dθ. (17)

Equation (17) allows very accurate integration over
regions whose boundary curves are described by equations
of the form r = Hi (θ) where Hi (θ) can be any function
given in terms of θ . The utility of (17) is demonstrated with
the evaluation of the following integral:

I :=
∫
A
f (r, θ) dx, f (r, θ) = 1√

r
, (18a)

where the region A (see Fig. 2) is given by

A := {r ∈ [0, 1], θ ∈ [0, π/2]}. (18b)

Direct integration yields the exact value: I = π
3 . Note that

the function f (r, θ) becomes singular at one of the vertices
of the region A. On applying (17) to evaluate the integral
in (18), we obtain:

I :=
∫
A

dx√
r

= 2

3

∫ π/2

0
dθ.

Fig. 2 The region A := {r ∈ [0, 1], θ ∈ [0, π/2]}

Since the integrand only contains a constant, one-pointGauss
quadrature yields the exact result.

The previous example, while illustrative, yields a rather
trivial result. Therefore, we will also consider an example
over a more complex polar region. We integrate

I :=
∫
A
f (r, θ) dx, f (r, θ) = 1

r
(19a)

over the region A (see Fig. 3), which is given by

A := {r ∈ [0, 1], θ ∈ [π/4, π/2] :
r ≥ cos θ, r ≤ sin θ, θ ≤ π/2}. (19b)

Direct integration yields I = √
2 − 1. The function 1/r is

homogeneous with degree q = −1. As with the previous
example, a singularity is present at one of the vertices of the
domain. On applying (17), the integration simplifies to

I :=
∫
A

dx
r

=
∫ π/2

π/4
(sin θ − cos θ) dθ.

Using a six-point Gauss rule to compute the one-dimensional
integral on the right-hand side results in a relative error that
is close tomachine precision. In Fig. 3, the plot of the relative
error as a function of the number of Gauss points is shown.

3.3 Integration of homogeneous functions in polar form
on polygons

In the previous section, we considered the boundary of polar
regions to be defined by r = Hi (θ). At first glance, this may
seem to limit the utility of (17). However, we demonstrate
in this section that this representation for the boundary of a
polar region can describe any polygon in R2.

The equation aTi x = bi gives the general equation of a
line. Substituting x = r cos θ and y = r sin θ in the general
equation of a line gives

r = bi
〈ai , {cos θ, sin θ}〉 = bi

Ĥi (θ)
, (20)

where Ĥi (θ) = 〈ai , {cos θ, sin θ}〉. This polar representation
of a line is of the form introduced in Sect. 3.2, namely r =
Hi (θ). Replacing (20) in (17), one obtains

∫
P
f (x) dx = 1

2 + q

m∑
i=1

b2i

∫ βi

αi

f
(
x(θ)

)
Ĥ2
i (θ)

dθ, (21)

where β = tan−1 y1
x1
, α = tan−1 y2

x2
, and (x1, y1) and (x2, y2)

are the vertex coordinates of the boundary edge. Note that
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Fig. 3 Numerical integration of
1/r . a Domain of integration,
which is defined in (19b); and
b Relative error
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(b)

f (r) = rq becomes f̂ (θ) = (
bi/Ĥi (θ)

)q with q > −2 in
R
2, and then (21) simplifies to

∫
P
f (x) dx = 1

2 + q

m∑
i=1

bq+2
i

∫ βi

αi

1

Ĥq+2
i (θ)

dθ. (22)

For this technique, numerical integration is tested for
three different functions. In the first two cases, the weakly
singular integrands f (r) = r−1 and f (r) = r−1/2 are
integrated over hexagonal and square domains. In the third
case, we consider the discontinuous, weakly singular func-
tion f (r, θ) = 1√

r
sin θ

2 . For all cases, results using one-
dimensional quadrature on the transformed polar integral
in (22) are compared to quadrature on the untransformed
Cartesian integral in (7) and to tensor-product Gauss cuba-
ture, where possible.

