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Abstract The finite cell method (FCM) provides a method
for the computation of structures which can be described
as a mixture of high-order FEM and a special integration
technique. The method is one of the novel computational
methods and is highly developed within the last decade. One
of the major problems of FCM is the description of bound-
ary conditions inside cells as well as in sub-cells. And a
completely open problem is the description of contact. There-
fore, the motivation of the current work is to develop a set of
computational contact mechanics approaches which will be
effective for thefinite element cellmethod.Thus, for theFCM
method we are developing and testing hereby focusing on
the Hertz problem the following algorithms: direct integra-
tion in the cell method, allowing the fastest implementation,
but suffering from numerical artifacts such as the “stamp
effect”; the most efficient scheme concerning approxima-
tion properties the cell-surface-to-analytical-surface contact
element designed for contact with rigid bodies leading to
cell-wisely contact elements; and finally the discrete-cell-to-
cell contact approach based on the finite discrete method.
All developed methods are carefully verified with the ana-
lytical Hertz solution. The cell subdivisions, the order of the
shape functions as well as the selection of the classes for
shape functions are investigated for all developed contact
approaches. This analysis allows to choose the most robust
approach depending on the needs of the user such as correct

B Alexander Konyukhov
Alexander.Konyukhov@kit.edu

Christian Lorenz
Christian.Lorenz@ingenieurgruppe-bauen.de

1 Ingenieurgruppe BAUEN, Karlsruhe Institute of Technology,
Karlsruhe, Germany

2 Ingenieurgruppe BAUEN, Fritz-Erler-Straße 25,
76133 Karlsruhe, Germany

representation of the stresses, or only satisfaction of geomet-
rical non-penetration conditions.

Keywords FCM · Contact cell · Cell surface · FDM ·
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1 Introduction

The computation of complex structures inmechanicswith the
aid of computers based on the finite element method (FEM)
started from the 50s of the 20th century. Themethod is spread
through and is used in all fields of structural mechanics and
is also applied to many other multifield problems.

However meshing of objects with complex geometry is
a cumbersome task and may lead to very large numbers of
elements. The fictitious domain method (FDM) has become
an alternative to use objects of only simple geometry while
meshing the object with linear elements of simple rectan-
gular geometry. The error of the method was usually rather
high. However recently, the finite cell method (FCM) has
been developed based on high order approximations. It can
be described as a method for the computation of structures
based on a mixture of high-order FEM and a special integra-
tion technique. Themethod is one of the novel computational
methods and is highly developed in numerous works of
Düster and colleagues, see in [1–3].A special attentionwithin
this method is given to the treatment of non-homogeneous
Neumann boundary conditions—applied distributed forces,
as well as Dirichlet boundary conditions—fixed boundary
either inside the cell or on the cell boundary, see [4] and [5].
The general implementation of high-order finite element is
given in the monograph of Solin et al. [6].

The contact problem can be seen a very specific problem
for FCM. In order to give a more general overview for high-
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order finite element methods, contact has been implemented
based on the covariant description in [7], the development
of various aspects has been presented in [8]. Further compu-
tational contact mechanics methods have been analyzed in
terms of iso-geometric analysis in various aspects, see [9–
12]. The state of the art for the isogeometric contact is given
in the recent review of De Lorenzis et al. [13]. The general
background used in iso-geometric analysis is given in the
monograph of Cottrell et al. [14].

The fundamental monographs on computational mechan-
ics should also be mentioned here: the most recent book of
Wriggers (second edition) [15] and Laursen [16]. Various
numerical methods used in computational contact mechan-
ics are summarized and represented in the book of Yastrebov
[17]. A special, geometrically exact description in covariant
form is given in the book of Konyukhov and Schweizer-
hof [18].

Despitemany publications of various aspects in both com-
putational mechanics and FCM, namely, the general contact
problem for the FCM remains open. Current developments
are mostly shown in 2D, for which the classical case of
geometrically exact FEM contact is described in [19] and
a special 2D reduction of the general covariant 3D case is
shown in [20], also many 2D conventional computational
contact mechanics algorithms are described in the mono-
graph [21]. Classically, FCM is based on integrated Legendre
polynomials, however, without any restriction other classes
of functions can be taken. Thus, in the current work we
compare results obtained with both Integrated Legendre
polynomials and Bernstein polynomials, which are basis
functions for NURBS. Using higher order functions allows
to improve convergence (p-element), however, changing
classes of functions from Legendre polynomials to Bernstein
polynomials while keeping the high order allows to improve
the approximation ability (less oscillations) which is more
important for contact, see the discussion in [22]. Further it
is necessary to mention here the monograph on NURBS of
Piegl and Tiller [23] as a reference for various spline approx-
imations.

1.1 Alternative contact approaches for FCM

The following alternative contact algorithms are developed
and tested:

– DIC contact element (direct integration in the cell)—
based on the straightforward idea to compute the contact
integral by given integration points in the cell;

– CSTAS contact element (cell-surface-to- analytical- sur-
face) for contact with rigid bodies;

– DCTC contact element (discrete-cell- to-cell)—based on
the representation of the integration point as a discrete
finite element for both deformable bodies.

In the numerical examples section then the investigations
focus on the choice of the number of cells and integration
points as well as on the selection of the class of approxi-
mation functions and also spline smoothing. All examples
are analyzed for convergence, numerical error and special
effects (smoothness) based on the verification with the Hertz
problem possessing an analytic solution.

2 Geometrically exact theory of contact: necessary
parts for FCM

In this section we shortly outline the main results of the geo-
metrically exact theory of contact which will be necessary
for our case of 2D geometry.

2.1 Kinematics of contact interaction

Contact within the geometrically exact theory is defined via
the “Master–Slave” concept, where on the slave part a “slave
point” is taken and is tested for the Closest Point Projection
onto the “master surface”, see Fig. 1. A slave point r S is given
numerically as an integration point, while the master surface
is given exactly with Gaussian coordinates ξ1 und ξ2, defin-
ing a surface vector ρ(ξ1, ξ2). The third spatial coordinate
ξ3 is determined in the direction of the normal to a surface
n. In the 2D reduction we are going to have ρ(ξ1) as a vector
for the master curve, keeping the coordinate ξ3 in the normal
direction, see Fig. 1.

The corresponding coordinate system on the master sur-
face consists of the tangent vector in general form as a partial

derivative
∂ρ(ξ1)

∂ξ1
= ρξ1 (or the corresponding unit tangent

vector τ ) and the normal vector n. This gives us the coordi-
nate system as

r S(ξ1, ξ3) = ρ(ξ1) + ξ3n(ξ1) . (1)

While writing above mentioned equations, we implicitly
assumed:

x,u

ξ1

rS

Master

y,v

Slave

ρ
ξ

(ξ )1
3M

S

n

τ

Fig. 1 Idealization of contact problem with the “Master–Slave” con-
cept and selection of the corresponding coordinate system ξ1, ξ3 on the
master surface
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– A solution of the closest point projection (CPP) exists
and is unique;

– The surfaces have necessary smoothness.

The existence and uniqueness of the CPP is fundamentally
investigated for surfaces in [24] and for curves in [25]. Based
on these theorems it is possible to represent any 3D domain
as an overlapping of smooth domains in which the solu-
tion of the CPP is unique and exists. Within this process a
hierarchical set of contact pairs is appearing: point-to-point,
point-to-curve, curve-to-curve, point-to-surface, curve-to-
surface, surface-to-surface, see more in the monograph [18].

