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Abstract A new implicit stabilized formulation for the
numerical solution of the compressible Navier–Stokes equa-
tions is presented. The method is based on the finite calculus
(FIC) scheme using the Galerkin finite element method
(FEM) on triangular grids. Via the FIC formulation, two sta-
bilization terms, called streamline term and transverse term,
are added to the original conservation equations in the space-
time domain. The non-linear system of equations resulting
from the spatial discretization is solved implicitly using a
damped Newton method benefiting from the exact Jacobian
matrix. The matrix system is solved at each iteration with a
preconditioned GMRES method. The efficiency of the pro-
posed stabilization technique is checked out in the solution of
2D inviscid and laminar viscous flow problems where appro-
priate solutions are obtained especially near the boundary
layer and shock waves. The work presented here can be con-
sidered as a followupof a previousworkof the authorsKouhi,
Oñate (Int J Numer Methods Fluids 74:872–897, 2014). In
that paper, the stabilized Galerkin FEM based on the FIC for-
mulation was derived for the Euler equations together with
an explicit scheme. In the present paper, the extension of
this work to the Navier–Stokes equations using an implicit
scheme is presented.
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1 Introduction

Stabilization of numerical methods is an important research
topic for high-speed compressible flows modeled by the
Navier–Stokes equations. Basically, stabilization strategies
intend to avoid the occurrence of numerical instabilities
which normally have two main sources, the high value of
convective terms in the original partial differential equation
and the sharp gradients and shocks in localized zones of the
solution. Also, these techniques should be able to predict the
boundary layer, properly.

Based on the FEM, several stabilized formulations for
compressive flows have been developed during the last
decades. Donea [2] originally derived a class of stabi-
lized FEMusing the Lax-Wendroff/Taylor-Galerkin scheme.
Based on the idea of the streamline diffusion, Hughes
et al. [3,4] extended the classical streamline-upwind/Petrov–
Galerkin (SUPG), initially proposed by Brooks and Hughes
[5] for incompressible flows. The SUPG method has been
widely used by several authors for compressible flows
[6–9]. In conjunction with the SUPG formulation and based
on scaled residuals, new ways for determining the stabiliza-
tion and shock-capturing parameters, categorized as Y Zβ

shock-capturing, are recently introduced by Tezduyar and
Senga [10] for inviscid supersonic flows. The extension
of this method to different element types and more com-
plex geometries is presented in [11,12]. This method is
widely used for three-dimensional edge-based computations
[13], in combination with variable subgrid scale (V-SGS)
method [14] and also for drug delivery problems in incom-
pressible flows [15]. Other popular stabilization techniques
for compressible flows were based on the Galerkin least
squares method [16–18] which coincides with the origi-
nal SUPG method under some specified conditions. Unified
stabilized FEM formulations for compressible and incom-
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pressible flows were presented by Hauke and Hughes [18]
and Mittal and Tezduyar [19]. Using of the fractional step
concept [20,21], Zienkiewicz and co-workers introduced the
characteristic-based split method [22–25], which benefited
from the anisotropic shock capturing term presented by Cod-
ina [26]. Another artificial diffusion schemeswere developed
by Peraire et al. [27], Morgan et al. [28] and Zienkiewicz
and Wu [29]. Based on the idea of limiters, Boris and Book
[30] developed the flux corrected transport and Löhner et al.
[31] extended this scheme to unstructured meshes in the
FEM. Recently, the so-called variational multiscale method,
originally introduced by Hughes [32] has been successfully
applied to derive stabilized finite element formulations for
flow problems [33–39]. Based on the finite volume scheme
and following the idea of artificial diffusion, an important
numerical improvement was conducted by Jameson et al.
[40] using a series of second and fourth order stabilization
methods. The study of finite volume flux vector splitting was
presented byAnderson et al. [41]where several advantages of
the MUSCL-type approach over standard flux-differencing
scheme were discussed.

Within the family of stabilization techniques, the Finite
Increment Calculus (FIC, or Finite Calculus in short) formu-
lation has been successfully implemented for the stabilization
of advective-diffusive transport and incompressible fluid
flow problems by Oñate and co-workers [42–49]. In this
paper, a FIC-based stabilized formulation for the numeri-
cal solution of the compressible Navier–Stokes equations is
considered in the context of Galerkin FEM using an implicit
scheme. In a previouswork [1], we proposed an explicit FIC–
FEM formulation for the numerical solution of the Euler
equations.

TheFIC technique is basedonwriting the balance of fluxes
in the momentum, mass balance and energy conservation
equations in a space-time domain of finite size. It aims to
preventing the creation of instabilities that usually appear
in the numerical solution of fluid flow problems due to the
high convective terms and sharp gradients. This leads to a
modified non-local form of the standard governing equations
in mechanics that incorporate additional residual terms that
depend on characteristic lengths in space and time. In the
context of the compressible flow equations, the FIC approach
introduces two stabilization terms, called the streamline term
and the transverse term. Generally, the streamline term takes
care of the instabilities produced from the convective terms
while the transverse term smooths the solution in the high
gradient zones.An implicit algorithm is implemented to over-
come the stability limitations depending on the mesh size.
This implicit algorithm takes advantage of Newton method
for solving of the non-linear system of equations using the
exact Jacobian matrix. The final linear system of equations
is solved at each iteration with a preconditioned GMRES
method.