First, we use (22) to integrate f (r) = r−1 and f (r) =
r−1/2 over a regular hexagon inscribed inside a unit circle
centered at the origin. These functions are unbounded at the
origin, but the integrals are finite and continuous, and are
referred to as being weakly singular. Results are compared
to those obtained usingGauss quadrature on (7). From Fig. 4,
we observe that Gauss quadrature on the transformed polar
integral converges faster than when it is used directly on the
Cartesian integral in (7).

Next, we compute cubature on these integrals for a biunit
square centered at the origin.We compare numerical integra-
tion using the techniques presented in this paper to tensor-
product Gauss cubature. For both cases, Gauss quadrature on
the polar integral delivers accuracy to O(10−14) with about
55 integration points, whereas quadrature on the Cartesian
integral requires up to 75 integration points to realize the

same accuracy. The domain is subdivided into four squares
and tensor-product Gauss cubature is applied over each
square: a total of 104 integration points provide accuracy
to only O(10−3) for f (r) = 1/r . Results are presented in
Fig. 5.

Finally, numerical integration of the weakly singular, dis-
continuous function f (r, θ) = 1√

r
sin θ

2 is demonstrated over

the biunit square centered at (0.5, 0.5). The discontinuity in
the function is treated as two additional boundary facets, and
therefore, the entire domain is viewed as a nonconvex poly-
gon with seven sides. This decomposition is demonstrated
in Fig. 6a. For this case, since the tensor-product cubature
points do not coincide with the location of the singularity,
the domain does not require subdivision. As with the previ-
ous two cases, integration of the transformed polar version
of the integral is the most accurate. A complete set of results
for this example are plotted in Fig. 6b.

4 Numerical implementation

In this section, we describe an algorithm to implement the
methods detailed in Sects. 2 and 3.1. The assumed inputs
of this algorithm are the vertices of a polytope (given in
Cartesian coordinates), the connectivity of the vertices in
the polytope that define the boundary facets, and the poly-
nomial function to integrate. The output is the integral of the
polynomial function over the polytope.

Algorithms 1 and 2 contain pseudocode that imple-
ments the methods and equations presented in Sects. 2
and 3.1, respectively. Lines of pseudocodewithout an explicit
assignment operator refer to functions that carry out the cal-
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Fig. 4 Relative error in the numerical integration of weakly singular
functions over a regular hexagon that is inscribed within the unit circle.
The functions are: a f (r) = r−1 and b f (r) = r−1/2. The dashed

line with triangular markers represents integration error with the Carte-
sian integral, whereas the solid line with circular markers represents
integration error for the polar integral
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Fig. 5 Relative error in the numerical integration of weakly singular functions over a biunit square centered at the origin. The functions are: a
f (r) = r−1 and b f (r) = r−1/2. The polar and Cartesian integrals are displayed as in Fig. 4. Tensor-product cubature on the square is shown as a
thick line

culations described. Since the implementation of most of
these functions is straightforward, they are not provided in
this paper.

One function whose implementation is not obvious is
the function to calculate ai and bi from the vertices of the
hyperplane. These quantities must be calculated such that

the normal is oriented outward from the polytope. A sim-
ple method to do this is to order the vertices of a polygon in
clockwise orientation and the vertices that belong to a face of
a polyhedron in counterclockwise orientation when standing
outside the polyhedron. Then, we calculate ai and bi using
the equation
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Fig. 6 Numerical integration of f (r, θ) = 1√
r
sin θ

2 over a biunit

square centered at (0.5, 0.5). The polygon P , its edges Fi , and f (r, θ)

(shaded in grey) are plotted in (a) and the relative error in the numerical

integration from three different methods (see Fig. 5 for a descrip-
tion) is shown in (b). Note in (a) that f (r, θ) is discontinuous along
y = 0 ∩ x < 0 and becomes unbounded at the origin

det

∣∣∣∣∣∣∣∣∣∣∣

x1 x2 . . . xd 1
x11 x12 . . . x1d 1
x21 x22 . . . x2d 1
...

...
. . .

...
...

xd1 xd2 . . . xdd 1

∣∣∣∣∣∣∣∣∣∣∣
= 0, (23)

where xi j is the j-th coordinate of the i-th vertex of d linearly
independent vertices that lie in the hyperplane of interest. The
determinant gives ai1x1 + ai2x2 · · · + aid xd − bi = 0 with
the proper orientation. For example, given the vertices (1, 0)
and (0, 1) of the i-th hyperplane in R2, (23) yields

det

∣∣∣∣∣∣
x1 x2 1
1 0 1
0 1 1

∣∣∣∣∣∣ = 0,

which simplifies to −x1 − x2 = −1, and hence we obtain
ai = {−1,−1} and bi = −1.

