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Abstract A new formulation of two-scale FE2 analysis
introduces symmetric stretch tensor as strain measure on
macro level instead of asymmetric deformation gradient to
determine boundary conditions on embedded microstructure.
This significantly reduces computational cost of boundary
conditions related sensitivity analysis of microstructure and
with it the evaluation of local macroscopic stress tensors
and tangent matrices. Various FE2 formulations with iso-
geometric and standard finite element microanalysis are
tested for consistency, accuracy and numerical efficiency on
numerical homogenisation examples. Objective performance
comparison of different FE2 formulations is enabled with
automation of all procedures in symbolic code generation
system AceGen. The results obtained in numerical examples
show reduced computational cost of the new FE2 formu-
lation without loss of accuracy and comparable numerical
efficiency of higher order isogeometric and standard FE2 for-
mulations.

Keywords Optimized multiscale formulation ·
Automatic code generation · Multiscale method ·
Numerical homogenisation

1 Introduction

A two-scale FE2 scheme is a well established computa-
tional homogenisation technique [1–7] for determination of
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material characteristics of multiphase materials. FE2 method
predicts the global response of microscopic heterogeneous
materials (such as metal alloy systems, polymer blends,
porous media, polycristaline materials and composites) by
employing micromechanical models and transferring the
microscale information to the macroscale analysis. The com-
putational cost of FE2 analysis is enormous since this nested
finite element method framework simultaneously analyzes
microstructure and macrostructure. This paper presents a
new FE2 formulation with reduced computational cost with-
out altering the numerical model of multiphase material.
At each Newton–Raphson iteration on macro level local
tangent operator consistent with local macroscopic stress
tensor is extracted from embedded microscale computation.
A conventional way is based on the idea of condensing the
microscale tangent information stored in the global finite ele-
ment tangent matrix to a fourth-order local tangent operator
at macroscopic integration point (see [2]). In case of com-
plex microstructures this procedure inflicts too high memory
allocation demands for standard workstations to handle (see
[8,9]). An alternative technique for tangent computation
was presented by Lamut (see [8]) which determines local
macroscopic tangent operator with sensitivity analysis of
embedded microstructure with respect to boundary condi-
tions (see [10]). Result of sensitivity analysis are partial
derivatives of response function with respect to sensitiv-
ity parameters, which are independent components of the
macro strain measure. Macro strain measure is in a conven-
tional FE2 procedure asymmetric macroscopic deformation
gradient with nine independent components. A motivation
for this paper was to reduce computational cost of sensi-
tivity analysis with transition to symmetric stretch tensor as
macro strain measure which reduces the number of sensitivity
parameters from nine to six. For this study also various FE2

formulations with isogeometric and standard finite element
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microanalysis were developed and compared on numerical
homogenisation examples. To enable objective performance
comparison of different FE2 formulations are all considered
procedures implemented in automatic code generator Ace-
Gen which provides uniformly automated FE2 flowchart.
Different FE2 formulations are tested for consistency of
micro–macro coupling, accuracy and numerical efficiency
on numerical homogenisation examples with hyperelastic
and linear elastic porous material. For accuracy validation
in linear case a Nemat-Nassers analytical estimate of effec-
tive elastic tensor is calculated (see [11–13]) and compared
to numerical solution. Findings of this study are summarized
in conclusions at the end of this paper.

2 Specifics of proposed approach to FE2 method

FE2 homogenisation scheme simultaneously analyses het-
erogeneous multi-phase material on two nested scales of
finite elements. On the outer loop of FE2 procedure
macrostructure is analyzed and discretized with finite ele-
ments. To each macroscopic integration point a representa-
tive volume element (RVE) is assigned, which represents the
underlying microstructure. This research deals with hyper-
elastic multiphase materials and assumes that constitutive
behavior of all microstructural constituents is known and
defined by strain energy function. Contrary to conventional
formulation which determines prescribed essential bound-
ary conditions on RVE with local macroscopic deformation
gradient FM (see [2]) this paper presents transition to sym-
metric tensor with the aim of reducing the computational cost
of local macroscopic tangent matrix evaluation. The right
polar decomposition of the deformation gradient FM into a
product of an orthogonal tensor RM and a positive definite
symmetric tensor UM (see [14]), is written as

FM = RM · UM , (1)

where RM represents rigid rotation and UM the stretch ten-
sor. Here and in the following the subscript “M” refers to
macroscale quantity, while the subscript “m” will denote a
microscopic quantity. The material characteristics of hyper-
elastic material depend only on stretch tensor UM , since
rigid body rotation does not alter the material volume or
shape. Since local macroscopic Cauchy–Green tensor CM =
FT

M FM = UM UM is symmetric and positive definite, UM

is unique symmetric positive definite square root of CM . The
exact finite term expansion of matrix square root and and its
first and second derivative was obtained by differentiating
a scalar generating function of the eigenvalues of CM (see
[15]) as

UM = 2

3

∂
(
E3/2

1 + E3/2
2 + E3/2

3

)

∂CM
, (2)

where E1, E2, E3 are eigenvalues of CM determined with
trigonometric functions (see [16,17]). In case of multiple
or almost equal eigenvalues in which general formulation
exhibits ill-conditioning, asymptotic expansions presented in
[17] are applied. The actual derivatives were obtained with
use of backward mode automatic differentiation technique as
described in [17]. In this way the usual evaluation of matrix
square root function based on polar decomposition and asso-
ciated numerical difficulties are avoided. Hence, prescribed
boundary conditions can be formulated with UM instead of
FM without prejudice to the generality of FE2 method.