In this work we explore the advantages of the FIC for-
mulation to provide appropriate numerical solutions for the
compressible Navier–Stokes equations in conjunction with
an implicit solver. Some numerical test examples related to
inviscid and laminar viscous flows are presented. By study-
ing the quality of solutions near shock waves, the boundary
layer and the stagnation point it is found that the usual oscil-
lations observed in the Galerkin FEM [22], especially near
high gradient zones, are eliminated by implementing the FIC
stabilization terms without introducing an excessive numer-
ical dissipation.

The layout of the paper is the following: In Sect. 2 the
compressible Navier–Stokes equations are described. Sec-
tion 3 presents the derivation of the stabilized formulation
based on the FIC scheme. The spatial discretization of the
proposed stabilized formulation via the FEM and the solu-
tionmethod for steady state problems are presented in Sect. 4.
Numerical results for inviscid and laminar viscous flows in
subsonic, transonic and supersonic regimes are shown in
Sect. 5. Finally, conclusions and general remarks are sum-
marized in Sect. 6.

2 Governing equations

The two-dimensional (2D) compressible Navier–Stokes
equations, obtained from the combination of the mass bal-
ance, momentum and energy equations, can be written in the
following conservative form:

∂U
∂t

+ ∂Fi

∂xi
− ∂Gi

∂xi
= 0 for i = 1, 2, (1)

where U, F and G are the vectors of conservative variables,
inviscid fluxes and viscous fluxes, respectively which can be
expressed as

U =

⎡
⎢⎢⎣

ρ

ρv1
ρv2
ρe

⎤
⎥⎥⎦ Fi =

⎡
⎢⎢⎣

ρvi
ρv1vi + pδi1
ρv2vi + pδi2
vi (p + ρe)

⎤
⎥⎥⎦

Gi =

⎡
⎢⎢⎣

0
σ1i
σ2i

k ∂T
∂xi

+ v jσi j

⎤
⎥⎥⎦ , (2)

where ρ, v, p, T, and e are the density, the velocity vector,
the static pressure, the absolute temperature, and the total
internal energy per unit mass, respectively. σ is the viscous
stress tensor, k is the thermal conductivity coefficient and δi j
is the Kronecker delta. In the above equations i, j = 1, nd
with nd is the number of space dimensions (nd = 2 for 2D
flow problems).
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The Navier-Poisson law for a Newtonian fluid expresses
the components of the viscous stress tensor σ in term of the
velocity. For an isotropic media

σi j = μ

(
∂vi

∂x j
+ ∂v j

∂xi

)
+ λ

∂vk

∂xk
δi j for k = 1, 2, (3)

where a bulk viscosity of (3λ + 2μ) = 0 is assumed. In Eq.
(3) μ = μ(T ) is the dynamic viscosity coefficient which is
calculated from Sutherland’s equation [50].

The standard sum convention for terms with repeated
indices is adopted in the paper, unless otherwise specified.

By defining γ = 1.4 as the ratio of specific heats, the
assumed equation of state for an ideal gas has the following
form

p = (γ − 1)ρ(e − 0.5v jv j ). (4)

The Euler equations for a non-viscous fluid can be recov-
ered from the Navier–Stokes equations Eq. (1) by neglecting
the viscous stress and the heat conduction terms. i.e.,Gi = 0.

3 Derivation of the stabilized formulation

In this section, we derive the FIC-based stabilized formu-
lation for the mass, momentum and energy equations is
presented. Although the same idea is applied to construct the
stabilized formulation for each component, the strategy used
for the momentum and energy equations is somehow differ-
ent from the one implemented for the mass equation. This
difference is due to the implementation of the FIC scheme in
space for stabilization of the momentum and energy equa-
tions, while a space-time FIC scheme is used to stabilize the
mass equation.

3.1 FIC scheme for Navier–Stokes equations

The FIC-based stabilized formulation for the Navier–Stokes
equations is obtained bywriting themass balance equation in
a space-time domain of finite size using higher order Taylor
series expansions as [42,45,47]

Mass balance

rd − 1

2
hd .∇rd + 1

2
τd

∂rd
∂t

= 0. (5)

The same idea is implemented for the momentum and energy
balance equations in a space domain of finite size as

Momentum

rmi − 1

2
hmi .∇rmi = 0. (6)

Energy

re − 1

2
he.∇re = 0. (7)

In Eqs. (5), (6) and (7) hd , hmi and he are characteristic
length vectors, τd is a stabilization parameter and rd , rmi and
re are the residuals of the mass equation, the i th momentum
equation and the energy equation, respectively, defined as

rd := ∂ρ

∂t
+ ∂(ρv j )

∂x j
= 0 (8)

rmi := ∂(ρvi )

∂t
+ ∂

∂x j
(ρviv j ) + ∂p

∂xi
− ∂

∂x j
(σi j ) = 0 (9)

re := ∂(ρe)

∂t
+ ∂

∂x j
(v j (ρe + p)) − ∂

∂x j

(
σi jvi + k

∂T

∂x j

)

= 0, (10)

with i, j = 1, nd .
More details on the definition of Eqs. (5), (6) and (7) can

be found in [42]. Other applications of the FIC scheme to
incompressible flows and convection-diffusion problems are
presented in [43–47].

