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Abstract In this paper, we present a gradient-type stabi-
lization formulation for the meshfree Galerkin nodal inte-
gration method in liner elastic analysis. The stabilization is
introduced to the standard variational formulation through
an enhanced strain induced by a decomposed smoothed
displacement field using the first-order meshfree convex
approximations. It leads to a penalization formulation con-
taining a symmetric strain gradient stabilization term for
the enhancement of coercivity in the direct nodal integra-
tion method. As a result, the stabilization parameter comes
naturally from the enhanced strain field and provides the
simplest means for effecting stabilization. This strain gra-
dient stabilization formulation is also shown to pass the
constant stress patch test if the SCNI scheme is applied to
the non-stabilized terms. Several numerical benchmarks are
examined to demonstrate the effectiveness and accuracy of
the proposed stabilization method in linear elastic analysis.

Keywords Meshfree · Nodal integration · Stabilization

1 Introduction

Meshfree, or particle methods, offer many numerical advan-
tages over conventional finite element and finite difference
methods in modeling large deformation, moving discontinu-
ity and immersed problems in solid and structural applica-
tions [6,21,22,29,30,40]. Those methods were also found
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to be very effective in reducing the volumetric locking and
shear locking in solid and structural analyses [10,12,35].
Nevertheless, an application of a direct nodal integration
scheme to meshfree or particle methods suffers from the
presence of spurious low or zero-energy modes [2] in solid
mechanics problems. The presence of spurious energymodes
in Galerkin-based meshfree methods mainly emanates from
the rank instability caused by the under-integration of weak
forms inherent in the central difference formula from the
direct nodal integration scheme.

A number of stabilized meshfree Galerkin methods have
been developed to suppress the spurious energy modes
caused by the direct nodal integration scheme. The Galerkin/
least-squares (GLS) stabilization approach [2] presents a
reconstructed weak form for the meshfree nodal integration
method in which a bilinear term consisting of the residual
of equilibrium equation is employed to stabilize the solu-
tion. This method enables the solution of partial differential
equations only based on a set of nodes without a need of
integration cells. Nevertheless, like many finite element sta-
bilization methods, the optimal choice of the stabilization
control parameter remains an open question. The so-called
physical stabilization technique [25] based on the Taylor-
series expansion of displacement gradient matrix for the
finite element method is free of stabilization control parame-
ters. This stabilization technique has been applied to several
meshfree Galerkin nodal integration methods [8,23]. A com-
mon feature of those physical stabilization methods is the
usage of higher-order derivatives and integration cells for the
meshfree computation. In 2001, Chen et al. [9] developed a
stabilized conforming nodal integration (SCNI) method in
which the “integration constraint” concept was proposed for
the design of an accurate meshfree nodal integration algo-
rithm.Based on the integration constraint, a strain-smoothing
scheme was introduced as a stabilization process for nodal
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integration. This strain-smoothing scheme leads to a con-
sistent formulation that passes the linear exactness in the
Galerkin approximation and does not involve the shape
function derivatives in computation. The performance of
SCNI method was further improved by the introduction of
penalty-type of stabilizations [28] to the nonlinear analysis.
To enhance the ability of SCNI method in severe defor-
mation analysis, a non-conforming SCNI method [15] was
developed. The non-conforming SCNI method combines the
semi-Lagrangian reproducing kernels with the mismatching
integration cells to allow large strain and failure simulations
under the extreme loading conditions. The concept of inte-
gration constraint in SCNI method also has been generalized
to achieve a quadratic consistent integration scheme [13].
Based on the SCNI technique and the meshfree regulariza-
tion methodology [7], a two-level Lagrangian nodal gradient
smoothing algorithm was recently developed [41] to study
the material instability in concrete structures. Most recently,
the consistency conditions for arbitrary order exactness in the
Galerkin approximation were introduced by Chen et al. [11]
to further reduce the solution errors of PDEs from quadrature
inaccuracy. Moreover, their method has been shown [18] to
remarkably alleviate the unstable deformation mode in the
simulation of impact problems.

The robustness and accuracy of meshfree or particle
methods in solid and structural analyses are also greatly
affected by their numerical treatments of boundary condi-
tions. Since the Kronecker-delta property does not hold in
the conventional meshfree approximations such as the mov-
ing least-squares (MLS) [3] and reproducing kernel (RK)
[26] approximations, special techniques [6,16,17,21,36] are
needed to impose the constraint and essential boundary
conditions in meshfree methods. Alternatively, several con-
vex approximations were introduced [1,31] to simplify the
essential boundary condition treatment in meshfree meth-
ods. Meshfree convex approximations guarantee the unique
solution inside a convex hull with a minimum distributed
data set and possesses the Kronecker-delta property at the
boundaries to avoid the special numerical treatment on the
essential boundaries. Wu et al. [37] have provided a unified
approach that can generate specific convex approximations as
well as reproduce several existing meshfree approximations.
Park et al. [27] embarked on a detailed dispersion analysis
and reported that meshfree convex approximation exhibits
smaller lagging phase and amplitude errors than meshfree
non-convex approximation in full-discretization of the wave
equation. Several meshfree Galerkin and meshfree-enriched
finite element formulations based on the meshfree convex
approximation also have been developed for solid mechan-
ics applications [38,39].

Despite a lot of research works have been done in stabi-
lizing the meshfree nodal integration method, there is still
a need for a robust and accurate stabilization formulation

in solid mechanics applications. In particular, a stabilization
formulation that is free of stabilization control parameters
and integration cellswouldminimize the computational com-
plexity and improve the numerical performance in a large
extent of meshfree applications. This paper aims to present
an alternative stabilized nodal integration method where the
direct nodal integration scheme can be used in the compu-
tation and the stabilization formulation does not demand the
control parameters.

The rest of this work is organized as follows: In the
next section, we define the boundary-value problem of lin-
ear elasticity and formulate the meshfree Galerkin method
using the meshfree convex approximation. In Sect. 3, we
present a stabilized meshfree Galerkin formulation based on
an enhanced strain field induced by a displacement smooth-
ing for the nodal integration method. Given a decomposed
smoothed displacement field, a strain gradient stabilization
that contains a tensor form of position-dependent stabi-
lization parameter is derived. The corresponding discrete
equations are given in Sect. 4. Same section discusses the
preservation of linear exactness of the Galerkin approxima-
tion using the stabilization formulation. Several numerical
examples are presented in Sect. 5 to illustrate the robust-
ness and accuracy of the method. Final remarks are drawn in
Sect. 6.