RVE is brick shaped and essential boundary conditions
are assigned in each corner node on the RVE boundary as

ū = (UM − I) Bc, (3)

where Bc are reference coordinates of a corner node in RVE.
For the unconstrained boundary nodes microstructural peri-
odicity assumption is adopted as justified by a number of
authors [2,9,18]. The deformed position of all unconstrained
nodes on RVE boundary is constrained with periodicity con-
ditions written in general form as

x+ − x− = UM (X+ − X−) = UM (B+
c − B−

c ), (4)

where x+ and x− (X+ and X−) denote deformed (reference)
position of nodes on opposite RVE boundary surfaces and
B+
c and B−

c represent reference position of associated corner
nodes. Periodic boundary conditions in (4) imply periodic
deformation and stress field (see [11]). Thus, for bound-
ary stress p = Pm · n, where Pm is the microscopic 1.
Piola-Kirchhoff stress tensor and n is the associated nor-
mal to the undeformed RVE boundary surface it holds true
that p+ = p− on opposite boundary surfaces of RVE. Peri-
odicity conditions (4) are added to microscale analysis as
equality constraints for a given boundary problem which is
then solved monolithically with the method of Lagrange mul-
tipliers. On the inner loop of FE2 analysis RVE is discretized
and analyzed with finite elements. Additional Lagrange finite
elements link displacements of the constrained corner nodes
Bc with those of unconstrained nodes on opposing boundary
planes of RVE. The Lagrange finite elements are defined by
augmented Lagrange multiplier potential,

Ξ(λi ) = λi (u+ − u−) + ρ (u+ − u−)2, (5)

where λi = {λ1, λ2, λ3} are the Lagrange multipliers of the
i-th equality constraint and ρ is arbitrary weight.
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3 The proof of consistency of micro - macro
coupling

The coupling between macroscopic and microscopic lev-
els is based on averaging theorems [11,19,20]. The energy
averaging theorem known as Hill–Mandel condition requires
equality between volume average of virtual work performed
by variation of microscopic deformations on RVE and virtual
work performed by variation of macroscopic deformations in
associated point on macro-scale,

1

V0

∫

V0

Pm : δFT
m dV = PM : δFT

M , ∀ δx, (6)

where PM is the 1st Piola–Krichhoff stress tensor associated
with variation of work conjugate deformation gradient δFM .
Here it will be shown that the equality (6) holds true also in
the case where only symmetric stretch tensor UM defines
boundary conditions on RVE without the rotational part RM

of the polar decomposition of deformation gradient FM . The
volume average of microstructural deformation gradient Fm

over RVE in case of periodic boundary conditions (4) equals

1

V0

∫

V0

Fm dV = 1

V0

∫

V0

(∇x)T dV = 1

V0

∫

Γ0

x n dΓ

= 1

V0

∫

Γ +
0

(x+ − x−) n+dΓ

= 1

V0
UM ·

∫

Γ +
0

(X+ − X−) n+dΓ

= 1

V0
UM ·

∫

Γ0

X n dΓ

= 1

V0
UM ·

∫

V0

∇X dV = UM , (7)

where equality ∇X = I is taken into account and divergence
theorem is used to transform the integral over undeformed
volume V0 of the RVE to an integral over undeformed bound-
ary surface Γ0 of the RVE with associated normal n and
vice versa. This yields the relation between macroscopic
deformation gradient FM and the volume average of its
microstructural counterpart Fm as

FM = RM · UM = RM · 1

V0

∫

V0

Fm dV . (8)

Volume average of microstructural 1. Piola-Kirchhoff stress
tensor Pm resulting from boundary conditions (4) on RVE,
equals

P̂ = 1

V0

∫

V0

Pm dV . (9)

Macroscopic 1. Piola-Kirchhoff stress tensor PM is obtained
after the rotation tensor RM is superimposed upon deformed
form caused by stretch tensor UM , affecting the direction of
stress field and leading to relation

PM = RM · P̂ . (10)

When the right side of Hill–Mandel condition (6), PM :
δFM , is expressed in terms of Biot stress tensor TM and its
work conjugate pair, the stretch tensor UM , it can be seen
that

PM : δFT
M = TM : δUM

= 1

2
(RT

M PM + PT
M RM ) : δUM

= 1

2
(RT

M RM P̂ + (RM P̂)T RM ) : δUM

= 1

2
( P̂ + P̂

T
) : δUM

= P̂ : δUM , (11)

since P̂ : δUM = tr( P̂
T

δUM ) = tr( P̂ δUM ) = P̂
T :