The time derivative term ∂rd
∂t in Eq. (5) needs to be modi-

fied in order to provide the required stability. For this reason,
rd from Eq. (8) is substituted in the time-derivative term of

Eq. (5). By neglecting the term 1
2τd

∂2ρ

∂t2
from the deduced

equation, the stabilized final mass balance equation has the
form

rd − 1

2
hd .∇rd + 1

2
τd

∂

∂xi

∂(ρvi )

∂t
= 0. (11)

The term ∂(ρvi )
∂t in the above equation can be expressed in

term of the terms of Eq. (9) as

−∂(ρvi )

∂t
= ∂(ρviv j )

∂x j
+ ∂p

∂xi
− ∂

∂x j
(σi j ) = ∇.(Fmi −Gmi ),

(12)

where ∇.(Fmi − Gmi ) is the divergence of the flux terms
corresponding to the i th momentum equation.

Substituting Eq. (12) into (11) the FIC-based form of the
mass equation can be expressed as

rd − 1

2
hd .∇rd − 1

2
τd∇.(∇.(Fm − Gm)) = 0. (13)
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It is to be mentioned that although the neglected term
1
2τd

∂2ρ

∂t2
in Eq. (11) can be obtained using an explicit finite

difference scheme, we have found that this term has not an
important role for steady state flow problems. However, we
suggest to consider this term for unsteady cases.

3.2 Definition of the stabilization parameters

As shown in Eqs. (13), (6) and (7), the modified governing
equations via the FIC method introduce naturally an addi-
tional term into the standard mass, momentum and energy
equations through some stabilization parameters, namely
characteristic length vectors hd , hmi and he, as well as the
pseudo-time stabilization parameter τd .

Stabilization of the Navier–Stokes equations can be
achieved by an appropriate definition of these parameters
in such a way that unstable solutions, usually created in the
numerical simulations of high-speedflowproblemsdue to the
high convective terms and sharp gradients, disappear. For this
purpose, the characteristic length vectors hmi and he corre-
sponding to the momentum and energy equations are defined
as

hmi = βmi 

v

|v| + vc
+ (1 − βmi )


∇vi

|∇vi | sgn(rmi ) (14)

he = βe

v

|v| + vc
+ (1 − βe), 


∇T

|∇T | sgn(re), (15)

where βmi and βe are constant parameters ranging between
zero and one, 
 is a characteristic element size corresponding
to the momentum and energy equations, sgn(.) denotes the
sign function, |v| is the modulus of the velocity vector and

vc =
√

γ
p
ρ
is the speed of the sound in the flow.

In Eqs. (14) and (15) the characteristic length vector cor-
responding to each equation is defined as the summation of
two terms. The first one is the streamline stabilization term.
This term handles the instabilities due to the high convective
terms by adding extra diffusion in the direction of the veloc-
ity. On the other hand, the instabilities generated near zones
with some sharp gradients are treated via the second term,
called transverse stabilization term. This term introduces an
isotropic (residual-based) diffusion matrix.

The same idea is applied for deriving of the characteristic
length vector hd and the pseudo-time stabilization parameter
τd corresponding to the mass equation. Their expression is

hd = (1 − βd)

∇ρ

|∇ρ| sgn(rd) τd = βd



|v| + vc
, (16)

where 0 ≤ βd ≤ 1. Comparing Eqs. (13) and (16), we see
that parameters τd and hd in the stabilized formulation of
the mass equation have the same functionality as the stream-
line stabilization term and the transverse stabilization term,

respectively, introduced for the momentum and energy equa-
tions.

3.3 General stabilized formulation

By substituting the stabilization parameters from Eqs. (16),
(14) and (15) intoEqs. (13), (6) and (7), the general FIC-based
stabilized formulation for the compressible Navier–Stokes
equations is obtained as

Mass balance

rd − 1

2
(1 − βd)
 sgn(rd)

∇ρ

|∇ρ| .∇rd

−1

2
βd


1

|v| + vc
∇.(∇.(Fm − Gm)) = 0. (17)

Momentum

rmi − 1

2
(1 − βmi )
 sgn(rmi )

∇vi

|∇vi | .∇rmi

−1

2
βmi 


v
|v| + vc

.∇rmi = 0. (18)

Energy

re− 1

2
(1−βe)
 sgn(re)

∇T

|∇T | .∇re− 1

2
βe


v
|v| + vc

.∇re = 0.

(19)

Note that expressing the stabilization terms as a function
of the residuals of the corresponding balance equations (see
Eqs. (17), (18) and (19)), the consistency of the proposed FIC
method is enforced.

3.4 Selection of the stabilization parameters

The rationale behind the choice of the stabilization parame-
ters βmi and βe is that they should account for streamline
and transverse diffusion effects. Note that for βmi , βe = 0
the original SUPG stabilization scheme for the momentum
and energy balance equations is recovered, where a stabiliza-
tion diffusion is added in the direction of the velocity. On the
other hand, βmi , βe = 1 introduces an isotropic diffusion
term only.