2 Preliminaries

In this section we consider the static response of an elastic
body under plain strain condition. We assume the domain
� ⊂ R2 to be a bounded polygon with the smooth boundary
� = ∂�. Also, let u be the displacement and further assume
that the Dirichlet boundary conditions are applied on �D

and the Neumann boundary conditions are prescribed on�N.
For a prescribed body force f (X) ∈ L2 (Ω), the governing
equilibrium equation and boundary conditions are written as

−∇ · σ (u) = f in�

u = g on�D

σ · n = t on�N
(�D ∪ �N = �; �D ∩ �N = ∅)

(1)

where g is the prescribed displacement on �D, t is the pre-
scribed traction, n is the outward unit normal to the boundary
�N , and ∇· stands for the divergence operator. The infinites-
imal strain tensor ε (u) is defined by

ε (u) = 1

2
(∇u + u∇) ≡ ∇su (2)

where∇ is the gradient operator. In the case of linear isotropic
elasticity, the Cauchy stress tensor σ and strain tensor ε have
the following relationship
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σ = C : ε (u) = 2με (u) + λ tr (ε (u)) I (3)

where C is the elasticity tensor and I is the identity tensor.
The positive constants μ and λ the Lamé constants such that
μ ∈ [μ1, μ2] with 0 < μ1 < μ2 and λ ∈ (0,∞). The
Lamé constants can be related to the Young’s modulus E
and Poisson ratio v by

μ = E

2 (1 + v)
, λ = vE

(1 + v) (1 − 2v)
(4)

The variational form of this problem is to find the dis-
placement u ∈ Vg = {v ∈ H1 (�) : v = g on �D

}
such that

for all δu ∈ V
∫

�

δ
(∇su

) : C : (∇su
)
d� −

∫

�

δu · fd�

−
∫

�N

δu · td� = 0 (5)

where the spaceV = H1
0 (�) consists of functions in Sobolev

space H1 (�) which vanishes on the boundary in the sense
of traces and is defined by

V (�) =
{
v : v ∈ H1, v = 0 on �D

}
(6)

By the Lax–Milgram theorem [5], there exists a unique solu-
tion u ∈ Vg to the problem. For simplicity, we assume
the homogenous Dirichlet boundary conditions in the fol-
lowing derivation. The standard meshfree Galerkin method
[3,6,26] is then formulated on a finite dimensional subspace
Vh ⊂ V employing the variational formulation of Eq. (5) to
find uh ∈ Vh such that

δ� =
∫

�

δ
(
∇suh

)
: C :

(
∇suh

)
d�

−
∫

�

δuh · fd�−
∫

�N

δuh · td� = 0 ∀δuh ∈ Vh (7)

For a particle distribution noted by an index set ZI =
{X I }N P

I=1, we approximate the displacement field using the
meshfree approximation constructed by either conventional
meshfree approximation methods or convex approximation
methods [37] to give

uh (X) =
N P∑

I=1

ΨI (X) ũI ≡ û (X) ∀X ∈ � (8)

where NP is the total number of particles in discretization,
and ΨI (X) , I = 1, . . .N P can be considered as the shape
functions of the meshfree approximation for displacement
field uh (X). With the meshfree shape functions, we can
define the corresponding finite-dimensional approximation

space to be Vh = span {ΨI (X) : I ∈ ZI and X ∈ �}. In
general, ũI is not the particle displacement and is often
referred to as the “generalized displacement” [6] of particle
I in meshfree Galerkin method. Using Eq. (8), the particle
displacement at particle I can be expressed by

uh (X I ) =
N P∑

J=1

ΨJ (X I ) ũJ ≡ ûI (9)

where X I = (XI ,YI ) is the nodal coordinate of particle I . If
the meshfree shape functions ΨI (X) are constructed using
a convex approximation, then they have the Kronecker-delta
property on the boundary, i.e. ûI = ũI for ∀X I ∈ �. In this
study, the first-order convex approximation is constructed
by the GMF method [37] using the inverse tangent basis
function and the cubic splinewindow functionwith a circular
support. Giving a convex hull Convex(ZI ) of the node set
ZI = {X I , I = 1, · · · N P} ⊂ R2 defined by

Convex(ZI )

=
{

N P∑

I=1

αIX I

∣
∣
∣
∣
∣
αI ∈ R,

N P∑

I=1

αI = 1, αI ≥ 0, X I ∈ ZI

}

(10)

theGMFmethod is used to construct a convex approximation
of a given (smooth) function u (X) in the form of Eq. (8) such
that the shape function ΨI : Convex (Zl) → � satisfies the
following linear polynomial reproduction property

N P∑

I=1

ΨI (X)X I = X ∀X ∈ Convex (ZI ) (11)

With the meshfree convex approximation, we can also define
a H1

0 -conforming subspace for the approximation of dis-

placement field to be Vh := span
{
ΨI
∣
∣ (suppΨI

)0 ⊂ Ω,

I ∈ ZI
}
. An evaluation of weak form in Eq. (1) using mesh-

free approximation and a direct nodal integration scheme
leads to the spurious low or zero-energymodes. This is a con-
sequence of the fact that field variables and their derivatives
are calculated at the same points such that an alternating field
variable has a zero gradient at particles [34]. The almost van-
ishing first derivatives at the nodes result in a discrete weak
form that does not adequately reflect the strain energy and its
contribution to the stiffnessmatrix is severely underestimated
[2]. Mathematically, a semi-positive definite formulation is
posed on the weak from of Eq. (7) by the direct nodal inte-
gration method, and the coercivity of bilinear form in Eq.
(7) is not guaranteed unless a stabilization term is included.
Figure 1 illustrates a typical 1D oscillation solution obtained
from the direct nodal (DN) integration scheme.
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Fig. 1 Displacement oscillation in the direct nodal (DN) integration
method for 1D problem

3 A stabilized meshfree nodal integration
formulation for linear elasticity

3.1 A least-squares stabilization for meshfree Galerkin
formulation

The GLS stabilization approach [2] presents a reconstructed
weak form for meshfree nodal integration method in which
a stabilization term consisting of the squares of the residual
of the equilibrium equation is given as follows:

δ� =
∫

�

δ∇s
(
uh
)