5 Results

The implementation described in Sect. 4 is applied to sev-
eral test problems to demonstrate its versatility and ability to
accurately and efficiently integrate polynomial functions.We
present a selection of these test problems in this section. First,
we demonstrate the method in Sect. 3 for a simple convex
polygon. Then, we apply our algorithm to more complicated
shapes in Sects. 5.3 through 5.5. Results are verified with
LattE integrale 1.7.2 [12], a code capable of generat-

ing exact, fractional expressions for integrals of polynomials
over convex polytopes [13,14].

5.1 Illustrative example

First, we apply our method to the integration of a homoge-
neous polynomial over a two-dimensional triangle. In this
simple case, direct integration is carried out and compared
to the result from our approach.

Consider the evaluation of the following two-dimensional
integral:

I =
∫
P
xy dxdy (24a)

over the triangle described by

P :=
{
(x, y) ∈ R

2|x + y ≤ 2, x ≥ y, x ≥ 0
}

. (24b)

Direct integration gives the exact result: I = 1/3.
On setting F1 := P ∩ {x + y ≤ 2}, we have
b1

‖a1‖
∫
F1

xy dμ = √
2
∫
F1

xy dμ.

Selecting x0 = (2, 0) and using (10), the integration over F1
reduces to

√
2
∫
F1

xy dμ =
√
2

2 + 2 − 1

(√
2 + 2

∫
Fi
y dμ

)
.
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On reapplying (10), we obtain

√
2
∫
F1

xy dμ =
√
2

3

(√
2 + 2

2 + 2 − 2

(√
2
))

= 4

3
.

Now, set F2 := P ∩ {x ≥ y} and F3 := P ∩ {x ≥ 0}.
For both of these hyperplanes, bi/‖ai‖ = 0. Therefore, on
applying (7), we get

I = 1

2 + 2

(
4

3

)
= 1

3
,

which matches the exact value of the integral.

5.2 Application to convex polygons

We apply our algorithm to a variety of convex polygons,
and compare our numerical results to exact results from
LattE. Polygons with randomized vertex coordinates are
constructed using a randomnumber generator. Thenumber of
facets is first decided by generating a random integer between
3 and 10, with the random points selected in (−5, 5)2 ⊂ R

2.
These random points are truncated at the thousandth deci-
mal place to allow for fractional representation in LattE.
The points are verified to form a convex polygon, then Algo-
rithms 1 and 2 are executed for the homogeneous polynomial
x2 + xy+ y2. We provide results for two different polygons,
which are shown in Fig. 7c, d. The vertices of the polygons
are listed in Table 1.

To verify the accuracy of our method, we invoke the Sym-
bolic Math Toolbox as part of MATLAB R2014a™, which
allows for exact calculation of these integrals using our algo-
rithm. Results from integrating these polygons are listed in
Table 3, along with exact results from LattE. For both test
cases, our results exactlymatch those obtained usingLattE.

5.3 Application to simple nonconvex polygons

Next, we apply our algorithm to a variety of simple (non-
intersecting) nonconvex polygons, and compare our numer-
ical results to exact results from LattE. Polygons that are
random, simple, and nonconvex are generated in a similar
manner to those in Sect. 5.2, and then Algorithms 1 and 2
are executed for the homogeneous polynomial x2 + xy+ y2.
Results are computed for twodifferent polygons that are illus-
trated in Fig. 7c, d. The vertices of the polygons are listed in
Table 1.

Results from integration using the MATLAB Symbolic
Math Toolbox and exact integration from LattE are listed
in Table 3. Since LattE is only capable of integration on
convex polytopes, the nonconvex polygons that we consider
are integrated in LattE by decomposing them into a collec-
tion of convex polygons, performing integration over each

polygon, and then summing the results. No error is intro-
duced by this decomposition since results from LattE are
exact. For both test cases, our results exactly match those
obtained using LattE.