A possible choice for choosing these parameters is

βmi = 1 − v.∇∇∇vi

|v||∇∇∇vi | , βe = 1 − v.∇∇∇T

|v||∇∇∇T | . (20)

Note that for situations when the velocity field is orthogo-
nal to the gradient∇∇∇vi then βmi = 1, whereas βmi = 0 if v is
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parallel to∇∇∇vi . The same occurs for βe when v is orthogonal
or parallel to∇∇∇T .

The form of Eq. (20) introduces a non-linearity in the
computation ofβmi andβe. This can be overcome in transient
problems by assuming that βmi and βd are constant within a
time step and equal to the value computed for the previous
time increment.

For the steady state problems considered in this work we
have assumed that the stabilization parameters βmi and βe

are constant throughout the non linear solution (i.e., βmi =
βd = β. This assumption simplifies the convergence of the
iterative process.

Accurate results have been obtained for all the problems
solved with β = 0.5. This choice was based on the good
results obtained with this assumption for inviscid compress-
ible flow problem in [1]. The effect of choosing different
values for β on the quality of the results is studied in [1] as
well as in the example presented in Sect. 5.2.

As for the stabilization parameter βd in the mass balance
equation, in this work the simplest choice βd = β has been
made. The optimal definition of βd is an open research topic.

The FEM is implemented in this work for the discretiza-
tion of equations in space. Hence the characteristic element
size is defined as 
 = (2�e)1/2 where �e is the element area
for 2D problems. Clearly, for 
 → 0 the standard infinites-
imal form of the balance Eqs. (8), (9) and (10) is recovered
from the general stabilized formulation.

4 Numerical solution

Wepresent the spatial discretization of the stabilized Navier–
Stokes Eqs. (17)–(19) as well as the methodology imple-
mented for solving the resulted system of algebraic equations
for the steady state case.

4.1 Spatial discretization

The well known Galerkin FEM [22] is implemented to dis-
cretize the FIC-based stabilized formulation in space. Vector
U containing the conservative variables is approximated by
a combination of continuous linear shape functions as

U � Ū =
n∑

J=1

NJ ŪJ , (21)

where vector Ū contains the approximate values of the con-
servative variables. N is the matrix of interpolating shape
functions, subscript index J represents the values for the J th

node and n = 3 for linear triangles.
Let us assume a problem domain � with a boundary �.

The standard weighted residual method is applied to Eqs.

(17), (18) and (19), the stabilization terms are integrated by
parts and the boundary terms are neglected. This yields the
variational form of the discretized equations as

∫
�

Wr̄d� +
nel∑
e

∫
�e

1

2
S

∂W
∂xi

∂Ū
∂xi

d�

+
nel∑
e

∫
�e

τ

2
Bi

∂W
∂xi

r̄st d� = 0, (22)

where nel is the number of elements, i = 1, 2 (for 2D prob-
lems) andW denotes the standard weighting function vector.

In Eq. (22), the residual vectors r̄ and r̄st aswell as the vec-

tor of approximated primitive variables ¯̃U have the following
form

r̄ =

⎡
⎢⎢⎣

r̄d
r̄m1

r̄m2

r̄e

⎤
⎥⎥⎦ r̄st =

⎡
⎢⎢⎣

1
r̄m1

r̄m2

r̄e

⎤
⎥⎥⎦ ¯̃U =

⎡
⎢⎢⎣

ρ̄

v̄1
v̄2
T̄

⎤
⎥⎥⎦ , (23)

where r̄d , r̄mi and r̄e denote the approximate finite element
residuals for the mass, momentum and energy equations,
respectively.

In Eq. (23), τ = β

|v̄|+v̄c

is the the stabilization parameter
and the stabilization matrices S and Bi in Eq.(22) have the
following form (for βmi = βe = βd = β)

S = (1 − β)


⎡
⎢⎢⎢⎢⎢⎢⎣

|r̄d |
|∇ ˜̄U1|

0 0 0

0
|r̄m1 |
|∇ ˜̄U2|

0 0

0 0
|r̄m2 |
|∇ ˜̄U3|

0

0 0 0 |r̄e|
|∇ ˜̄U4|

⎤
⎥⎥⎥⎥⎥⎥⎦

Bi =

⎡
⎢⎢⎣

∇.(F̄mi − Ḡmi ) 0 0 0
0 v̄i 0 0
0 0 v̄i 0
0 0 0 v̄i

⎤
⎥⎥⎦ , (24)

where v̄i is the i th component of the nodal velocity vector
and∇.(F̄m − Ḡm) is the divergence of the approximate finite
elementflux terms corresponding to themomentumequation.