: C∇s
(
uh
)
d� −

∫

�

δuh · fd�

−
∫

�N

δuh · td� + αh2

E

∫

�

(
∇ · δσ

(
uh
))

·
(
∇ · σ

(
uh
)

+ f
)

= 0 ∀ δuh ∈ Vh (12)

where α is the dimensionless stabilization control parameter,
h is a characteristic length scale of the discretization. The
divergence of the stress tensor in Eq. (12) can be expressed
by

∇ · σ
(
uh
)

= ∇ ·
(
Cε
(
uh
))

= C′ε��
(
uh
)

(13)

where the notation ε�
�
represents the gradient of the strain

measure and is expressed in the following matrix form

ε�
�
(
uh
)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uhX,XX

uhX,XY

uhX,YY

uhY,XX

uhY,XY

uhY,YY

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(14)

C′ is a modified elasticity tensor from the matrix operation
in Eq. (13) and its expression can be found explicitly in [2].
Rearranging Eq. (12) using Eq. (13) yields

δ� =
∫

�

δε
(
uh
)

: Cε
(
uh
)
d� −

∫

�

δuh · fd�

−
∫

�N

δuh · td�

+ αh2

E

∫

�

δ
(
ε�
�
(
uh
))

:
(
C′TC′) (ε��

(
uh
))

+ αh2

E

∫

�

δ
(
C′ε��

(
uh
)

· f
)

= 0 ∀ δuh ∈ Vh (15)

Since the term ε�
� (

uh
)
contains the gradients of the strain, the

stabilization term in Eq. (15) can be considered as a term
penalizing the jump of strain gradients at nodes that gives
the control of the solution stabilization in meshfree nodal
integration method. The idea of addition of a term penal-
izing the jump of strain gradients to the standard Galekin
formulation is not new. This stabilization approach was orig-
inally developed in the Streamline-upwind/Petro-Galerkin
(SUPG) method [19] by appending residuals of the Euler-
Lagrangain equations to the standard Galerkin variational
equation for the advection-diffusion problems. Later on in
the GLS method [20], the residuals of the Euler-Lagrangain
equations were replaced by a least-squares form and led to
a mesh-dependent term to enhance the coercivity of the for-
mulation and recover the optimal rate of convergence for
the displacement (or velocity)/pressure pairs. Nowadays, this
stabilization technique has been widely used to stabilize the
solutions of transport, acoustic waves and Stokes problems
[4,14,32,41].

To connect the stabilization term with an enhanced strain
field in our formulation, Eq. (15) can be further written by

δ� =
∫

�

δε
(
uh
)

: Cε
(
uh
)
d�

−
∫

�

δuh · fd�−
∫

�N

δuh · td�

+
∫

�

δ
(
ε�
(
uh
)

− ε
(
uh
))

:
(
C′TC′) (ε�

(
uh
)

− ε
(
uh
))

+
∫

�

δ
(
C′ (ε�

(
uh
)

− ε
(
uh
))

· f
)

= 0 ∀δuh ∈ Vh (16)
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where ε� can be regarded as a stabilized strain field defined
by

ε�
(
uh
)

= ε
(
uh
)

+ αsε
��
(
uh
)

(17)

in which αs = h
√

α
E denotes a length scale dependent sta-

bilization parameter. The term αsε
��
(
uh
)
in Eq. (17) can be

realized as an enhanced strain for stabilization. This strain
gradients penalization allows the formulation to stabilize
the solution of direct nodal integration method and provides
the possibility to recover the optimal rate of convergence in
meshfree Galerkin framework [2]. Nevertheless, the optimal
choice of stabilization control parameter αs remains an open
question. From our numerical experiences, the selection of
stabilization control parameter αs is usually related to the
nodal support sizes. We also found out that the choice of sta-
bilization parameter is sensitive to the irregularity of nodal
distribution in meshfree discretization. Generally, a proper
stabilization control parameter needs to be calibrated prob-
lem by problem in the engineering practice. This may be one
of the reasons that GLS stabilization approach has not gained
universal popularity inmeshfree community for the solid and
structure analyses.

3.2 An enhanced strain from the decomposed smoothed
displacement field

In this study, an alternative strain gradient penalization
approach is developed through an enhanced strain introduced
by a decomposed smoothed displacement field. We first con-
sider a Taylor series expansion of a function û (Y) about a
point Y = X to be

û (Y) = û (X) + ∇û (X) · (Y − X)

+ 1

2!∇
(2)û (X) ·(2) (Y − X)(2)

+ 1

3!∇
(3)û (X) ·(3) (Y − X)(3) + · · · (18)

where ∇(n) denotes the nth order gradient operator and ·(n)

denotes the nth order inner product.
A smoothing of displacement field is first devised and is

defined by [42]

u (X)
de f ·=

∫

�

Ψ̃ (Y;X) û (Y) dΩ (19)

where Y denotes the position of the infinitesimal volume
dΩ, û (Y) is an oscillatory displacement field at position Y
produced by the direct nodal integration method, and Ψ̃ is
the displacement smoothing function. Using the assumption
that displacement smoothing function is continuous in�, the
corresponding stabilized strain field can be expressed by

ε (u) ≡ �(ε (u)) = ∇Xu (X) =
∫

�

∇X Ψ̃ (Y;X) û (Y) dΩ

(20)

where � : L2 (�) → L2 (�) denotes a L2 projection opera-
tor. It is assumed that the displacement smoothing functions
Ψ̃ are also constructed by the meshfree convex approxima-
tion and satisfy the linear polynomial reproduction condition.
In another words, the smoothed displacement field u (X)

defined in Eq. (19) equals to û (X) for homogeneous dis-
placement states. The symbol (ξ)(n) designates the n factor
dyadic product (ξ) (ξ) · · · (ξ) for vector ξ . Substituting Eq.
(18) into Eq. (19) and truncating the Taylor series after the
quadratic term together with a use of the linear polynomial
reproduction condition of Ψ̃ lead to the following smoothed
displacement field approximated in terms of unsmoothed dis-
placement and its gradients

u (X) ≈
∫

�

Ψ̃ (Y;X) û (X) dΩ

+
∫

�

Ψ̃ (Y;X)∇û (X) (Y − X) dΩ

+ 1

2!
∫

�

Ψ̃ (Y;X)∇(2)û (X) ·(2) (Y − X)(2) dΩ

= û (X)