Algorithm 1 Integration of polynomial over arbitrary poly-
tope using method of Sect. 2
Require: g(x), vertices, boundary facet connectivity (Fi )
Determine the dimension, d, of the polytope
Determine m, the number of hyperplanes
for i = 1 to m do

Calculate ai and bi for the hyperplane
end for
Break polynomial g(x) into (p + 1) homogeneous polynomials
I nt ← 0
for j = 0 to p do

h ← 0
for i = 1 to m do

g ←Call Alg. 2 with Fi , a, b, d − 1 and f̂ j (x)

h ← h + bi/‖ai‖ × g
end for
h ← h/(d + j)
I nt ← I nt + h

end for
return I nt

Algorithm 2 Further reduction of integration of polynomial
using method of Sect. 3
Require: Fk , a, b, d and f (x) � Fk : k-th face
g ← 0
Determine x0 from ak and bk
for i = 1 to d do

Calculate d fi := ∂ f (x)
∂xi

if d fi �= 0 then
g ← g + Call Alg. 2 with Fk , a, b, d and (x0)i d fi

end if
end for
for j = 1 to m do

if Fk ∩ Fj �= ∅ then
Calculate dkj
if (Fkj is a vertex) then

g ← g + dkj f (vk j )
else

g ← g + Call Alg. 2 with Fkj , a, b, d − 1 and dkj f (x)

end if
end if

end for
return g

5.4 Application to nonsimple nonconvex polygons

Our approach is also able to handle integration of nonconvex
polygons where the boundary facets are intersecting, pro-
vided we define positive and negative areas of the polygon.
These definitions arise naturally from the sign of the deter-
minant used to calculate ai and bi for each hyperplane. The
function f of interest is integrated over triangles emanating
from the origin O with the sign determined by bi . If the two
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Fig. 7 Tests on polygons and polyhedra. a, b Convex polygons;
cToulouse, d Simple nonconvex polygons; e, f Non-simple noncon-
vex polygons; and g, h, i Polyhedra. Positive and negative areas in (e)
and (f) are represented by the (+) and (−) symbols, respectively. h, i

are nonconvex polyhedra. The homogeneous polynomial x2 + xy + y2

is integrated over the polygons (a)–(f). The homogeneous polynomial
x2 + xy + y2 + z2 is integrated over the polyhedra (g)–(i)

vertices and the point O have a clockwise orientation, then
the sign of the integral is positive and vice versa. How this
ultimately affects the calculated result over the polygon in

Fig. 7f is depicted in Fig. 8. Triangles that are associated
with positive area contribute to the integral of f over the tri-
angle, whereas those with negative area give the negative of
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Table 1 Vertices of polygons used as test cases

Polygon in Fig. 7 Vertex x y

(a) 1 1.220 −0.827

2 −1.490 −4.503

3 −3.766 −1.622

4 −4.240 −0.091

5 −3.160 4.000

6 −0.981 4.447

7 0.132 4.027

(b) 1 4.561 2.317

2 1.491 −1.315

3 −3.310 −3.164

4 −4.845 −3.110

5 −4.569 1.867

(c) 1 −2.740 −1.888

2 −3.292 4.233

3 −2.723 −0.697

4 −0.643 −3.151

(d) 1 0.211 −4.622

2 −2.684 3.851

3 0.468 4.879

4 4.630 −1.325

5 −0.411 −1.044

(e) 1 −4.165 −0.832

2 −3.668 1.568

3 −3.266 1.279

4 −1.090 −2.080

5 3.313 −0.683

6 3.033 −4.845

7 −4.395 4.840

8 −1.007 −3.328

(f) 1 −3.018 −4.473

2 −0.103 2.378

3 −1.605 −2.308

4 4.516 −0.771

5 4.203 0.478

the integral of f over the triangle. Regions that are covered
by triangles with both positive and negative areas cancel out
and the integral over these regions is zero.