2.1.1 Closest point projection procedure and measures
of contact interactions

Initially a CPP procedure is set up as the following problem:
Find the minimum of the function corresponding to the

distance between the slave point and the master curve, see
Fig. 1

F(ξ1) = 1

2

∥
∥
∥
∥
r S − ρ(ξ1)

∥
∥
∥
∥

2

→ min. (2)

The result is a coordinate ξ1 on themaster curve. The solution
is derived via the necessary condition of minimum as

F ′(ξ1) = −
(

r S − ρ(ξ1)

)

· dρ

dξ1
= 0 . (3)

In general, this problem is solved by the Newton method, for
which it is necessary to compute the second derivative:

F ′′(ξ1) = −
(

r S − ρ(ξ1)

)

· d2ρ

d(ξ1)2
+ dρ

dξ1
· dρ

dξ1
. (4)

The Newton iterative scheme is constructed then as follows:

ξ1(n+1) = ξ1(n) − F ′(ξ1)
(

F ′′(ξ1)
)−1

= ξ1(n) −
(

r S − ρ(ξ1)
) · ρξ1

(

r S − ρ(ξ1)
) · ρξ1ξ1 − ρξ1 · ρξ1

. (5)

Here, the first derivative of ρ (a tangent vector to the master

segment) with respect to ξ1 is abbreviated as ρξ1 = dρ

dξ1
,

and the second derivative is correspondingly as ρξ1ξ1 .

Remark 1 In the case of a linear master segment, a closed
form solution of the CPP procedure in Eq. (5) can be found,
see details in [18,20,21].

Once the projection point is found, we can determine the
relative velocity of the slave point in the coordinate system,
Eq. (1).

d

dt
r S(t, ξ1, ξ3) = d

dt
ρ(t, ξ1) + d

dt

(

ξ3n(t, ξ1)
)

= ∂ρ

∂t
+ ρξ1 ξ̇

1 + ξ̇3n + ξ3
dn
dt

. (6)

Having introduced the new notations for the velocity of the

projection point v = ∂ρ

∂t
and for the velocity of the slave

point S vS = dr S
dt

, Eq. (6) is represented as

vS = v + ρξ1 ξ̇
1 + ξ̇3n + ξ3

dn
dt

. (7)

This equation contains rates of measures of the normal iter-
ation ξ3 and for the tangential interaction ξ1 on the tangent
plan at ξ3 = 0

ξ̇3 = (vS − v) · n , (8)

ξ̇1 = (vS − v) · τ = (vS − v) · ρξ1

(ρξ1 · ρξ1)
. (9)

The term (ρξ1 · ρξ1) is also geometrically describing the
differential of an arc-length for the master curve

ds = √
ρξ1 · ρξ1 dξ

1. (10)

For the weak form, Eqs. (8) and (9), are just represented by
analogy:

δξ3 = (δr S − δρ) · n , (11)

δξ1 = (δr S − δρ) · τ = (δr S − δρ) · ρξ1

(ρξ1 · ρξ1)
. (12)

2.2 Weak form

In order to formulate a weak form in the local coordi-
nate system we need the representation for the vector of
the relative virtual displacements on the tangent plane (via
Eqs. (11) and (12)) as

δr S − δρ = ρξ1δξ
1 + nδξ3 , (13)

and the representation of the contact force in the local coor-
dinate system as

R = N + T = Nn + T 1ρξ1 , (14)

where T 1 is a contravariant form of the tangent vector T .
Then the weak form, reflecting the equilibrium of the contact
forces RM and RS from both master and slave part respec-
tively in the local form as RMdsM = RSdsS , see Fig. 2 is
written as
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RM

SR
dsM

Master

Slave

dsS
δ S

δ M

r

ρ

Fig. 2 Equilibrium of contact forces on the master RM and on the
slave RS is written with respect to contact kinematics

δWc =
∫

s
R · (δr S − δρM ) ds

=
∫

s

[

N δξ3 + T 1(ρξ1ρξ1)δξ
1
]

ds . (15)

It should be noted that the integral is taken over the slave
surface (by a set of slave integration points), while the force
is given on the master surface. This allows to use covariant
derivatives in the master coordinate surface for further lin-
earization and formulation of the computational algorithms.

2.2.1 Constitutive laws for N und T

Here, we employ the standard penalty method for the normal
force (or one can say the one-sided linear elastic constitutive
law for the normal force):

N = εN ξ3H(−ξ3) mit H(−ξ3) =
{

0, ξ3 > 0

1, ξ3 ≤ 0,

(16)

where εN is a penalty parameter, ξ3 is the penetration and
H(−ξ3) is theHeaviside function, describing that the normal
contact is active only if both bodies are in contact.

For the tangential force we employ here the standard
return-mapping scheme for the Coloumb friction law. First,
the trial force is computed as

T trial = −εT �ξ1(ρξ1 · ρξ1) (17)

where εT is a tangential stiffness, and�ξ1 = ξ1current −ξ10 an
incremental tangential displacement in the case of the simple
update scheme. Amore general updated scheme is discussed
in detail in [18,20,21]. The real force is computedwith regard
to the Coulomb friction law

|T trial |√
ρξ1 · ρξ1

≥ μ|N | (18)

with μ as the coefficient of friction. The last equation leads
to the following return-mapping algorithm:

T =

⎧

⎪⎨

⎪⎩

T trial = −εT �ξ1(ρξ1 · ρξ1),
|T trial |√
ρ

ξ1 ·ρ
ξ1

< μ|N | ,

−sign(�ξ1) μ|N |√ρξ1 · ρξ1 ,
|T trial |√
ρ

ξ1 ·ρ
ξ1

≥ μ|N | .

(19)

At this point we have to note that any further description
is not limited to the penalty method for the normal force,
thus, Lagrange multipliers based Mortar methods, see e.g.
Wohlmuth [26], can be employed with some modifications
which we will mention then.

2.3 Linearization

Since, mostly we will show non-frictional examples, the
linearization is shown only for the normal part. This lin-
earization is performed in a covariant form in the master
coordinate system (1). Its derivation is available from many
publications, see e.g. [20] and [19].

D
(

δWN
c

)

=
∫

s

(
dN

dt
δξ3 + N

d(δξ3)

dt

)

ds

=
∫

s
εN (δr S − δρ) · n ⊗ n(vS − v) ds (20)

−
∫

s
εN ξ3

(

(δr S − δρ) · τ ⊗ n
∂τ

∂t

+ δτ · n ⊗ τ (vS − v)
)

ds (21)

−
∫

s
εN ξ3κ(δr S − δρ) · (τ ⊗ τ )(vS − v) ds.

(22)

Remark 2 The tangent matrix derived after the linearization
contains then the main part (20), the rotational part (21)) and
the curvature part (22). The main part is representing the lin-
earization of the linear constitutive law for the normal force
in Eq. (16). In the case of the Lagrange multiplier method,
this part is omitted and the corresponding tangent matrix will
be composed from the rest the rotational and curvature parts.
Details can be found in the monographs [18,21].

2.4 Discretization and selection of the approach for
FCM

For further development of the computational algorithm and
a corresponding contact approach we will directly use the
results of the current section, namely kinematics, weak form
and its linearization. Various approaches listed in Sect. 1.1
will be varied just by selection of a certain discretization of
these forms adapted to the FCM.
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P

P a

R

x

v
y

Fig. 3 2DHertz problem: on the left—two cylinder problem under the
force P; on the right–quarter of a cylinder and a plane section (cylinder
with infinite radius) which is used in the current verification

3 Analytical solutions for further verifications

Two analytical solutions are necessary in order to verify our
results as well as to understand some artifacts appearing dur-
ing the numerical solution.

3.1 Hertz solution

As discussed already earlier all contact approaches first of
all, would be tested comparing to the Hertz solution, pub-
lished by Heinrich Hertz in 1881 [27]. The Hertz solution is
representing a solution for the contact of two cylinders, see
Fig. 3 and is derived under the following assumptions, see
also Johnson [28]:

– Contact surfaces are C2 smooth and contacting by their
convex parts.

– No friction.
– Contact radius a is much smaller than the radius of both

cylinders R1 and R2.
– The contactingbodies canbe then approximated as elastic
half-space. Linear elasticity theory is valid.