δUM and RM is orthogonal tensor, thus RT
M RM = I . When

periodicity conditions (4) on RVE boundary Γ0 are applied to
the left side of the Hill–Mandel equality (6) and divergence
theorem is put into use it can be expressed as

1

V0

∫

V0

Pm : δFT
m dV = 1

V0

∫

Γ0

p · δx dΓ

= 1

V0

∫

Γ +
0

p+ (X+ − X−) dΓ : δUM

= 1

V0

∫

Γ0

p X dΓ : δUM

= 1

V0

∫

V0

Pm dV : δUM = P̂ : δUM , (12)

where p = Pm · n (for more details see [21]). This proves
the equality of the left and the right side of the Hill–Mandel
macrohomogenity condition (6) for chosen boundary condi-
tions (4).

4 Automatic differentiation based (ADB) notation

Multiscale FE2 procedure is implemented in symbolic code
generation system AceGen that combines the symbolic
and algebraic capabilities of general computer algebra sys-
tem Mathematica [22], automatic differentiation technique
and simultaneous optimization of expressions (see [23,24]).
ADB method [25–27] is used for evaluation of the exact
derivatives of any arbitrary complex function via chain
rule and represents an alternative solution to the numerical
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differentiation and symbolic differentiation. ADB operator
δ̂ f (a)/δ̂a represents partial differentiation of a function f (a)
with respect to variables a. If for example an alternative or
additional dependencies for variables b have to be considered
for differentiation, local ADB exception is indicated by the
following formalism:

δ̂ f (a, b)

δ̂a

∣∣∣∣∣ Db
Da=M

, (13)

which indicates that during ADB procedure, the total deriv-
atives of variables b with respect to variables a are set to be
equal to matrix M. The ADB notation can be directly trans-
lated in the program code and is part of numerically efficient
code automation. Further details regarding this notation can
be found in [10].

5 Numerical formulation of proposed approach to
FE2 method

The response of each phase in heterogeneous RVE is defined
by constitutive equation specified with a strain energy func-
tion Ψ (Fm). The neo-Hookean type of strain energy function
used in numerical examples in Sect. 7 is chosen in a form

Ψ (Fm) = μ

2

(
J−2/3
F tr(Cm) − 3

)

+ K

β2

(
J−β
F − 1 + β ln(JF − 3)

)
, (14)

where Cm is Cauchy–Green deformation tensor, JF =
det Fm , μ is shear modulus, K is compression modulus and
β is dimensionless parameter. In RVE analysis is augmented
Lagrange multiplier potential Ξ defined in (5) added to elas-
tic deformation energy

∫
V0

Ψ dV , yielding in the absence of
external forces the system of nonlinear equations

Rm = ∂

∂p

(
Ξ(p) +

∫

V0

Ψ (Fm) dV

)
= 0, where

p = u ∪ λ, (15)

p is a vector of unknowns composed of nodal displacements
u and Lagrange multipliers λ. Global residual vector Rm of
micro problem assembled through integration domains as

Rm =
nle

A
le=1

Rle +
ne

A
e=1

ng∑
g=1

wmg Jmg Rmg, (16)

where operator A stands for standard FE assembly proce-
dure through finite element domains e and Lagrange element
domains le, Rle = δ̂Ξ/δ̂ple is Lagrange element residual, g

is Gauss point and wmg , Jmg , Rmg = δ̂Ψ/δ̂pe are the cor-
responding Gauss point weight, Jacobian determinant and
residual, respectively. System of equations (15) is solved
numerically with standard Newton–Raphson method. The
resulting microstress field is expressed as 1st Piola-Krichhoff
stress tensor Pm = ∂Ψ (Fm)/∂Fm , averaged over RVE vol-
ume and returned to macroscopic integration point as local
macroscopic stress P̂ ,

P̂ = 1

V0

ne∑
e=1

ng∑
g=1

wmg Jmg Pmg, (17)

where V0 is RVE volume and Pmg = δ̂Ψ/δ̂Fm is Gauss
point stress tensor. Macroelement formulation is established
in terms of a weak statement of static equilibrium of the body.
Contribution of internal forces to global weak form is given
as:

δWint =
∫

VM

PM : δFT
M dV =

∫

VM

P̂ : δUM dV, (18)

where δWint is the internal virtual work done by the stresses
and VM is the volume of the body on macroscale (see [14]).
The contribution of internal forces to residual of macro prob-
lem is obtained in the same manner as the residual of micro
problem, i. e.