The polygons in Fig. 7e, f are used to verify the ability of
our method to calculate integrals over nonsimple nonconvex
polygons. In Fig. 7e, f, portions of the polygon with positive
area are denoted with a (+) and portions with a negative area
are denoted with a (−). The vertices of these polygons are
listed in Table 1. The exact results using LattE are com-
puted by decomposing the nonsimple polygon into convex
polygons as described in the previous section. As was the
case with the convex polygons and the simple nonconvex

1

2

3

O

4

5

positive and negative area
negative area
positive area
edge of polygon

x

y

Fig. 8 Decomposition of positive and negative areas to calculate the
integral over the nonsimple nonconvex polygon in Fig. 7f. The origin
is indicated by O

polygons, our results (listed in Table 3) exactly match those
obtained using LattE.

5.5 Application to nonconvex polyhedra

Finally, our algorithm was applied to a range of different
convex and nonconvex polyhedra. The test cases presented
here include a cube, a nonconvex polyhedron consisting of
a cube with a notch removed from it, and a tetrahedron
with a tetrahedron carved from a face to make the poly-
hedron nonconvex. Rather than selecting random vertices
and boundary facets as was done in Sects. 5.3 and 5.4, we
choose tomanually select the vertices of this polyhedron. The
vertices of these polyhedra are listed in Table 2 and illustra-
tions are provided inFig. 7g–i. Thehomogeneous polynomial
x2+xy+y2+z2 is integrated over the polyhedra. As demon-
strated in Table 3, our results exactly match those produced
using LattE.

5.6 Integration of arbitrary polynomials

While the methods introduced in the previous sections are
of great utility when the integrand is known explicitly, often
times the integrand is not known, and can only be evaluated at
points within the domain. To handle this situation, Mousavi
and Sukumar [7] developed a method to integrate arbitrary,
unknown polynomials up to degree p by taking advantage
of the properties of homogeneous functions and solving a
small system of linear equations. We demonstrate that the
method is equally valid for both convex and nonconvex
polytopes.
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Table 2 Vertices of polyhedra used as test cases

Polyhedron in Fig. 7 Vertex x y z

(g) 1 0 0 0

2 5 0 0

3 5 5 0

4 0 5 0

5 0 0 5

6 5 0 5

7 5 5 5

8 0 5 5

(h) 1 0 0 0

2 5 0 0

3 5 4 0

4 3 2 0

5 3 5 0

6 0 5 0

7 0 0 5

8 5 0 5

9 5 4 5

10 3 2 5

11 3 5 5

12 0 5 5

(i) 1 0 0 0

2 1 0 0

3 0 1 0

4 0 0 1

5 0.25 0.25 0.25

Table 3 Results of integrating a homogeneous polynomial over the
polytopes shown in Figure 7 using LattE [12] and the present method

Polytope in Fig. 7 Exact Result [12] Present Method

(a) 2031627344735367
8000000000000

2031627344735367
8000000000000

(b) 517091313866043
1600000000000

517091313866043
1600000000000

(c) 147449361647041
8000000000000

147449361647041
8000000000000

(d) 180742845225803
1000000000000

180742845225803
1000000000000

(e) 1633405224899363
24000000000000

1633405224899363
24000000000000

(f) 88161333955921
3000000000000

88161333955921
3000000000000

(g) 15625
4

15625
4

(h) 33835
12

33835
12

(i) 37
960

37
960

Integrating a polynomial using (8) requires the polynomial
to be known a priori. However, simple manipulation of (8)
leads to

p∑
j=0

(d + j)
∫
P
f̂ j (x) dx

=
m∑
i=1

bi
‖ai‖

∫
Fi

p∑
j=0

f̂ j (x) dσ. (25)

Note that

∫
P
g(x) dx =

p∑
j=0

∫
P
f̂ j (x) dx (26)

gives thequantity of interest. The integral
∫
Fi

∑p
j=0 f̂ j (x) dσ

can be computed without explicitly knowing the integrand if
a quadrature (or cubature) rule is available to integrate a poly-
nomial on Fi .Noting that homogeneous functions of degreeq
have the property f (λx) = λq f (x), we can manipulate (25)
to obtain

p∑
j=0

λ j (d + j)I j = Q(λ), (27a)

where

I j :=
∫
P
f̂ j (x) dx, (27b)

Q(λ) :=
m∑
i=1

bi
‖ai‖

∫
Fi

p∑
j=0

f̂ j (λx) dσ. (27c)