∫

�

Ψ̃ (Y;X) dΩ

+ ∇û (X)

⎛

⎜
⎜
⎜
⎝

∫

�

Ψ̃ (Y;X) (Y) dΩ − X
∫

�

Ψ̃ (Y;X) dΩ

︸ ︷︷ ︸
=0

⎞

⎟
⎟
⎟
⎠

+ ∇(2)û (X) ·(2)
(
1

2!
∫

�

Ψ̃ (Y;X) (Y − X)(2) dΩ

)

= û (X)

∫

�

Ψ̃ (Y;X) dΩ

+ ∇(2)û (X) ·(2)
(
1

2!
∫

�

Ψ̃ (Y;X) (Y − X)(2) dΩ

)

= û (X) + ∇(2)û (X) ·(2) η (X)

= û (X) + ũ
(
û (X)

)
(21)

where

η (X) = 1

2!
∫

�

Ψ̃ (Y;X) (Y − X)(2) dΩ (22)

defines the tensor form of position dependent coefficients
and ũ = ∇(2)û ·(2) η denotes the decomposed smoothed
displacement field or enhanced displacement field introduced
for providing the stabilization effect in the meshfree nodal
integration method.

In the direct nodal integration method, the discrete form
of Eq. (21) can be expressed by
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u (X I ) = û (X I ) + ∇(2)û (X I ) ·(2) η (X I )

= û (X I ) + ũ (X I ) ∀X I ∈ � (23)

in which |η (X I )| ∝ h2 is proportional to a length squared.
With themeshfree convex approximations defined inEq. (11)
for the displacement smoothing functions Ψ̃ , the position
dependent coefficients η (X I )can be shown to vanish on the
global boundary �

η (X I ) = 0 ∀X I ∈ � (24)

In other words, the discrete enhanced displacement field
satisfies ũ (X I ) = 0 ∀X I ∈ �. Therefore the Dirichlet
boundary condition is satisfied ab initio by the enhanced dis-
placement field ũ.

In essence, the stabilized strain field defined in Eq. (19) is
different from the non-local strain used in the regularization
of strain localization problem [7,41]. Their difference can
be easily identified by the following analysis in the case of
uniform discretization. Given a “boundary region” B(GI ) of
a node set GI = {X I , I = 1, . . . MP} ⊂ R2 defined by

B (GI ) := {X I ∈ GI , supp (X I ) ∩ � �= 0} (25)

the direct nodal integration of Eq. (19) gives

ε (X) ≡ �hε (X) =
∫

�

∇XΨ̃ (Y;X) uh (Y) dΩ

=
∫

�/B
∇XΨ̃ (Y;X) uh (Y) dΩ

+
∫

B
∇XΨ̃ (Y;X)uh (Y) dΩ (26)

where�h is the discrete analogue of�. In uniform nodal dis-
tribution, the term

∫
�/B ∇XΨ̃ (Y;X)uh (Y) dΩ in Eq. (26)

has the following property

∇XΨ̃ (Y;X) = −∇Y Ψ̃ (Y;X) (27)

The combination of Eqs. (26) and (27) with a use of diver-
gence theorem give

ε (X) = −
∫

�/B
∇Y Ψ̃ (Y;X)uh (Y) dΩ

+
∫

B
∇XΨ̃ (Y;X)uh (Y) dΩ

= −
∫

�/B
∇Y Ψ̃ (Y;X)uh (Y) dΩ

+
∫

B
∇XΨ̃ (Y;X)uh (Y) dΩ

+

⎛

⎜
⎜
⎜
⎝

−
∫

B
∇Y Ψ̃ (Y;X)uh (Y) dΩ +

∫

B
∇Y Ψ̃ (Y;X)uh (Y) dΩ

︸ ︷︷ ︸
=0

⎞

⎟
⎟
⎟
⎠

= −
∫

�
∇Y Ψ̃ (Y;X)uh (Y) dΩ

+
∫

B

(
∇XΨ̃ (Y;X) + ∇Y Ψ̃ (Y;X)

)
uh (Y) dΩ

=
∫

�
Ψ̃ (Y;X) ∇Yu

h (Y) dΩ −
∫

�
Ψ̃ (Y;X)n · uhd�

+
∫

B

(
∇XΨ̃ (Y;X) + ∇Y Ψ̃ (Y;X)

)
uh (Y) dΩ

= ε̃ (X) + κ (X) (28)

where ε̃ (X) is the standard expression of non-local strain in
the regularization of strain localization problem [7] and it is
defined by

ε̃ (X) ≡
∫

�

Ψ̃ (Y;X) εh (Y) dΩ (29)

Now the difference between the present stabilized strain
ε (X) and the non-local strain ε̃ (X) can be expressed by

κ (X) ≡ ε (X) − ε̃ (X)

=
∫

B

(
∇XΨ̃ (Y;X) + ∇Y Ψ̃ (Y;X)

)
uh (Y) dΩ

−
∫

�

Ψ̃ (Y;X)n · uhd� (30)

In our numerical implementation, a modification of discrete
stabilized strain field is obtained from the decomposed dis-
placement field in Eq. (23) with a neglect of derivative terms
after second-order in the displacement such that

�hε
(
û
) = ε

(
û
)+ ∇ũ

(
û
) ≈ ∇û + ∇(2)

û (31)

where �h is a modified discrete smoothed strain operator,

∇(2)
denotes a kind of second-order gradient operator, and

∇(2)
û ≈ ∇ũ

(
û
)
corresponds to an approximated enhanced

strain field for stabilization that contains only the second-
order derivatives of displacements and has the following
explicit form

∇(2)
û = 1

2

(
∇η : û∇(2) +

(
∇η : û∇(2)

)T)
(32)

The index forms of Eq. (32) in multi-dimensions are given
by

[
∇(2)

û
]

i j
= 1

2

(
ηkl,i ûm,njδlmδkn + ûk,liηmn, jδkmδln

)
(33)

or
[
∇(2)

û
]

i j

= 1

2

(
3∑

k=1

3∑

l=1

∂ηkl

∂Xi

∂2ûl
∂Xk∂X j

+
3∑

k=1

3∑

l=1

∂2ûl
∂Xi∂Xk

∂ηlk

∂X j

)

(34)
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Eq. (33) will be used in this study for the two-dimensional
linear elastic analysis. The corresponding displacement gra-
dient matrices using Eq. (33) for the stabilization computa-
tion are given in the next section.