RM =
Ne

A
e=1

Ng∑
g=1

wMg JMg RMg, (19)

where RMg is Gauss point contribution given by

RMg = P̂ : ∂UM

∂ue
= δ̂( P̂ : UM )

δ̂ue

∣∣∣∣∣ DP̂
Due

=0

. (20)

The requirement that global residual be zero yields nonlin-
ear system of equations which is solved numerically with
standard Newton–Raphson method. Like global residual is
macroscopic tangent operator KM formed from Gauss point
tangent operator KMg which is obtained via chain rule as

KMg = ∂RMg

∂ue
+ ∂RMg

∂ P̂

D P̂
DUM

∂UM

∂ue

= δ̂RMg

δ̂ue

∣∣∣∣∣ D P̂
DUM

=D P̂DUM

. (21)

The first derivative D P̂/DUM of average stress tensor P̂
with respect to symmetric stretch tensor UM in (21) is
obtained from boundary conditions related sensitivity analy-
sis of the microstructure (RVE).
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5.1 Sensitivity analysis on RVE

Macroscopic stress tensor P̂ is defined as averaged
microstress over volume of the RVE (see (9)) so the total
derivative D P̂/DUM can be written as

D P̂
DUM

= 1

V0

∫

V0

DPm

DUM
dV . (22)

and evaluated on micro level as averaged sensitivity of micro-
scopic 1. Piola-Kirchhoff stress tensor Pm on variation of
sensitivity parameters, which are defined as the six indepen-
dent components of the symmetric tensor UM ,

φ = {U11,U12,U13,U22,U23,U33} . (23)

Sensitivity problem is in analogy with primal analysis defined
by residual Rm ,

Rm(p(φ), ū(φ)) = 0, (24)

where ū are prescribed essential boundary conditions and p
is a vector of unknowns all defined as a function of sensitivity
parameters φ. The direct differentiation of time-independent
residual (24) with respect to sensitivity parameters φ yields
the following system of linear equations for response sensi-
tivity Dp/Dφ,

∂Rm

∂p
Dp
Dφ

= −∂Rm

∂ū
Dū
Dφ

, (25)

where ∂Rm/∂p is exactly the independent tangent operator
Km of the primal problem on micro level. The global sensi-
tivity problem is then rewritten as

Km
Dp
Dφ

= −R̃m, (26)

where R̃m is sensitivity pseudo residual formed from Gauss
point pseudo residual R̃mg and Lagrange element pseudo
residual R̃le defined by

R̃mg = δ̂Rmg

δ̂φ

∣∣∣∣∣ Dū
Dφ

=DūDφ

and R̃le = δ̂Rle

δ̂φ

∣∣∣∣∣ Dū
Dφ

=DūDφ

,

(27)

respectively, where DūDφ is boundary condition veloc-
ity field. DūDφ represents the derivatives of prescribed
essential boundary conditions ū with respect to sensitivity
parameters φ which is input data for microanalysis. Sensi-
tivity problem (26) is solved after converged solution for

primal problem is obtained. Then the average stress sensitiv-
ity D P̂/DUM is calculated with direct differentiation as

D P̂
DUM

= 1

V0

ne∑
e=1

ng∑
g=1

wmg Jmg
δ̂Pmg

δ̂φ

∣∣∣∣∣ Dpe
Dφ

=DpDφ

, (28)

where DpDφ is the result of sensitivity analysis.

6 Automation of FE2 procedure

A pseudocode of automated displacement based FE2 analy-
sis is given in Algorithm 1 for the analysis on macro level and
in Algorithm 2 for microanalysis. Flowchart for macroele-
ment is applicable on arbitrary finite element formulated on
virtual work principle as presented in Sect. 5. Local macro-
scopic stretch tensor UM determines essential boundary
conditions on associated RVE (see (3), (4)). Lagrange finite
elements are introduced to impose periodicity constraints on
displacements of nodes on RVE boundary. Primal analysis of
RVE is in Algorithm 2 augmented with boundary conditions
related sensitivity analysis as explained in 5.1. Sensitivity
of prescribed boundary conditions on variation of UM is
defined on the input. When static equilibrium is achieved
under given equality constraints, microanalysis returns to the
macroscopic integration point average stress tensor P̂ and its
sensitivity D P̂DUM on variation ofUM . Convergence of the
iterative Newton–Raphson method has to be achieved simul-
taneously on micro and macro level on each load step for the
overall convergence of the FE2 method.

Algorithm 1: FE2 analysis - macro level
Input: Position of macrostructural nodal points B
Input: Starting value for nodal displacements u0, parameter increment Δλ
λ ← 0; u ← u0;
repeat

λ ← λ + Δλ
begin iterative solution of one step of primal analysis on macro level

repeat
foreach macro element do

foreach Gauss point g do
X ← Na · Be ; // Na are shape functions
ue ← Na · ue;

Je ← δ̂X

δ̂Ξ
; H ← δ̂ue

δ̂X

∣
∣
∣ DΞ

DX
=J−1

e

; Jg ← detJe;

FM ← H + I; CM ← F T
MFM ;

UM ← √
CM ;

begin solution of microanalysis
procedure of microanalysis is presented in Algorithm 2 and it
returns averaged stress tensor P̂ and sensitivity DP̂DUM