This provides an arbitrary number of equations that are
formedbyvarying thevalueofλ.Note that the right-hand side
of the equation can be evaluated by sampling points within
Hi . Choosing p+1 values of λ results in a (p+1)× (p+1)
system of equations that can be used to solve each term
of (26), without explicitly knowing each homogeneous poly-
nomial, f̂ j (x). On choosing p + 1 distinct values for λ, we
can write (27) as

p∑
j=0

λ
j
k (d + j)I j = Q(λk) (28)

for k = 1, . . . , p + 1.
This approach is used to integrate the bivariate polynomial

f (x) = x3 + xy2 + y2 + x over the polygons shown in
Figure 7a, c. The polynomial f (x) contains monomials up
to degree three. Therefore, the integral of eachmonomial can
be determined through the solution of a 4× 4 linear system,
which is defined by (28). We choose λ = (0.25, 0.5, 0.75, 1)
to compute the 4 × 4 system matrix and to determine the
location of the quadrature points within the domain of the
boundary facets.
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With this choice of λ for the polygon shown in Figure 7a,
(28) becomes

⎡
⎢⎢⎢⎢⎣

2 3
4

1
4

5
64

2 3
2 1 5

8

2 9
4

9
4

135
64

2 3 4 5

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
I1
I2
I3
I4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

− 11550135635909446173
256000000000000000

− 9080398944401774173
32000000000000000

− 251474206771886854671
256000000000000000

− 9628722192185938173
4000000000000000

⎤
⎥⎥⎥⎥⎦ .

Solving for I1, . . . , I4, we obtain

⎡
⎢⎢⎣
I1
I2
I3
I4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
− 99066199641

2000000000
582878710330541
4000000000000

− 11365839835662102173
20000000000000000

⎤
⎥⎥⎥⎦ .

Using (26), we calculate
∫
P g(x) dx ≈ −472.105. This

result exactlymatches integrationof themonomials using (8).
For the polygon in Figure 7c, the linear system that is

obtained from (28) is:

⎡
⎢⎢⎢⎢⎣

2 3
4

1
4

5
64

2 3
2 1 5

8

2 9
4

9
4

135
64

2 3 4 5

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
I1
I2
I3
I4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

− 1005647136056845793
256000000000000000

− 659018727981237793
32000000000000000

− 16790442429180948411
256000000000000000

− 617991551841433793
4000000000000000

⎤
⎥⎥⎥⎥⎦ .

Again, solving for I1, . . . , I4 gives

⎡
⎢⎢⎣
I1
I2
I3
I4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0
− 22047837983

6000000000
22814962939549
4000000000000

− 665155727633629793
20000000000000000

⎤
⎥⎥⎥⎥⎦ .

Summing each Ik , we obtain
∫
P g(x) dx ≈ −31.229.Aswas

the case for the convex polygon, this result exactly matches
integration of the monomials using (8).

6 Concluding remarks

In this paper, we applied Euler’s homogeneous function
theorem and Stokes’s theorem to devise a method for reduc-
ing integration of homogeneous polynomials over arbitrary
convex and nonconvex polytopes to integration over the
boundary facets of the polytope. Additionally, we also
demonstrated that the same tools could be used to fur-
ther reduce the integration if partial derivatives of the
homogeneous function exist. For homogeneous polynomials,
integration can ultimately be reduced to function evaluation
at the vertices of the polytope.

We implementedourmethodandpresented several numer-
ical examples that showcased its capabilities. In addition
to integrating homogeneous polynomials over convex and
nonconvex polygons and polyhedra, we also demonstrated
how the method could be applied to nonsimple polygons.
Furthermore, we also successfully tested the approach for
the integration of weakly singular functions in two dimen-
sions over polygons with straight and curved facets. For all
cases involving homogeneous polynomials that we tested,
our results exactly matched the results obtained using
the code LattE [12]. As part of future work, we plan
to assess the proposed integration scheme in applications
of the extended and embedded finite element methods,
as well as Galerkin methods on polygons and polyhe-
dra.

Acknowledgments The research support of the National Science
Foundation through contract grant CMMI-1334783 to the University
of California at Davis is gratefully acknowledged.