The contact radius is determined as

a =
√

4PR∗
πE∗

. (23)

The contact pressure within this contact radius is distributed
as

p(x) = 2P

πa2

√

a2 − x2. (24)

Q

x

z
b

Fig. 4 Representationof the rigid stampproblemsubjected to avertical
force Q [28]

Here P is the global force on the cylinder, and R∗, E∗ are
relative radius and relative elastic module respectively:

1

R∗
= 1

R1
+ 1

R2
,	⇒ R∗ = R1R2

R1 + R2
(25)

1

E∗
= 1 − ν21

E1
+ 1 − ν22

E2
. (26)

In the current investigation contact of an elastic cylinder with
a rigid body is considered. Thus, R2 → ∞ and E2 → ∞
leads to

R∗ = R1 , (27)

E∗ = E1

1 − ν21
. (28)

3.2 Rigid stamp problem

In order to understand some artifacts which are appearing
during a numerical solution we have to understand also the
solution of the rigid stamp problem presented in Fig. 4, first
derived by Galin [29], see also Johnson [28].

The distribution of the contact pressure has the following
form

p(x) = Q

π
√
b2 − x2

, (29)

which possesses two singular points at the boundary x = b

and x = −b; the minimal pressure is computed as p0 = Q

πb
.

The pressure distribution with normalized quantities Q = 1
and half-side b = 1 is shown in Fig. 5.

4 Direct integration in the cell (DIC) contact
element

The direct integration in the cell contact approach is based
on the straightforward idea to compute a contact integral by
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Fig. 5 Distribution of the contact pressure for the stamp problem with
force Q = 1 and half-side b = 1

given integration points in the cell. For simplicity we will
start from contact with a rigid body, similar to the segment-
to-analytical segment (STAS) approach, developed in detail
in [30]. That is why, all proposed approaches will be verified
by the Hertz solution [27]—contact of a cylinder with a rigid
plane.

The straightforward idea to solve this contact problem is
to test all integration points on the boundary for penetration
and compute the corresponding penetration. However, even
within this approach we will distinguish various types of
computation of the contact integral. Due to the peculiarities
of FCM, the density of integration points is quite high lead-
ing to the observation that at the boundary a layer of Gauss
points may penetrate into the body, but not only boundary
Gauss points.

4.1 Description of contact via a contact layer

In this scheme, we describe a proximity zone as an active
contact zone with a parameter δ, where δ is selected based
on the density of Gauss points so that only one or optionally
two layers of Gauss points are appearing in this zone. Never-
theless, the case of one layer is not a limitation of themethod,
and especially with a small value of penalty parameter εN the
second layer ofGauss pointsmay appear (as shown in Fig. 7).
In this case, we are working with an areal (or volumetric in
3Dcase)measure of contact. These types of contactmeasures
are widely used in the dynamical simulation of rigid bodies
contact, see Kane et al. [31] The selection of the contact zone
is given for the Hertz contact case in Fig. 6, where one cell
element of cubic order with nodes is shown (Bernstein type
of polynomials) and the Gauss formula (red points) of forth
order is used.

In this case, the contact boundary is not described by
separate coordinates ξ1, instead the contact zone is deter-
mined by 2D integration points with coordinates ξ and η.
In order to determine them, the 2D approximation matrix
A(ξ, η) is necessary, which is arising directly from the high-
order approximation of the cell. Thismatrix consists of shape
functions up to the k-th order either of the Lobatto (integrated

δ

η

ξ

Fig. 6 Selection of possible active contact set by δ: cubic element of
Bernstein type, and Gauss points 4×4. Contact points are Gauss points
in contact zone

Legendre polynomials), or of the Bernstein type depending
on the analysis

ρ = A(ξ, η)x 	⇒ (30)

A =
[

N1(ξ, η) 0 N2(ξ, η) 0 ... Nk (ξ, η) 0

0 N1(ξ, η) 0 N2(ξ, η) ... 0 Nk(ξ, η)

]

.

(31)

In the case of contact, only themain part of the tangentmatrix
will be used and we need a special integration scheme, orga-
nized as the subdivision into sub-cells. The active contact
set is assembled as a set of penetrating Gauss points from
this proximity zone. Another problem is the definition of the
deformed normal: the normal is described as normal projec-
tion of Gauss points onto the un-deformed boundary. This is
the most simple and straightforward approach.

4.1.1 Contact integral as an area integral

Since, a penetrating area is detected—a contacting boundary
is represented by a layer—then the contact integral is reflect-
ing the energy associated with the penalty method and is
computed over this area, namely as a sum over these Gausss
points, see representation in Fig. 7, in which two layers of
Gauss points are penetrating.

Computation of the contact integral is similar to the
domain integral for the finite cell, but only points included
in the active contact set are taken into account:
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e

Fig. 7 Computation of the contact integral via the penetrating area. Contact zone is determined by the value of penetration e into the rigid plane.
4 cells with 4 × 4 int. points. Two layers of Gauss points are considered as an active contact zone

m210

1

2

n

i i+1

2i
m 1

j+1

j

m
2

ξ

η

ξ

η

i

j

Fig. 8 Subdivision of the cell element into sub-domains/sub-cells

δWc = 1

m n

m−1
∑

k=0

n−1
∑

l=0

ngp
∑

i=1

ngp
∑

j=1

Nδξ3 H(−ξ3)

det J(ξ, η) wi w j , (32)

with N from Eq. (16). A cell element is split into m × n
finite sub-domains/sub-cells, each of it is integrated by
ngp × ngp Gauss integration formula. This sub-domain
integration is shown in Fig. 8 The full domain A is split
into sub-domains Ai j ; i = 0,m; j = 0, n and then in
each sub-domain integration is performed, in due course,
using high order integration formulas with ngp × ngp inte-
gration points. The global domain is discretized with high
order functions using variables ξ, η, while the local sub-
domain/sub-cell is integrated using local variables ξi , ηi . The
following transformation to the global domain coordinates is
necessary

ξ = ξi

m
+ 2i + 1

m
− 1, i = 0, 1, 2, . . .m − 1 , (33)

η = η j

n
+ 2 j + 1

n
− 1, j = 0, 1, 2, . . . n − 1 . (34)

and then the full integral over the domain is represented as
a composed formula for integration over sub-domains/sub-
cells Ai j :

+1∫

−1

+1∫

−1

f (ξ, η) dξ dη =
m−1
∑

k=0

n−1
∑

l=0

∫

Ai j

f (ξ, η) dξ dη

= 1

m n

m−1
∑

k=0

n−1
∑

l=0

+1∫

−1

+1∫

−1

× f

(
ξi

m
+ 2i + 1

m
− 1,

η j

n
+ 2 j + 1

n
− 1

)

dξ dη.

(35)

This method has been also used in computational contact
mechanics forming the Mortar method in order to satisfy the
contact patch test, see in [32] as well as in high-order contact
implementations [7,18].

4.2 Spline approximation of the contact boundary via
Gauss points

A more precise method includes the approximation of the
boundary by a spline function. In this case, a contact line
is determined via a spline over the penetrating points close
to the boundary. A composed Bezier spline is used here,
where only the boundary integration points (most left and
most right in the cell) are used as approximation points, see
Fig. 9.

The advantages of the current approach are obvious:

– The deformed boundary can be fully taken into account;
– Contact kinematics in the sense of Sect. 2.1 are computed

precisely.