The Galerkin form of the discretized equations is obtained
by making the weighting functions equal to the interpolation
ones (W = N). The final step of the discretization is to apply
integration by parts to the first term of Eq. (22) to yield the
weak form as

∫
�

N
∂Ū
∂t

d� −
∫

�

∂N
∂xi

(F̄i − Ḡi )d� +
∫

�

N(F̄n − Ḡn)d�

−
nel∑
e

∫
�e

1

2
S

∂N
∂xi

∂Ū
∂xi

d� −
nel∑
e

∫
�e

τ

2
Bi

∂N
∂xi

r̄st d� = 0,

(25)
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with i = 1, 2. The first integral in Eq. (25) corresponds
to the time derivative part of the Navier–Stokes equation,
the second integral is the contribution of the inviscid and
viscous flux terms to the weak form and the third inte-
gral represents the boundary flux terms. The elemental
contributions of the streamline and transverse stabiliza-
tion terms are delivered by the fourth and fifth integrals,
respectively.

Terms F̄i and Ḡi in Eq. (25) represent the i th components
of the approximated vectors corresponding to the inviscid
flux vector F and the viscous flux vector G, respectively
[See Eq. (2)]. Also, F̄n = F̄i ni and Ḡn = Ḡi ni are the
projections of vectors F̄ and Ḡ, respectively, along the nor-
mal vector to the boundary n = [n1, n2]T (for 2D problems).
The different types of the boundary conditions are defined in
Sect. 4.3.

The following remarks are made:

• By considering the sign of the residuals in the definition
of the characteristic length vectors hd , hmi and he in Eqs.
(16), (14) and (15), all the components of matrix S are
positive, yielding a positive value of the shock capturing
diffusion.

• For the linear interpolation implemented here, the deriv-
ative of the viscous flux term Ḡmi in ∇.(F̄m − Ḡm)

appearing in the definition of the stabilization matrix Bi

Eq. (24) is zero.

4.2 Solution method

For the Navier–Stokes computations, an implicit scheme is
needed due to the small size of the elements in the normal
direction to the boundary layer.

For the steady-state problems solved in this work we will
neglect the temporal derivative term (i.e., the first term) in
Eq. (25). Assembling the elemental contributions from Eq.
(25), the global system of non-linear equations can bewritten
for the steady state case as

R(Ū) = 0, (26)

with

RI (Ū) = −
∫

�

∂NI

∂xi
(F̄i − Ḡi )d� +

∫
�

NI (F̄n − Ḡn)d�

−
nel∑
e

∫
�e

τ

2
Bi

∂NI

∂xi
r̄st d�

−
nel∑
e

∫
�e

1

2
S

∂NI

∂xi

∂
¯̃U

∂xi
d�, (27)

where RI (Ū) denotes the non-linear steady-state residual
vector corresponding to the I th global node.

The final global system of non-linear equations is solved
for Ū using a standard Newton method as

[
∂R

∂Ū

]n
Ūn = −R

(
Ūn)

Ūn = Ūn+1 − Ūn, (28)

with n being the iteration number.

In the above equation
[

∂R
∂Ū

]
is the Jacobian matrix cal-

culated by differentiation of the residual vector R(Ū) with
respect to the numerical solution Ū. It involves the lin-
earization of all the terms contributing to the residual vector
R(Ū) [See Eq. (27)]. In the current work the linearization
of the inviscid and viscous flux terms is handled through the
implementation an inviscid flux Jacobian matrix Ai and the
diffusivity matrix Ki j , presented in [51], whereas a hand-
coded linearization is implemented for the streamline and
transverse stabilization terms. Following this idea, the gen-
eral form of the Jacobian matrix can be expressed as

[
∂RI

∂ŪJ

]
= −

∫
�

∂NI

∂xi

(
AiNJ − Ki j

∂NJ

∂x j

)
d�

+
∫

�

NI

(
AiNJ − Ki j

∂NJ

∂x j

)
nid�

−
nel∑
e

∫
�e

1

2

∂NI

∂xi

[
∂τ

∂ŪJ
Bi r̄st

+ τ
∂Bi

∂ŪJ
r̄st + τBi

∂ r̄st
∂ŪJ

]
d�

−
nel∑
e

∫
�e

1

2

∂NI

∂xi

⎡
⎣ ∂S

∂ŪJ

∂
¯̃U

∂xi
+ S

∂( ∂
¯̃U

∂xi
)

∂ŪJ

⎤
⎦ d�.

(29)

In order to preserve the divergence of Newton method
due to the inappropriate initial guess and the creation of sharp

gradients, it is common to augment the Jacobianmatrix
[

∂R
∂Ū

]

with a damping term based on the mass matrixM as

[
δI J

tI
Mi j + ∂RI

∂ŪJ

]n
Ūn

J = −RI (Ūn)

with Mi j =
∫

�

NINJ d�, (30)

with I, J = 1, N where N is the total number of nodes in
the mesh. In the above equation, the nodal (pseudo) time
step tI is the minimum of the time steps corresponding to
the elements connected to node I . For inviscid problems, the
time step for an element e can be completed as
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Fig. 1 Subsonic inviscid flow past a bump example. The generated unstructured coarse mesh

te = CFL
h

|v̄| + v̄c
, (31)

whereCFL denotes the allowable Courant-Friedrichs-Lewy
number and h = 
 is the characteristic element size. Note
that CFL is a global number, while the remaining variables
in the above equation are calculated at the element level.
Including the viscous terms, the time step for an element can
be obtained as

te = CFL
h

|v̄| + v̄c + 4μγ 3/2M∞
ρ̄min Pr Re∞h

. (32)

In the above equation, ρ̄min is the minimum density within
the element, M∞ is the free stream Mach number, Pr is the
non dimensional Prandtl number and Re∞ is the free stream
Reynold number. The other variables have the samemeaning
as defined above. Details can be found in [50]. The Prandtl
number is assumed to be constant and equal to 0.72.