WM ← P̂ : UM ; // Gauss point internal virtual work

RMg ← δ̂WM

δ̂ue

∣
∣
∣ DP̂

Due
=0

; // calculate Gauss point residual

using ADB exception

KMg ← δ̂RMg

δ̂ue

∣
∣
∣
∣ DP̂

DUM =DP̂ DUM

; // calculate Gauss point

tangent matrix using ADB exception
add wg Jg RMg to RMe and wMg JMg KMg to KMe

end foreach
assemble RMe to RM and KMe to KM

end foreach
solve KM Δu + RM = 0 for unknown Δu
u ← u + Δu

until error criterion for ||RM || and ||Δu|| is fulfilled ;

until terminal value of parameter λ is reached ;
Result: u // converged solution in last step
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Algorithm 2: FE2 analysis - micro level
Input: Primal analysis: Material data (K, μ), position of microstructural nodal points,

prescribed displacements ū in RVE corner nodes Bc and other type of
information depending on the chosen finite element formulation

Input: Sensitivity analysis: sensitivity parameters φ, boundary condition velocity field
DūDφ

ū ← (UM − I) · Bc ; // prescribed essential boundary conditions for
constrained nodes Bc

begin solution of primal analysis
procedures of primal analysis for different element formulations are collected in [10]
hyperelastic potential Wm is a sum of strain energy function and Lagrange
mutiplier potential, see equation (16)

Rm ← δ̂Wm

δ̂p
; Km ← δ̂Rm

δ̂p
; // calculate finite element residual and tangent

matrix using ADB exception

begin solution of sensitivity problem
φ ← {Uij ; Uij ∈ UM ∧ i ≤ j} ; // set sensitivity parameters φ

DūDφk ← { ∂ū
∂φk

; φk ∈ φ} ; // set boundary conditions velocity field

foreach solid element do
foreach Gauss point g do

R̃mg ← { δ̂Rmg

δ̂φk

∣
∣
∣
∣ Dū

Dφk
=DūDφk

; φk ∈ φ}; // calculate Gauss point

pseudo residual using ADB exception

add wg Jg R̃mg to R̃me

end foreach
assemble R̃me to R̃m

end foreach
foreach Lagrange element do

R̃le ← { δ̂Rle

δ̂φk

∣
∣
∣ Dū

Dφk
=DūDφk

; φk ∈ φ}; // calculate Lagrange element

pseudo residual using ADB exception

assemble R̃le to R̃m

end foreach
solve Km

Dp
Dφ

+ R̃m = 0 for unknown Dp
Dφ

using already factorized Km from

primal analysis
begin evaluate microscopic stiffness and averaged stress over RVE volume V

foreach element in RVE do
foreach Gauss point g do

Pmg ← δ̂Wm

δ̂Fm
; // Gauss point 1st Piola-Kirchhoff stress tensor

DPmgDUM ← δ̂Pmg

δ̂φ

∣
∣
∣
∣ Dpe

Dφk
=DpDφk ∀k∈{1,...,6}

;

add wmg Jmg DPmgDUM to DPmeDUM and wmg Jmg Pmg to Pme

end foreach
add DPmeDUM to DPmDUM and Pme to Pm

end foreach
calculate averaged stress P̂ = 1

V0
Pm and export P̂ to macroscopic Gauss point

data
calculate averaged tangent matrix DP̂DUM = 1

V0
DPmDUM and export

DP̂DUM to macroscopic Gauss point data

Result: P̂ , DP̂DUM

7 Accuracy and numerical efficiency of proposed
FE2 formulation

Various automated FE2 formulations with isogeometric and
standard finite element microanalysis are tested for consis-
tency, accuracy and numerical efficiency consideration on
chosen computational homogenisation examples. All numer-
ical examples are performed with three-dimensional solid
finite elements. Procedures of primal and sensitivity analyses
shown in Algorithm 2 were obtained from [10]. Procedure of
primal isogeometric analysis follows formulation presented
in [28]. All calculations are executed without parallelization
on 8 GB RAM and 2.8 GHz processor.

7.1 Test of consistency of micro–macro coupling

A test with homogeneous material was considered to show
that the results of implemented FE2 procedure are identical
to those of single scale analysis in the case of homogeneous
micro structure. A standard Cooke membrane is discretized
with a mesh of 4×1×4 standard linear Lagrange (H1) finite
elements for single scale analysis and for macro level of two-

Geometry Material

MICROSCALEMACROSCALE

Volume fraction of opening = 0.1P

q

l

1h

2h

1

2

44 mm

16 mm

48 mm

1 mm

h
h
l
t

0.33333 MPa

0.5 MPa

2

K
Load

1 MPaq

Constraints

0 : 0X u v

(A) (B)

Fig. 1 a Macrostructure: system, load and expected result. b Porous
microstructure: geometry and material data

scale FE2 analysis. The system, load and material data are
given in Fig. 1. A. For microscale analysis are standard lin-
ear and quadratic Lagrange (H1 and H2) finite elements and
isogeometric finite elements with linear and quadratic Bezier
splines (ISOB1 and ISOB2) chosen to show that in the case
of homogeneous microstructure the results obtained with
FE2 analysis do not depend on the element formulation on
micro level. Hence, homogeneous RVE was discretized with
a 2 × 2 × 2 finite elements mesh for linear formulations and
with a single element mesh for quadratic formulations. Size
of RVE does not affect the resulting microstress field or its
derivatives in FE2 analysis. The load was applied in ten equal
load steps. The resulting displacements of point P (see Fig. 1)
obtained with different FE2 formulations are compared to
the results of single scale analysis. The results presented in
Table 1 show that in case of homogeneous microstructure all
two-scale FE2 analyses give numerically the same results as
single scale analysis within machine precision accuracy.