Now the normal n and tangent vector τ are computed
based on the spline geometry. They are uniquely defined due
to selection of aC1-smooth composed approximation spline.
The quality of the approach is definitely depending on the
number of integration points close to the real boundary.
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Fig. 9 Approximation of the
contact line as complex Bezier
spline with the boundary
integration points as
approximation points

Fig. 10 Explanation of the
integration over line. Contact
boundary can be approximated
as a line between cell
boundaries

y2y1x1 x2 x3 x5x4

y4

y3

y5

4.2.1 Computation of the contact integral over a line

Integration over a contact line is a standard case for the com-
putational contact mechanics fully related to the kinematics
and weak form, described in Sect. 2.1. The precise computa-
tion will be given due to the geometry of the approximation
spline described in Sect. 4.2. However, in order to decrease
computational efforts, the boundary inside the cell can be
assumed to be straight taking into account that during the
realization of the FCM the number of sub-cells is quite large.

In this case the corresponding coordinates xi and xi+1, yi
and yi+1 are computed relatively fast based on the deformed
geometry, see Fig. 10. This is especially simple for the circu-
lar geometry in the current example. Therefore, the Jacobian
for the line (arc-length) is computed as

√
detM = 1

2

√

(xi − xi+1)2 + (yi − yi+1)2. (36)

Afterwards, the contact integral is computed over line as

δWc= 1

m

m−1
∑

k=0

n−1
∑

l=0

ngp
∑

i=1

ngp
∑

j=1

Nδξ3 H(−ξ3)
√
detM wi , (37)

where m is the number of cell subdivision along OX and n
is the number of cell subdivision along OY , where the sub-
cell (sub-domain) integration is performed with ngp × ngp
integration points.

4.2.2 Collocation method

So far, we simplified the computation of the integral as com-
putation over a linear segment instead of a curve segment.

Nevertheless, it is still possible to accelerate the computation
by taking a value of the integral only as the value at the pen-
etrating point—such a simple and fast method is known as
collocation method in numerical mathematics. In this case,
the contact integral is simplified as sum over the active con-
tact Gauss points

δWc =
m−1
∑

k=0

n−1
∑

l=0

ngp
∑

i=1

ngp
∑

j=1

Nδξ3 H(−ξ3) . (38)

5 Verification of the DIC method with the
analytical solution and discussion

The first set of the verification will contain the numerical
analysis of the direct integration in the cell (DIC) contact
element, developed in Sect. 4. For the numerical example
we choose the Hertz problem, shown on the right side of the
Fig. 3. The quarter of a circle is divided into 4 cell elements
whereas the elements 1, 2 and 4 contain boundary points,
see Fig. 11, and are represented by sub-cells (5 × 5 in Fig-
ure). The a-priori condition for the contact radius a � R
will be fulfilled within the cell element with number 1. Both,
integrated Legendre and Bernstein polynomials will be used.
The radius of the cylinder is R = 4, therefore using FCM
a square with a side b = 4 is meshed into 2 × 2 elements.
The plate thickness assuming a plane-stress state is taken as
d = 1, however, it is well known that there is no influence
of this parameter on the stress-distribution in the 2D plane
system. The material is assumed to be linear elastic with
E = 106 and Poisson’s ratio ν = 0.3. The dimension system
is assumed to be consistent, that is why all dimensions are
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Fig. 11 Discretization for the Hertz problem with 4 elements and fur-
ther adaptive cell subdivision 5 × 5 etc. of the boundary area

intentionally omitted. The Penalty parameter is taken rela-
tively high as εN = 109 providing a compromise between the
value of penetration and the condition number of the matrix.
All computations are displacement controlled, in which the
final vertical displacement v = 0.1 is applied in 10 steps.
Theoretically, it is possible to perform any force controlled
loading if at least one integration point at the pseudo-time
t = 0 (loading parameter) is active during the initial contact.
The last case is requesting, however, special types of inte-
gration points such as Lobatto integration points, laying on
the boundary as working with Gauss points is automatically
leading to a kinematic system.

In our first example we are going to compare the con-
tact stresses for various integration schemes. Since in all
cases contact stresses cannot be computed as for the stan-
dard penalty method N = εN ξ3, then the stress components
are computed at Gauss points and further extrapolated to the
boundary using the same shape functions in the cell element.
On the boundary then the normal stresses are computed with
the Cauchy formula (39) for boundary stresses using either
the un-deformed normal vector n for the area integration,
or for the schemes, which are computed from the deformed
boundary for the line type of integration. In all cases, the
normal contact stresses are computed as:

σn = σxn
2
x + 2τxynxny + σyn

2
y . (39)

The resulting stresses for the representation are normalized
such that both the maximal stress and the contact radius are
equal to unit values pmax = 1 and a = 1. The following
values are used for normalizing:

contact radius

a =
√

4Pnum R(1 − ν2)

πE
(40)

and normal stress

p(x = 0) = 2Pnum
πa

. (41)

The load Pnum is computed as global reaction force at ele-
ments 3 and 4 when the displacement v is applied.

5.1 Example—comparison of various integration
schemes

In this example, the order of Bernstein polynomials is taken
to be 5, subdivision into cells of the boundary elements 1, 2
and 4 is 7×7 sub-cells, see Fig. 11 in which 5×5 subdivision
is shown exemplarily. Fig. 12 shows a comparison between
the integration over an area (Sect. 4.1.1), the integration over
a line (Sect. 4.2.1) and the collocation method (Sect. 4.2.2).
The chosen penalty parameters for each method are shown
in Fig. 12.

The main results can be summarized as follows:

1. All three integrationmethods are showing similar results.
2. They are showing a relatively good approximation of the

analytical solution besides the area close to zero x → 0.
Here the minimum of the stresses is found.

3. Outside the contact area stresses are not zero.

As expected the variousmethods are showing different global
force values Pnum used for scaling see Eq. (41): Pnum =
23690 for the area integration, Pnum = 25130 for the line
integration and Pnum = 26250 for the collocation method.
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Fig. 12 Comparison of the normalized Hertz contact stresses for
various integration methods: integration over an area (εN = 109); inte-
gration over a line (εN = 109) and the collocation method (εN = 108).
Shape functions: Bernstein polynomials of 5th order. Cell subdivision
of the bounding element is 7 × 7 cells
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Fig. 13 Approximation of the
circular profile via step-wise
sets of Gauss points within the
FCM method is causing “the
stamp effect”

5.1.1 Stamp effect

The phenomenon of oscillations for high order finite element
is a well known numerical artifact for the Hertz problem
since the first publications [20] und [8], and various tech-
niques have been developed for both high order finite element
and isogeometric finite element interpolations, see the series
of publications devoted especially to this problem [8–13].
Nevertheless, here another type of phenomena as numeri-
cal artifact (minimum at the center and shifted maximum) is
appearing. This can be explained as a “stamp effect” due to
a coarse cell discretization, namely if the element cell dis-
cretization resp. the cell subdivision is coarse the contact
area is a straight line, see Fig. 13, and the stamp solution
see Sect. 3.2 is prevailing rather than the Hertz solution see
Sect. 3.1.

In order to reconstruct “the stamp effect” in its extreme
fashion, the following measures are taken:

– Elements used in FCMare allwith linear approximations.
– Each cell element is subdivided into 2 × 2 sub-cells.
– Area integration will be employed.

The result with different cell element subdivisions 20 × 20
and 40 × 40 compared to the analytical Hertz solution is
shown in Fig. 14.

So far, we can summarize that “the stamp effect” is clearly
prevailing
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Fig. 14 Extreme appearance of the “stamp effect” for the Hertz prob-
lem: linear approximation of the elements with 2× 2 cell subdivisions.
Linear meshes with 20 × 20 and 40 × 40 elements
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Fig. 15 Influence of the cell subdivision within the contacting bound-
ary: 4 × 4, 7 × 7, 10 × 10 and 20 × 20 sub-cells. 2 × 2 cell elements
of Bernstein type of 5th order

– if a coarse subdivision into sub-cells is used;
– if lower order functions are used for the FCM.

That is why, the next step is to investigate, how it is pos-
sible to improve the results controlling the above mentioned
measures.