To introduce the enhanced strain field in Eq. (31) into
the standard variational formulation, the penalty approach is
considered:

� = arg min
v∈H1(�)

[
�(v) + 1

2

∫

�

(
�hε (v)

−ε (v)) : C : (�hε (v) − ε (v )
)
d�
]

(35)

With the enhanced strain field defined in Eq. (31), the min-
imization problem of (35) leads to the following stabilized
discrete weak form by the nodal integration method: finding
û ∈ Vh , such that

ah
(
û, δû

) = l
(
δû
) ∀δû ∈ Vh (36)

where

ah
(
û, δû

) =
∫

�

δ
(∇s û

) : C : (∇s û
)
d�

+
∫

�

δ
(
∇(2)

û
)

: C :
(
∇(2)

û
)
d�

= ahstan
(
û, δû

)+ ahstab
(
û, δû

)
(37)

l
(
δû
) =

∫

�

δû · fd�+
∫

�N

δû · td� (38)

The notation ahstan in Eq. (37) denotes the standard bilinear
form. The stabilized bilinear form ahstab is given by

ahstab
(
û, δû

) =
∫

�

δ
(
�hε

(
û
)− ε

(
û
)) : C : (�hε

(
û
)

−ε
(
û
))
d�

=
∫

�

δ
(
∇(2)

û
)

: C :
(
∇(2)

û
)
d� (39)

which corresponds to the variation of stabilized potential
energy. Apparently, the bilinear term ahstab (·, ·) is symmet-
ric, continuous and non-negative. Now the modified bilinear
form ah is coercive with respect to a broken energy norm
defined by

∥
∥
∥
∣
∣
∣vh
∣
∣
∣
∥
∥
∥
2 =

∣
∣
∣vh
∣
∣
∣
2

1
+ ahstab

(
vh, vh

)
∀ vh ∈ Vh (40)

where |·|1stands for the semi-norm by standard notation in
the Sobolev space. The penalty error in Eq. (40) stems from

the application of direct nodal integration scheme to the sta-
bilized term and can be shown by

ah
(
u − uh, vh

)

= ah
(
u, vh

)
− l
(
vh
)

= ahstab

(
u, vh

)

=
∫

�

(
∇(2)

u
)

: C :
(
∇(2)

vh
)
d�

=
N P∑

I=1

(
∇(2)

u (X I ) : C : ∇(2)
vh (X I )

)
VI f or vh ∈ Vh

(41)

where VI denotes the volume of node I . In other words,
Eq. (41) can be used to measure the effect of Vh �⊂ V in
the penalty variational formulation setting. In Sect. 5, the
discrete form of Eq. (41) will be employed to evaluate the
penalty error of the present stabilization formulation for the
numerical convergence study.

4 Discrete equations and preservation of constant
stress field

The corresponding discrete equations of the present stabiliza-
tion formulation for two-dimensional linear elastic analysis
are summarized in the following

KŨ = f ext (42)

K = K + K̃ (43)

K I J =
N P∑

K=1

BT
I (XK )CBJ (XK ) VK (44)

K̃ I J =
N P∑

K=1

B̃
T
I (XK )CB̃J (XK ) VK (45)

f extI =
N P∑

K=1

ΨI (XK )f (XK ) VK +
N B∑

K=1

ΨI (XK ) t (XK ) LK

(46)

B̃I (X) =
⎡

⎣
b̃11 b̃12
b̃21 b̃22
b̃31 b̃32

⎤

⎦ (47)

where the components in Eq. (47) are given in Appendix
A. The vector Ũ = [

ũ1 ũ2 · · · ũN P
]
contains the problem

unknowns for generalized nodal displacements. VI denotes
the volume of node I . NB denotes the number of boundary
nodes and Lk is the length associated with the boundary node
along the global boundary. BI is the standard displacement
gradient matrix of node I obtained by the direct nodal inte-
gration scheme. Note the numerical evaluation of Eq. (42)
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using the direct nodal integration scheme results in a sym-
metric linear system.

A practical numerical method in solid mechanics appli-
cations is often required to pass the patch test in which a
constant stress field has to be reproduced exactly. It is ready to
show that the present formulationwill pass the constant stress
patch test if the well-known SCNI scheme [9] is adopted for
the computation of standard bilinear form in Eq. (37). The
application of SCNI scheme to Eq. (37) leads to the following
gradient-type stabilization for the SCNI formulation

δ�̃
(
û, ˜̂ε
)

=
∫

�

δ ˜̂ε : C : ˜̂εd�

+
∫

�

δ
(
∇(2)

û
)

: C :
(
∇(2)

û
)
d�

−
∫

�

δû · fd� −
∫

�N

δû · td� (48)

In two-dimensional problem, the smoothed strain ˜̂ε in Eq.
(48) is defined by Chen et al. [9] as:

˜̂ε (Xm) = 1

Am

∫

�m

ε̂
(
û (X)

)
Φm (X)d� (49)

whereΩm is a representative domain of nodem which can be
constructed based on the Voronoi diagrams or finite element
mesh in SCNImethod. Am = ∫

�m

d� is the associated area of

Ωm .Φm(X) is the characteristic or strain smoothing function
of the nodal representative domain Ωm defined by

Φm (X) =
{
1, i f X ∈ �m

0, else
(50)

We continue to show that the present strain gradient stabi-
lization for SCNI formulation in Eq. (48) passes the constant
stress patch test.