Appendix

In this appendix, we describe an alternative method for
reducing integration of homogeneous polynomials over poly-
gons and polyhedra to lower-dimensional facets. Rather than
using partial derivatives, as was done in Sect. 3, this method
uses rotations to simplify integration over lower-dimensional
facets. Aswith themethod in Sect. 3, this method can be used
to reduce integration to function evaluations at the vertices
of the polytope.

To integrate the expression f (x) in (7)
(
or f̂ j (x in (8)

)
over the boundary facets, Fi , the integral overRd must first be
transformed to an integral over Hi , the hyperplane in which
Fi lies. This can be accomplished by applying an affine trans-
formation of the boundary facet such that it lies normal to
one of the orthonormal coordinate axes in R

d . In R
2 and

R
3, this transformation is completed with a simple rotation

matrix applied to both the vertices of the boundary facet and
to the variables in the expression f (x). Calculation of this
rotation matrix inR3 is expedited by using Rodrigues’s finite
rotation formula [15]:

R = I + ω̂ sin θ + ω̂
2
(1 − cos θ), (29)

where θ is the desired angle of rotation, I is the 3×3 identity
matrix, and ω̂ is a skew-symmetricmatrixwhose components
are:

ω̂ =
⎛
⎝ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎞
⎠ , (30)
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where ω ≡ (ωx , ωy, ωz) is the unit vector about which the
rotation occurs. This vector can be constructed for each Fi
by the vector cross product

ω = ai/‖ai‖ × ez, (31)

where ez is a unit vector in the z-direction. When the trans-
formation is applied to f (x), it is likely that the resulting
equation will no longer be a homogeneous function. Instead,
it will become a polynomial that can be integrated using (8).
Applying this procedure d times to a d-dimensional polytope
reduces integration to simple evaluation at the vertices of the
polytope. Algorithm 3 describes an implementation of this
method. The examples in Sect. 5 were calculated using this
method, and were found to exactly match results using the
method of Sect. 3. An example that illustrates this method
follows.

Algorithm 3 Integration of polynomial over arbitrary poly-
tope
Require: g(x), vertices (v), boundary facet connectivity (Fi )
Determine the dimension, d, of the polytope
Determine m, the number of hyperplanes
for i = 1 to m do

Calculate ai and bi for the hyperplane
Build d-dimensional rotation matrix, Ri

end for
Break g(x) into (p + 1) homogeneous polynomials
I nt ← 0
for j = 0 to p do

if d > 1 then
h ← 0
for i = 1 to m do

v′
i ← Rivi � vi : vertices of i-th facet
x ← RT

i x
′

g ←Call Algorithm 3 with f (RT
i x

′), v′
i , and Fi

h ← h + bi/‖ai‖ × g
end for
h ← h/(d + j)
I nt ← I nt + h

else
I nt ← I nt + 1/(1 + j) [b1 f (v1)/|a1| + b2 f (v2)/|a2|]

end if
end for
return I nt

Numerical example

We demonstrate the geometric method of degree-reduction
using the example considered in Sect. 5.1: we evaluate the
two-dimensional integral I = ∫

P xy dxdy, where P is the
triangle defined in (24b). Direct integration gives I = 1/3.

On setting F1 := P ∩ {x + y ≤ 2}, we have
b1

‖a1‖
∫
F1

xy dμ = √
2
∫
F1

xy dμ.

Next, we apply the rotation matrix

R = 1√
2

[
1 −1
1 1

]
,

which aligns the hyperplane parallel to the x-axis (see Algo-
rithm 3). The resulting transformed integral is:

√
2
∫
F1

xy dμ = √
2
∫ √

2

0

(
1 − (x ′)2

2

)
dx ′.

Applying (8) yields

√
2
∫ √

2

0

(
1 − (x ′)2

2

)
dx ′ = √

2

[√
2 −

√
2

3

]
= 4

3
.

Now, set F2 := P∩{x ≥ y} and F3 := P∩{x ≥ 0}. For both
these hyperplanes, bi/‖ai‖ = 0. Therefore, on applying (7),
we get

I = 1

2 + 2

(
4

3

)
= 1

3
,

which exactly matches the result from direct integration.
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