In this work the CFL is responsible for adding a scalable
damping term during the start-up computational process and
has the following form

CFL(n) = min(αnCFL(0),CFL(max)), (33)

where CFL(0) = 0.01, CFL(max) = 1012 and α is
selected between 1.001 and 1.01 depending on the problem.
Using this pattern for the CFL value, and increasing the
pseudo time step to a large value (CFL = 1012) the damped
unsteady terms vanish in Eq. (30) and the desired quadratic
convergence rate of the Newton method leading to the final
steady state solution is achieved.

The linear system of Eq. (30) consisting of a sparse block
matrix is solved using the generalized minimum residual
(GMRES) method described in [52]. In order to improve the

convergence, the preconditioned GMRES algorithm based
on a block-diagonal preconditioning has been implemented
in this work.

4.3 Boundary conditions

4.3.1 Euler equations

Equation (25) assumes a computational domain � sur-
rounded by a boundary � with unit normal n. So far, the
algorithm only describes the contributions of each element
across the integral � but does not yet states how to incorpo-
rate the boundary conditions.

In our work, two types of boundaries have been consid-
ered for Euler-type (inviscid) flows: the slip boundary �W

through which mass flux is not possible, and the far field
(inflow/outflow) boundary �∞ through which mass flux is
possible. The boundary condition must be applied in a com-
patible form with the equations to be solved.

Slip boundaryThe normal component of the velocitymust
vanish on the boundary. This condition can be enforced in a
weak form by setting the inviscid flux across the boundary
in Eq. (25) to:

v.n = 0 ⇒ F̄n =

⎡
⎢⎢⎣

0
pn1
pn2
0

⎤
⎥⎥⎦ , (34)

where n1 and n2 are the component of the unit normal vector
to the boundary n = [n1, n2]T .

Far field boundary Depending on the flow regime, the
components of the solution which enter the domain are to
be enforced and the ones leaving the domain have to be set
free. By using Roe approximation for Riemann solvers, the
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Fig. 2 Subsonic inviscid flow past a bump example. Density contours for a coarse mesh, b intermediate mesh and c fine mesh

boundary flux for a node I on the far field boundary is com-
puted as

F̄I
n = 1

2
{F̄n(ŪI )+F̄n(Ū∞)−|Ān(ŪI , Ū∞)|(ŪI −Ū∞)}, (35)

where superscript ∞ represents the freestream value and
Ān(ŪI , Ū∞) is the Roe matrix computed in the direction
normal to the boundary. More details about the derivation of
the Roe matrix can be found in [50,53].

123



Comput Mech (2015) 56:113–129 121

Fig. 3 Subsonic inviscid flow past a bump example. Pressure coefficient contours for a coarse mesh, b intermediate mesh and c fine mesh

4.3.2 Navier–Stokes equations

In general, the treatment of the boundary condition for the
Navier–Stokes equations is similar to the one for the Euler
equations. However, the steadymomentum and energy equa-

tions are elliptic and their modeling is more complex. Details
are given in [50].

No-slip boundary For the Navier–Stokes equations, in
addition to the conditions on the velocity, some conditions
must be considered for the temperature. The physical no-slip
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Fig. 4 Subsonic inviscid flow past a bump example. Convergence his-
tory of Newton method using different discretizations

boundary conditions for the velocity is

vi = 0, (36)

where i = 1, 2. This condition can be enforced by assigning
appropriateDirichlet boundary conditions for themomentum
components of Ū. As for the temperature boundary condi-
tions, if an adiabatic wall is modeled then the heat flux qn
across the wall is zero, i.e.,

qn = −k
∂T

∂n
= 0, (37)

which can be set weakly on the viscous boundary flux Ḡn .
For an isothermal wall, this condition yields the Dirichlet
boundary conditions for the energy components of Ū as

T = TW ⇒ ρe − ρcvTW = 0, (38)

Fig. 5 Subsonic viscous flow past NACA0012 airfoil. Detail of the mesh in the vicinity of the airfoil

Fig. 6 Subsonic viscous flow past a NACA0012 airfoil. Mach number contours
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Fig. 7 Subsonic viscous flow past a NACA0012 airfoil. a Close-up
of computed velocity vectors near the trailing edge and b Details of
pressure contours
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Fig. 8 Subsonic viscous flow past a NACA0012 airfoil. Comparison
of the obtained pressure coefficient Cp distribution with the numerical
results of reference [54]

where TW is a specified wall temperature. Note that since ρ

is not given a priori, the condition (38) should be updated
during the solution process.