Proof First of all, let’s assume the exact solution for the two-
dimensional linear displacement field in the patch test to be
expressed by û (X I ) = X I , I = 1, . . . N P in the nodal inte-
gration method. Using Eq. (23), the smoothed displacement
field is approximated by

u (X) = û (X) + ∇(2)û (X) ·(2) η (X)

=
N P∑

I=1

ΨI (X) û (X I ) +
(

N P∑

I=1

Ξ I (X)

)

·(2) η (X)

(51)

where

∇(2)û (X) =
N P∑

I=1

Ξ I (X) (52)

Then using the linear reproducing property for displacement
smoothing function in Eq. (18), we have

N P∑

I=1

Ξ I (X) ≈
[
N P∑

I=1

(
ΨI,XX (X)

+ΨI,XY (X)
)
û X (X I )

N P∑

I=1

(
ΨI,Y X (X)

+ΨI,YY (X)
)
ûY (X I )

]

= [0 0
]

(53)

where û (X I ) = [
û X (X I ) ûY (X I )

]
. The combination of

Eqs. (51) and (53) yields

u (X J ) =
N P∑

I=1

ΨI (X J ) û (X I ) + ∇(2)û (X J ) ·(2) η (X J )

= û (X J ) and ũ (X J ) = 0 ∀X J ∈ � (54)

The results in Eq. (54) imply that the enhanced displacement
field is null. In other words, we have

∇(2)û (X J ) = 0 thus ∇(2)
û (X J ) = 0 ∀X J ∈ � (55)

which implies that the present strain gradient stabilization for
SCNI formulation in Eq. (48) reduces to the standard SCNI
formulation [9] in the constant stress patch test. Hence, the
proof follows. ��

5 Numerical examples

In this section, five benchmark examples are analyzed to
study the performance of present stabilization method in lin-
ear elastic problems. Plain strain condition is assumed in
two-dimensional problems. As comparison, we also provide
the results using the direct nodal (DN) integrationmethod and
the standard SCNI method [9]. Unless otherwise specified,
a normalized nodal support size of 2.0 is used for the direct
nodal integration method and the standard SCNI method in
the two-dimensional analyses. For the present method, the
normalized nodal support size of 2.5 is considered for the
two-dimensional problems. In all test cases, we have used
the meshfree convex approximations [37] to simplify the
boundary condition enforcement. To explore the concept of
the method, we simply consider Ψ̃I (X) = ΨI (X) in the
numerical study. For results using the present stabilization
formulation, the SCNI method is not applied to the standard
bilinear term in the all numerical analyses. A dimensionless
unit system is adopted in this paper for convenience. The
errors of the discrete solutions are measured in a stress-error
norm defined by
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ehuσ

≡
√∫

�

[
(
σ h
xx − σxx

)2+
(
σ h
xy − σxy

)2+
(
σ h
yy − σyy

)2]
d�

(56)

Since the numerical evaluation of broken energy norm error
in Eq. (40) is difficult, an energy norm error associated with
the stabilization term in Eq. (41) is defined in the following
to investigate the convergence order of penalty error in the
present method.

ehue ≡
∣
∣ahstab

(
uh,uh

)∣∣
∥
∥uh
∥
∥
1

(57)

Finally, all the deformation plots are illustrated with the help
of background meshes for the demonstration purpose.

5.1 1D problem with third-order solution

This 1D example has been utilized previously in Sect. 2 for
the illustration of solution oscillation problem in the direct
nodal integration method. In this numerical example, the
enhanced accuracy in the present method is studied and used
to compare with that of direct nodal integration and standard
SCNI methods. The model problem is defined by

− u,xx + 100x = 0, 0 ≤ x ≤ 1 (58)

with boundary conditions

u (0) = u (1) = 0 (59)

Two slightly irregular meshfree models containing 10- and
20-node with a normalized support size of 1.6 is used in
the analysis. This normalized support size corresponds to an
actual nodal support size of 0.178 and 0.084 for 10- and 20-
node models, respectively. As reported previously in Fig. 1,
the direct nodal integration method displays severe oscilla-
tions of the solution as shown in Fig. 2a, b for 10- and 20-node
model, respectively. The solution oscillation in direct nodal
integration method can be greatly improved by the standard
SCNI method, although small oscillation is still visible in
the SCNI solution particularly for the 10-node model. On
the other hand, the present method produces very accurate
solution and demonstrates its effectiveness in providing the
stabilization effect.

5.2 Cantilever beam

A cantilever beam problem under plane strain condition, as
shown in Fig. 3, is considered for the numerical study of

Fig. 2 Comparison of solution in 1D problem. a 10-node model,
b 20-node model

x 
y 

L=10
D=2 P=-1 

Fig. 3 Cantilever beam model

convergence properties in this two-dimensional linear analy-
sis. Analytical displacement field is prescribed along X = 0,
and parabolic vertical traction P is applied along X = 10.
The analytical displacement and stress solutions of the prob-
lem are available in [33]. The material properties used in
the analysis are: Young’s modulus E = 1000, Poisson ratio
v = 0.3.

Figure 4a shows the convergence results in stress-error
norms. Since the exact solution is relatively smooth and
all three numerical methods do not produce any spurious
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Fig. 4 Convergence plot. a Stress error ehuσ , b energy error ehue

low-energy modes in the solution, we observe comparable
convergence order in the stress-error norm in this linear prob-
lem. Similar to the performance in GLS stabilization method
[2], adding the present stabilization term into the direct nodal
integration method may reduce the accuracy when the exact
solution is relatively smooth and discretization is coarse.
However, this inaccuracy decreases as the discretization is
continuously refined. While the first-order of convergence
is preserved in the stress-error norm of the present solution,
the results in Fig. 4b have shown that the discretization solu-
tions of stabilization term converge with the same rate in
the energy-error norm ehue . This numerical result indicates
that the penalty error associated with the stabilization term
decreases as fast as the error associated with the standard
bilinear term when the exact solution is rather smooth. The
scaled deformation plots are provided in Fig. 5a–c. The SCNI
method appears to be the most accurate method among three
comparison methods in this example.

Fig. 5 Deformation plot (scaled by 5 times): analytical (red lines) and
numerical (blue lines). a DN, b SCNI, c present method. (Color figure
online)

Fig. 6 Plate with a hole model

5.3 Infinite plate with a hole

An infinite plate with a center hole of radius a = 2 under
uni-axial tension Tx = 1 as shown in Fig. 6 is considered
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in this example. Based on the double symmetry of the prob-
lem, only the upper quadrant of the problem with boundaries
�h extended to X = 5 and Y = 5 is modeled. The material
properties used in the analysis are the same as those in exam-
ple 5.2. The analytical solution of the problem is available in
[33]. Analytical solutions are applied along boundaries �h ,
and zero normal displacements are prescribed on the symme-
try boundaries. Since the discretization model contains the
irregular nodal distribution, the non-uniform nodal support
sizes are used in the analyses and they are defined by

supp (ΨI ) ≡ rI =
√

(rX I )
2 + (rY I )

2 · rn,
rX I = max

J∈NN
(|XI − X J |) , (60)

rY I = max
J∈NN

(|YI − YJ |)

whereNN is the total number of neighboringnodes associated
with the node I in a mesh setting using the finite element
discretization, and rn denotes the normalized nodal support
size.