5.2 Influence of cell subdivision

The influence of cell subdivision will be studied with the
fixed parameters from the first example in Sect. 5.1: num-
ber of cell element subdivision is 2 × 2, order of Bernstein
polynomials is 5. The cell subdivisions are taken as 4 × 4,
7×7, 10×10 and 20×20 sub-cells in the bounding elements
using 4 × 4, 7 × 7, 9 × 9 and 20 × 20 Gauss point integra-
tion formulas respectively. The result is shown in Fig. 15.
Obviously, the cell refinement in the sense of increasing the
number of sub-domains / sub-cells in the integration formula
Eqs. (32), (35) allows to improve the result, though a small
artifact concerning the “stamp effect” is still present even for
a high refinement.

5.3 Influence of the order of the shape functions

The influence of the order of the shape function will be stud-
iedwith the followingfixed parameters from thefirst example
in Sect. 5.1: number of cell element subdivision 2 × 2, the
contacting element is subdivided into 10×10 sub-cells, Bern-
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Fig. 16 Influence of the increasing order of the Bernstein polyno-
mials: 3, 5, 7, 10. Bounding elements are subdivided into 10 × 10
sub-domains/sub-cells
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Fig. 17 Trying to resolve “the stamp effect” using a smoothing of the
contact boundary. Normal vector refer to initially smooth geometry—
Bezier 1. Normal vector refers to deformed smooth geometry—Bezier
2. Lobatto integration points are used without any smoothing—Lobatto
points. Cell subdivision 7×7 sub-cells, order of Bernstein polynomials
is 5

stein type of approximation functions with increasing order
3, 5, 7 and10 are used. The results are shown inFig. 16.Obvi-
ously, increasing the order of approximation is not leading to
a considerable improvement compared with increasing the
cell subdivision, see Sect. 5.2.

5.3.1 Comparison of various spline smoothing techniques:
a trial to resolve “the stamp effect”

Here we will compare a spline smoothing, described in
Sect 4.2, with the goal to eliminate “the stamp effect”. We
are going to distinguish the following approaches:

1. The boundary is approximated by a B-spline function as
discussed in Sect 4.2, however, the normal vector (resp.
tangent vector) is not updated and taken with respect to
the initial undeformed configuration – curve “Bezier 1”
in Fig. 17.

2. The boundary is approximated by a B-spline as discussed
in Sect 4.2, all geometric parameters such as the normal

vector (resp. tangent vector) are computed with respect
to the deformed geometry of the spline – curve “Bezier
2” in Fig. 17.

3. No smoothing curve is employed, but Lobatto integration
points are used within FCM. Since they are laying on
the boundary, there is a ”hope” to eliminate “the stamp
effect”. This is the curve “Lobatto points” in Fig. 17.

For all computation, the Bernstein polynomials of 5th
order are used for the shape functions, cell subdivision of
the bounding area is 7 × 7 sub-domains/sub-cells.

Obviously at a first look, “Bezier 1” is resolving the
stamp effect in the best fashion. However, convergence in
this case is very slow and with applied displacements larger
than v = 0.08 disconvergence is obtained unless the global
residual tolerance is set artificially to 10−6 instead of stan-
dard 10−15. The disadvantage of smoothing using boundary
Gauss points in the cell from the deformed geometry (Bezier
2) is explained in Fig. 18. Here we see that the normal vector
approximations are distorted, because the curve is build by
the boundaryGauss points, which are explicitly included into
the active contact set. In this case,we aremore approximating
“the stamp” effect, rather than eliminating it.

Finally, it becomes obvious that the Lobatto integration
is not resolving the problem at all, but rather producing new
effects due to another active set of integration points laying
exactly on the boundary.

5.4 Preliminary summary for the direct integration in
the cell (DIC) contact approach

Direct usage a Gauss points from the Cell in FCM allows
the simplest implementation of contact determination in its
geometric fashion satisfying non-penetration. All proposed
integration methods such as area integration, line integration
and even collocation are leading to almost identical results
for contact stresses. However, themain disadvantage of these
methods is “the stamp effect”, which is an artifact due to
the line-wise position of integration points. The classical
smoothing of contact boundaries with B-spline functions is
not resolving the problem: if the geometric parameters are
computed with respect to the reference geometry, then severe
convergence problems are arising; if the geometric parame-
ters are computed with respect to the deformed smoothed
geometry, then “the stamp effect” is not eliminated. The only
reasonable way to resolve the stamp problem is a cell refine-
ment in the sense of increasing the number of sub-domains
/ sub-cells in the integration formula eqns. (32), (35). Fur-
ther, increasing the order of approximation plays not such an
important role, see Fig. 15. In the next Section we propose a
special “cell-surface-to-analytical-surface”, CSTAS contact
element, which is free from “the stamp effect”.
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Fig. 18 Changing the B-spline
for smoothing during the
penetration causing a relatively
high error—the “stamp effect” is
still present

Δ
Δ

Fig. 19 Cell-wisely
construction of the contact
element CSTAS laying exactly
on the contact boundary
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6 Cell-surface-to-analytical-surface (CSTAS)
contact approach

In the previous sections we proposed the direct method
based on using the given integration points inside cells
within the finite cell method. Here, we are developing a
special contact element cell-wisely, namely, the contact
element will be based on the exact boundary inside the sub-
domain/sub-cell. This requires more transformations inside
each sub-domain/sub-cell, which will be illustrated using the
Hertz problem.

The main idea of the CSTAS contact approach is the
building of a linear contact element exactly on the contact
boundary inside each sub-domain/sub-cell, see Fig. 19. This
contact element will have its own parametrization, though
it is defined in the coordinate system of the finite element
cell-wisely.

6.1 Definition of the contact element in the local
coordinate of the finite element

The most difficult issue constructing/designing the CSTAS
contact element is the definition of the local finite element
convective coordinates for the contact boundary (ξi , ηi ) and
(ξi+1, ηi+1) for each cell, see Fig. 19.

In the current specific example of the Hertz problem, it
is possible to program this via a loop in ξ -direction. The ξi -
coordinate for the cell is given by the cell subdivision, and the
ηi -coordinate is simply computed from the circular cylinder
equation:

ηi = ηM −
√

R2 − (ξi − ξM )2 , (42)

where ξM and ηM are the coordinates of the cylinder center
with radius R in the local element coordinate system.

6.1.1 More general approach to determine the local
coordinates ξ and η for the contact element

In the general case of an arbitrary boundary inside the finite
element, we first introduce a reparametrization of the finite
element in the following form. For the linear finite element,
shown in Fig. 19, we introduce the mid-point of the element
ρ together with corresponding coordinate vectors computed
as derivative at mid-point ρξ and ρη.

ρ = x1 + x2 + x3 + x4
4

, (43)

ρξ = −x1 + x2 + x3 − x4
4

, (44)

ρη = −x1 − x2 + x3 + x4
4

. (45)

Now the local element coordinate system is build as the
description of any vector a inside the element:

a = ξ ρξ + η ρη . (46)

This procedure is possible because of the simple rectangular
geometry of the cell element as the most efficient feature of
the FCM method. In this cell-wise coordinate system, the
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coordinates of the boundary (ξi , ηi ) and (ξi+1, ηi+1) should
be defined.

Again we show this on the example of the circle. Let m
be a center of the circle with radius R. The equation of the
circle is given as, see Fig. 19.

R = |m − ρ − a| . (47)

Since in this specific example the convective coordinate ξ is
given via the cell subdivision in the corresponding direction,
then Eq. (47) can be resolved via η as:

ρ2
η η2 + (

2ρξρη ξ + 2ρρη − 2mρη

)

η

+ (

ρξ ξ + ρ − m
)2 − R2 = 0 . (48)

Finally η is derived as a solution of this quadratic equation:

η1,2 = − (

ρξρη ξ + ρρη − mρη

)

ρ2
η

±

√
(

2ρξρη ξ+2ρρη−2mρη

)2−4ρ2
η

((

ρξ ξ+ρ−m
)2−R2

)

2ρ2
η

.