Far field boundary For a node I located at the far field
boundary, the flux ḠI

n for a node I belonging to the far field
boundary can be obtained numerically by applying the far
field values at the boundary, i.e., ḠI

n = Ḡ∞
n .
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Fig. 9 Subsonic viscous flowpast aNACA0012 airfoil. Comparison of
the obtained skin-friction coefficientC f distribution with the numerical
results of reference [54]

Table 1 Subsonic viscous flow past a NACA0012 airfoil. Comparison
of separation location values obtained from different values of β

β = 0.25 β = 0.50 β = 0.75

Separation location 82.4% 83.0% 91.0%
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Fig. 10 Subsonic viscous flow past a NACA0012 airfoil. Convergence
of the density at the stagnation point for different values of β

Fig. 11 Supersonic flow over flat plate. Problem definition
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5 Test examples

In this section, a set of numerical examples is presented in
order to evaluate the performance of the FIC-based stabi-
lization method. In the first example, corresponding to an
inviscid subsonic flow, the capability of the proposed stabi-
lized formulation in conjunction with the implicit scheme
is assessed. The rest of examples study different viscous
flow regimes. For each example the computations start using
the upstream values as the initial solution and they are
advanced until a fully convergence of the residual vector
R(Ū) to machine zero (1E−14 for double precision) is
obtained. The numerical results are comparedwith published
results.

A value of β = 0.5 has been used in all the examples.
The sensitivity of the numerical solution to β is studied in
Sect. 5.2.

5.1 Example I: subsonic inviscid flow past a bump

A popular example for subsonic regime is the bump problem
consisting in an inviscid flowwithMach 0.35 pasting a bump
with the maximum thickness of 0.08 in a rectangle domain
of height 2 and length 4. In order to demonstrate the effect of
grid resolution on the behavior of the proposed scheme, the
domain is discretized uniformly by setting three different val-
ues for the element size. The generated unstructured meshes,
called coarse, intermediate and fine mesh, have 1902, 3712
and 7454 elements, respectively. The coarse mesh is shown
in Fig. 1. The slip boundary condition is applied on the upper
and lower sides of the domain, whereas the far field boundary
condition is considered on the left and right sides.

Figures 2 and 3 display the density and pressure coef-
ficient contours, respectively, corresponding to the different
discretizations which indicate the smoothness of the solution
in all the domain. It can be seen that although the FICmethod
is capable to predicting appropriate results by using a coarse
discretization, the smoothness of the numerical solutions is
enhanced by improving the quality of the mesh.

The iterative convergence histories for the different
meshes using Newton method are plotted in Fig. 4. Com-
putations are continued until a suitable convergence for the
residual to machine zero precision is obtained. It can be
observed that as initial transient flow passes, the damping
term vanishes and quadratic convergence is achieved for all
discretizations.

5.2 Example II: subsonic viscous flow past a NACA0012
airfoil

The subsonic viscous flow around a NACA0012 airfoil is
presented here for demonstrating the behavior of the devel-
oped stabilized formulation in the viscous regime. The flow

Fig. 12 Supersonic flow over flat plate. a density, b pressure, c tem-
perature and d Mach number contours

conditions are Re = 5000, M∞ = 0.5 and α = 0◦ and a
circular computational domain with the radius of 8 chords is
considered. The assumed circular domain is discretized into
12623 nodes and 25300 3-noded triangles including a struc-
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tured mesh of 15 layers near the airfoil boundary which is
merged with an unstructured mesh in the remaining of the
computational domain. For the first layer of elements at the
boundary, the normal element size has the value of 0.0005
which is increased by a geometric progression for the follow-
ing layers. The details of the mesh near the airfoil are shown
in Fig. 5. The no slip adiabatic wall condition is imposed at
the airfoil surface, whereas the far field condition is applied
at the outer boundary.

Results for the Mach number contours are presented in
Fig. 6 showing an overall excellent agreement with the refer-
ence values [54]. Figure 7a illustrates the recirculation bubble
at the trailing edge. Each vector of the figure represents the
modulus and direction of velocity at each node of the mesh.
Pressure contours are shown in Fig. 7b. The fact that the lines
are parallel to each otherwith almost no oscillations indicates
the good quality of the results.

A more severe test of accuracy is the plot of the pressure
coefficient cp and the skin friction coefficient c f along the
airfoil, presented in Figs. 8 and 9, respectively, showing the
agreement of the obtained results with the reference values
[54]. It is to be noted that the peak value of c f is slightly
underestimated. Better results can be obtained by using a
finer mesh near the leading edge.

The variation of the accuracy and the convergence with
the change in the coefficient β is investigated in this exam-
ple. Table 1 presents an estimate of the solution accuracy
as measured by the computed values of the location of the
separation point using three different values of 0.25, 0.50
and 0.75 for β. It can be found that the values obtained with
β = 0.25 and β = 0.50 have a good agreement with the
results presented in the reference paper [54], ranging from
80.9−83.4% chord.

The variation of the convergence history of the density
at the stagnation point with the change in β is presented in
Fig. 10 showing that the choice of β = 0.5 does not present
oscillations in the density values at the stagnationpoint for the
steady state solution. These results justify using β = 0.50.