Figure 7a shows the convergence results in three com-
parison methods. The stress-error norm of present methods
converges close toO(h). In contrast, the optimal convergence
order is not observed in the DN integration method. The non-
convergent result of DNmethod is an outcome of low-energy
modes residing in the solution as shown in Fig. 8a. Similar
to the previous example, the SCNI method is very accurate
in this problem. Compared with the DN method, the SCNI
method and the present method are very stable as shown
in Fig. 8b, c. The convergence of penalty error is shown in
Fig. 7b. Since the analytical solution of this problem is com-
paratively non-smooth, the convergence rate of energy-error
norm ehue in the present method is slightly lower than that in
the previous example.

5.4 2D punch problem

The displacement oscillation of nodal integration method is
also investigated in the 2D punch test. A block of elastic
material with a fixed bottom is punched by a rigid, friction-
less and flat plate with a prescribed displacement. The elastic
properties of the material are: Young’s modulus E = 2.0E6
and Poisson’s ratio v = 0.3. The model geometry is shown
in Fig. 9. Five levels of uniform discretization in the model,
namely 121 nodes, 441 nodes, 961 nodes, 1681 nodes and
2601nodes, are utilized to study the convergence of the punch
forces. The reference solution is obtained from a FEM analy-
sis using the standard bilinear finite element formulationwith
a 3321-node model.

The convergence of punch force results is plotted in
Fig. 10. As shown in the plot, the convergence in the direct
nodal integration method is not uniform. This non-uniform

Fig. 7 Convergence plot. a Stress error ehuσ , b energy error ehue

convergence result is the cause of unstable deformation
perturbed by the under-integration of weak form in the
direct nodal integration method. Fig. 11a–e illustrate differ-
ent perturbations of notorious low-energymodes observed in
various discretization models. In comparison with the direc-
tion nodal integration method, standard SCNI method does
not present the non-uniform convergence problem. However
the convergence of the standard SCNI method is very slow
in this punch test. As shown in Fig. 12a–e, the standard
SCNI method exhibits different pattern of unstable modes
in the deformation and the results are not improved when
the model is continuously refined. The results of stabilized
SCNI (SSCNI) formulation in Eq. (60) are also provided for
the comparison. As shown in Fig. 10, the SSCNI method
improves the SCNI method in terms of accuracy and conver-
gence in this punch test. Figure 13a–edisplay thedeformation
plots of SSCNI method in various levels of discretization.
Although slight oscillations of SSCNI solution are observed
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Fig. 8 Deformation plot (scaled by 100 times): analytical (red lines)
and numerical (blue lines). a DN, b SCNI, c present method. (Color
figure online)

in the first layer of nodes near the punch area, the unsta-
ble modes inside the domain of SCNI model are effectively
removed by the introduction of present strain gradient sta-
bilization. On the other hand, the present method notably

0.8

4.0

2.0

Fig. 9 Problem description for 2D punch model

Fig. 10 Convergence of reaction force in 2D punch problem

improves the convergence of punch force over the other three
methods. The deformation results in Fig. 14a–e imply the
addition of a term penalizing the strain gradients to the direct
nodal integration formulation can help stabilize the solution.

Two irregular models shown in Fig. 15a, b are created
to test the performance of the present method under non-
uniform discretization. Same nodal support size of that in the
uniform discretization is used. Since both the standard SCNI
method and the SSCNI method rely on the integration cells
for computation, only the result of direction nodal integration
method is reported for comparison. Figure 16a, b compare
the deformation in the irregular model containing 441 nodes.
Same comparison of irregular model containing 1681 nodes
is given in Fig. 17a, b. The deformation plots in Figs. 16
and 17 indicate that the present method remains to produce a
stable solution under the non-uniform discretization. While
the accuracy of direct nodal integration method deteriorates
in the non-uniform model as shown in Table 1, the present
method is able to maintain high accuracy in the prediction of
punch forces.
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Fig. 11 Deformation plots for the direct nodal integration method. a 121 nodes, b 441 nodes, c 961 nodes, d 1681 nodes, e 2601 nodes

Fig. 12 Deformation plots for standard SCNI method. a 121 nodes, b 441 nodes, c 961 nodes, d 1681 nodes, e 2601 nodes
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Fig. 13 Deformation plots for standard SSCNI method. a 121 nodes, b 441 nodes, c 961 nodes, d 1681 nodes, e 2601 nodes

5.5 The study of nodal support size effect

The solution sensitivity from the nodal support size effect is
studied in this example. Same 2D punch problem in exam-
ple 5.4 is considered. The uniform model containing 1681
nodes with a normalized support size varies from 2.2 to 3.6
is analyzed. As shown in Fig. 18, the direction nodal inte-
gration method produces noticeable error in the punch force
and the result is highly sensitive to the nodal support size.
Figures 19a and 20a depict the unstable deformation of the
direct nodal integration method using the normalized sup-
port size of 2.2 and 3.6 respectively. On the other hand, the
present method significantly improves the solutions over the
direction nodal integration method, and the result is much
less sensitive to the nodal support size. The non-sensitivity
of the nodal support size effect in the present method also
attributes to the similar displacement fields as displayed in
Fig. 19b and 20b using two very different normalized nodal
support sizes.

The solution sensitivity to the nodal support size effect
is also investigated using the non-uniform model contain-
ing 1681 nodes. As shown in Fig. 21 for the punch force
responses, the non-uniform model results of direction nodal
integration method are in general softer than those in the uni-
formmodel for the tested nodal support sizes. This numerical

behavior of direct nodal integration method indicates that the
notorious low-energy modes are more profound in the non-
uniform model than that in the uniform model. It is also
observed that the deformation profile of the direction nodal
integration method in Fig. 22a and 23a is less symmetri-
cal than it was shown in the uniform case. Apparently, the
overall performance of direction integration method in the
non-uniform discretization is less accurate than that in the
uniform discretization. On the contrary, the present method
generates the result which is less sensitive to the nodal sup-
port size. The deformation profiles of the present method in
two severe nodal support sizes, 2.2 and 3.6 are quite compa-
rable as shown in Fig. 22b and 23b respectively. Evidently,
the spurious oscillations of the solution in the direct nodal
integration method are effectively suppressed in the present
solution thanks to the strain gradient stabilization.