(49)

An additional geometric criterion is necessary for the final
decision to select η1 or η2 as solution (either lower or upper
semi-circle). In simple cases it is obvious a-priori.

Remark 3 One can see, that for more complex boundaries
the analogues of Eqs. (47) and (48) can be non-linear and the
solution will then require an additional inner solver to find
the points (ξi , ηi ) and (ξi+1, ηi+1).

6.2 Construction of the CSTAS contact element

Once the coordinates (ξi , ηi ) and (ξi+1, ηi+1) of the seg-
ment are defined, we have to build the classical segment wise
contact element, see details for 2D in [20]. For the segment-
to-analytical-segment (STAS) approach in 2D (see also in
[30]), we need the approximation matrix A to obtain the rel-
ative displacement (δr S−δρ) at the contact element,which is
necessary to describe all kinematic parameters of the contact
element, see e.g. Eqs. (11), (12), see Sect. 2.1.

(δr S − δρ) = Aδx. (50)

For the STAS approach the approximation matrix A con-
tains the linear shape functions only for the master segment
Ml(ξ

1), l = 1 . . . 2:

A =
[

M1(ξ
1) 0 M2(ξ

1) 0
0 M1(ξ

1) 0 M2(ξ
1)

]

. (51)

Here, the local coordinate ξ1 is equivalent to ζ in Fig. 19:
ξ1 ≡ ζ .

In order to obtain the classical contact element, we
need to construct the mapping of two pairs of coordinates
(ξi , ηi ); (ξi+1, ηi+1) into the segment coordinate ξ1

{P | {(ξi , ηi ); (ξi+1, ηi+1)} −→ {−1≤ξ1 ≤ 1}}, i = 0...n.

(52)

This mapping is given by the following projection matrix P :

P =

⎡

⎢
⎢
⎣

N1(ξi , ηi ) 0 · · · Nnen(ξi , ηi ) 0
0 N1(ξi , ηi ) · · · 0 Nnen(ξi , ηi )

N1(ξi+1, ηi+1) 0 · · · Nnen(ξi+1, ηi+1) 0
0 N1(ξi+1, ηi+1) · · · 0 Nnen(ξi+1, ηi+1)

⎤

⎥
⎥
⎦

. (53)

Here Nk(ξi , ηi ), k = 1 . . . nen are shape functions of high
order for the 2D element, nen is the number of nodes reflect-
ing the order of the approximation.

In this case, all geometric parameters containing the rela-
tive displacement (velocity), e.g. penetration (see Eq. (8)) is
computed as

ξ3 = (rs − ρ) · n = nT APxel , (54)

where xel is a nodal vector for the finite element.
The CSTAS contact is fully defined if both residual and

corresponding tangent matrix are defined.
We present here only the main part of the tangent matrix,

which is obtained after the discretization of Eq. (20):

K N =
n−1
∑

i=0

ngp
∑

j=1

εN PT AT n ⊗ nAP
w j

√
detM

n
. (55)

Here, the double sum is running over the number of cells n in
ξ -direction within the finite element and over the number of
Gauss points ngp for the cell contact element (CSTAS) with
corresponding weights w j . The Jacobian (arc-length) for the
the cell contact element (CSTAS) is computed as
√
detM

= 1

2

√

(x(ξi , ηi )−x(ξi+1, ηi+1))2+(y(ξi , ηi )−y(ξi+1, ηi+1))2.

(56)
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Normally, we are going to use two Gauss points (ngp = 2)
for each cell-wise contact segment, in which the weight is
w j = 1.

The rotational part following Eq. (21) is constructed by
analogy,while the curvature part, seeEq. (22), is zero because
the contact segment is linear.

The residual reflecting the discretization of the normal part
of the weak form in Eq. (15) is computed respectively as:

RN =
m−1
∑

i=0

ngp
∑

j=1

εN PT AT n
w j

√
detM

m
. (57)

Remark 4 Of course, both tangent matrix and residual are
computed for the active contact set, i.e. if the penetration
in Eq. (54) is negative, reflecting the constitutive law (or
penetration method) in Eq. (16).

The normal vector n to the segment (here the continuum
is assumed to be above the contact element and the external
normal is pointing downwards) is computed in global coor-
dinates as

n = 1

2
√
detM

(

y(ξi+1, ηi+1) − y(ξi , ηi )
x(ξi , ηi ) − x(ξi+1, ηi+1)

)

, (58)

with the Jacobian
√
detM computed in Eq. (56).

6.2.1 Summary of computational efforts for CSTAS contact
element

The computational efforts for the construction of the CSTAS
contact elements inside a single element cell are summarized
as follows:

– Subdivision of a cell into n sub-cells and correspond-
ing definition of the boundary coordinates (ξi , ηi ); (ξi+1,

ηi+1) for each sub-division/sub-cell. This is given in the
current example by the n times solution of Eqs. (47) or
(48), or by a more complex solution in the case of arbi-
trary boundaries see Remark 3.

– The n contact elements are assembled using the projec-
tion matrix P in Eq. 53, dimension of which 2 × nen
depends on the order of functions involved in the high
order approximation of the cell element.

– Finally, the tangent matrix K (see the normal part in
Eq. (55)) and the residual RN are computed at the active
contact set formed by ngp integration points for each
sub-cell element.

Therefore, each cell element subdivided into n sub-
division/sub-cells containsn contact elements,while forming
of the contact active set is performed as penetration check at
ngp × n integration points.
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Fig. 20 Influence of the cell subdivision of bounding elements by 4×4,
7× 7, 10 × 10 and 20 × 20 sub-cells. Finite element cells interpolated
by Bernstein type shape functions of 5th order are given

6.3 Verification of the CSTAS contact element

Again we will verify the solution comparing to the Hertz
solution. The influence of the number of cell subdivisions, the
order of approximation and the difference between classes of
shape functions will be investigated.

6.3.1 Influence of cell subdivisions

We are still working with an example of meshing as given in
Fig. 11. Here, Bernstein polynomials of 5th-order are used.
The cell subdivisions of the bounding cell elements are 4×4,
7× 7, 10× 10 and 20× 20 sub-domains/sub-cells with cor-
responding number of CSTAS contact elements. The results
are given in Fig. 20. All material parameters are kept as in
the previous example. The normal stresses are computedwith
regard to the stresses from the cells by using Eq. (39), that
is why the stresses are still present even outside the contact
zone. Obviously, by using the CSTAS contact approach “the
stamp effect” is fully eliminated, however, we still need cell
refinement in order to achieve “good correlation” of stresses
within the contact zone. Further the results look somehow
“stabilizing”, so there is only a small variance in stresses for
7 × 7, 10 × 10 and 20 × 20 cell subdivisions.

6.3.2 Comparison of various orders of approximation for
shape functions

As the starting positionwewill take 10×10 cell subdivisions.
The order of shape functions is increasing as 3, 5, 7 and
10. Obviously, see Fig. 21, increasing the order introduces
oscillations at the boundary similar to the well-known Gibbs
phenomenon. Such an effect is also well known for high-
order finite elements see in [7] as well as for isogeometric
finite elements, see the review in [13].
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Fig. 21 Comparison of various order of approximations for Bernstein
shape functions: 3, 5, 7 and 10. Cell subdivision: 10 × 10 sub-cells
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Fig. 22 ComparisonbetweenBernstein-and integratedLegendre poly-
nomials for shape functions. In all cases 10 × 10 cell subdivision in
contacting area

6.3.3 Comparison between Bernstein- and integrated
Legendre polynomials for shape functions

As is known, the classical high-order FEM is employing inte-
grated Legendre polynomials, while Bernstein polynomials
are rather reflecting the iso-geometric finite element method,
because the Bernstein polynomials are basis functions for
NURBS elements. Here, we compare this in terms of the
FCM. Using our example with 4 × 4 finite element cells by
the following cases:

1. Bernstein polynomials of 5th order. Cell subdivision is
7 × 7 sub-cells for the bounding area.

2. Integrated Legendre polynomials of 5th order. Cell sub-
division is 7 × 7 cells for the bounding area.

3. Bernstein polynomials of 7th order. Cell subdivision is
10 × 10 cells for the bounding area.

4. Integrated Legendre polynomials of 7th order. Cell sub-
division is 10 × 10 cells for the bounding area.

Obviously, see Fig. 22, the difference between integrated
Legendre polynomials is rather small compared with Bern-
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Fig. 23 20 × 20 finite elements of 2nd order. Additional 10 × 10 cell
subdivisions of the bounding area (more dense area in the Figure)

stein polynomials, though the quality of approximation using
Bernstein polynomials is slightly better than using integrated
Legendre polynomials. Nevertheless, it still valid that higher
order approximations may lead to high oscillations around
the point of loosing continuity.