5.3 Example III: supersonic viscous flow over flat plate

The Carter’s flat plate example with the flow conditions of
Re = 1000, M∞ = 3.0 and α = 0◦ is selected here to
examine the capability of the current method in the presence
of shockwaves and boundary layers. The rectangular domain
considered with the dimensions of 1.4 and 0.8 along the x
and y directions, respectively, is presented in Fig. 11. The
leading edge of the plate is located at x = 0.2 and y = 0.0.
The Reynolds number is calculated based on the free stream
values and the length in the x direction. A structured mesh
is created by dividing the domain in 64 and 112 parts in the
x and the y directions, respectively.

Fig. 13 Supersonic flow over flat plate. Comparison of the obtained a
normalized density and b normalized vertical velocity values along the
line x = 1.2 with the reference results [55]

Fig. 14 Compression corner. Problem definition

As shown in Fig. 11, all the values of ρ, vx , vy and T
are fixed at the inflow and upper sides of the domain since
these boundaries behave as a supersonic inlet. The no-slip
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Fig. 15 Compression corner.
Detail of the structured mesh

boundary condition is applied on the surface of the plate,
whereas the stagnation temperature of

Tstag = T∞
(
1 + γ − 1

2
M2∞

)
, (39)

is imposed there, as well. Although a prescription of the den-
sity is needed at the subsonic part of the outflow boundary,
the flow variables are left free there.

The obtained contours of density, pressure, tempera-
ture and Mach number are plotted in Fig. 12. The results
demonstrate the good behavior of the presented formu-
lation in capturing the shock wave and the boundary
layer.

The obtained density value and the y component of
the velocity along the line x = 1.2 are compared in
Figs. 13a and 13b, respectively, with the results pre-
sented in [55]. Although the obtained peak point values
of both the density and y component of the velocity are
not coincident with the reference ones, an overall good
agreement with the reference results can be observed. The
density and velocity are normalized using the upstream
density and the modulus of the upstream velocity vector,
respectively.

5.4 Example IV: compression corner

This example is another benchmark of the FIC–FEM formu-
lation for supersonic viscous regimes. The problem data is
extracted from [55] where the flow for Re = 16800, M∞ =
3.0 and α = 0◦ enters the domain passing over a flat plate
and then over a compression corner of 10◦ inducing the shock

wave and the boundary layer initiated from the leading edge
of the plate. The Reynolds number is calculated using the
free stream values and the distance between the leading edge
of the plate and the compression corner.

Figure 14 schematically shows the computational domain
of 0.0 ≤ x ≤ 1.9 and 0.0 ≤ y ≤ 0.716. The leading edge
of the flat plate is located at x = 0.1 and the compression
corner starts from x = 1.1.

The density, velocity and temperature values are fixed at
the inflow and upper boundaries where no condition is pre-
scribed on the outflow boundary. On the plate surface, the
no-slip boundary condition, as well as the specification of the
temperature as the stagnation temperature, calculated from
Eq. 39, are applied.

The domain is discretized using a structured mesh of
3-noded triangles containing 200 points in the streamline
direction, and 50 points in the vertical direction where the
minimum element size above the plate is taken as 0.0011
giving the maximum aspect ratio of almost 10 (Fig. 15).

The obtained values for the density, pressure, tempera-
ture and Mach number contours are presented in Fig. 16.
The figure shows that the FIC–FEM approach presented
in this work is able to provide smooth results in all the
domain, especially near the shock wave and near the bound-
ary layer. The only inaccuracy observed in the results is
the presence of non-realistic values at the zone close to the
stagnation point which is a point of singularity. It can be
seen that the weakness of the formulation in determining
the temperature at the stagnation point results in an over-
estimation of the Mach number there. This problem can be
resolved by using elements with less aspect ratio around that
region.
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Fig. 16 Compression corner. a density, b pressure, c temperature and d Mach number contours

The obtained Cp and C f distributions along the plate sur-
face are compared to the ones presented by Carter [55] in
Fig. 17 and 18, respectively. Generally, a good agreement is

observed except for the peak values at the stagnation point, as
mentioned before. The location of the separation point hap-
pens at x = 0.89 showing an appropriate compatibility with
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Fig. 17 Compression corner. Comparison of the obtained pressure
coefficient Cp distribution with the numerical results of reference [55]
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Fig. 18 Compression corner. Comparison of the obtained skin-friction
coefficient C f distribution with the numerical results of reference [55]

the results presented in the [55–57] ranging from x = 0.84
to x = 0.89.

6 Concluding remarks

An implicit stabilized formulation based on the FIC method
has been developed for solving the laminar compressible
Navier–Stokes equations on unstructured grids using the
Galerkin FEM. The arisen non-linear system of equations
for the steady state problems is solved by implementing a
damped Newton method in conjunction with a precondi-
tionedGMRESmethod for solving the resulted linear system
of equation at each iteration. The capability of the devel-
oped FIC–FEM stabilized formulation has been assessed by
introducing several inviscid and viscous test examples. Hav-
ing compared the numerical results with reference ones, it is
found that stable and accurate solutions have been obtained.
In particular, the boundary layer is captured as well as the
appropriate pressure coefficientCp distribution and the skin-
friction coefficient C f distribution along the boundary. In
future work, the accuracy of the formulation for estimating

the temperature inside the elements with high aspect ratio
around the stagnation point needs to be enhanced. We also
plan to develop the proposed method for 3D applications
considering unsteady flows and turbulence effects.
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