6 Conclusion

In conventional penalty-type or residual-type stabilization
approaches, the choice of stabilization parameters is criti-
cal to the success of numerical performance in meshfree
Galerkin nodal integration method. In essence, the selection
of stabilization control parameter is strictly problem depen-
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Fig. 14 Deformation plots for the present method. a 121 nodes, b 441 nodes, c 961 nodes, d 1681 nodes, e 2601 nodes

Fig. 15 Two irregular models in 2D punch problem. a 441 nodes, b 1681 nodes

Fig. 16 Comparison of deformation in 441 nodes irregular model. a Direct nodal integration, b present method
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Fig. 17 Comparison of deformation in 1681 nodes irregular model. a Direct nodal integration, b present method

Table 1 Comparison of 2D punch forces in irregular models

Direct nodal integration Present

Regular Irregular Regular Irregular

441 nodes 1.305e6 9.839e5 1.386e6 1.359e6

1681 nodes 1.219e6 1.121e6 1.351e6 1.349e6

Reference 1.351e6 (regular FEM 3321 nodes)

Fig. 18 Support size effect on the punch force response in 1681 nodes
uniform model

dent and needs to be numerically calibrated. Additionally,
the determination of characteristic length scale for stabiliza-
tion is not obvious in the model containing irregular nodal
distribution and/or using different nodal support sizes. In
this study, we attempt to resolve those problems by present-
ing a strain gradient stabilization formulation. In the present
formulation, the position-dependent stabilization parameter
is derived from the displacement smoothing. It provides a
simple way for effecting stabilization regardless of the irreg-
ularity of discretization and the variety of nodal support sizes.
Since the stabilization formulation involves the second-order
derivatives in displacement, it is considered as a type of strain
gradient stabilization. The formulation is proven to pass the
constant stress patch test if the SCNI scheme is performed to
compute the standard bilinear term.

The numerical results of the present method indicate that
the stress-error norm and the norm of penalty error are
close to an optimal convergence rate of O(h). The stabi-
lization effect has been shown qualitatively in the 2D punch
example in terms of stabilizing the spurious energy modes
and predicting the correct force responses. Same numerical
example also has been utilized to demonstrate the robust-
ness of formulation. It has been shown that the resulting
punch force is less sensitive to the variation of nodal support
sizes and the irregularity of discretization. Theoretically, the
present formulation does not require integration cells for the
computation. Those nice features of present method could

Fig. 19 Comparison of deformation in 1681 nodes uniform model with normalized support size equals to 2.2. aDirect nodal integration, b present
method
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Fig. 20 Comparison of deformation in 1681 nodes uniform model with normalized support size equals to 3.6. aDirect nodal integration, b present
method

Fig. 21 Support size effect on the punch force response in 1681 nodes
non-uniform model

offer an easier numerical implementation thus less compu-
tational complexity for the large deformation and failure
simulation in solidmechanics applications. The development
of stabilization formulation for nonlinear analysis is under
investigation and will be addressed in the future.

Acknowledgments The authors would like to thank Dr. John O. Hal-
lquist of LSTC for his support to this research. The support of this work
by Yokohama Rubber Co, Ltd, Japan under the Yosemite Project is
gratefully acknowledged.

Appendix

In this appendix, the derivation of stabilization gradient
matrix for Eq. (47) is provided. First, let us recall the dis-
crete smoothed displacement field to be approximated by

u (X) = û (X) + ũ
(
û (X)

)

Fig. 22 Comparison of deformation in 1681 nodes non-uniform model with normalized support size equals to 2.2. a Direct nodal integration,
b present method

Fig. 23 Comparison of deformation in 1681 nodes non-uniform model with normalized support size equals to 3.6. a Direct nodal integration,
b present method
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=
N P∑

I=1

ΨI (X)û (X I ) +
(

N P∑

I=1

Ξ I (X)

)

·(2) η (X) (61)

where

η (X)

= 1

2

⎡

⎢
⎢
⎢
⎣

N P∑

I=1
Ψ̃I (X)(XI− X)2

N P∑

I=1
Ψ̃I (X)(XI −X)(YI − Y )

N P∑

I=1
Ψ̃I (X)(XI −X)(YI −Y )

N P∑

I=1
Ψ̃I (X)(YI −Y )2

⎤

⎥
⎥
⎥
⎦

(62)

N P∑

I=1

Ξ I (X) ≈
[
N P∑

I=1

(
ΨI,XX (X) + ΨI,XY (X)

)
û X (X I )

N P∑

I=1

(
ΨI,Y X (X) + ΨI,YY (X)

)
ûY (X I )

]

(63)

Using Eqs. (61) ∼ (63), the enhanced strain field in Eq. (37)
is approximated by

�hε
(
û
)− ε

(
û
) ≈ ∇(2)

û

= 1

2

(
∇η : û∇(2) +

(
∇η : û∇(2)

))

=
N P∑

I=1

B̃I (X)ûI (64)

where

B̃I (X) =
⎡

⎣
b̃11 b̃12
b̃21 b̃22
b̃31 b̃32

⎤

⎦ (65)

b̃11 = χXXXΨI,XX + χXXXΨI,XY (66)

b̃12 = χXXYΨI,XY + χXXYΨI,YY (67)

b̃21 = χY XXΨI,XY + χXXYΨI,XX

+χY XXΨI,XX + χXXYΨI,XY (68)

b̃22 = χY XYΨI,YY + χXYYΨI,XY

+χY XYΨI,XY + χXYYΨI,YY (69)

b̃31 = χY XYΨI,XX + χY XYΨI,XY (70)

b̃32 = χYYYΨI,XY + χYYYΨI,YY (71)

χXXX (X) = 1

2

N P∑

I=1

Ψ̃I,X (X) (XI − X)2 (72)

χXXY (X) = 1

2

N P∑

I=1

Ψ̃I,X (X) (XI − X) (YI − Y ) (73)

χYYY (X) = 1

2

N P∑

I=1

Ψ̃I,Y (X) (YI − Y )2 (74)

χY XY (X) = 1

2

N P∑

I=1

Ψ̃I,Y (X) (XI − X) (YI − Y ) (75)

χY XX (X) = 1

2

N P∑

I=1

Ψ̃I,Y (X) (XI − X)2 (76)

χXYY (X) = 1

2

N P∑

I=1

Ψ̃I,X (X) (YI − Y )2 (77)
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