6.3.4 Adaptive cell refinement with CSTAS method

As expected from the usage of finite elements in contact,
the adaptive cell refinement will perform similar to an adap-
tive finite element refinement, see Wriggers and Scherf [33].
Since, within h − p refinement the variety to combine vari-
ous types of refinement is quite high, we exemplarily choose
here only two examples of subdivisions:

1. Fairly high dense mesh with low order of approximation:
20×20 finite elements of 2th order (integrated Legendre
polynomials) with additional 10× 10 cell subdivision of
the bounding area (more dense area in the Figure) with
a corresponding CSTAS contact element, see the repre-
sentation of the mesh by integration points in Fig. 23.

2. Medium densemeshwith higher order of approximation:
8× 8 finite cell elements of 5th order (integrated Legen-
dre polynomials) with additional 10×10 cell subdivision
of the bounding area (more dense area in the Figure) with
a corresponding CSTAS contact element, see the repre-
sentation of the mesh by integration points in Fig. 24.

The usage of integrated Legendre polynomials allows to
simplify the meshing tremendously, together with the “adap-
tive cell refinement”, organized simply as separated cell
subdivisions which is essentially identical to the separated
integration formula with sub-domains, see Eq. 35 and also
the theory in [18]. A comparison of the results is presented in
Fig. 25 corresponding to themeshes shown inFigs. 23 and24.
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Fig. 24 8 × 8 finite elements of 5th order. Additional 10 × 10 cell
subdivisions of the bounding area (more dense area in the Figure)
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Fig. 25 Comparison of adaptive cell refinement of two cases: Case 1:
20 × 20 finite cell elements of 2nd order. 10 × 10 cell subdivisions.
Case 2: 8×8 finite cell elements of 5th order. 10×10 cell subdivisions

In both cases, see Fig. 25, there is good correlation with
the analytical Hertz solution for both contact stress and con-
tact radius, though the rule known from h − p refinement is
confirmed. For non-smooth functions and singularities it is

better to usemore elements (more sub-cells) with lower order
rather than less elements with higher order. This rule is well
represented here, in which case 2 shows a better correlation
with the analytical Hertz solution.

6.4 Preliminary summary for the CSTAS contact
approach

Using the cell-surface-to-analytical-surface (CSTAS) con-
tact approach allows to eliminate fully such an artifact as
“the stamp effect”, which is present for the direct integration
in the cell (DIC) contact approach. Nevertheless, cell refine-
ment is necessary in order to improve the result, keeping in
mind that increasing the order of approximation is less effec-
tive. The best solution is given then by the adaptive mixed
adaptive mesh and cell refinement.

7 Discrete cell to cell (DCTC) as the simplest
contact algorithm for two deformable bodies

Up to now, we studied in detail all effects appearing dur-
ing the development of the computational contact algorithm
for contact of the deformable body with a rigid boundary.
In the following, we would like to discuss the most sim-
ple implementation for contact between deformable bodies.
This method is based on the nature of FCM—a set of Gauss
points is represented as discrete elements and then a con-
tact algorithm used for the finite discrete method (FDM)
is employed. Details about FDM implementations are pre-
sented in the monograph of Munjiza [34].

The idea of the DCTC method is presented in Fig. 26
based on the assumption that a rather dense cell subdivision is
employed. In this case, each cell is embedded in a circle with
the radius χ , allowing a ball-to-ball discrete contact, or (a
discrete-cell-to-cell) method. The contact radius χ should be
adjustedwith regards to the distance between the neighboring

Fig. 26 Representation of
discrete-cell-to-cell as contact
between balls with radius χ .
Same radius χ is used for both
contacting bodies in the case of
the same cell density definition

S1r
S2r

n1
n2

y

x

χ

χχ

ρ
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integration points. Such an idea, using a ball fully filling
a finite element with further ball-to-ball contact algorithm
implementation, has been realized by Belytschko and Neal
for explicit dynamics computations as the so-called pinball
algorithm, see in [35].

Penetration in this case is computed as penetration
between two circles with centers r S1 and r S2 describing in
fact the position of integration points:

ξ3 = |r S1 − r S2 | − 2χ. (59)

By the selection of the value for the radius χ (here the size
of cells and corresponding radius for contacting bodies are
taken into account) the following facts should be taken into
account:

– Convergence of the solution is better if the radius is larger;
– The radius χ should not be too large in order to avoid
overlapping of the nearest integration points;

– The radius χ should not be too small in order to avoid
loss of contact, if one circle (ball) would slide between
other two without contact.

7.1 Regularization of the normal contact

For the regularization of normal contact we are selecting
a revision of the penalty method, as proposed by Durville
in [36]. This method is starting with zero derivative of the
regularized contact force at zero penetration and combines
quadratic regularizationwith a linear one. In order to combine
the linear and the quadratic zone, an additional parameter ξ3reg
is introduced, defining the boundary between the linear and
the quadratic zone for the normal force N (see Fig. 27). For

ξ3 ξ3

N

reg

Fig. 27 Linear-Quadratic regularization of the contact force N , see
[36]; penalty method

further linearization, it is necessary also to compute the deriv-
ative N ′ depending on ξ3reg . The force N and its derivative
N ′ are given then by the following formulas:

N =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

0 , ξ3 > 0
εN

2 ξ3reg
(ξ3)2 , −ξ3reg ≤ ξ3 ≤ 0

−εN

(

ξ3 + ξ3reg
2

)

, ξ3 < −ξ3reg

(60)

N ′ =

⎧

⎪⎪⎨

⎪⎪⎩

0, ξ3 > 0
εN
ξ3reg

(ξ3), −ξ3reg ≤ ξ3 ≤ 0

−εN , ξ3 < −ξ3reg

(61)

Selection of ξ3reg is user dependent, however, the choice
of this will influence the convergence.

7.2 Tangent matrix and residual

The proposed regularization in the previous section allows
to build the residual and tangent matrix directly using the
results from Sect. 2.2 and 2.3 as

f = εN ξ3 [A]T n = N [A]T n (62)

K N = εN [A]T n ⊗ n[A] = N ′ [A]T n ⊗ n[A] (63)

where [A] is position matrix approximating the position of
two integration points

r S1 − r S2 = [A]{x} (64)

with x as a nodal vector for the coordinates of two interacting
integration points.

7.3 Verification with Hertz problem

The example for verification is shown in Fig. 28. In order
to represent the DCTC contact elements we choose finite
elements of 2nd order and 5 × 5 subdivisions leading to 3
Gauss points surrounded by circles for the DCTC contact
element. The rigid line is subdivided element-wisely with
Gauss points, see Fig. 28, however, with a trial to represent an
arbitrary case, rather than point-to-point contact. The initial
distance between bodies and radius δ is selected in such a
way to avoid the initial penetration of circles.