7.2 Numerical efficiency consideration of proposed FE2

formulation

A computational homogenisation example of porous mate-
rial is considered to justify the proposed FE2 formulation
in terms of numerical efficiency. Here the performance of
conventional FE2 formulation with asymmetric deformation
gradient as strain measure is compared to proposed FE2 for-
mulation with symmetric stretch tensor as strain measure.
Macrostructure is a Cooke membrane and microstructure is
represented by a cubic RVE with spherical opening in its
center. Volume fraction of spherical opening is 0.1 %. The
system, load and material data are given in Fig. 1. Cooke
membrane is on macro level discretized with a mesh of
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Table 1 Vertical displacement
of point P in a homogeneous
Cooke membrane test for single
scale analysis and different
two-scale FE2 analyses

Single scale analysis

Displ. wS 36.6261 mm

Two-scale FE2 analysis

H1 H2 ISOB1 ISOB2

RVE DOF 93 93 93 93

Displ. wM (mm) 36.6261 36.6261 36.6261 36.6261

|wS − wM | 4.974 × 10−14 4.974 × 10−14 4.263 × 10−14 5.684 × 10−14

Table 2 Vertical displacement of point P (wP ) and computational times for one Newton–Raphson iteration in a porous Cooke membrane test

Microscale (RVE) Macroscale

Element Mesh DOF Memory (MB) wP (mm) Time (s)

Conventional FE2 formulation

H1 6 · (4 × 4 × 4) 1608 12.1 42.4457 53

6 · (8 × 8 × 8) 11028 145.3 43.0747 1047

ISOB2 6 · (2 × 2 × 2) 738 9.0 43.1024 62

6 · (4 × 4 × 4) 2964 63.1 43.2581 481

H2 6 · (2 × 2 × 2) 1608 17.6 43.1135 75

6 · (4 × 4 × 4) 11028 198.2 43.3050 1254

New FE2 formulation

H1 6 · (4 × 4 × 4) 1608 12.0 42.4457 44

6 · (8 × 8 × 8) 11028 144.7 43.0747 867

ISOB2 6 · (2 × 2 × 2) 738 8.9 43.1024 45

6 · (4 × 4 × 4) 2964 62.9 43.2581 360

H2 6 · (2 × 2 × 2) 1608 17.3 43.1135 62

6 · (4 × 4 × 4) 11028 187.3 43.3050 1011

For RVE analysis various finite element formulations were used

4 × 1 × 4 standard linear Lagrange (H1) finite elements.
Computational model of cubic RVE is composed of six equal
patches, each of them is associated to one RVE boundary
plane and one sixth of spherical opening in the center of RVE
(see Fig. 1). Each of these six equal patches is discretized
with standard linear (H1) and quadratic (H2) Lagrange finite
elements and quadratic isogeometric finite elements (ISOB2)
and quadratic standard Lagrange finite elements (H2) for sev-
eral mesh densities (see Table 2). The load was applied in
ten equal load steps. The resulting vertical displacement of
point P (see Fig. 1) obtained with conventional and new FE2

formulation together with associated computational time per
one Newton–Raphson iteration on macro level is shown in
Table 2. When compared to conventional FE2 formulation,
the proposed FE2 formulation makes an additional calcula-
tion and linearisation of a tensor square root in macroanalysis
which increases evaluation time. On the other hand, less
complex boundary conditions related sensitivity analysis of
RVE in the proposed FE2 formulation reduces global tangent
matrix evaluation time. Obtained total reduction of average

CPU time for this particular example varies between 17 and
27 % for one Newton–Raphson iteration on macroscale (see
Table 2). CPU time is most reduced in the case of isoge-
ometric microanalysis, which also exhibits most favorable
ratio between accuracy and computational cost (CPU time
and memory) for the coarsest RVE mesh. Reduced amount
of needed memory space is also noted (see Table 2).

The convergence of FE2 analysis is then studied with mesh
refinement on macro scale. RVE mesh has a fixed size of
6 · (2 × 2 × 2) finite elements. Quadratic isogeometric finite
elements (ISOB2) were used for microanalysis and quadratic
standard Lagrange finite elements (H2) for macroanalysis.
The convergence of the resulting macroscopic displacement
wP is shown in Fig. 2 with regard to number of macroscopic
degrees of freedom (DOF).

The effect of volume fraction of openings on resulting ver-
tical displacement wP is presented next. The porosity was
increased to the point where the first opening closes at maxi-
mal load (further increase of porosity was not possible since
self contact was not considered in finite element formula-
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Fig. 2 Convergence of vertical
displacement of point P (wP ) in
a porous Cooke membrane test
with increasing of macroscopic
finite element mesh density
(degrees of freedom—DOF)
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Fig. 3 a Vertical displacement
of point P (wP ) and b ratio (r)
between maximal calculated
microscopic and macroscopic
Mises stress in a porous Cooke
membrane test with regard to
volume fraction of openings (f)
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tion). Figure 3 shows that the resulting vertical displacement
wP increases proportional to volume fraction of the openings
while the ratio between maximal microscopic and maximal
macroscopic Mises stress tends to increase exponentially.
The point of maximal macroscopic Mises stress is approx-
imately at maximal tension at the top of constrained end.
Maximal microscopic Mises stress was located at the bot-
tom of the Cooke’s membrane in nodes located from 24 mm
to 27 mm away from constrained end and being closer to
constrained end for higher values of f .

7.3 Agreement between numerical and analytical
estimates for effective elastic stiffness tensor

Accuracy of the presented FE2 procedure is tested on a com-
putational homogenisation example of porous linear elastic
material. Linear elastic material is chosen to stand compari-
son to known analytical solution for effective elastic stiffness
tensor Ce f f estimate derived by Nemat-Nasser ([11–13]).
Due to linear elasticity the presented FE2 procedure is sim-
plified. Instead of stretch tensor U small strain deformation
tensor E = 1

2 (H + HT ) is applied and its six independent
components are used for sensitivity analysis. Strain den-
sity function is given by W (E) = λ

2 (tr(E))2 + μ tr(E2)

and stress tensor is defined by S = δ̂W/δ̂E . Macrostruc-
ture is a cube with dimensions 10 mm × 10 mm × 10 mm
with fixed clamped end condition on one side and a pre-
scribed uniform displacement u = 1 mm on the opposite
side. The microstructure is represented by a linear elastic
cube (RVE) with spherical opening in its center. Volume

fraction of spherical opening is 0.1 %. Geometry of RVE
is given in Fig. 1. B. Macroscale analysis is preformed by
one standard linear Lagrange (H1) finite element. On micro
level, different element definitions and mesh densities are
used for accuracy and efficiency comparison of the con-
sidered finite element formulations. An objective mesh of
a sphere is composed of six equal patches, as described in
example 7.2. The exact geometry of the considered quadratic
surface can only be represented by quartic Bezier splines
(see [29,30]). Hence, the chosen isogeometric FE2 proce-
dure for this numerical homogenisation example performs
microanalysis with isogeometric finite elements with quartic
Bezier splines (ISOB4). The results were obtained also for
standard FE2 procedures that analyze microstructure with
standard linear and quadratic Lagrange (H1 and H2) finite
elements. The numerical solutions for components of effec-
tive elastic stiffnes tensor

Ce f f =

⎡
⎢⎢⎢⎢⎢⎢⎣

C̄1111 C̄1122 C̄1122 0 0 0
C̄1111 C̄1122 0 0 0

C̄1111 0 0 0
C̄2323 0 0

symm. C̄2323 0
C̄2323

⎤
⎥⎥⎥⎥⎥⎥⎦

(29)

of porous linear elastic material with associated compu-
tational time are given in Table 3 for various RVE mesh
densities and all considered FE2 formulations. One itera-
tion of Newton–Raphson method returns converged solution
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Table 3 Convergence of
C̄i jkl/Ci jkl ratios for effective
elastic stiffnes tensor Ce f f
evaluated with isogeometric and
standard FE2 procedures and
associated total computational
time

Microscale (RVE) Macroscale

Mesh DOF C̄1111/C1111 C̄1122/C1122 C̄2323/C2323 Time (s)

H1 microanalysis

6 · (4 × 4 × 4) 1608 0.82088 0.76857 0.83581 4

6 · (8 × 8 × 8) 11,028 0.80530 0.75058 0.81882 39

6 (16 × 16 × 16) 78438 0.80110 0.74588 0.81387 1380

H2 microanalysis

6 · (2 × 2 × 2) 1608 0.80389 0.74741 0.81665 7

6 · (4 × 4 × 4) 11,028 0.79999 0.74451 0.81266 60

6 · (8 × 8 × 8) 78,438 0.79969 0.74431 0.81217 1645

ISOB4 microanalysis

6 · (1 × 1 × 1) 1608 0.80061 0.74460 0.81560 13

6 · (2 × 2 × 2) 2964 0.79974 0.74423 0.81241 66

6 · (4 × 4 × 4) 7566 0.79965 0.74426 0.81212 495

with machine precision since it is a linear problem. FE2

analysis converges to same solutions for all considered FE2

formulations, where isogeometric FE2 formulation exhibits
highest convergence rate and superior numerical efficiency
of FE2 analysis in terms of most favorable ratio between solu-
tion accuracy and computational time. This result confirms
that exact modeling of microstructure geometry produces
superior results of numerical homogenisation procedure.
The obtained numerical solutions are compared to Nemat-
Nassers analytical solution for effective elastic stiffness
tensor estimate Ce f f of periodic multiphase linear elastic
materials (see [11]). Nemat-Nasser assumed in all directions
infinite periodic, linear elastic and isotropic microstructure
and derived a Fourier series expansion of displacement and
stress fields. If RVE is a cube with boundary size a and spher-
ical opening of radius b, effective elastic stiffness tensorCe f f

of periodic porous linear elastic material is estimated as

Ce f f = C
(

1 − f (1(4s) − Sp)−11(4s)
)