In analogy to previous contact approaches, we analyze
now the influence of cell subdivisions and order of approxi-
mation functions. The same geometry and material as before
are used: E = 106, ν = 0.3, b = 4, R = 4, t = 1.
An uniform displacement v = 0.1 is applied at the upper
boundary in 10 steps; the penalty parameter is chosen as
εN = 109. The contact radius is taken as χ = 0.02,
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Fig. 28 Example of the
discretization for the Hertz
problem. Element of the 2nd
order and 5 × 5 subdivisions
leading to 3 Gauss points
surrounded by circles for DCTC
contact element

v

2

4

1

3

δ

the rigid line is represented with 11 Gauss points for all
cases. The contact radius is chosen with regard to the Gauss
points density in order to fulfill the ball-to-ball type con-
tact. The initial distance between the bodies is given as
δ = 0.04.

7.3.1 Influence of cell subdivisions

In this example, the area is modeled with finite elements of
Bernstein type shape functions of 5th order. The contacting
area is split into 4 × 4, 7 × 7, 10 × 10 and 20 × 20 sub-
domains/sub-cells consequently. A comparison of the results
concerning contact pressure is given in Fig. 29.

Obviously, the result is converging (stabilizing) starting
from the 7×7 cell subdivision. No “stamp effect” is observed
at all, however, the shape of the stress curve is concave instead
of convex as for the Hertz problem. This is the direct effect
of the selected penalty regularization of the force, presented
in Sect. 7.1. If the regularization would be chosen directly
following the analytical Hertz solution the stresses could be
better approximated.
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Fig. 29 Influence of the cell subdivision for the DCTC contact ele-
ment: 4 × 4, 7 × 7, 10 × 10 and 20 × 20. Finite elements of 5th order
(Bernstein)
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Fig. 30 Influence of the order of approximationwith theDCTCcontact
element: 3, 5, 7, 10 order of the Bernstein polynomials. 10 × 10 cell
subdivisions

7.3.2 Influence of the order of approximation

In order to study the influence of the order of approxima-
tion, we select 10 × 10 cell subdivisions and compute with
increasing order 3, 5, 7, 10. The results are shown in Fig. 30.

Since, increasing the order of approximation within
DCTC leads to the necessity of more integration points, then
the results, as expected, are looking similar to increasing the
cell subdivision in Sect. 7.3.1. The artifact of the specific
penalty regularization is still present.

7.3.3 Self-contact in a pore

Since one of the advantages of the DCTC contact element is
the possibility to describe contact between deformable bod-
ies, we choose to compute the self-contact problem in a pore
(Fig. 31).

As the most simple model, a half of the object with a pore
is discretized. The pore is modeled with setting the material
indicator within the FCM method to γ = 10−12 inside the
pore, however, only linear elastic material with E = 106,
ν = 0.3 is used. With setting the material indicator to a
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Fig. 31 Representation of
self-contact inside a pore; force
controlled loading

p

p p

p

Fig. 32 Computation of self
contact inside a pore. 2 finite
cell elements of 5th order
Bernstein polynomials. Cell
subdivision is 6 × 6 cells.
Integration points are shown.
The pore is not closed
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δ = 0.04

small value, the novel modeling type of contact modeling
using the standard finite element is analyzed by Wriggers
et al. in [37]. Since, the relatively large deformations are
limited in this case, we intentionally choose an elliptic shape
of the pore in order to reach contact faster. Half-size of the
plate is b = 2, the height h = 0.4. The size of the elliptic
pore is defined with the principle half-axes R1 = 1.8 and
R2 = 0.09. In this case, the pore is more close to an open
crack – otherwise we have to use a non-linear material law,
which is suitable for large deformations.Thedistributed force
at the boundary is then q = 180, which is applied in 6 load
steps with �q = 30 each. The penalty parameter for the
DCTC contact element is εN = 108 with a contact radius
of χ = 0.02. The contact radius is chosen with regard to
the Gauss points density in order to fulfill the ball-to-ball
type contact.Obviously, the effectiveness is highly dependent
on the cell subdivision. The pore is not closed in this case
(stiff behavior) keeping the distance δ = 0.04 in between
computed via Eq. 59, see Fig. 32, which is directly the result
of the control radius with this 6 × 6 subdivision.

In order to reach the state “self contact” better , the struc-
ture is subdivided into 24 × 6 sub-cells – 24 in horizontal
direction –with contact radiusχ = 0.006 for the correspond-

ing DCTC contact elements. As expected these parameters
allow to detect self contact inside the pore, see Fig. 33.
This final example is selected only to show the possibility to
model self-contact with the DCTC contact element. A more
appropriate model would require, of course, a more suitable
material law for the continuum, allowing large deformations.

7.3.4 Preliminary summary for the DCTC contact element

Using the DCTC contact element allows to model contact
between deformable parts of bodies in a straightforward fash-
ion. This rather simple method, however, requires careful
selection of the contact radius χ for corresponding contact-
ing circles. The verification on the Hertz problem shows
that this type of contact is not suffering from “the stamp
effect”, however, the results are depending on the type of the
regularization for the contact force. Thus, the selected type
of the regularization is delivering a concave shape of the
contact Hertz stresses (fully in agreement with the chosen
regularization) instead of convex shape in reality. A possible
improvement would be the usage of a regularization in the
form of Hertz solution exactly—a not very general proce-
dure.
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Fig. 33 Comparison of self
contact in a pore. The cell
subdivision into 24× 6 cells and
smaller contact radius allows to
improve self-contact inside the
pore (softer behavior)
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Nevertheless, the effectiveness of the proposed DCTC
contact element in terms of satisfaction of the geometrical
condition of non-penetration is illustrated by the example
”Self-contact in pore”, providing that the cell subdivision
is initially important for the stiff behavior (locking) of the
structure.

8 Summary

In the current work, several contact approaches have been
developed for the FCM.

– DIC contact element (direct integration in the cell)—
based on the straightforward idea to compute the contact
integral by the given integration points in the cell;

– CSTAS contact element (cell-surface-to- analytical- sur-
face) for contact with rigid bodies;

– DCTC contact element (discrete-cell- to-cell)—based on
the representation of the integration point as a discrete
finite element for both deformable bodies.

The Direct Integration in the Cell (DIC) contact approach
can be chosen with several integration techniques: area, line
integration and collocation method (for 2D problems). The
DIC is the fastest method to implement contact for the FCM.
In due course the collocation method is the fastest among
the integration methods providing that all integration meth-
ods are delivering almost the same contact stresses. However,
the DIC method is suffering from the “stamp effect” which
can be resolved at least partially by cell refinement. The influ-
ence of the order of approximation as well as the classes of
approximation functions (integrated Legengdre or Bernstein
polynomials) is rather negligible.

The cell surface to analytical surface (CSTAS) is the most
effective method concerning the approximation properties
for contact stresses, however, the most complex one as it
requires to build the contact element cell-wisely precisely

on the contact boundary inside each sub-division/sub-cell
containing the boundary. The CSTAS contact approach is
free from “the stamp effect”. For best results, cell refinement
or even adaptive cell refinement is, however, necessary.

The discrete cell to cell (DCTC) contact approach is par-
ticularly developed for two contacting deformable bodies.
The method is build by analogy to the finite discrete element
method and depends on additional parameters such as the
radius of contacting circle χ , which should be chosen with
regard to the integration point density. The stress represen-
tation is, however, also highly depending on the way of the
regularization of the contact force involved.Nevertheless, the
method delivers good approximation and may fully satisfy
the geometric condition of non-penetration. The results are
illustrated concerning the self-contact in a pore.

It is expected that the best method for deformable bodies
would be a Mortar type method cell surface to cell surface
(CSTCS) in which a contact pair is build from the two possi-
ble contacting cells similar to the segment-to-segmentmortar
method in computational contact mechanics. However, this
requires additional investigations and lays outside the scope
of the current article.
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