, (30)

where 1(4s) is fourth order symmetric unit tensor and Sp ref-
erence elastic stiffness tensor. Tensor Sp has cubic symmetry
likeCe f f (see (29)) and its nonzero components are written as

Sp
1111 =

∑ ∑
v �=0

∑
f g(v)2 (v1/|v|)2,

v = π/a (v1, v2, v3), vi ∈ Z ∀i (31)

Sp
1122 =

∑ ∑
v �=0

∑
f g(v)2 (v1/|v|)4, (32)

Sp
2323 =

∑ ∑
v �=0

∑
f g(v)2 (v2/|v|)2(v3/|v|)2, (33)

where |v| is Euclidian norm of vector v, f volume fraction
of spherical opening and

Table 4 Convergence of C̄i jkl/Ci jkl ratios for Nemat-Nassers analyt-
ical estimate of Ce f f with associated computation time

n C̄1111/C1111 C̄1122/C1122 C̄2323/C2323 Time (s)

100 0.800784 0.746139 0.812918 2

500 0.799953 0.74474 0.812323 237

1000 0.799848 0.744563 0.812248 1892

g(v) = 3 (sin(b |v|)−b |v| cos(b |v|))/(b |v|)3 for |v| �= 0.

(34)

Analytical estimates for Ce f f of considered periodic porous
linear elastic material are calculated for vi ∈ {−n, n} ∀i ∈
{1, 2, 3} and various values of n and presented in Table 4.
All calculated numerical solutions in Table 3 and analyti-
cal estimates converge to same solution which validates the
accuracy of the presented FE2 implementation. The C code
for evaluation of Nemat-Nassers Ce f f estimate is generated
by AceGen so that computation time can be compared to
the computation time of the presented FE2 procedure. Eval-
uation of Nemat-Nassers analytical estimate gives solution
with three correct digits in 237 seconds, whereas the standard
FE2 procedure that performs microanalysis with standard
quadratic Lagrange element (H2) achieves this in 60 seconds
and isogeometric FE2 procedure in 66 seconds.

8 Conclusions

This paper presents a new FE2 formulation that significantly
reduces the computational cost of two-scale FE2 analysis,
proves its compliance to energy averaging theorem and dis-
cusses its consistency, accuracy and numerical efficiency
on numerical homogenisation examples. The new FE2 for-
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mulation introduces symmetric stretch tensor as a macro
strain measure instead of conventionally used asymmetric
deformation gradient to determine the prescribed boundary
conditions of underlying microstructure (RVE). This reduces
the computational cost of boundary conditions related sen-
sitivity analysis of RVE that is performed on micro level to
evaluate the local macroscopic tangent operator. Stretch ten-
sor is matrix square root of Cauchy–Green tensor which is
evaluated together with its first and second derivatives with
automatic differentiation of appropriate scalar generating
function to avoid the difficulties associated with evaluation of
matrix square root based on polar decomposition. The new
two-scale FE2 scheme was implemented in symbolic code
generation system AceGen which automates derivation of
quantities needed in primal and sensitivity analyses on micro
level and primal analysis on macro level of FE2 procedure
and also simultaneously performs automatic differentiation
and optimization of expressions. The FE2 flowchart based
on AceGen enables objective comparison of different FE2

formulations. Various FE2 formulations with isogeometric
and standard finite element microanalysis were developed
and tested on numerical homogenisation examples to study
consistency, accuracy and numerical efficiency of FE2 analy-
sis. Consistency of micro–macro coupling is first tested on a
homogeneous material. Results obtained with FE2 analysis
and single scale FEM analysis are numerically identical with
machine precision for all considered FE2 formulations. New
FE2 formulation was further tested on homogenisation of a
porous hyperelastic material. Results obtained with conven-
tional and new FE2 formulation show that introduction of
symmetric stretch tensor as a strain measure contributes to
a total reduction of computation time between 17 and 27 %
depending on chosen finite element formulation for micro-
analysis. Reduced sensitivity analysis lowers also memory
usage during calculation. Accuracy of the presented FE2 for-
mulation is further verified on numerical homogenisation of
linear elastic porous material for which Nemat-Nasser (see
[11]) derived an analytical estimate of effective elastic stiff-
ness tensor. All considered isogeometric and standard FE2

procedures converge in both numerical examples to same
converged values and in latter example to Nemat-Nassers
analytical estimate. The obtained results confirm better con-
vergence rate regarding number of degrees of freedom for
higher order isogeometric FE2 analysis and show compa-
rable numerical efficiency in terms of most favorable ratio
between solution accuracy and computational time of higher
order isogeometric FE2 analysis when compared to standard
FE2 analysis with quadratic Lagrange finite elements.
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